数学百炼 圆锥曲线中的存在性问题

数学百炼 圆锥曲线中的存在性问题
数学百炼 圆锥曲线中的存在性问题

圆锥曲线存在性问题

圆锥曲线中的存在性问题 一、基础知识 1、在处理圆锥曲线中的存在性问题时,通常先假定所求的要素(点,线,图形或是参数)存在,并用代数形式进行表示。再结合题目条件进行分析,若能求出相应的要素,则假设成立;否则即判定不存在 2、存在性问题常见要素的代数形式:未知要素用字母代替 (1)点:坐标(x0, y0) (2)直线:斜截式或点斜式(通常以斜率为未知量)(3)曲线:含有未知参数的曲线标准方程3、解决存在性问题的一些技巧: (1)特殊值(点)法:对于一些复杂的题目,可通过其中的特殊情况,解得所求要素的必要条件,然后再证明求得的要素也使得其它情况均成立。 (2)核心变量的选取:因为解决存在性问题的核心在于求出未知要素,所以通常以该要素作为核心变量,其余变量作为辅助变量,必要的时候消去。 (3)核心变量的求法:①直接法:利用条件与辅助变量直接表示出所求要素,并进行求解 ②间接法:若无法直接求出要素,则可将核心变量参与到条件中,列出关于该变量与辅助变量的方程(组),运用方程思想求解。 二、典型例题: 22 例1:已知椭圆C : x+ y=1(a b0)的离心率为3,过右焦点F的直线l与C相交于A, B两点,当l的斜率为1时,坐标原点O到l的距离为(1)求a, b的值 uuur uuur uuur (2)C上是否存在点P,使得当l绕F旋转到某一位置时,有 OP = OA + OB成立?若存 在,求出所有的P的坐标和l的方程,若不存在,说明理由 解:(1)e = c = 3a:b:c = 3: 2 :1 a3

则a = 3c ,b = 2c ,依题意可得: F (c ,0) ,当l 的斜率为1时 l :y = x - c x - y - c = 0 d O - l = = 解得: c = 1 22 a = 3, b = 2 椭圆方程为: +=1 32 (2)设P ( x 0 , y 0 ) , A (x 1, y 1),B (x 2, y 2) 当l 斜率存在时,设l :y = k (x -1) 联立直线与椭圆方程: y =k (x - 1) 消去y 可得: 2x 2+3y 2=6 (3k 2 +2)x 2 -6k 2x +3k 2 -6=0 uuur uuur uuur Q OP =OA +OB x 0 =x 1 +x 2 y 0 =y 1+y 2 x 1+x 2= 62k y 1+ y 2 =k (x 1+x 2)-2k = 6k 3 3k 2+2 -2k 4k 3k 2+ 2 4k P 3k 62k +2,-3k 42k +2 因为P 在椭圆上 23k 2+2+3-3k 2+2=6 72k 4 +48k 2 =6(3k 2 + 2)2 24k 2 (3k 2 +2)=6(3k 2 +2)2 24k 2= 6(3k 2+ 2) k = 2 当 k = 2 时, l : y =2 ( x -1) , P , - 32 2,- 2 当k =- 2时,l : y =- 2(x -1),P 3, 2 32 2, 2 当斜率不存在时,可知l :x =1 ,A 1,2 3 l :x =1 A 1, 3 ,B 1,-2 3 3 ,则P (2,0)不在椭圆上 2x 2+3k 2(x -1)2 = 6 ,整理可得:

高考数学一轮复习专题突破训练圆锥曲线

圆锥曲线 一、填空题 1、(2015年江苏高考)在平面直角坐标系xoy 中,P 为双曲线221x y -=右支上的一个动点,若P 到直线10x y -+=的距离大于c 恒成立,则c 的最大值 为___ 2 __________。 2、(2013年江苏高考)双曲线19 162 2=-y x 的两条渐近线的方程为 。 3、(2013年江苏高考)在平面直角坐标系xOy 中,椭圆C 的标准方程为 )0,0(122 22>>=+b a b y a x ,右焦点为F ,右准线为l ,短轴的一个端点为B ,设原点到直线BF 的距离为1d ,F 到l 的距离为2d ,若126d d =,则椭圆 C 的离心率为 。 4、( 南京、盐城市高三二模)在平面直角坐标系xoy 中,已知抛物线C : y x 42=的焦点为F ,定点)0, 22(A ,若射线FA 及抛物线C 相交于点M ,及抛物线C 的准线相交于点N ,则FM :MN= 5、(苏锡常镇四市 高三教学情况调研(二))已知双曲线22 221(,0) x y a b a b -=>的离心率等于2,它的焦点到渐近线的距离等于1,则该双曲线的方程为 ▲ 6、(泰州市 高三第二次模拟考试)已知双曲线22 14x y m -=的渐近线方程为 2 y x =± ,则m = ▲

7、(盐城市 高三第三次模拟考试)若抛物线28y x =的焦点F 及双曲线 22 13x y n -=的一个焦点重合,则n 的值为 ▲ 8、( 江苏南京高三9月调研)已知双曲线x 2a 2-y 2 b 2=1(a >0,b >0)的渐近 线方程 为y =±3x ,则该双曲线的离心率为 ▲ 9、( 江苏苏州高三9月调研)已知双曲线22 15 x y m -=的右焦点及抛物线 212y x =的焦点相同,则此双曲线的渐近线方程为 ▲ 10、(南京市、盐城市 高三)若双曲线222(0)x y a a -=>的右焦点及抛物线 24y x =的焦点重合,则a = ▲ . 11、(南通市 高三)在平面直角坐标系xOy 中,以直线2y x =±为渐近线,且经过抛物 线24y x =焦点的双曲线的方程是 12、(苏州市 高三上期末)以抛物线24y x =的焦点为顶点,顶点为中心,离心率为2的双曲线标准方程为 13、(泰州市 高三上期末)双曲线12222=-b y a x 的右焦点到渐近线的距离是其 到左顶点距离的一半,则双曲线的离心率e = ▲ 14、(苏锡常镇四市2014届高三5月调研(二))在平面直角坐标系xOy 中,已知双曲线22 19x y m -=的一个焦点为(5,0),则实数 m = ▲ 15、(南京、盐城市2014届高三第二次模拟(淮安三模))在平面直角坐 标系xOy 中,双曲线x 2a 2-y 2 b 2=1(a >0,b >0)的两条渐近线及抛物线y 2=4x Y

高中数学有关圆锥曲线的经典结论

有关解析几何的经典结论 一、椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 5. 若000(,)P x y 在椭圆22 221x y a b +=上,则过0P 的椭圆的切线方程是 00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为 P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y y a b +=. 7. 椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆 上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为1 2 2tan 2 F PF S b γ ?=. 8. 椭圆22 221x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF.

10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长 轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是椭圆22 221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点, 则2 2OM AB b k k a ?=-, 即0 20 2y a x b K AB -=。 12. 若000(,)P x y 在椭圆22 221x y a b +=内,则被Po 所平分的中点弦的方程是 22 00002222x x y y x y a b a b +=+. 13. 若000(,)P x y 在椭圆22 221x y a b +=内,则过Po 的弦中点的轨迹方程是 22002222x x y y x y a b a b +=+. 二、双曲线 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角. 2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相交. 4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支)

圆锥曲线中存在探索型问题

圆锥曲线中存在探索型问题 存在探索型问题作为探索性问题之一,具备了内容涉及面广、重点题型丰富等命题要求,方便考查分析、比较、猜测、归纳等综合能力,因而受到命题人的喜爱.圆锥曲线存在探索型问题是指在给定题设条件下是否存在某个数学对象(数值、性质、图形)使某个数学结论成立的数学问题.本节仅就圆锥曲线中的存在探索型问题展开,帮助复习. 1.常数存在型问题 例1 直线y =ax +1与双曲线3x 2-y 2=1相交于A ,B 两点,是否存在这样的实数a ,使A ,B 关于直线y =2x 对称?请说明理由. 分析 先假设实数a 存在,然后根据推理或计算求出满足题意的结果,或得到与假设相矛盾的结果,从而否定假设,得出某数学对象不存在的结论. 解 设存在实数a ,使A ,B 关于直线l :y =2x 对称,并设 A (x 1,y 1), B (x 2,y 2),则AB 中点坐标为????x 1+x 22,y 1+y 22. 依题设有y 1+y 22=2·x 1+x 22 ,即y 1+y 2=2(x 1+x 2),① 又A ,B 在直线y =ax +1上,∴y 1=ax 1+1,y 2=ax 2+1, ∴y 1+y 2=a (x 1+x 2)+2,② 由①②,得2(x 1+x 2)=a (x 1+x 2)+2, 即(2-a )(x 1+x 2)=2,③ 联立????? y =ax +1,3x 2-y 2=1得(3-a 2)x 2-2ax -2=0, ∴x 1+x 2=2a 3-a 2 ,④ 把④代入③,得(2-a )·2a 3-a 2 =2, 解得a =32 ,经检验符合题意, ∴k AB =32,而k l =2,∴k AB ·k l =32 ×2=3≠-1. 故不存在满足题意的实数a . 2.点存在型问题 例2 在平面直角坐标系中,已知圆心在第二象限,半径为22的圆与直线y =x 相切于原 点O ,椭圆x 2a 2+y 29 =1与圆C 的一个交点到椭圆两焦点的距离之和为10. (1)求圆C 的方程; (2)试探究圆C 上是否存在异于原点的点Q ,使Q 到椭圆右焦点F 的距离等于线段OF 的长.若存在,请求出点Q 的坐标;若不存在,请说明理由.

课时达标检测(四十九) 圆锥曲线中的定点、定值、存在性问题 Word版含解析

课时达标检测(四十九) 圆锥曲线中的定点、定值、存在 性问题 [一般难度题——全员必做] 1.(2018·郑州质检)已知动圆M 恒过点(0,1),且与直线y =-1相切. (1)求圆心M 的轨迹方程; (2)动直线l 过点P (0,-2),且与点M 的轨迹交于A ,B 两点,点C 与点B 关于y 轴对称,求证:直线AC 恒过定点. 解:(1)由题意得,点M 与点(0,1)的距离始终等于点M 到直线y =-1的距离,由抛物 线的定义知圆心M 的轨迹是以点(0,1)为焦点,直线y =-1为准线的抛物线,则p 2 =1,p =2.∴圆心M 的轨迹方程为x 2=4y . (2)设直线l :y =kx -2,A (x 1,y 1),B (x 2,y 2),则C (-x 2,y 2),联立????? x 2=4y , y =kx -2,消去y 整理得x 2-4kx +8=0, ∴x 1+x 2=4k ,x 1x 2=8. k AC =y 1-y 2x 1+x 2=x 214-x 224x 1+x 2 =x 1-x 24,直线AC 的方程为y -y 1=x 1-x 24(x -x 1). 即y =y 1+x 1-x 24(x -x 1)=x 1-x 24x -x 1(x 1-x 2)4+x 214=x 1-x 24x +x 1x 24 , ∵x 1x 2=8,∴y =x 1-x 24x +x 1x 24=x 1-x 24 x +2,即直线AC 恒过定点(0,2). 2.在平面直角坐标系xOy 中,已知点A (x 1,y 1),B (x 2,y 2)是椭圆E :x 24 +y 2=1上的非坐标轴上的点,且4k OA ·k OB +1=0(k OA ,k OB 分别为直线OA ,OB 的斜率). (1)证明:x 21+x 22,y 21+y 22均为定值; (2)判断△OAB 的面积是否为定值,若是,求出该定值;若不是,请说明理由. 解:(1)证明:依题意,x 1,x 2,y 1,y 2均不为0, 则由4k OA ·k OB +1=0,得4y 1y 2x 1x 2 +1=0, 化简得y 2=-x 1x 24y 1 ,

高中数学圆锥曲线结论(最完美版本)

椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦 点在直线PT 上的射影H 点的轨迹是以 长轴为直径的圆,除去长轴的两个端 点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 5. 若000(,)P x y 在椭圆22 221x y a b +=上,则过0 P 的椭圆的切线方程是00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过 Po 作椭圆的两条切线切点为P 1、P 2, 则切点弦P 1P 2的直线方程是 00221x x y y a b +=. 7. 椭圆22 221x y a b += (a >b >0)的左右焦点 分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为1 2 2tan 2 F PF S b γ ?=. 8. 椭圆 22 221x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、 Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于 两点P 、Q, A 1、A 2为椭圆长轴上的顶 点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是椭圆22 221x y a b +=的不平行于对称轴 的弦,M ),(00y x 为AB 的中点,则 2 2OM AB b k k a ?=-, 即0 20 2y a x b K AB -=。 双曲线 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角. 2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相交. 4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支) 5. 若000(,)P x y 在双曲线22 221x y a b -=(a >

高中数学:圆锥曲线中的数形结合思想

高中数学:圆锥曲线中的数形结合思想 圆锥曲线中直线和圆锥曲线结合在一起的题目较多,下文主要阐述了用数形结合思想来解决两类问题。 一、直线的条数 我们在学习圆锥曲线的过程中,遇到了这样的问题: 例1. 过点A(0,2)可以作4条直线与双曲线有且只有一个公共点。 这个结论可以引申:平面直角坐标系中任一点A(),过A与双曲线 有且只有一个交点的直线条数问题。图示说明:(图1) 可以证明: (1)区域①、②中的点,过这些点与双曲线有且只有一个交点的直线有4条。 (2)在双曲线的两支上的点,过这些点与双曲线有且只有一个交点的直线有3条。 (3)在双曲线的渐近线上的点(除原点)或在双曲线内部(区域③)的点,过这些点与双曲线有且只有一个交点的直线有2条。 (4)过原点与双曲线有且只有一个交点的直线有0条。 同样,我们也可以引申:平面直角坐标系中任一点A(),过A与抛物线有且只有一个交点的直线条数问题。图示说明:(图2) 可以证明: (1)点在抛物线内部(区域①)时,过这些点与抛物线有且只有一个交点的直线有1条。(与对称轴平行的直线) (2)点在抛物线上时,过这些点与抛物线只有一个交点的直线有2条。(1条切线+1条与对称轴平行的直线)。

(3)点在抛物线外(区域②)时,过这些点与抛物线只有一个交点的直线有3条。(2条切线+1条与对称轴平行的直线)。 椭圆中,比较常规,这里从略。 总结:要注意的是直线与圆锥曲线相交有且只有一个交点的情况未必相切,但相切必定只一个交点;掌握了这些区域的特点,关于这类直线条数的问题就迎刃而解了。 二、直线的斜率 关于直线与圆锥曲线相交、相切及直线条数的问题,我们还能引申到求直线的斜率问题,而这类问题又以双曲线比较典型,下面着重就双曲线中直线的斜率进行说明。 例1. 设离心率为e的双曲线C:的右焦点为F,直线l 过点F且斜率k,直线l与双曲线C的左、右支都相交的充要条件是()。 A. B. C. D. 分析:这是与左、右支都相交的问题。 方法1:作为选择题,可以采用特殊法。显然k=0时,D符合题意。但k=0时代入A、B、C均错。 方法2:渐近线的斜率为,左右支要都相交,则 (图3)。

圆锥曲线存在性问题

圆锥曲线中的存在性问题 、基础知识 1在处理圆锥曲线中的存在性问题时,通常先假定所求的要素(点,线,图形或是参数) 存在,并用代数形式进行表示。 再结合题目条件进行分析,若能求出相应的要素, 则假设成 立;否则即判定不存在 2、存在性问题常见要素的代数形式:未知要素用字母代替 (1 )点:坐标 x 0,y 0 (2 )直线:斜截式或点斜式(通常以斜率为未知量) (3 )曲线:含有未知参数的曲线标准方程 3、解决存在性问题的一些技巧: (1)特殊值(点)法:对于一些复杂的题目,可通过其中的特殊情况,解得所求要素的必 要条件,然后再证明求得的要素也使得其它情况均成立。 (2 )核心变量的选取:因为解决存在性问题的核心在于求出未知要素,所以通常以该要素 作为核心变量,其余变量作为辅助变量,必要的时候消去。 (3)核心变量的求法: ①直接法:利用条件与辅助变量直接表示出所求要素,并进行求解 ②间接法:若无法直接求出要素, 则可将核心变量参与到条件中, 列出关于该变量与辅助变 量 的方程(组),运用方程思想求解。 、典型例题: 于A,B 两点,当I 的斜率为1时,坐标原点 0到I 的距离为 在,求出所有的 P 的坐标和I 的方程,若不存在,说明理由 解:(1) e C 2 3 a : b : c '3^2 :1 a 3 2 2 例1 :已知椭圆C :笃每 1 a a b 0的离心率为 过右焦点F 的直线I 与C 相交 (1 )求a,b 的值 (2) C 上是否存在点P ,使得当I 绕F 旋转到某一位置时,有 0P 成立?若存

则a , 3c, b ,2c,依题意可得:F c,0,当I的斜率为1时 d o 解得: 、、3,b 椭圆方程为: X2 2 y 2 (2)设P x o,y o ,X i,y i ,B X 2,y2 当l斜率存在时,设 X o X1 X2 联立直线与椭圆方程: 3k2 2 x2 6k2x X 1 6k2 X 23k2 2 6k2 3k2 2' 6k2 3k2 2 4 2 72 k 48k y o y1 y 2 2 2x 3y 3k2 y1 Y2 k y2 消去 6 X-| x2 y 可得:2x2 3k2 2k 6k3 3k2 2k 2 1 6,整理可得: 4k 3k2 2 4k 3k2 2 因为P在椭圆上 2 6 3k 2 2 2 24 k 3k 3k2 24k2 6 3k2 .2 .2 时,I 3 V2 2,2 当斜率不存在时,可知4,B 3 2,0不在椭圆上 1, 3

高考数学中圆锥曲线重要结论的最全总结

高考数学圆锥曲线重要结论 一、定义:第一定义:平面内到两定点F1(-c,0),F2(c,0)的距离和为定值(大于两定点间的距离|F1F2|)2a的点的轨迹叫椭圆,两定点叫椭圆的焦点,两焦点间的距离叫焦距,与坐标轴的交点叫顶点。 第二定义:平面内到一个定点F的距离与到定直线1的距离比为常数e(0

高中数学圆锥曲线知识点总结

高中数学知识点大全—圆锥曲线 一、考点(限考)概要: 1、椭圆: (1)轨迹定义: ①定义一:在平面内到两定点的距离之和等于定长的点的轨迹是椭圆,两定点是焦点,两定点间距离是焦距,且定长2a大于焦距2c。用集合表示为: ; ②定义二:在平面内到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做椭圆。其中定点叫焦点,定直线叫准线,常数e是离心率。 用集合表示为: ; (2)标准方程和性质:

注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。 (3)参数方程:(θ为参数); 3、双曲线: (1)轨迹定义: ①定义一:在平面内到两定点的距离之差的绝对值等于定长的点的轨迹是双曲线,两定点是焦点,两定点间距离是焦距。用集合表示为: ②定义二:到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做双曲线。其中定点叫焦点,定直线叫准线,常数e是离心率。 用集合表示为:

(2)标准方程和性质: 注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。

4、抛物线: (1)轨迹定义:在平面内到定点和定直线的距离相等的点的轨迹是抛物线,定点是焦点,定直线是准线,定点与定直线间的距离叫焦参数p。用集合表示为 : (2)标准方程和性质: ①焦点坐标的符号与方程符号一致,与准线方程的符号相反; ②标准方程中一次项的字母与对称轴和准线方程的字母一

致; ③标准方程的顶点在原点,对称轴是坐标轴,有别于一元二次函数的图像; 二、复习点睛: 1、平面解析几何的知识结构: 2、椭圆各参数间的关系请记熟“六点六线,一个三角形”,即六点:四个顶点,两个焦点;六线:两条准线,长轴短轴,焦点线和垂线PQ;三角形:焦点三角形。则椭圆的各性质(除切线外)均可在这个图中找到。

高中数学圆锥曲线专题-理科

圆锥曲线专题 【考纲要求】 一、直线 1.掌握直线的点方向式方程、点法向式方程、点斜式方程,认识坐标法在建立形与数的关 系中的作用; 2.会求直线的一般式方程,理解方程中字母系数表示斜率和截距的几何意义:懂得一元二 次方程的图像是直线; 3.会用直线方程判定两条直线间的平行或垂直关系(方向向量、法向量); 4.会求两条相交直线的交点坐标和夹角,掌握点到直线的距离公式。 二、圆锥曲线 1.理解曲线的方程与方程的曲线的意义,并能由此利用代数方法判定点是否在曲线上,以 及求曲线交点; 2.掌握圆、椭圆、双曲线、抛物线的定义,并理解上述曲线在直角坐标系中的标准方程的 推导过程; 3.理解椭圆、双曲线、抛物线的有关概念及简单的几何特性,掌握求这些曲线方程的基本 方法,并能根据曲线方程的关系解决简单的直线与上述曲线有两个交点情况下的有关问题; 4.能利用直线和圆、圆和圆的位置关系的几何判定,确定它们之间的位置关系,并能利用 解析法解决相应的几何问题。 【知识导图】【精解名题】 一、弦长问题 例1 如图,已知椭圆 2 21 2 x y +=及点B(0, -2),过点B引椭圆的割线(与椭圆相交的直线)BD与椭圆交于C、D两点 (1)确定直线BD斜率的取值范围 (2)若割线BD过椭圆的左焦点 12 ,F F是椭圆的右焦点,求 2 CDF ?的面积 y x B C D F1F2 O

二、轨迹问题 例2 如图,已知平行四边形ABCO ,O 是坐标原点,点A 在线段MN 上移动,x=4,y=t (33)t -≤≤上移动,点C 在双曲线 22 1169 x y -=上移动,求点B 的轨迹方程 三、对称问题 例3 已知直线l :22 2,: 1169 x y y kx C =++=,问椭圆上是否存在相异两点A 、B ,关于直线l 对称,请说明理由 四、最值问题 例4 已知抛物线2 :2()C x y m =--,点A 、B 及P(2, 4)均在抛物线上,且直线PA 与PB 的倾斜角互补 (1)求证:直线AB 的斜率为定值 (2)当直线AB 在y 轴上的截距为正值时,求ABP ?面积的最大值 五、参数的取值范围 例5 已知(,0),(1,),a x b y → → == ()a → +⊥()a → - (1)求点P (x, y )的轨迹C 的方程 (2)直线:(0,0)l y kx m k m =+≠≠与曲线C 交于A 、B 两点,且在以点D (0,-1)为圆 心的同一圆上,求m 的取值范围 六、探索性问题 例6 设x, y ∈R ,,i j →→ 为直角坐标平面内x, y 轴正方向上的单位向量,若向量 (2)a x i y j → →→=++,且(2)b x i y j →→→=+-且8a b →→ += (1)求点M (x, y )的轨迹方程 (2)过点(0,3)作直线l 与曲线C 交于A 、B 两点,设OP OA OB → → → =+,是否存在这样的直线l ,使得四边形OAPB 是矩形?若存在,求出直线l 的方程;若不存在,请说明理由

圆锥曲线三大难点解读

圆锥曲线三大难点解读 山东 王中华 李燕 2006年高考数学试题圆锥曲线部分全面考查曲线定义、简单性质等基础知识,还对最值与定值(定点)、求参数范围(或值)、存在与对称等问题加大了考查力度.本文对各地考题归类整理,并探讨这三大难点的求解策略. 难点一、最值与定值(定点)问题 圆锥曲线的最值与定值(定点)问题一直是高考的一大难点. 最值问题求解策略是:几何法与代数法,前者用于条件与结论有明显几何意义,利用图形性质来解决的类型;后者则将结论转化为目标函数,结合配方法、判别式法、基本不等式及函数的单调性等知识求解. 定值(定点)问题求解策略是:从特殊入手,求出定点或定值,再证明这个点(值)与变量无关.也可以在推理、计算过程中消去变量,直接得到定点(或定值). 例1 (江西卷理21)如图1,椭圆2222:1(0) x y Q a b a b +=>>的右焦点(0)F c ,,过点F 的一动直线m 绕点F 转动,并且交椭圆于A B ,两点,P 是线段AB 的中点. (1)求点P 的轨迹H 的方程; (2)在Q 的方程中,令2 1cos sin a θθ=++, 2sin 0b θθπ? ?=< ?2??≤,确定θ的值,使原点距椭圆Q 的右准线l 最远,此时,设l 与 x 轴交点为D .当直线m 绕点F 转动到什么位置时,ABD △的面积最大? 分析:求轨迹方程可用“设而不求”法,考虑AB 的斜率是否存在,注意到AB 与PF 共线,得方程为2 2 2 2 2 0b x a y b cx +-=;在第(2)问中,由2 a 、 2b 不难得到满足要求的1c =,为避免讨论直线m 的斜率是否存在,可设m 的方程为1x ky =+,再利用三角函数求出θ, ABD △的面积用A B ,纵坐标可表示为121 2 S y y =-, 当直线m 垂直于x 轴时,ABD △的面积最大. 点评:本题集轨迹方程、最值问题、动态几何于一身,运用了点差法、分类讨论思想、二次方程根与系数的关系、三角函数的有界性、分离变量法、均值不等式法等,对各种能力的综合要求非常高. 注:与最值相关的试题,还有江西卷理科第9题、北京卷理科第19题、全国卷I 理科第20题、文科第21题、山东卷文科第21题等. 例2 (全国卷Ⅱ理21文22)已知抛物线2 4x y =的焦点为F ,A B ,是抛物线上的两动点,且(0)AF FB λλ=>u u u r u u u r .过A B ,两点分别作抛物线的切线,设其交点为M . (1)证明FM u u u u r ·AB u u u r 为定值;

高二数学专题(一)简化圆锥曲线运算的几种数学思想人教版

高二数学专题(一)简化圆锥曲线运算的几种数学思想人教版 【本讲教育信息】 一. 教学内容: 专题(一)简化圆锥曲线运算的几种数学思想 二. 教学重、难点: 1. 重点: 圆锥曲线的综合问题。 2. 难点: 灵活运用介绍的几种数学思想简化圆锥曲线的运算。 【典型例题】 (一)极端思想 通过考察圆锥曲线问题的极端元素,灵活地借助极限状态解题,则可以避开抽象及复杂运算,优化解题过程,降低解题难度。这是简化运算量的一条重要途径。 [例1] 求已知离心率5 2= e ,过点(1,0)且与直线l :032=+-y x 相切于点(3 5 ,32- ),长轴平行于y 轴的椭圆方程。 解:把点(35,32- )看作离心率5 2=e 的椭圆0)35(51)32(2 2=-++y x (“点椭圆”),则与直线l :032=+-y x 相切于该点的椭圆系即为过直线l 与“点椭圆”的公共点的椭圆 系方程为:0)32()3 5(51)32(2 2=+-+-++y x y x λ 又由于所求的椭圆过点(1,0),代入上式得,3 2 -=λ 因此,所求椭圆方程为:15 22 =+y x (二)补集思想 有些圆锥曲线问题,从正面处理较难,常需分类讨论,运算量大,且讨论不全又容易出错,如用补集思想考虑其对立面,可以达到化繁为简的目的。 [例2] k 为何值时,直线l :)1(1-=-x k y 不能垂直平分抛物线x y =2的某弦。 解:设}|{R k k I ∈=,|{k A =直线l 垂直平分抛物线x y =2的某弦}。若直线l 垂直平分抛物线的弦AB ,且A ),(11y x ,B ),(22y x ,则12 1x y =,22 2x y = 上述两式相减得:212121))((x x y y y y -=+- 即2 1212111y y x x y y k +=--=- 又设M 是弦AB 的中点,且),(00y x M ,则2 2210k y y y -=+= 因为点M 在直线l 上,所以k x 1 210-=

历年高考数学圆锥曲线第二轮专题复习

高考数学试题圆锥曲线 一. 选择题: 1.又曲线22 221x y a b ==(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点, 且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为B A.(1,3) B.(]1,3 C.(3,+∞) D.[)3,+∞ 2.(已知点P 在抛物线y 2 = 4x 上,那么点P 到点Q (2,-1)的距离与点P 到 抛物线焦点距离之和取得最小值时,点P 的坐标为( A ) A. ( 41 ,-1) B. (4 1 ,1) C. (1,2) D. (1,-2) 3.如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P 轨进入以月球球心F 为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点的椭圆轨道Ⅱ绕月飞行,最终卫星在P 点第三次变轨进入以F 为圆心的圆形轨道Ⅲ绕月飞行,若用12c 和22c 分别表示椭轨道Ⅰ和Ⅱ的焦距,用12a 和22a 分别表示椭圆轨道Ⅰ和Ⅱ的长轴的长,给出下列式子: ①1122a c a c +=+; ②1122a c a c -=-; ③1212c a a c >; ④ 11c a <22 c a . 其中正确式子的序号是B A. ①③ B. ②③ C. ①④ D. ②④ 4.若双曲线22221x y a b -=(a >0,b >0)上横坐标为32 a 的点到右焦点的距离大于它 到左准线的距离,则双曲线离心率的取值范围是( B ) A.(1,2) B.(2,+∞) C.(1,5) D. (5,+∞) 5.已知1F 、2F 是椭圆的两个焦点,满足120MF MF ?=的点M 总在椭圆内部,则椭圆离心率的取值范围是C A .(0,1) B .1 (0,]2 C . D . 6.已知点P 是抛物线22y x =上的一个动点,则点P 到点(0,2)的距离与P 到该抛物线准线的距离之和的最小值为( A )

高中数学圆锥曲线重要结论

圆锥曲线重要结论 椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 5. 若000(,)P x y 在椭圆22 221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y y a b +=. 7. 椭圆22221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为122 tan 2F PF S b γ?=. 8. 椭圆22 221x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则2 2OM AB b k k a ?=-,

圆锥曲线存在性问题

圆锥曲线存在性问题Revised on November 25, 2020

圆锥曲线中的存在性问题 一、基础知识 1、在处理圆锥曲线中的存在性问题时,通常先假定所求的要素(点,线,图形或是参数)存在,并用代数形式进行表示。再结合题目条件进行分析,若能求出相应的要素,则假设成立;否则即判定不存在 2、存在性问题常见要素的代数形式:未知要素用字母代替 (1)点:坐标()00,x y (2)直线:斜截式或点斜式(通常以斜率为未知量) (3)曲线:含有未知参数的曲线标准方程 3、解决存在性问题的一些技巧: (1)特殊值(点)法:对于一些复杂的题目,可通过其中的特殊情况,解得所求要素的必要条件,然后再证明求得的要素也使得其它情况均成立。 (2)核心变量的选取:因为解决存在性问题的核心在于求出未知要素,所以通常以该要素作为核心变量,其余变量作为辅助变量,必要的时候消去。 (3)核心变量的求法: ①直接法:利用条件与辅助变量直接表示出所求要素,并进行求解 ②间接法:若无法直接求出要素,则可将核心变量参与到条件中,列出关于该变量与辅助变量的方程(组),运用方程思想求解。 二、典型例题: 例1:已知椭圆()22 22:10x y C a b a b +=>>的离心率为3,过右焦点F 的直线l 与 C 相交于,A B 两点,当l 的斜率为1时,坐标原点O 到l 的距离为 2 。

(1)求,a b 的值 (2)C 上是否存在点P ,使得当l 绕F 旋转到某一位置时,有OP OA OB =+成立若存在,求出所有的P 的坐标和l 的方程,若不存在,说明理由 解:(1 )::3 c e a b c a = =?= 则,a b ==,依题意可得:(),0F c ,当l 的斜率为1时 2 O l d -∴= = 解得:1c = a b ∴== 椭圆方程为:22 132 x y += (2)设()00,P x y ,()()1122,,,A x y B x y 当l 斜率存在时,设():1l y k x =- 联立直线与椭圆方程:()22 1236 y k x x y =-???+=?? 消去y 可得:()222 2316x k x +-=,整理可得: 22264,3232k k P k k ?? ∴- ?++?? 因为P 在椭圆上 当k = 时,):1l y x =- ,3,22P ? ?? 当k = ):1l y x =- ,32P ? ?? 当斜率不存在时,可知:1l x = ,1,,1,33A B ???- ? ????,则()2,0P 不在椭圆上 ∴ 综上所述:):1l y x =- ,3,22P ?- ?? 或):1l y x =- ,3,22P ? ??

高中数学圆锥曲线题目(答案)

解圆锥曲线问题常用以下方法: 1、定义法 (1)椭圆有两种定义。第一定义中,r 1+r 2=2a 。第二定义中,r 1=ed 1 r 2=ed 2。 (2)双曲线有两种定义。第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。 (3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。 2、韦达定理法 因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。 3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有: (1))0(122 22>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02 020=+k b y a x 。 (2))0,0(122 22>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02 020=-k b y a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p. 【典型例题】 例1、(1)抛物线C:y 2=4x 上一点P 到点A(3,42) (2)抛物线C: y 2=4x 上一点Q 到点B(4,1)与到焦点F 的距离和最小,分析:(1)A 在抛物线外,如图,连PF ,则PF PH =P 、F 三点共线时,距离和最小。 (2)B 在抛物线内,如图,作QR ⊥l 交于R ,则当B 、Q 、R 最小。 解:(1)(2,2) 连PF ,当A 、P 、F 三点共线时,PF AP PH AP +=+最小,此时y=22(x-1),代入y 2=4x 得P(2,22),(注:另一交点为( 2,2 1 -)

高考理科数学-圆锥曲线专题训练

高三圆锥曲线选填训练 一、选择题(本大题共10小题,每小题4分,共40分) 1.椭圆12222=+b y a x (a >b>0)离心率为23,则双曲线12222=-b y a x 的离心率为 ( ) A .45 B .25 C .32 D .45 2.椭圆13 122 2=+y x 的焦点为F 1和F 2,点P 在椭圆上,如果线段PF 1中点在y 轴上,那么|PF 1|是|PF 2| 的 ( ) A .7倍 B .5倍 C .4倍 D .3倍 3.过双曲线x 2 -22 y =1的右焦点F 作直线l 交双曲线于A , B 两点,若|AB |=4,则这样的直线l 有 ( ) A .1条 B .2条 C .3条 D .4条 4.如果双曲线 136 642 2=-y x 上的一点P 到双曲线的右焦点的距离是8,那么点P 到右准线的距离是 ( ) A .10 B .7 7 32 C .27 D .5 32 5.若抛物线y 2=2p x 上的一点A (6,y )到焦点F 的距离为10,则p 等于 ( ) A .4 B .8 C .16 D .32 6.如图,过抛物线)(022>=p px y 的焦点F 的直线l 交抛物线于点A .B ,交其准线于点C ,若 BF BC 2=,且3=AF ,则此抛物线的方程为 A .x y 23 2= B .x y 32= C .x y 2 9 2= D .x y 92= 7.曲线 19252 2 =+y x 与曲线)925(19252 2 ≠<=-+-k k k y k x 且 有相同的( A .长、短轴 B .焦距 C .离心率 D .准线 8.过椭圆22 2214x y a a += (a>0)的焦点F 作一直线交椭圆于P, Q 两点,若线段PF 与QF 的长分别为 p, q ,则11p q +等于( ) A .4a B .1 2a C .4a D .2a 9.椭圆13 22 =+y x 上的点到直线x -y+6=0的距离的最小值是 . 10.已知双曲线C 的渐近线方程是x y 32±=,且经过点M ()1,2 9 -,则双曲线C 的方程是 . 11.AB 是抛物线y =x 2的一条弦,若AB 的中点到x 轴的距离为1,则弦AB 的长度的最大值 为 .

相关文档
最新文档