圆锥曲线存在性问题

圆锥曲线存在性问题
圆锥曲线存在性问题

圆锥曲线中的存在性问题

一、基础知识

1、在处理圆锥曲线中的存在性问题时,通常先假定所求的要素(点,线,图形或是参数)存在,并用代数形式进行表示。再结合题目条件进行分析,若能求出相应的要素,则假设成立;否则即判定不存在

2、存在性问题常见要素的代数形式:未知要素用字母代替 (1)点:坐标()00,x y

(2)直线:斜截式或点斜式(通常以斜率为未知量) (3)曲线:含有未知参数的曲线标准方程 3、解决存在性问题的一些技巧:

(1)特殊值(点)法:对于一些复杂的题目,可通过其中的特殊情况,解得所求要素的必要条件,然后再证明求得的要素也使得其它情况均成立。

(2)核心变量的选取:因为解决存在性问题的核心在于求出未知要素,所以通常以该要素作为核心变量,其余变量作为辅助变量,必要的时候消去。 (3)核心变量的求法:

①直接法:利用条件与辅助变量直接表示出所求要素,并进行求解

②间接法:若无法直接求出要素,则可将核心变量参与到条件中,列出关于该变量与辅助变量的方程(组),运用方程思想求解。 二、典型例题:

例1:已知椭圆()2222:10x y C a b a b

+=>>的离心率为3,过右焦点F 的直线l 与C 相交

于,A B 两点,当l 的斜率为1时,坐标原点O 到l 的距离为2

。 (1)求,a b 的值

(2)C 上是否存在点P ,使得当l 绕F 旋转到某一位置时,有OP OA OB =+成立?若存在,求出所有的P 的坐标和l 的方程,若不存在,说明理由

解:(1)::3

c e a b c a =

=?=

则,a b =

=,依题意可得:(),0F c ,当l 的斜率为1时

:0l y x c x y c =-?--=

2

O l d -∴=

=

解得:1c =

a b ∴== 椭圆方程为:22

132

x y +=

(2)设()00,P x y ,()()1122,,,A x y B x y 当l 斜率存在时,设():1l y k x =-

OP OA OB =+ 012

012

x x x y y y =+?∴?=+?

联立直线与椭圆方程:()221236

y k x x y =-???+=?? 消去y 可得:()222

2316x k x +-=,整理可得:

()2

222326360k

x k x k +-+-=

2122632k x x k ∴+=+ ()312122264223232

k k

y y k x x k k k k +=+-=-=-++

22264,3232k k P k k ??

∴- ?++??

因为P 在椭圆上

2

2

2

22

642363232k k k k ????∴?+-= ? ?++????

()()()2

2

42222272486322432632k k k k k k ∴+=+?+=+

(

)2224632k k k ∴=+?=

当k =

):1l y x =-

,3,2

2P ? ??

当k =

时,):1l y x =-

,322P ??

???

当斜率不存在时,可知:1l x =

,1,

,1,33A B ??- ???

?,则()2,0P 不在椭圆上

∴综上所述:):1l y x =-,3,22P ? ??或):1l y x =-,3,22P ? ?? 例2:过椭圆()22

22:10x y a b a b

Γ+=>>的右焦点2F 的直线交椭圆于,A B 两点,1F 为其左

焦点,已知1AF B 的周长为8,椭圆的离心率为2

(1)求椭圆Γ的方程

(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆Γ恒有两个交点,P Q ,且

OP OQ ⊥?若存在,求出该圆的方程;若不存在,请说明理由

解:(1)由1AF B 的周长可得:482a a =?=

2

c e c a ∴=

=?= 2221b a c ∴=-= 椭圆2

2:14

x y Γ+= (2)假设满足条件的圆为2

2

2

x y r +=,依题意,若切线与椭圆相交,则圆应含在椭圆

01r ∴<<

若直线PQ 斜率存在,设:PQ y kx m =+,()()1122,,,P x y Q x y

PQ 与圆相切 ()2221O l d r m r k -∴=

=?=+

0OP OQ OP OQ ⊥??= 即12120x x y y +=

联立方程:2

2

44

y kx m x y =+???

+=?()222148440k x kmx m +++-=

2121222844

,4141

km m x x x x k k -∴+=-=++

()()()2212121212y y kx m kx m k x x km x x m ∴=++=+++ ()()22121212121x x y y k x x km x x m ∴+=++++

()222

2

244814141m km k km m k k -??=?++?-+ ?++??

222544

41

m k k --=+

225440m k ∴--=对任意的,m k 均成立

将()

2221m r k =+代入可得:()()

22251410r k k +-+=

()()225410r k ∴-+= 245

r ∴=

∴存在符合条件的圆,其方程为:2245x y +=

当PQ 斜率不存在时,可知切线PQ 为x =

若:PQ x =

,5

555P Q ???- ? ? ????

0OP OQ ∴?= :PQ x ∴=

若:PQ x = 综上所述,圆的方程为:22

45

x y +=

例3:已知椭圆()222210x y a b a b +=>>经过点(,离心率为1

2

,左,右焦点分别为

()1,0F c -和()2,0F c

(1)求椭圆C 的方程

(2)设椭圆C 与x 轴负半轴交点为A ,过点()4,0M -作斜率为()0k k ≠的直线l ,交椭圆C 于,B D 两点(B 在,M D 之间),N 为BD 中点,并设直线ON 的斜率为1k ① 证明:1k k ?为定值

② 是否存在实数k ,使得1F N AD ⊥?如果存在,求直线l 的方程;如果不存在,请说明理由

解:(1)依题意可知:1

2

c e a =

=可得:::2a b c =

∴椭圆方程为:22

22143x y c c

+=

,代入(可得:1c =

∴椭圆方程为:22

143

x y +

= (2)① 证明:设()()1122,,,B x y D x y ,线段BD 的中点()00,N x y 设直线l 的方程为:()4y k x =+,联立方程:

()2

2

43412

y k x x y ?=+??+=?? 化为:()2222343264120k x k x k +++-= 由0?>解得:2

1

4

k < 且22121222

326412,4343k k x x x x k k --+==++ 2120216243x x k x k +∴==-+ ()00212443k

y k x k =+=+

01034y k x k ∴=

=- 13344

k k k k ∴=-?=- ② 假设存在实数k ,使得1F N AD ⊥,则11F N AD k k ?=-

1202202

12434

16114134F N

k y k k k k x k k +∴===+--++ ()22

22422

AD k x y k x x +=

=

++ ()1222441142

F N AD k x k

k k k x +?=

?=--+

即()

222222224164182282k x k k x k x k +=-+-?=--<- 因为D 在椭圆上,所以[]22,2x ∈-,矛盾

所以不存在符合条件的直线l

例4:设F 为椭圆()2222:10x y E a b a b +=>>的右焦点,点31,2P ??

???在椭圆E 上,直线

0:34100l x y --=与以原点为圆心,以椭圆E 的长半轴长为半径的圆相切

(1)求椭圆E 的方程

(2)过点F 的直线l 与椭圆相交于,A B 两点,过点P 且平行于AB 的直线与椭圆交于另一点Q ,问是否存在直线l ,使得四边形PABQ 的对角线互相平分?若存在,求出l 的方程;若不存在,说明理由 解:(1)

0l 与圆相切

10

25

O l d r -∴=

== 2a ∴= 将31,2P ??

???代入椭圆方程

22214x y b +=

可得:b =∴椭圆方程为:22

143

x y +

= (2)由椭圆方程可得:()1,0F 设直线():1l y k x =-,则()3

:12

PQ y k x -=- 联立直线l 与椭圆方程:

()2

2

13412

y k x x y ?=-??+=??消去y 可得:()22224384120k x k x k +-+-= ()()()2

222218443412144144k k k k ∴?=-+-=+

()2122

12143

k AB x k +∴=-==

+

同理:

联立直线PQ 与椭圆方程:

()223123412y k x x y ?=-+?

?

?+=?

消去y 可得:()()22224381241230k x k k x k k +--+--= ()()()22

2222181244123431444k k k k k k k ?????=----+=++ ?????

PQ ∴==

因为四边形PABQ 的对角线互相平分

∴四边形PABQ 为平行四边形

AB PQ ∴= (

)22

12143

k k +∴

=+解得:34

k =

∴存在直线:3430l x y --=时,四边形PABQ 的对角线互相平分

例5:椭圆()22

22:10x y C a b a b

+=>>的左右焦点分别为12,F F ,右顶点为A ,P 为椭圆1

C 上任意一点,且12PF PF ?的最大值的取值围是22,3c c ????

,其中c (1)求椭圆1C 的离心率e 的取值围

(2)设双曲线2C 以椭圆1C 的焦点为顶点,顶点为焦点,B 是双曲线2C 在第一象限上任意一点,当e 取得最小值时,试问是否存在常数()0λλ>,使得11BAF BF A λ∠=∠恒成立?若存在,求出λ的值;若不存在,请说明理由 解:(1)设()()()12,,,0,,0P x y F c F c -

()()12,,,PF c x y PF c x y ∴=---=--

22212PF PF x y c ∴?=+-

由22221x y a b +=可得:222

22b y b x a

=-代入可得: 222

2

2

222

22212221b c PF PF x y c x b c x b c a a ???=+-=-+-=+- ???

[],x a a ∈- ()

212

max

PF PF b ∴?=

22

2

2

2

2

2

2

2

22

2334c a

c b c c a c c c a

?≤?∴≤≤?≤-≤??≥??

圆锥曲线大题十个大招——轨迹问题

招式八:轨迹问题 轨迹法:1.直接法:如果动点运动的条件就是一些几何量的等量关系,这些条件简单明确,不需要特殊的技巧,易于表述成含x,y 的等式,就得到轨迹方程,这种方法称之为直接法; 例1、已知直角坐标系中,点Q (2,0),圆C 的方程为122=+y x ,动点M 到圆C 的切线长与 MQ 的比等于常数)0(>λλ,求动点M 的轨迹。 【解析】设MN 切圆C 于N ,则2 2 2 ON MO MN -=。设),(y x M ,则 2 222)2(1y x y x +-=-+λ 化简得0)41(4))(1(2 2 2 2 2 =++-+-λλλx y x (1) 当1=λ时,方程为4 5 = x ,表示一条直线。 (2) 当1≠λ时,方程化为2 2 22 222) 1(31)12(-+=+--λλλλy x 表示一个圆。 ◎◎如图,圆1O 与圆2O 的半径都是1,124O O =. 过动点P 分别作圆2O 、圆2O 的切线PM PN ,(M N ,分别为切点),使得2PM PN =. 试建立适当的坐标系,并求动点P 的轨迹方程. 【解析】以12O O 的中点O 为原点,12O O 所在直线为x 轴,建立如图所示的平面直角坐标系,则 1(20)O -,,2(20)O ,. 由已知2PM PN =,得222PM PN =. 因为两圆半径均为1,所以 22 1212(1)PO PO -=-. 设()P x y , ,则 2222(2)12[(2)1]x y x y ++-=-+-, y x Q M N O

即22(6)33x y -+=.(或221230x y x +-+=) 评析: 1、用直接法求动点轨迹一般有建系,设点,列式,化简,证明五个步骤,最后的证明可以省略,但要注意“挖”与“补”。 2、求轨迹方程一般只要求出方程即可,求轨迹却不仅要求出方程而且要说明轨迹是什么。 2.定义法:运用解析几何中一些常用定义(例如圆锥曲线的定义),可从曲线定义出发直接写出轨迹方程,或从曲线定义出发建立关系式,从而求出轨迹方程。 例2、已知动圆过定点,02p ?? ??? ,且与直线2p x =-相切,其中0p >.求动圆圆心C 的轨迹的方程; 【解析】如图,设M 为动圆圆心,,02p ?? ??? 为记为F ,过点M 作直线2p x =-的垂线, 垂足为N ,由题意知:MF MN = 即动点M 到定点F 与定直线2 p x =- 的距离相等, 由抛物线的定义知,点M 的轨迹为抛物线,其中,02p F ?? ??? 为焦点, 2 p x =- 为准线,所以轨迹方程为2 2(0)y px P =>; ◎◎ 已知圆O 的方程为 x 2+y 2=100,点A 的坐标为(-6,0),M 为圆O 上任一点,AM 的垂直平分线交OM 于点P ,求点P 的方程。 【解析】由中垂线知,PM PA =故10==+=+OM PO PM PO PA ,即P 点的轨迹为以A 、 O 为焦点的椭圆,中心为(-3,0),故P 点的方程为 12516 25)3(2 2=++y x ,02p ?? ??? 2 p x =-

圆锥曲线存在性问题

圆锥曲线中的存在性问题 一、基础知识 1、在处理圆锥曲线中的存在性问题时,通常先假定所求的要素(点,线,图形或是参数)存在,并用代数形式进行表示。再结合题目条件进行分析,若能求出相应的要素,则假设成立;否则即判定不存在 2、存在性问题常见要素的代数形式:未知要素用字母代替 (1)点:坐标(x0, y0) (2)直线:斜截式或点斜式(通常以斜率为未知量)(3)曲线:含有未知参数的曲线标准方程3、解决存在性问题的一些技巧: (1)特殊值(点)法:对于一些复杂的题目,可通过其中的特殊情况,解得所求要素的必要条件,然后再证明求得的要素也使得其它情况均成立。 (2)核心变量的选取:因为解决存在性问题的核心在于求出未知要素,所以通常以该要素作为核心变量,其余变量作为辅助变量,必要的时候消去。 (3)核心变量的求法:①直接法:利用条件与辅助变量直接表示出所求要素,并进行求解 ②间接法:若无法直接求出要素,则可将核心变量参与到条件中,列出关于该变量与辅助变量的方程(组),运用方程思想求解。 二、典型例题: 22 例1:已知椭圆C : x+ y=1(a b0)的离心率为3,过右焦点F的直线l与C相交于A, B两点,当l的斜率为1时,坐标原点O到l的距离为(1)求a, b的值 uuur uuur uuur (2)C上是否存在点P,使得当l绕F旋转到某一位置时,有 OP = OA + OB成立?若存 在,求出所有的P的坐标和l的方程,若不存在,说明理由 解:(1)e = c = 3a:b:c = 3: 2 :1 a3

则a = 3c ,b = 2c ,依题意可得: F (c ,0) ,当l 的斜率为1时 l :y = x - c x - y - c = 0 d O - l = = 解得: c = 1 22 a = 3, b = 2 椭圆方程为: +=1 32 (2)设P ( x 0 , y 0 ) , A (x 1, y 1),B (x 2, y 2) 当l 斜率存在时,设l :y = k (x -1) 联立直线与椭圆方程: y =k (x - 1) 消去y 可得: 2x 2+3y 2=6 (3k 2 +2)x 2 -6k 2x +3k 2 -6=0 uuur uuur uuur Q OP =OA +OB x 0 =x 1 +x 2 y 0 =y 1+y 2 x 1+x 2= 62k y 1+ y 2 =k (x 1+x 2)-2k = 6k 3 3k 2+2 -2k 4k 3k 2+ 2 4k P 3k 62k +2,-3k 42k +2 因为P 在椭圆上 23k 2+2+3-3k 2+2=6 72k 4 +48k 2 =6(3k 2 + 2)2 24k 2 (3k 2 +2)=6(3k 2 +2)2 24k 2= 6(3k 2+ 2) k = 2 当 k = 2 时, l : y =2 ( x -1) , P , - 32 2,- 2 当k =- 2时,l : y =- 2(x -1),P 3, 2 32 2, 2 当斜率不存在时,可知l :x =1 ,A 1,2 3 l :x =1 A 1, 3 ,B 1,-2 3 3 ,则P (2,0)不在椭圆上 2x 2+3k 2(x -1)2 = 6 ,整理可得:

【智博教育原创专题】三大圆锥曲线经典结论

1 注重结论 巧妙应用之三大圆锥曲线经典结论 【结论1】在椭圆22 221(0)x y a b a b +=>>上不与坐标轴平行的弦的斜率与该弦中点和坐标原点连线的斜率之积为定值22b a -(注:若椭圆焦点在y 轴上时,即0b a >>,则定值为2 2a b -)。 【证明】设原点为1122,(,),(,)O A x y B x y 是椭圆上的任意不同的两点,00(,)P x y 是弦AB 中点。 221122 120221202222 1221x y x x x a b y y y x y a b ?+=?+=?????+=??+=??,由以上几式可得:1212121222()()()()0x x x x y y y y a b +-+--=。可转化为201 22120y y y b x x x a -?=-,即22AB OP b k k a ?=-。 【结论2】双曲线22 221(0,0)x y a b a b -=>>上不与坐标轴平行的弦的斜率与该弦中点和坐标原点连线的斜率之积为定值22b a (注:若双曲线为焦点在y 轴上的形式,则定值为2 2a b )。 【证明】设原点为1122,(,),(,)O A x y B x y 是双曲线上的任意两个不同的点,00(,)P x y 是弦AB 的中点。 221122 120221202222 1221x y x x x a b y y y x y a b ?-=?+=?????+=??-=??,由以上几式可得:1212121222()()()()0x x x x y y y y a b +-+--=。可转化为201 22120y y y b x x x a -?=-,即22AB OP b k k a ?=。 【结论3】抛物线22y px =上不与坐标轴平行的弦的斜率与该弦中点和坐标原点连线的斜率之积为0 p x (0x 为弦中点的横坐标)。 【证明】设原点为1122,(,),(,)O A x y B x y 为22y px =上任意两个不同的点,00(,)P x y 为弦AB 中点。 212011212022 2222x x x y px y y y y px ?+==?????+==???,可得121212()()2()y y y y p x x +-=-,两边同除以12()x x +得:1212121212()()2()y y y y p x x x x x x +--=++,即得:01 212000 ,AB OP y y y p p k k x x x x x -?=?=-。 在解决圆锥曲线中有关弦的斜率与中点坐标问题时,利用“设而不求,代点作差”较麻烦,灵活运用上述结论,能够快速、简捷地解决圆锥曲线的有关问题。 1. 求中心在原点O , 一焦点为,截直线32y x =-所得弦的中点横坐标为 12 的椭圆的方程。 【解析】设32y x =-与椭圆交于1122(,),(,),A x y B x y AB 中点为1 20001(,),22 x x P x y x +==在32y x =-上得012y =-,由上述结论知22AB OP b k k a ?=-,而3,1AB OP k k ==-。所以2 23b a =。由题意

高中数学圆锥曲线轨迹问题题型分析

有关圆锥曲线轨迹问题 根据动点的运动规律求出动点的轨迹方程,这是解析几何的一大课题:一方面求轨迹方程的实质是将“形”转化为“数”,将“曲线”转化为“方程”,通过对方程的研究来认识曲线的性质;另一方面求轨迹方程是培养学生数形转化的思想、方法以及技巧的极好教材。该内容不仅贯穿于“圆锥曲线”的教学的全过程,而且在建构思想、函数方程思想、化归转化思想等方面均有体现和渗透。 轨迹问题是高考中的一个热点和重点,在历年高考中出现的频率较高,特别是当今高考的改革以考查学生创新意识为突破口,注重考查学生的逻辑思维能力,运算能力,分析问题和解决问题的能力,而轨迹方程这一热点,常涉及函数、三角、向量、几何等知识,能很好地反映学生在这些能力方面的掌握程度。 求轨迹方程的的基本步骤:建设现代化(检验) 建(坐标系)设(动点坐标)现(限制条件,动点、已知点满足的条件)代(动点、已知点坐标代入)化(化简整理)检验(要注意定义域“挖”与“补”) 求轨迹方程的的基本方法:直接法、定义法、相关点法、参数法、交轨法、向量法等。 1.直接法:如果动点运动的条件就是一些几何量的等量关系,这些条件简单明确,不需要特殊的技巧,易于表述成含x,y 的等式,就得到轨迹方程,这种方法称之为直接法; 例1、已知直角坐标系中,点Q (2,0),圆C 的方程为 122=+y x ,动点M 到圆C 的切线长与MQ 的比等于常数 )0(>λλ,求动点M 的轨迹。 【解析】设MN 切圆C 于N ,则2 2 2 ON MO MN -=。设),(y x M ,则 2222)2(1y x y x +-=-+λ 化简得0)41(4))(1(22222=++-+-λλλx y x (1) 当1=λ时,方程为4 5 = x ,表示一条直线。 (2) 当1≠λ时,方程化为2 222 222)1(31)12(-+=+--λλλλy x 表示一个圆。 ◎◎如图,圆1O 与圆2O 的半径都是1,124O O =. 过动点P 分别作圆2O 、圆2O 的切线PM PN ,(M N ,分别为切点) ,使得PM =. 试建立适当的坐标系,并求动点P 的轨迹方程. 【解析】以12O O 的中点O 为原点,12O O 所在直线为x 轴,建立如图所示的平面直角坐标系,则 1(20)O -,,2(20)O ,.

圆锥曲线中存在探索型问题

圆锥曲线中存在探索型问题 存在探索型问题作为探索性问题之一,具备了内容涉及面广、重点题型丰富等命题要求,方便考查分析、比较、猜测、归纳等综合能力,因而受到命题人的喜爱.圆锥曲线存在探索型问题是指在给定题设条件下是否存在某个数学对象(数值、性质、图形)使某个数学结论成立的数学问题.本节仅就圆锥曲线中的存在探索型问题展开,帮助复习. 1.常数存在型问题 例1 直线y =ax +1与双曲线3x 2-y 2=1相交于A ,B 两点,是否存在这样的实数a ,使A ,B 关于直线y =2x 对称?请说明理由. 分析 先假设实数a 存在,然后根据推理或计算求出满足题意的结果,或得到与假设相矛盾的结果,从而否定假设,得出某数学对象不存在的结论. 解 设存在实数a ,使A ,B 关于直线l :y =2x 对称,并设 A (x 1,y 1), B (x 2,y 2),则AB 中点坐标为????x 1+x 22,y 1+y 22. 依题设有y 1+y 22=2·x 1+x 22 ,即y 1+y 2=2(x 1+x 2),① 又A ,B 在直线y =ax +1上,∴y 1=ax 1+1,y 2=ax 2+1, ∴y 1+y 2=a (x 1+x 2)+2,② 由①②,得2(x 1+x 2)=a (x 1+x 2)+2, 即(2-a )(x 1+x 2)=2,③ 联立????? y =ax +1,3x 2-y 2=1得(3-a 2)x 2-2ax -2=0, ∴x 1+x 2=2a 3-a 2 ,④ 把④代入③,得(2-a )·2a 3-a 2 =2, 解得a =32 ,经检验符合题意, ∴k AB =32,而k l =2,∴k AB ·k l =32 ×2=3≠-1. 故不存在满足题意的实数a . 2.点存在型问题 例2 在平面直角坐标系中,已知圆心在第二象限,半径为22的圆与直线y =x 相切于原 点O ,椭圆x 2a 2+y 29 =1与圆C 的一个交点到椭圆两焦点的距离之和为10. (1)求圆C 的方程; (2)试探究圆C 上是否存在异于原点的点Q ,使Q 到椭圆右焦点F 的距离等于线段OF 的长.若存在,请求出点Q 的坐标;若不存在,请说明理由.

圆锥曲线三大难点解读

圆锥曲线三大难点 难点一、最值与定值(定点)问题 圆锥曲线的最值与定值(定点)问题一直是高考的一大难点. 最值问题求解策略是:几何法与代数法,前者用于条件与结论有明显几何意义,利用图形性质来解决的类型;后者则将结论转化为目标函数,结合配方法、判别式法、基本不等式及函数的单调性等知识求解. 定值(定点)问题求解策略是:从特殊入手,求出定点或定值,再证明这个点(值)与变量无关.也可以在推理、计算过程中消去变量,直接得到定点(或定值). 例1 (江西卷理21)如图1,椭圆 22 22:1(0)x y Q a b a b +=>>的右焦点(0)F c ,,过点F 的一动直线m 绕点F 转动,并且交椭圆于A B ,两点,P 是线段AB 的中点. (1)求点P 的轨迹H 的方程; (2)在Q 的方程中,令21cos sin a θθ=++, 2sin 0b θθπ? ?=< ?2??≤,确定θ的值,使原点距椭圆Q 的右准线l 最远, 此时,设l 与x 轴交点为D .当直线m 绕点F 转动到什么位置时, ABD △的面积最大? 分析:求轨迹方程可用“设而不求”法,考虑AB 的斜率是否存在,注意到AB 与PF 共线,得方程为222220b x a y b cx +-=;在第(2)问中,由2a 、2b 不难得到满足要求的1c =,为避免讨论直线m 的斜率是

否存在,可设m 的方程为1x ky =+,再利用三角函数求出θ,ABD △的面积用A B ,纵坐标可表示为121 2 S y y = -,当直线m 垂直于x 轴时,ABD △的面积最大. 点评:本题集轨迹方程、最值问题、动态几何于一身,运用了点差法、分类讨论思想、二次方程根与系数的关系、三角函数的有界性、分离变量法、均值不等式法等,对各种能力的综合要求非常高. 例2 (全国卷Ⅱ理21文22)已知抛物线24x y =的焦点为F , A B ,是抛物线上的两动点,且(0)AF FB λλ=>.过A B ,两点分别作抛物线的切线,设其交点为M . (1)证明FM ·AB 为定值; (2)设ABM △的面积为S ,写出()S f λ=的表达式,并求S 的最小值. 简解:(1)(01)F , ,设点A B ,的横坐标为12x x ,,则过点A B ,的切线分别为2111()42 x x y x x -=-,2 222()42x x y x x -=-,结合AF FB λ=,求得 0FM AB =为定值; (2) FM AB =,则 ABM △的面积 3 3 124 2 22FM AB S 1= =?=≥. 难点二、求参数范围(或值)问题 求参数范围问题的求解策略是:根据题意结合图形列出所讨论参数适合的不等式(组),利用线性规划得出参数的取值范围.有时候

圆锥曲线中的轨迹问题(含解析)

圆锥曲线中的轨迹问题 一、单选题 1.平面α的斜线AB 交α于点B ,过定点A 的动直线l 与AB 垂直,且交α于点C ,则动点C 的轨迹是( ) A .一条直线 B .一个圆 C .一个椭圆 D .曲线的一支 2.棱长为1的正方体1111ABCD A B C D -中,P 为正方体表面上的一个动点,且总有 1PC BD ⊥,则动点P 的轨迹所围成图形的面积为( ) A .3 B .32 C . 32 D .1 3.如图,正方体1111ABCD A B C D -的棱长为1,点M 在棱AB 上,且1 3 AM = ,点P 是平面ABCD 上的动点,且动点P 到直线11A D 的距离与点P 到点M 的距离的平方差为1,则动点P 的轨迹是( ) A .圆 B .抛物线 C .双曲线 D .直线 二、填空题 4.已知分别过点(1,0)A -和点(1,0)B 的两条直线相交于点P ,若直线PA 与PB 的斜率之积为-1,则动点P 的轨迹方程是________. 5.动圆经过点(3,0)A ,且与直线:3l x =-相切,求动圆圆心M 的轨迹方程是____________. 三、解答题 6.圆C 过点()60A , ,()1,5B ,且圆心在直线:2780l x y -+=上. (1)求圆C 的方程;

(2)P 为圆C 上的任意一点,定点()8,0Q ,求线段PQ 中点M 的轨迹方程. 7.若平面内两定点(0,0)O ,(3,0)A ,动点P 满足||1 ||2 PO PA =. (1)求点P 的轨迹方程; 8.点(,)M x y 与定点(3,0)F 的距离和它到直线25:3 l x = 的距离之比是常数3 5,求点 M 的轨迹方程. 9.在圆:C 223x y +=上任取一点P ,过点P 作x 轴的垂线段PD ,D 为垂足,当P 在 圆上运动时,线段PD 上有一点M ,使得DM =, (1)求M 的轨迹的方程; 10.已知点()1,0F ,点P 到点F 的距离比点P 到y 轴的距离多1,且点P 的横坐标非负,点()1,M m (0m <); (1)求点P 的轨迹C 的方程;. (2)过点M 作C 的两条切线,切点为A ,B ,设AB 的中点为N ,求直线MN 的斜率.

课时达标检测(四十九) 圆锥曲线中的定点、定值、存在性问题 Word版含解析

课时达标检测(四十九) 圆锥曲线中的定点、定值、存在 性问题 [一般难度题——全员必做] 1.(2018·郑州质检)已知动圆M 恒过点(0,1),且与直线y =-1相切. (1)求圆心M 的轨迹方程; (2)动直线l 过点P (0,-2),且与点M 的轨迹交于A ,B 两点,点C 与点B 关于y 轴对称,求证:直线AC 恒过定点. 解:(1)由题意得,点M 与点(0,1)的距离始终等于点M 到直线y =-1的距离,由抛物 线的定义知圆心M 的轨迹是以点(0,1)为焦点,直线y =-1为准线的抛物线,则p 2 =1,p =2.∴圆心M 的轨迹方程为x 2=4y . (2)设直线l :y =kx -2,A (x 1,y 1),B (x 2,y 2),则C (-x 2,y 2),联立????? x 2=4y , y =kx -2,消去y 整理得x 2-4kx +8=0, ∴x 1+x 2=4k ,x 1x 2=8. k AC =y 1-y 2x 1+x 2=x 214-x 224x 1+x 2 =x 1-x 24,直线AC 的方程为y -y 1=x 1-x 24(x -x 1). 即y =y 1+x 1-x 24(x -x 1)=x 1-x 24x -x 1(x 1-x 2)4+x 214=x 1-x 24x +x 1x 24 , ∵x 1x 2=8,∴y =x 1-x 24x +x 1x 24=x 1-x 24 x +2,即直线AC 恒过定点(0,2). 2.在平面直角坐标系xOy 中,已知点A (x 1,y 1),B (x 2,y 2)是椭圆E :x 24 +y 2=1上的非坐标轴上的点,且4k OA ·k OB +1=0(k OA ,k OB 分别为直线OA ,OB 的斜率). (1)证明:x 21+x 22,y 21+y 22均为定值; (2)判断△OAB 的面积是否为定值,若是,求出该定值;若不是,请说明理由. 解:(1)证明:依题意,x 1,x 2,y 1,y 2均不为0, 则由4k OA ·k OB +1=0,得4y 1y 2x 1x 2 +1=0, 化简得y 2=-x 1x 24y 1 ,

“圆锥曲线平行弦中点轨迹问题”说题

圆锥曲线平行弦中点轨迹问题”说题 说题”是近年来涌现出的一种新型教学研究模式 简单地讲:说题是执教者或受教育者在精心做题的基础上,阐述对习题解答时所采用的思维方式,解题策略及依据,进而总结出经验性解题规律. “说题”使教研活动更入微了,可以说是教研活动的一次创新 般说来,说题应从以下几个方面进行分析:数学思想 与数学方法,命题变化的自然思维,小结、归纳与应用,题多解、发散思维,常规变式,多种变式、融会贯通,从特殊到一般寻找规律.要求数学教师不但对题目进行深层次的 挖掘,说出题目的本质、新意、特色,还要说出题目的编制、演变过程以及该题目的潜在价值 面是本人的一次说题研究,在此抛砖引玉供各位参考、说问题 背景 问题来源于2005 年上海市普通高等学校春季招生考试 数学试卷第22 题: 1)求右焦点坐标是(2,0),且经过点(-2,-2)的 椭圆的标准方程; (2)已知椭圆C的方程是x2a2+y2b2=1 (a>b>0), 设 斜率为k的直线I,交椭圆C于A、B两点,AB的中点为M.证

明:当直线l 平行移动时,动点M 在一条过原点的定直线上; 3)利用(2)所揭示的椭圆几何性质,用作图方法找 出下面给定椭圆的中心,简要写出作图步骤,并在图中标出椭圆的中心. 二、说问题立意 1.考查椭圆的标准方程和性质;中心对称等; 2.考查数 学思想有:从特殊到一般思想;数形结合思想;分类讨论思 想;数学方法:判别式法;函数与方程转化等;引导将双 曲线问题与相应的椭圆问题开展类比研究的思想方法.3.通 过研究椭圆的平行弦的中点轨迹,对直线与曲线位置关系研究方法有更深刻的理解;这是将知识、方法、思想、能力素质融于一体的命题,也看出高校选拔人才对学生的直觉思维能力、逻辑推理能力、运算能力和自主探索能力等提出了较高的要求. 、说问题解法 解法1(1)略(2)设直线I的方程为y=kx+m,与椭圆C的交点A(x1, y1 )、B (x2, y2),则有y=kx+m, x2a2+y2b2=1,解得( b2+a2k2)x2+2a2kmx+a2m2-a2b2=0. ???△ >0,二m2vb2+a2k2,即-b2+a2k2vmvb2+a2k2.则 x1+x2=-2a2kmb2+a2k2,y1+y2=kx1+m+kx2+m=2b2mb2+a2k2. ??? AB 中点M 的坐标为(-a2kmb2+a2k2 , b2mb2+a2k2 ).

圆锥曲线存在性问题

圆锥曲线中的存在性问题 、基础知识 1在处理圆锥曲线中的存在性问题时,通常先假定所求的要素(点,线,图形或是参数) 存在,并用代数形式进行表示。 再结合题目条件进行分析,若能求出相应的要素, 则假设成 立;否则即判定不存在 2、存在性问题常见要素的代数形式:未知要素用字母代替 (1 )点:坐标 x 0,y 0 (2 )直线:斜截式或点斜式(通常以斜率为未知量) (3 )曲线:含有未知参数的曲线标准方程 3、解决存在性问题的一些技巧: (1)特殊值(点)法:对于一些复杂的题目,可通过其中的特殊情况,解得所求要素的必 要条件,然后再证明求得的要素也使得其它情况均成立。 (2 )核心变量的选取:因为解决存在性问题的核心在于求出未知要素,所以通常以该要素 作为核心变量,其余变量作为辅助变量,必要的时候消去。 (3)核心变量的求法: ①直接法:利用条件与辅助变量直接表示出所求要素,并进行求解 ②间接法:若无法直接求出要素, 则可将核心变量参与到条件中, 列出关于该变量与辅助变 量 的方程(组),运用方程思想求解。 、典型例题: 于A,B 两点,当I 的斜率为1时,坐标原点 0到I 的距离为 在,求出所有的 P 的坐标和I 的方程,若不存在,说明理由 解:(1) e C 2 3 a : b : c '3^2 :1 a 3 2 2 例1 :已知椭圆C :笃每 1 a a b 0的离心率为 过右焦点F 的直线I 与C 相交 (1 )求a,b 的值 (2) C 上是否存在点P ,使得当I 绕F 旋转到某一位置时,有 0P 成立?若存

则a , 3c, b ,2c,依题意可得:F c,0,当I的斜率为1时 d o 解得: 、、3,b 椭圆方程为: X2 2 y 2 (2)设P x o,y o ,X i,y i ,B X 2,y2 当l斜率存在时,设 X o X1 X2 联立直线与椭圆方程: 3k2 2 x2 6k2x X 1 6k2 X 23k2 2 6k2 3k2 2' 6k2 3k2 2 4 2 72 k 48k y o y1 y 2 2 2x 3y 3k2 y1 Y2 k y2 消去 6 X-| x2 y 可得:2x2 3k2 2k 6k3 3k2 2k 2 1 6,整理可得: 4k 3k2 2 4k 3k2 2 因为P在椭圆上 2 6 3k 2 2 2 24 k 3k 3k2 24k2 6 3k2 .2 .2 时,I 3 V2 2,2 当斜率不存在时,可知4,B 3 2,0不在椭圆上 1, 3

圆锥曲线轨迹方程经典例题

轨迹方程经典例题 一、轨迹为圆: 1、 长为2a 的线段的两个端点在x 轴和y 轴上移动,求线段AB 的中点M 的轨迹方程: 已知M 与两个定点(0,0),A (3,0)的距离之比为 2 1 ,求点M 的轨迹方程; 2、 线段AB 的端点B 的坐标是(4,3),端点A 在圆1)1(22=++y x 上运动,求AB 的中点M 的轨迹。 (2013新课标2卷文20)在平面直角坐标系xOy 中,已知圆P 在x 轴上截得线段长为22,在y 轴上截得线段长为32。 (1)求圆心的P 的轨迹方程; (2)若P 点到直线x y =的距离为 2 2 ,求圆P 的方程。 3如图所示,已知P (4,0)是圆x 2+y 2=36内的一点,A 、B 是圆上两动点,且满足∠APB =90°,求矩形APBQ 的顶点Q 的轨迹方程. 4在平面直角坐标系xOy 中,点)3,0(A ,直线42:-=x y l .设圆C 的半径为1,圆心在l 上. (1)若圆心C 也在直线1-=x y 上,过点A 作圆C 的切线,求切线的方程; (2)若圆C 上存在点M ,使MO MA 2=,求圆心C 的横坐标a 的取值范围. 5(2013陕西卷理20)已知动圆过定点)0,4(A ,且在y 轴上截得弦MN 的长为8. (1) 求动圆圆心的轨迹C 的方程; (2) 已知点)0,1(-B ,设不垂直于x 轴的直线l 与轨迹C 交于不同的两点Q P ,,若x 轴是PBQ ∠的角平分线,证明 直线l 过定点。 二、椭圆类型: 3、 定义法:点M(x ,y )与定点F(2,0)的距离和它到定直线8=x 的距离之比为2 1 ,求点M 的轨迹方程.

最新圆锥曲线轨迹问题(教师版)

第四讲 有关圆锥曲线轨迹问题(教师版) 根据动点的运动规律求出动点的轨迹方程,这是解析几何的一大课题:一方面求轨迹方程的实质是将“形”转化为“数”,将“曲线”转化为“方程”,通过对方程的研究来认识曲线的性质;另一方面求轨迹方程是培养学生数形转化的思想、方法以及技巧的极好教材。该内容不仅贯穿于“圆锥曲线”的教学的全过程,而且在建构思想、函数方程思想、化归转化思想等方面均有体现和渗透。 求轨迹方程的的基本步骤:建设现代化(检验) 建(坐标系)设(动点坐标)限(限制条件,动点、已知点满足的条件)代(动点、已知点坐标代入)化(化简整理)检验(要注意定义域“挖”与“补”) 求轨迹方程的的基本方法:直接法、定义法、相关点法、参数法、交轨法、向量法等。 1.直接法:如果动点运动的条件就是一些几何量的等量关系,这些条件简单明确,不需要特殊的技巧,易于表述成含x,y 的等式,就得到轨迹方程,这 种方法称之为直接法; 例1、已知直角坐标系,点Q (2,0),圆C 方程为 12 2=+y x ,动点M 到圆C 的切线长与 MQ 的比等于常数)0(>λλ,求动点M 的轨迹。 【解析】设MN 切圆C 于N ,则 2 22ON MO MN -=。),(y x M ,则 2 222)2(1y x y x +-=-+λ化简得 0)41(4))(1(2 2222=++-+-λλλx y x 当1=λ时,方程为54x =,表示一条直线。 当1≠λ时,方程化为2 2 22 222)1(31)12(-+=+--λλλλy x 表示一个圆。 【练习】如图,圆1O 与圆2O 的半径都是1,124O O =. 过动点P 分别作圆2O 、圆2O 的切线PM PN , (M N ,分别为切点),使得2PM PN =. 试建立适当的坐标系,并求动点P 的轨迹方程. 【解析】以12O O 的中点O 为原点,12O O 所在直线为x 轴,建立如图所示的平面直角坐标系,则1(20)O -, ,2(20)O ,. 由已知2PM PN =,得222PM PN =. 因为两圆半径均为1,所以 22 1212(1)PO PO -=-. 设()P x y ,,则2222(2)12[(2)1]x y x y ++-=-+-, 即22(6)33x y -+=.(或221230x y x +-+=) y x Q M N O

圆锥曲线三大难点解读

圆锥曲线三大难点解读 山东 王中华 李燕 2006年高考数学试题圆锥曲线部分全面考查曲线定义、简单性质等基础知识,还对最值与定值(定点)、求参数范围(或值)、存在与对称等问题加大了考查力度.本文对各地考题归类整理,并探讨这三大难点的求解策略. 难点一、最值与定值(定点)问题 圆锥曲线的最值与定值(定点)问题一直是高考的一大难点. 最值问题求解策略是:几何法与代数法,前者用于条件与结论有明显几何意义,利用图形性质来解决的类型;后者则将结论转化为目标函数,结合配方法、判别式法、基本不等式及函数的单调性等知识求解. 定值(定点)问题求解策略是:从特殊入手,求出定点或定值,再证明这个点(值)与变量无关.也可以在推理、计算过程中消去变量,直接得到定点(或定值). 例1 (江西卷理21)如图1,椭圆2222:1(0) x y Q a b a b +=>>的右焦点(0)F c ,,过点F 的一动直线m 绕点F 转动,并且交椭圆于A B ,两点,P 是线段AB 的中点. (1)求点P 的轨迹H 的方程; (2)在Q 的方程中,令2 1cos sin a θθ=++, 2sin 0b θθπ? ?=< ?2??≤,确定θ的值,使原点距椭圆Q 的右准线l 最远,此时,设l 与 x 轴交点为D .当直线m 绕点F 转动到什么位置时,ABD △的面积最大? 分析:求轨迹方程可用“设而不求”法,考虑AB 的斜率是否存在,注意到AB 与PF 共线,得方程为2 2 2 2 2 0b x a y b cx +-=;在第(2)问中,由2 a 、 2b 不难得到满足要求的1c =,为避免讨论直线m 的斜率是否存在,可设m 的方程为1x ky =+,再利用三角函数求出θ, ABD △的面积用A B ,纵坐标可表示为121 2 S y y =-, 当直线m 垂直于x 轴时,ABD △的面积最大. 点评:本题集轨迹方程、最值问题、动态几何于一身,运用了点差法、分类讨论思想、二次方程根与系数的关系、三角函数的有界性、分离变量法、均值不等式法等,对各种能力的综合要求非常高. 注:与最值相关的试题,还有江西卷理科第9题、北京卷理科第19题、全国卷I 理科第20题、文科第21题、山东卷文科第21题等. 例2 (全国卷Ⅱ理21文22)已知抛物线2 4x y =的焦点为F ,A B ,是抛物线上的两动点,且(0)AF FB λλ=>u u u r u u u r .过A B ,两点分别作抛物线的切线,设其交点为M . (1)证明FM u u u u r ·AB u u u r 为定值;

圆锥曲线之轨迹问题例题习题(精品)

x 专题:圆锥曲线之轨迹问题 一、 临阵磨枪 1?直接法(五部法):如果动点满足的几何条件本身就是一些几何量的等量关系,或这些 几何条件简单明了且易于表达,我们只须把这种关系“翻译”成含 x,y 的等式就得到曲线 的轨迹方程。这种求轨迹的方法称之为直接法。 2?定义法:若动点轨迹的条件符合某一基本轨迹的定义(如圆、椭圆、双曲线、抛物线 的定义),则可根据定义直接求出动点的轨迹方程。 3?坐标转移法(代入法):有些问题中,其动点满足的条件不便于等式列出,但动点是随 着另一动点(称之为相关点)而运动的,如果相关点所满足的条件是明显的, 或是可分析的, 这时我们可以用动点坐标表示相关点坐标, 根据相关点所满足的方程即可求得动点的轨迹方 程,这种求轨迹的方法坐标转移法,也称相关点法或代入法。 4. 参数法:有时求动点应满足的几何条件不易求出,也无明显的相关点,但却较易发现 (或经分析可发现)这个动点的运动常常受到另一个变量(角度、斜率、比值、截距或时间 等)的制约,即动点坐标(x, y )中的x, y 分别随另一变量的变化而变化, 我们可以把这个变 量设为参数,建立轨迹的参数方程,这种方法叫做参数法,如果需要得到轨迹的普通方程, 只要消去参变量即可。 5. 交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这类问题常可 通过解方程组得出交点含参数的坐标, 再消去参数得出所求轨迹方程,此种方法称为交轨法。 二、 小试牛刀 1. _________________________________________________________________________ 已知M (-3,0),N ( 3,0) PM PN 6,则动点P 的轨迹方程为 ______________________________ 析:Q MN PM PN ???点P 的轨迹一定是线段 MN 的延长线。 故所求轨迹方程是 y 0(x 3) 圆所引的切线长相等,则动点 P 的轨迹方程为 __________________________ 析:???圆O 与圆o 外切于点M (2,0) ?两圆的内公切线上的点向两圆所引的切线长都相等, 故动点P 的轨迹就是两圆的内公切线,其方程为 x 2 2 2 x y 一 3.已知椭圆 — 亍1(a b 0) ,M 是椭圆上一动点,F i 为椭圆的左焦点,贝U 线段MF i a b 的中点P 的轨迹方程为 _____________________________ 析:设P (x, y ) M (x °,y °)又F , ( c,0)由中点坐标公式可得: 2 2.已知圆0的方程为x 2 2 y 2,圆0的方程为x 2 y 8x 10 0 ,由动点P 向两

神奇的圆锥曲线问题探究

神奇的圆锥曲线动态结构 目录 一、神奇曲线,定义统一 01.距离和差,轨迹椭双 02.距离定比,三线统一 二、过焦半径,相关问题 03.切线焦径,准线作法 04.焦点切线,射影是圆 05.焦半径圆,切于大圆 06.焦点弦圆,准线定位 07.焦三角形,内心轨迹 三、焦点之弦,相关问题 08.焦点半径,倒和定值 09.正交焦弦,倒和定值 10.焦弦中垂,焦交定长 11.焦弦投影,连线截中 12.焦弦长轴,三点共线 13.对焦连线,互相垂直 14.相交焦弦,轨迹准线 15.相交焦弦,角分垂直 16.定点交弦,轨迹直线 17.焦弦直线,中轴分比

四、相交之弦,蝴蝶特征19.横点交弦,竖之蝴蝶20.纵点交弦,横之蝴蝶21.蝴蝶定理,一般情形五、切点之弦,相关问题22.主轴分割,等比中项23.定点割线,倒和两倍24.定点割线,内外定积25.主轴交点,切线平行六、定点之弦,张角问题26.焦点之弦,张角相等27.定点之弦,张角仍等28.对称之点,三点共线29.焦点切点,张角相等30.倾角互补,连线定角七、动弦中点,相关问题31.动弦中点,斜积定值32.切线半径,斜积仍定33.动弦中垂,范围特定34.定向中点,轨迹直径35.定点中点,轨迹同型八、向量内积,定值问题

37.存在定点,内积仍定九、其它重要性质38.光线反射,路径过焦39.切线中割,切弦平行40.直周之角,斜过定点41.正交半径,斜切定圆42.直径端点,斜积定值43.垂弦端点,交轨对偶44.准线动点,斜率等差45.焦点切线,距离等比46.共轭点对,距离等积47.正交中点,连线定点48.顶点切圆,切线交准49.平行焦径,交点轨迹50.内接内圆,切线永保51.切线正交,顶点轨迹52.斜率定值,弦过定点53.直线动点,切弦定点54.与圆四交,叉连互补55.交弦积比,平行方等56.补弦外圆,切于同点57、焦点切长,张角相等

圆锥曲线解答题中存在性问题 (2)

圆锥曲线解答题中存在性问题 121,1)1.3 123,1.2 1XOY B A O P AP BP P AP BP x M N P F x -=??1.在平面直角坐标系中,点与点(关于原点对称,是动点, 且直线与的斜率之积等于-()求动点的轨迹方程; ()设直线和分别与直线交于点。问:是否存在点, 使得PAB 与PMN 的面积相等?若存在,求出点P 的坐标;若不存 在,说明理由。 2.已知椭圆E 经过点A (2,3),对称轴为坐标轴,焦点F ,在轴上,离 心率e=()求1223E F AF E ∠椭圆的方程; ()求的角平分线所在直线l 的方程; ()在椭圆上是否存在关于直线l 对称的相异两点?若存在,请找出; 若不存在,说明理由。 3.已知中心在坐标原点O 的椭圆C 经过点A (2,3),且点F (2,0)为其右 焦点。 (1)求椭圆C 的方程; (2)是否存在平行于OA 的直线l ,使得直线l 与椭圆C 有公共点,且直线 OA 与l 的距离等于4?若存在,求出直线l 的方程;若不存在,说明理由。 1122112222 12121222114.:2. 12,11A B A B B F B F x y C A A B B F F a b A B S S C P A B OP AP PB ===?=如图,椭圆+=1的顶点为,,,,焦点为,,()求椭圆的方程; ()设n 是过原点的直线,l 是与n 垂直相交于点,与椭圆相交于两点的直线,,是否存在上述直线,使成立?若存在, 求出直线l 的方程;若不存在,请说明理由.

2 15.2 312 . x C PA PB PM m -?=已知中心在原点,焦点在轴上的椭圆的离心率为,且经过点(,).过点P (2,1)的直线l 与椭圆C 在第一象限相切于点M.(1)求椭圆C 的方程; (2)求直线l 的方程以及点M 的坐标; (3)是否存在过点P 的直线m 与椭圆C 相交于不同的两点A,B ,满足 ?若存在,求出直线的方程;若不存在,请说明理由 226.:36,20. 1. 220.;M x y N P M Q NP G P MP NQ GQ NP G C l C A B O OS OA OB l OASB l ++==?==+已知圆(点),为圆上的动点,在上,在M 上,且满足,()求点轨迹方程()过点(,)作直线与曲线交于、两点,为原点,且是否存在直线,使四边形对角线相等?若存在,求出直线若不存在,请说明理由. 7.如图,A 、B 、22 221(0),2. 12x y a b A BC a b O AC BC BC AC C E E P Q PC QC x PQ +=>>⊥==C 是椭圆E :上的三点,其中点的坐标为(),过椭圆的中心,且()求点的坐标及椭圆的方程; ()若椭圆上存在两点、,使得直线与直线关于直线的斜率.

2021届高考数学圆锥曲线中必考知识专题9 圆锥曲线中的轨迹问题(解析版)

专题9:圆锥曲线中的轨迹问题(解析版) 一、单选题 1.平面α的斜线AB 交α于点B ,过定点A 的动直线l 与AB 垂直,且交α于点C ,则动点C 的轨迹是( ) A .一条直线 B .一个圆 C .一个椭圆 D .曲线的一支 【答案】A 【分析】 先找出定点A 和直线l 确定的一个平面,结合平面相交的特点可得轨迹类型. 【详解】 如图,设l 与l '是其中的两条任意的直线,则这两条直线确定一个平面β,且α的斜线 AB β⊥,由过平面外一点有且只有一个平面与已知直线垂直可知过定点A 与AB 垂直 所有直线都在这个平面内,故动点C 都在平面β与平面α的交线上. 【点睛】 本题主要考查轨迹的类型确定,熟悉平面的基本性质及推论是求解的关键,侧重考查直观想象的核心素养. 2.棱长为1的正方体1111ABCD A B C D -中,P 为正方体表面上的一个动点,且总有 1PC BD ⊥,则动点P 的轨迹所围成图形的面积为( ) A 3 B .32 C 3 D .1 【答案】C 【分析】 本题首先可以根据题意确定当1PC BD ⊥时直线PC 所在平面区域,然后结合图像即可

得出动点P 的轨迹所围成图形为1AB C ,然后求出1AB C 面积即可得出结果. 【详解】 如图,易知直线1BD ⊥平面1ACB , 故动点P 的轨迹所围成图形为1AB C , 因为1AB C 为边长为2的正三角形, 所以其面积() 2 3 32S =?= , 故选:C. 【点睛】 本题考查线面垂直的相关性质,若直线与平面垂直,则直线垂直这个平面内的所有直线,考查推理能力,考查数形结合思想,是中档题. 3.如图,正方体1111ABCD A B C D -的棱长为1,点M 在棱AB 上,且1 3 AM = ,点P 是平面ABCD 上的动点,且动点P 到直线11A D 的距离与点P 到点M 的距离的平方差为1,则动点P 的轨迹是( ) A .圆 B .抛物线 C .双曲线 D .直线 【答案】B 【分析】 作PQ AD ⊥,11QR A D ⊥,PR 即为点P 到直线11A D 的距离,由勾股定理得

相关文档
最新文档