【精编】2016年云南省楚雄州双柏县数学中考二模试卷及解析

合集下载

云南省楚雄彝族自治州数学中考二模试卷

云南省楚雄彝族自治州数学中考二模试卷

云南省楚雄彝族自治州数学中考二模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)小明家冰箱冷冻室的温度为-5℃,调高4℃后的温度为()A . 4℃B . 9℃C . -1℃D . -9℃2. (2分) (2019八上·普兰店期末) 如图,在直角坐标系中,点A的坐标为(3,-2),直线MN∥ 轴且交轴于点C(0,1),则点A关于直线MN的对称点的坐标为()A . (-2,3)B . (-3,-2)C . (3,4)D . (3,2)3. (2分)如图,⊙O是△ABC的外接圆,已知∠ABO=50°,则∠ACB的大小为()A . 40°B . 30°C . 45°D . 50°4. (2分) (2019九上·太原期中) 目前,支付宝平台入驻了不少的理财公司,推出了一些理财产品.李阿姨用10000元本金购买了一款理财产品,到期后自动续期,两期结束后共收回本息10926元设此款理财产品每期的平均收益率为x,则根据题意可得方程()A .B .C .D .5. (2分)(2017·安顺) 如图是根据某班40名同学一周的体育锻炼情况绘制的条形统计图.那么该班40名同学一周参加体育锻炼时间的众数、中位数分别是()A . 16,10.5B . 8,9C . 16,8.5D . 8,8.56. (2分)(2016·平房模拟) 如图在△ABC中,DE∥BC,DF∥AC,则下列比例式不正确的是()A . =B . =C . =D . =7. (2分) (2019九上·九龙坡开学考) 如图,在矩形ABCD中,AB=8,BC=12,点E为BC的中点,将△ABE 沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为()A .B .C .D .8. (2分)如图,直线l:y=﹣ x﹣2与直线y=a(a为常数)的交点在第四象限,则a可能在()A . ﹣2<a<0B . ﹣10<a<﹣3C . ﹣<a<0D . a<﹣29. (2分)(2020·辽宁模拟) 如图,中,,,,则的长为()A .B .C . 5D .10. (2分) (2018九上·丽水期中) 已知二次函数y=ax2+bx+c的y与x的部分对应值如下表:x-1013y-3131下列结论:①抛物线的开口向下;②其图象的对称轴为x=1;③当x<1时,函数值y随x的增大而增大;④方程ax2+bx+c=0有一个根大于4,其中正确的结论有()A . 1个B . 2个C . 3个D . 4个二、填空题 (共6题;共6分)11. (1分)若a+b=2016,a﹣b=1,则a2﹣b2=________.12. (1分) (2020八下·吉林期中) 一组数据2,4,x,﹣1的平均数为3,则x的值是________.13. (1分) (2020九下·扬州期中) 用半径为30,圆周角为120°的扇形纸片围成一个圆锥的侧面,那么这个圆锥的底面圆半径是________.14. (1分)(2020·贵州模拟) 某兴趣小组用高为1米的仪器测量建筑物CD的高度.如示意图,由距CD一定距离的A处用仪器观察建筑物顶部D的仰角为∠β=30 ,在A和C之间选一点B,由B处用仪器观察建筑物顶部D的仰角为∠ɑ=60 .测得A,B之间的距离为4米,建筑物CD的高度为________ .15. (1分)(2017·静安模拟) 如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,∠BDC=∠CED,如果DE=4,CD=6,那么AD:AE等于________.16. (1分)如图,正方形ABCD,点E是DC上一点,点F是AD上一点,且AF>DF,EF=EC,FG⊥EF交AB于点G,连接CF、CG,若△CFG的面积为15,BC=6,则AF的长度是________.三、解答题 (共7题;共82分)17. (5分)(2018·秀洲模拟) 先化简:,然后从0≤x≤2的范围内选取一个合适的整数作为x 的值代入求值.18. (7分)(2016·永州) 二孩政策的落实引起了全社会的关注,某校学生数学兴趣小组为了了解本校同学对父母生育二孩的态度,在学校抽取了部分同学对父母生育二孩所持的态度进行了问卷调查,调查分别为非常赞同、赞同、无所谓、不赞同等四种态度,现将调查统计结果制成了如图两幅统计图,请结合两幅统计图,回答下列问题:(1)在这次问卷调查中一共抽取了________名学生,a=________%;(2)请补全条形统计图;(3)持“不赞同”态度的学生人数的百分比所占扇形的圆心角为________度;(4)若该校有3000名学生,请你估计该校学生对父母生育二孩持“赞同”和“非常赞同”两种态度的人数之和.19. (10分) (2019八下·如皋期中) (问题情境)如图1,四边形ABCD是正方形,M是BC边上的一点,E是CD边的中点,AE平分∠DAM.(探究展示)(1)证明:AM=AD+MC;(2) AM=DE+BM是否成立?若成立,请给出证明;若不成立,请说明理由.(3)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图2,探究展示(1)、(2)中的结论是否成立?请分别作出判断,不需要证明.20. (15分)小芳从家骑自行车去学校,所需时间()与骑车速度()之间的反比例函数关系如图.(1)小芳家与学校之间的距离是多少?(2)写出与的函数表达式;(3)若小芳7点20分从家出发,预计到校时间不超过7点28分,请你用函数的性质说明小芳的骑车速度至少为多少?21. (10分) (2019九上·南山期末) 已知,如图,在矩形ABCD中,对角线AC与BD相交于点O,过点C作BD的平行线,过点D作AC的平行线,两线交于点P.①求证:四边形CODP是菱形.②若AD=6,AC=10,求四边形CODP的面积.22. (15分)已知二次函数的图象以A(﹣1,4)为顶点,且过点B(2,﹣5).(1)求该函数的关系式;(2)求当横坐标取﹣3和1时所对应的函数值;(3)根据(2)计算,直接写出当x的值在什么范围时,所对应的函数值大于0.23. (20分)(2019·喀什模拟) 如图,PA与⊙O相切于点A,过点A作AB⊥OP,垂足为C,交⊙O于点B.连接PB,AO,并延长AO交⊙O于点D,与PB的延长线交于点E.(1)求证:PB是⊙O的切线;(2)若OC=3,AC=4,求sinE的值.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共7题;共82分)17-1、18-1、18-2、18-3、18-4、19-1、19-2、19-3、20-1、20-2、20-3、21-1、22-1、22-2、22-3、23-1、23-2、。

楚雄州双柏县初中学业水平考试数学模拟试卷(一)含解析

楚雄州双柏县初中学业水平考试数学模拟试卷(一)含解析

l 21 2 ADBCl 1yxO AA 1A 2A 3B 1 B 2 B 3云南省楚雄州双柏县初中学业水平考试数学模拟试题(一)命题:双柏县教育局教研室 郎绍波一、填空题(本大题共6个小题,每小题3分,满分18分) 1.-4的相反数是 .2.函数y 11x =-+中自变量x 的取值范围是 .3.如图,直线l 1∥l 2,CD ⊥AB 于点D ,∠1=44°,则∠2的度数为 .4.已知一个等腰三角形的两边长分别为3和6,则该等腰三角形的周长是 . 5.若x 1,x 2是一元二次方程x 2﹣2x +1=0的两个根,则x 1﹣x 1 x 2+ x 2的值为 . 6.如图,在平面直角坐标系中,直线l :y =x +2交x 轴于点A ,交y 轴于点A 1,点A 2,A 3,…在直线l 上,点B 1,B 2,B 3,…在x 轴的正半轴上,若△A 1OB 1,△A 2B 1B 2,△A 3B 2B 3,…,依次均为等腰直角三角形,直角顶点都在x 轴上,则第n 个等腰直角三角形A n B n ﹣1B n 顶点B n 的横坐标为 .二、选择题(本大题共8个小题,每小题只有一个正确选项,每小题4分,满分32分) 7.下列运算正确的是( )A .224a a a =+ B .222()a b a b +=+ C .93=± D .236()=a a --8.已知一个正多边形的内角是140°,则这个正多边形的边数是( ) A .6 B .7 C .8 D .99.如图是由4个大小相同的正方体组合而成的几何体,其左视图是( )A .B .C .D .A DECBy P xABOO CB10.云南高铁自开通以来,发展速度不断加快,现已成为云南市民主要出行方式之一.今年五一期间安全运输乘客约5460000人次.用科学记数法表示5460000为( )A .5.46×107B .5.46×106C .5.5×106D .546×104 11.如图,点A ,B ,C 在⊙O 上,若∠BAC =45°,OB =2,则图中阴影部分的面积为( )A .π-4B .23π-1 C .π-2 D .23π-2 12.某中学篮球队12名队员的年龄如下表所示:则这12名队员的年龄的众数和中位数分别是( )A .14,14B .14,14.5C .14,15D .15,1413.若点A (﹣4,3)、B (m ,2)在同一个反比例函数的图象上,则m 的值为( )A .6B .﹣6C .12D .﹣1214.如图,一直线与两坐标轴的正半轴分别交于A ,B 两点,P 是线段 AB 上任意一点(不包括端点),过P 分别作两坐标轴的垂线与两坐标轴 围成的矩形的周长为10,则该直线的函数表达式是( )A .y=x +5B .y=x +10C .y=﹣x +5D .y=﹣x +10 三、解答题(本大题共9个小题,满分70分) 15.(7分)计算:先化简,再求值:2213339x x x x ⎛⎫-÷⎪+--⎝⎭,其中x =1. 16.(7分)如图,∠ADB=∠AEC ,AD=AE .求证:BE=CD .年龄(岁)13141516人数2541C DA B BAE CO D32 1 43 2 B 1 A · · 17.(7分)如图,长4m 的楼梯AB 的倾斜角∠ABD 为45°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD 为30°,求调整后的楼梯AC 的长.(精确到0.1m ,2 1.41≈,3 1.73≈)18.(8分)荔枝是云南省的特色水果,小明的妈妈先购买了2千克酸味和3千克甜味,共花费90元;后又购买了1千克酸味和2千克甜味,共花费55元.(每次两种荔枝的售价都不变) (1)求酸味和甜味的售价分别是每千克多少元;(2)如果还需购买两种荔枝共12千克,要求甜味的数量不少于酸味数量的两倍,请设计一种购买方案,使所需总费用最低. 19.(8分)如图,转盘A 的三个扇形面积相等,分别标有数字1,2,3,转盘B 的四个扇形面积相等,分别标有数字1,2,3,4.转动A 、B 转盘各一次,当转盘停止转动时,将指针所落扇形中的两个数字相加(当指针落在四个扇形的交线上时,重新转动转盘). (1)用树状图或列表法列出所有可能出现的结果; (2)若规定两个数字的和为5时甲赢,两个数字的 和为4时乙赢,请问这个游戏对甲、乙两人是否公平?20.(7分)如图,菱形ABCD 的对角线AC ,BD 相交于点O ,且DE ∥AC ,AE ∥BD . 求证:四边形AODE 是矩形.36° D C B A 图①人数/人10080 2040 0 60 D A C B 20 40 80 图②ABHCO yF A B O C ED · 21.(9分)某学校为了增强学生体质,决定开放以下球类活动项目:A .篮球、B .乒乓球、C .排球、D .足球.为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图(如图①,图②),请回答下列问题: (1)这次被调查的学生共有多少人?(2)请你将条形统计图补充完整; (3)若该校共有学生1900人,请你估计该校喜欢D 项目的人数.22.(8分)如图,在△ABC 中,AB=AC ,以AB 为直径的⊙O 分别与BC 、AC 交于点D 、E ,过点D 作DF ⊥AC 于F.(1)求证:DF 是⊙O 的切线;(2)若⊙O 的半径为2,BC=22DF 的长.23.(9分)如图,抛物线y=ax 2+bx 过A (4,0),B (1,3)两点,点C 、B 关于抛物线的对称轴对称,过点B 作直线BH ⊥x 轴,交x 轴于点H .(1)求抛物线的表达式;(2)直接写出点C 的坐标,并求出△ABC 的面积; (3)点P 是抛物线上一动点,且位于第四象限, 当△ABP 的面积为6时,求出点P 的坐标.l 2 12 ADBCl 1云南省楚雄州双柏县初中学业水平考试数学模拟试题(一)参考答案与试题解析命题:双柏县教育局教研室 郎绍波一、填空题(本大题共6个小题,每小题3分,满分18分) 1.-4的相反数是 . 【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,0的相反数是0即可求解. 【解答】解:﹣4的相反数是4. 故答案为:4.【点评】此题主要考查相反数的意义,较简单. 2.函数y 11x =-中自变量x 的取值范围是 .【考点】函数自变量的取值范围.【分析】根据被开方数大于等于0列不等式求解即可. 【解答】解:由题意得,x ﹣1≥0, 解得x ≥1. 故答案为:x ≥1.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.3.如图,直线l 1∥l 2,CD ⊥AB 于点D ,∠1=44°,则∠2的度数为 . 【考点】平行线的性质;垂线.【分析】先在直角三角形CBD 中可求得∠CBD 的度数,然后依据平行线的性质可求得∠2的度数. 【解答】解:∵CD ⊥AB 于点D , ∴∠CDB=90°. ∴∠CBD=90°-∠1=46°. ∵l 1∥l 2,∴∠2=∠CBD=46°. 故答案为:46°.yxOAA 1 A 2A 3B 1B 2B 3【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.4.已知一个等腰三角形的两边长分别为3和6,则该等腰三角形的周长是 . 【考点】三角形三边关系;等腰三角形的性质. 【专题】计算题.【分析】由三角形的三边关系可知,其两边之和大于第三边,两边之差小于第三边. 【解答】解:由三角形的三边关系可知,由于等腰三角形两边长分别是3和6, 所以其另一边只能是6,故其周长为6+6+3=15. 故答案为15.【点评】本题主要考查了三角形的三边关系问题,能够利用三角形的三边关系求解一些简单的计算、证明问题. 5.若x 1,x 2是一元二次方程x 2﹣2x +1=0的两个根,则x 1﹣x 1 x 2+ x 2的值为 . 【考点】根与系数的关系.【分析】根据一元二次方程根与系数之间的关系得出两根之和,两根之积,再代值计算即可. 【解答】解:∵x 1,x 2是一元二次方程x 2﹣2x +1=0的两个根, ∴x 1+x 2=2,x 1x 2=1,∴x 1﹣x 1 x 2+ x 2=(x 1+x 2)﹣x 1x 2=2﹣1=1; 故答案为:1.【点评】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx +c =0(a ≠0)的两根时,则x 1+x 2=ab,x 1x 2=ac . 6.如图,在平面直角坐标系中,直线l :y =x +2交x 轴于点A ,交y 轴于点A 1,点A 2,A 3,…在直线l 上,点B 1,B 2,B 3,…在x 轴的正半轴上,若△A 1OB 1,△A 2B 1B 2,△A 3B 2B 3,…,依次均为等腰直角三角形,直角顶点都在x 轴上,则第n 个等腰直角三角形A n B n ﹣1B n 顶点B n 的横坐标为 .【考点】规律型:点的坐标.【分析】先求出B 1、B 2、B 3…的坐标,探究规律后,即可根据规律解决问题.【解答】解:由题意得OA=OA 1=2, ∴OB 1=OA 1=2,B 1B 2=B 1A 2=4,B 2A 3=B 2B 3=8,∴B 1(2,0),B 2(6,0),B 3(14,0)…, 2=22﹣2,6=23﹣2,14=24﹣2,… ∴B n 的横坐标为2n+1﹣2. 故答案为2n+1﹣2.二、选择题(本大题共8个小题,每小题只有一个正确选项,每小题4分,满分32分) 7.下列运算正确的是( )A .224a a a =+ B .222()a b a b +=+ C .93=± D .236()=a a --【考点】幂的乘方与积的乘方;算术平方根;合并同类项;完全平方公式. 【分析】根据幂的乘方和积的乘方,即可解答. 【解答】解:A 、2222a a a =+,故本选项错误; B 、222()2a b a ab b +=++,故本选项错误; C 93=,故本选项错误; D 、236()=a a --,正确; 故选:D .【点评】本题考查了幂的乘方和积的乘方,解决本题的关键是熟记幂的乘方和积的乘方. 8.已知一个正多边形的内角是140°,则这个正多边形的边数是( ) A .6 B .7 C .8 D .9 【考点】多边形内角与外角. 【专题】计算题;推理填空题.【分析】首先根据一个正多边形的内角是140°,求出每个外角的度数是多少;然后根据外角和定理,求出这个正多边形的边数是多少即可.【解答】解:360°÷(180°﹣140°)=360°÷40°=9. 答:这个正多边形的边数是9. 故选:D .【点评】此题主要考查了多边形的内角与外角,要熟练掌握,解答此题的关键是要明确多边形的外角和定理. 9.如图是由4个大小相同的正方体组合而成的几何体,其左视图是( )O ACBA .B .C .D .【考点】简单组合体的三视图.【分析】从左面看:共有1列,有2个小正方形;据此可画出图形. 【解答】解:如图所示几何体的左视图是. 故选:A .【点评】考查简单组合体的三视图;用到的知识点为:主视图,左视图,俯视图分别是从物体的正面,左面,上面看得到的图形.10.云南高铁自开通以来,发展速度不断加快,现已成为云南市民主要出行方式之一.今年五一期间安全运输乘客约5460000人次.用科学记数法表示5460000为( )A .5.46×107B .5.46×106C .5.5×106D .546×104 【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【解答】解:用科学记数法表示5460000为5.46×106. 故选B .【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.11.如图,点A ,B ,C 在⊙O 上,若∠BAC =45°,OB =2,则图中阴影部分的面积为( )A .π-4B .23π-1 C .π-2 D .23π-2 【考点】圆周角定理;扇形面积的计算.【分析】先证得△OBC 是等腰直角三角形,然后根据S 阴影=S 扇形OBC ﹣S △OBC 即可求得. 【解答】解:∵∠BAC=45°,∴∠BOC=90°, ∴△OBC 是等腰直角三角形,∵OB=2, ∴S 阴影=S 扇形OBC ﹣S △OBC =π×22﹣×2×2=π﹣2. 故选C .【点评】本题考查的是圆周角定理及扇形的面积公式,熟记扇形的面积公式是解答此题的关键. 12.某中学篮球队12名队员的年龄如下表所示:年龄(岁)131415 16yP x ABO则这12名队员的年龄的众数和中位数分别是( )A .14,14B .14,14.5C .14,15D .15,14 【考点】众数;中位数.【分析】众数就是出现次数最多的数,而中位数就是大小处于中间位置的数,根据定义即可求解. 【解答】解:在这12名队员的年龄数据里,14岁出现了5次,次数最多,因而众数是14; 12名队员的年龄数据里,第6和第7个数据的平均数是14,因而中位数是14. 故选:A .【点评】本题考查了众数和中位数的概念:一组数据中出现次数最多的数据叫做众数;注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.13.若点A (﹣4,3)、B (m ,2)在同一个反比例函数的图象上,则m 的值为( )A .6B .﹣6C .12D .﹣12【考点】反比例函数图象上点的坐标特征. 【分析】根据反比例函数y=xk中,k =x y 为定值即可得出结论. 【解答】解:∵点A (﹣4,3)、B (m ,2)在同一个反比例函数的图象上, ∴(﹣4)×3=2m ,解得m=﹣6. 故选B .【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.14.如图,一直线与两坐标轴的正半轴分别交于A ,B 两点,P 是线段 AB 上任意一点(不包括端点),过P 分别作两坐标轴的垂线与两坐标轴 围成的矩形的周长为10,则该直线的函数表达式是( )A .y=x +5B .y=x +10C .y=﹣x +5D .y=﹣x +10 【考点】待定系数法求一次函数解析式;矩形的性质.【分析】设P 点坐标为(x ,y ),由坐标的意义可知PC=x ,PD=y ,根据题意可得到之间的关系式,可得出答案.【解答】解:设P 点坐标为(x ,y ),如图,过P 点分别作PD ⊥x 轴,PC ⊥y 轴,垂足分别为D 、C ,人数2541ADECB ∵P 点在第一象限, ∴PD=y ,PC=x ,∵矩形PDOC 的周长为10, ∴2(x +y )=10, ∴x +y=5,即y=﹣x +5, 故选C .【点评】本题主要考查矩形的性质及点的坐标的意义,根据坐标的意义得出x 、y 之间的关系是解题的关键. 三、解答题(本大题共9个小题,满分70分) 15.(7分)计算:先化简,再求值:2213339x x x x ⎛⎫-÷⎪+--⎝⎭,其中x =1. 【考点】分式的化简求值.【分析】先算括号里面的,再算除法,或者利用乘法分配律进行化简,最后把x 的值代入进行计算即可. 【解答】221321(3)(3)3393332(3)(3)1(3)(3)33332(3)32633313333x x x x x x x x x x x x x x x x xx x x x x x x x x x x+-⎛⎫⎛⎫-÷=+⋅⎪ ⎪+--+-⎝⎭⎝⎭+-+-=⋅+⋅+--+-++--=+===解: 当1x =时,原式=10x x-=. 【点评】本题考查的是分式的化简求值,此类题型的特点是:利用方程解的定义找到相等关系,再把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值.16.(7分)如图,∠ADB=∠AEC ,AD=AE .求证:BE=CD . 【考点】全等三角形的判定与性质.【分析】根据全等三角形的判定和性质即可得到结论. 【解答】证明:在△ADB 和△AEC 中∵ ∠ADB=∠AEC ,AD=AE ,∠DAB=∠EAC ∴ △ADB ≌△AEC ∴ AB=AC 又∵ AD=AEC DAB ∴ BE=CD【点评】本题考查了全等三角形的判定和性质,熟练掌握全等三角形的判定和性质是解题的关键.17.(7分)如图,长4m 的楼梯AB 的倾斜角∠ABD 为45°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD 为30°,求调整后的楼梯AC 的长.(精确到0.1m ,2 1.41≈,3 1.73≈) 【考点】解直角三角形的应用;坡度坡角问题.【分析】先在Rt △ABD 中利用正弦的定义计算出AD ,然后在Rt △ACD 中利用正弦的定义计算AC 即可. 【解答】解:在Rt △ADB 中,∵sin ∠ABD=ADAB, ∴AD=4sin45°=22(m ), 在Rt △ACD 中,∵sin ∠ACD=ADAC, ∴AC=4241.41 5.64 5.6=⨯=≈(m ). 答:调整后的楼梯AC 的长约为5.6 m【点评】本题考查了解直角三角形的实际应用中的坡度坡角问题,难度不大,注意细心运算即可.18.(8分)荔枝是云南省的特色水果,小明的妈妈先购买了2千克酸味和3千克甜味,共花费90元;后又购买了1千克酸味和2千克甜味,共花费55元.(每次两种荔枝的售价都不变) (1)求酸味和甜味的售价分别是每千克多少元;(2)如果还需购买两种荔枝共12千克,要求甜味的数量不少于酸味数量的两倍,请设计一种购买方案,使所需总费用最低.【考点】一次函数的应用;二元一次方程组的应用.【分析】(1)设酸味售价为每千克x 元,甜味售价为每千克y 元,根据题意列出方程组即可解决问题. (2)设购买酸味n 千克,总费用为m 元,则购买甜味12﹣n 千克,路程不等式求出n 的范围,再构建一次函数,利用一次函数的性质解决最值问题. 【解答】解:(1)设酸味售价为每千克x 元,甜味售价为每千克y 元, 根据题意得:⎩⎨⎧=+=+5529032y x y x 解得:⎩⎨⎧==2015y x答:酸味售价为每千克15元,甜味售价为每千克20元.(2)设购买酸味n 千克,总费用为m 元,则购买甜味12-n 千克,3 21 43 2B 1 A · · ∴12-n ≥2n ∴n ≤4 m =15n +20(12-n )=-5n +240 ∵k =-5<0 ∴m 随n 的增大而减小 ∴当n =4时,m =220答:购买酸味4千克,甜味8千克时,总费用最少.【点评】本题考查一次函数的应用、二元一次方程组等知识,解题的关键是学会设未知数,列出解方程组解决问题,学会构建一次函数,利用一次函数的性质解决最值问题,属于中考常考题型.19.(8分)如图,转盘A 的三个扇形面积相等,分别标有数字1,2,3,转盘B 的四个扇形面积相等,分别标有数字1,2,3,4.转动A 、B 转盘各一次,当转盘停止转动时,将指针所落扇形中的两个数字相加(当指针落在四个扇形的交线上时,重新转动转盘). (1)用树状图或列表法列出所有可能出现的结果; (2)若规定两个数字的和为5时甲赢,两个数字的 和为4时乙赢,请问这个游戏对甲、乙两人是否公平? 【考点】游戏公平性;列表法与树状图法. 【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)分别求出定两个数字的和为5时和两个数字的和为4时的概率,即可知道游戏是否公平不公平. 【解答】(1)画树状图得:(或者列表得)则共有12种等可能的结果;(2)∵两个数字的和为5或者和为4都是有3种情况, ∴两个数字的和为5或者和为4的概率都是:31124. ∴这个游戏对甲、乙两人是公平的.【点评】本题考查游戏公平性、列表法和树状图法,解答此类问题的关键是明确题意,写出所有的可能性.和 1 2 3 4 1 2 3 4 5 2 3 4 5 6 3456736°D CBA图①人数/人10080 20400 60 D A CB 20 40 80图②BAE CO D20.(7分)如图,菱形ABCD 的对角线AC ,BD 相交于点O ,且DE ∥AC ,AE ∥BD . 求证:四边形AODE 是矩形. 【考点】矩形的判定;菱形的性质. 【专题】证明题.【分析】根据菱形的性质得出AC ⊥BD ,再根据平行四边形的判定定理得四边形AODE 为平行四边形,由矩形的判定定理得出四边形AODE 是矩形. 【解答】证明:∵四边形ABCD 为菱形, ∴AC ⊥BD , ∴∠AOD=90°, ∵DE ∥AC ,AE ∥BD , ∴四边形AODE 为平行四边形, ∴四边形AODE 是矩形.【点评】本题考查了矩形的判定以及菱形的性质,还考查了平行四边形的判定,掌握平行四边形的判定方法是解题的关键.21.(9分)某学校为了增强学生体质,决定开放以下球类活动项目:A .篮球、B .乒乓球、C .排球、D .足球.为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图(如图①,图②),请回答下列问题: (1)这次被调查的学生共有多少人? (2)请你将条形统计图补充完整; (3)若该校共有学生1900人, 请你估计该校喜欢D 项目的人数. 【考点】条形统计图;用样本估计总体; 扇形统计图.【分析】(1)用喜欢篮球的人数除以喜欢篮球的人数所占的百分比,即可求出这些被调查的学生数; (2)用总人数减去喜欢篮球、乒乓球和足球的人数,即可求出喜欢排球的人数,从而补全统计图; (3)用总人数乘以喜欢足球的人数所占的百分比即可. 【解答】解:(1)由扇形统计图可知:扇形A 的圆心角是36°, 所以喜欢A 项目的人数占被调查人数的百分比=36360×100%=10%.F ABOED · AO ·由条形图可知:喜欢A 类项目的人数有20人, 所以被调查的学生共有20÷10%=200(人).(2)喜欢C 项目的人数=200-(20+80+40)=60(人), 因此在条形图中补画高度为60的长方条,如图所示.(3)1900×(40÷200)=380(人).答:该校喜欢D 项目的人数约为380人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(8分)如图,在△ABC 中,AB=AC ,以AB 为直径的⊙O 分别与BC 、AC 交于点D 、E ,过点D 作DF ⊥AC 于F.(1)求证:DF 是⊙O 的切线;(2)若⊙O 的半径为2,BC=22DF 的长. 【考点】切线的判定;相似三角形的判定与性质. 【分析】(1)欲证明DF 是⊙O 的切线只要证明DF ⊥OD , 只要证明OD ∥AC 即可.(2)连接AD ,首先利用勾股定理求出AD ,由△ADC ∽△DFC 可得AD AC=DF DC,列出方程即可解决问题. 【解答】(1)证明:连接OD , ∵OB=OD ∴∠ABC=∠ODB ∴AB=AC ∴∠ABC=∠ACB ∴∠ODB=∠ACB ∴OD ∥AC ∵DF ⊥AC ∴DF ⊥OD ∴DF 是⊙O 的切线(2)连接AD ,∵AB 是⊙O 的直径人数/人1008020400 60DA CB 20 408060 答案图ABHCO yABHCO y∴AD ⊥BC 又∵AB=AC ∴2 ∴2222AB BD 4(2)14-=-=∵DF ⊥AC ∴△ADC ∽△DFC ∴AD AC 147=DF DC 2 ∴7【点评】本题考查切线的判定、相似三角形的判定和性质、勾股定理等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,属于中考常考题型.23.(9分)如图,抛物线y=ax 2+bx 过A (4,0),B (1,3)两点,点C 、B 关于抛物线的对称轴对称,过点B 作直线BH ⊥x 轴,交x 轴于点H . (1)求抛物线的表达式;(2)直接写出点C 的坐标,并求出△ABC 的面积; (3)点P 是抛物线上一动点,且位于第四象限, 当△ABP 的面积为6时,求出点P 的坐标.【考点】抛物线与x 轴的交点;二次函数图象与几何变换.【分析】(1)把A 点和B 点坐标分别代入y=ax 2+bx 中得到关于a 、b 的方程组,然后解方程组即可得到抛物线解析式;(2)计算函数值为3所对应的自变量的值即可得到C 点,然后根据三角形面积公式计算△ABC 的面积; (3)作PD ⊥BH ,如图,设P (m ,﹣m 2+4m ),则利用S △ABH +S 梯形APDH =S △PBD +S △ABP 可得到关于m 的方程,然后解方程求出m 即可得到P 点坐标. 【解答】解:(1)把点A (4,0),B (1,3)代入抛物线y=ax 2+bx 中,得1640134a b a a b b +==-⎧⎧⎨⎨+==⎩⎩,解得∴抛物线表达式为:y=﹣x 2+4x ;(2)点C的坐标为(3,3),又∵点B的坐标为(1,3),∴BC=2,∴S△ABC=12×2×3=3;(3)过P点作PD⊥BH交BH于点D,设点P(m,﹣m2+4m),根据题意,得:BH=AH=3,HD=m2﹣4m,PD=m﹣1,∴S△ABP=S△ABH+S四边形HAPD﹣S△BPD,6=12×3×3+12(3+m﹣1)(m2﹣4m)﹣12(m﹣1)(3+m2﹣4m),∴3m2﹣15m=0,m1=0(舍去),m2=5,∴点P坐标为(5,﹣5).【点评】本题考查了抛物线与x轴的交点:对于二次函数y=ax2+bx+c(a,b,c是常数,a≠0),△=b2﹣4ac 决定抛物线与x轴的交点个数:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x 轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.。

中考数学第二次模拟考试数学试题及答案

中考数学第二次模拟考试数学试题及答案

云南省楚雄双柏县中考数学第二次模拟考试数学试题一、选择题(本大题共8个小题,每小题只有一个正确选项,每小题3分,满分24分) 1.-2的绝对值等于【 】A .±2B . -2C .2D . 4 2.下列运算正确的是【 】A .242-=-B .235()a a = C .333235x x x D .x x x 842÷=3.云南省政府工作报告中指出:高度重视义务教育,全面免除城乡义务教育阶段学生学杂费,使638万名农村中小学学生享受到免费教科书及练习册。

“638万”用科学计数法表示为【 】A .6.38×102B .6.38×106C .6.38×105D . 63.8×105 4.方程(3)3x x x +=+的解是【 】A .x =0B .x 1=0,x 2= -3C .x 1=1,x 2=3D .x 1=1,x 2= -3 5.如图,CD 是⊙O 的直径,A 、B 是⊙O 上的两点,若∠ABD =20°,则∠ADC 的度数为【 】A .70°B .60°C .50°D .40°6.圆锥的底面半径为3cm ,母线为9 cm ,则圆锥的侧面积为【 】2cm A .6πB .9πC .12πD .27π7.如图是一个正方体的表面展开图,则图中“京”字所在 面的对面所标的字是【 】A .北B .京C .奥D .运8.如图所示,已知等边三角形ABC 的边长为1,按图中所示的规律,用个这样的等边三角形镶嵌而成的四边形的周长是【 】A. B. C. D. 二、填空题(本大题共7个小题,每小题3分,满分21分) 9.化简:28-= __.10.若等腰三角形的一个外角为70,则它的底角为 度.11.如图,是甲、乙两地5月下旬的日平均气温统计图,则甲、乙两地这10天日平均气温油运 奥 京 北 加第7题第8题CA B ……A第5题BCD O的方差大小关系为:2S 甲 2S 乙.(填“>”或“<”)12.函数2+=x y 中自变量x 的取值范围为 .13.从n 个苹果和3个雪梨中,任选1个,若选中苹果的概率是12,则n 的值是 .14.请写出一个图象位于第二、四象限的反比例函数: . 三、解答题(本大题共9个小题,满分75分)16.(6分)求不等式组⎪⎩⎪⎨⎧<≤341112x x x -- 的整数解.17.(6分)先化简代数式22221244a b a b a b a ab b --÷-+++,然后选择一个使原式有意义的 a 、b 值代入求值.18.(8分)如图,点C 、E 、B 、F 在同一直线上, AC ∥DF ,AC=DF ,CE=FB .求证:AB ∥DE . 19.(9分) A ,B ,C 三名大学生竞选系学生会主席,他们的笔试成绩和口试成绩(单位:分)分别用了两种方式进行了统计,如表一和图一: 表一 A B C笔试 85 95 90 口试 80 85第18题 AF B E CD 10095 9085 80 75 70分数/分 图一竞选人ABC笔试口试(1)请将表一和图一中的空缺部分补充完整. (2)竞选的最后一个程序是由本系的300名学生进行投票,三位候选人的得票情况如图二 (没有弃权票,每名学生只能推荐一个), 请计算每人的得票数.(3)若每票计1分,系里将笔试、口试、得票三项测试得分按的比例确定个人成绩,请计算三位候选人的最后成绩,并根据成绩判断谁能当选. 20.(10分)某公司经销一种绿茶,每千克成本为50元.市场调查发现,在一段时间内,销售量w (千克)随销售单价x (元/千克)的变化而变化,具体关系式为:w =-2x +240.设这种绿茶在这段时间内的销售利润为y (元),解答下列问题: (1)求y 与x 的关系式;(2)当x 取何值时,y 的值最大?(3)如果物价部门规定这种绿茶的销售单价不得高于90元/千克,公司想要在这段时间内获得2250元的销售利润,销售单价应定为多少元?21.(8分)如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,ABC△的顶点均在格点上,点C 的坐标为(41)-,. (1)把ABC △向上平移5个单位后 得到对应的111A B C △,画出111A B C △, 并写出1C 的坐标;(2)以原点O 为对称中心,再画出与111A B C △关于原点O 对称的222A B C △,并写出点2C 的坐标.22.(8分)小明站在A 处放风筝,风筝飞到C 处时的线长为20米, 这时测得∠CBD=60°,若牵引底端B 离地面1.5米,求此时风筝离地面高度。

云南省楚雄州双柏县中考数学二模试卷(含解析)

云南省楚雄州双柏县中考数学二模试卷(含解析)

2017年云南省楚雄州双柏县中考数学二模试卷一、填空题(本大题共6个小题,每小题3分,满分18分)1.5的倒数是.2.因式分解:4a2﹣8a+4= .3.函数y=中,自变量x的取值范围是.4.如图,在△ABC中,∠ACB=90°,AC=8,AB=10,ED垂直平分AC交AB于点E,则ED的长为.5.一个扇形的圆心角为120°,面积为12πcm2,则此扇形的半径为cm.6.一列数a1,a2,a3,…满足条件:a1=,a n=(n≥2,且n为整数),则a2017= .二、选择题(本大题共8个小题,每小题只有一个正确选项,每小题4分,满分32分)7.下列运算正确的是()A.3a•2b=5ab B.(﹣3)﹣2=﹣9 C.(3.14﹣π)0=0 D.8.如图,直线AB∥CD,AE平分∠CAB.AE与CD相交于点E,∠ACD=50°,则∠BAE的度数是()A.50° B.65° C.70° D.130°9.第31届夏季奥运会将于2016年8月5日﹣21日在巴西举行,为纪念此次体育盛事发行的奥运会纪念币,在中国发行450000套,450000这个数用科学记数法表示为()A.45×104B.4.5×105C.0.45×106D.4.5×10610.某几何体的主视图和左视图如图所示,则该几何体可能是()A.长方体B.圆锥 C.圆柱 D.球11.如图,过反比例函数y=(x>0)的图象上一点A作AB⊥x轴于点B,连接AO,若S△=2,则k的值为()AOBA.2 B.3 C.4 D.512.某市测得一周PM2.5的日均值(单位:微克/立方米)如下:31,30,34,35,36,34,31,对这组数据下列说法正确的是()A.众数是35 B.中位数是34 C.平均数是35 D.方差是613.下列所述图形中,既是中心对称图形,又是轴对称图形的是()A.平行四边形B.菱形 C.正三角形 D.正五边形14.已知2是关于x的方程x2﹣2mx+3m=0的一个根,并且这个方程的两个根恰好是等腰三角形ABC的两条边长,则三角形ABC的周长为()A.10 B.14 C.10或14 D.8或10三、解答题(本大题共9个小题,满分70分)15.(7分)解方程: +1=.16.(7分)如图,在矩形ABCD中.点E在边AB上,∠CDE=∠DCE.求证:AE=BE.17.(7分)某校九年级社会实践小组去商店调查商品销售情况,了解到该商店以每条80元的价格购进了某品牌牛仔裤50条,并以每条120元的价格销售了40条.商店准备采取促销措施,将剩下的牛仔裤降价销售.请你帮商店计算一下,每条牛仔裤降价多少元时,销售完这批牛仔裤正好达到盈利45%的预期目标?18.(7分)如图,在电线杆上的C处引拉线CE、CF固定电线杆,拉线CE和地面成60°角,在离电线杆6米的B处安置测角仪,在A处测得电线杆上C处的仰角为30°,已知测角仪高AB为1.5米,求拉线CE的长(结果保留根号).19.(9分)为了让书籍开拓学生的视野,陶冶学生的情操,某中学开展课外阅读活动.为了解全校学生课外阅读情况,抽样调查了50名学生平均每天课外阅读时间(单位:min),将抽查得到的数据分成5组,下面是尚未完成的频数、频率分布表:(1)将频数和频率分布表补全,直接写出上面的频数a、b、c和频率m、n、p的值;(2)请在给出的平面直角坐标系中画出相应的频数直方图;(3)如果该校有1500名学生,请你估计该校共有多少名学生平均每天阅读时间不少于50min?20.(8分)将背面相同,正面分别标有数字1、2、3、4的四张卡片洗匀后,背面朝上放在桌子上.请用树状图或列表法解答下列问题:(1)从中随机抽取两张卡片,求卡片正面上的数字之积大于4的概率;(2)若先从中随机抽取一张卡片(不放回),将该卡片正面上的数字作为十位上的数字;再随机抽取一张,将该卡片正面上的数字作为个位上的数字,求组成的两位数恰好是3的倍数的概率.21.(8分)小敏上午8:00从家里出发,骑车去一家超市购物,然后从这家超市返回家中.小敏离家的路程y(米)和所经过的时间x(分)之间的函数图象如图所示.请根据图象回答下列问题:(1)小敏去超市途中的速度是多少?在超市逗留了多少时间?(2)小敏几点几分返回到家?22.(8分)如图,△ABC是⊙O的内接三角形,AB为直径,过点B的切线与AC的延长线交于点D,E是BD中点,连接CE.(1)求证:CE是⊙O的切线;(2)若AC=4,BC=2,求BD和CE的长.23.(9分)已知,如图,在平面直角坐标系xOy中,点A、B、C分别为坐标轴上的三个点,且OA=1,OB=3,OC=4.(1)求经过A、B、C三点的抛物线的解析式及顶点坐标;(2)在抛物线上是否存在一点P,使△ACP的面积等于△ACB的面积?若存在,请求出点P 的坐标;若不存在,请说明理由;(3)在平面直角坐标系xOy中是否存在一点Q,使得以点A、B、C、Q为顶点的四边形为菱形?若存在,请求出点Q的坐标;若不存在,请说明理由.2017年云南省楚雄州双柏县中考数学二模试卷参考答案与试题解析一、填空题(本大题共6个小题,每小题3分,满分18分)1.5的倒数是.【考点】17:倒数.【分析】根据倒数的定义作答.【解答】解:∵5×=1,∴5的倒数是.【点评】倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.因式分解:4a2﹣8a+4= 4(n﹣1)2.【考点】55:提公因式法与公式法的综合运用.【分析】原式提取4,再利用完全平方公式分解即可.【解答】解:原式=4(a2﹣2a+1)=4(n﹣1)2,故答案为:4(n﹣1)2【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.3.函数y=中,自变量x的取值范围是x>﹣2 .【考点】E4:函数自变量的取值范围;62:分式有意义的条件;72:二次根式有意义的条件.【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,列不等式求解.【解答】解:根据题意得:x+2>0,解得x>﹣2.【点评】函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.4.如图,在△ABC中,∠ACB=90°,AC=8,AB=10,ED垂直平分AC交AB于点E,则ED的长为 3 .【考点】KG:线段垂直平分线的性质.【分析】在Rt△ACB中,根据勾股定理求得BC边的长度,然后由三角形中位线定理求出答案.【解答】解:∵在Rt△ACB中,∠ACB=90°,AC=8,AB=10,∴BC=6.又∵DE垂直平分AC交AB于点E,∴DE∥BC,∴DE是△ACB的中位线,∴DE=BC=3,故答案为3.【点评】本题考查的是线段垂直平分线的定义、三角形中位线定理的应用,掌握三角形中位线等于第三边的一半是解题的关键.5.一个扇形的圆心角为120°,面积为12πcm2,则此扇形的半径为 6 cm.【考点】MO:扇形面积的计算.【分析】根据扇形的面积公式S=即可求得半径.【解答】解:设该扇形的半径为R,则=12π,解得R=6.即该扇形的半径为6cm.故答案是:6.【点评】本题考查了扇形面积的计算.正确理解公式是关键.6.一列数a1,a2,a3,…满足条件:a1=,a n=(n≥2,且n为整数),则a2017=.【考点】37:规律型:数字的变化类.【分析】求出数列的前4项,继而得出数列的循环周期,然后根据所得的规律进行求解即可.【解答】解:∵a1=,a n=,∴a2===2,a3===﹣1,a4===,…这列数每3个数为一循环周期,∵2017÷3=672…1,∴a2017=a1=,故答案为:.【点评】此题主要考查了数字变化规律问题,认真观察、仔细思考,善用联想是解决这类问题的方法,解题时注意运用a n=进行计算.二、选择题(本大题共8个小题,每小题只有一个正确选项,每小题4分,满分32分)7.下列运算正确的是()A.3a•2b=5ab B.(﹣3)﹣2=﹣9 C.(3.14﹣π)0=0 D.【考点】78:二次根式的加减法;49:单项式乘单项式;6E:零指数幂;6F:负整数指数幂.【分析】分别利用单项式乘以单项式以及负指数幂的性质和二次根式加减运算法则、零指数幂的性质分别化简求出答案.【解答】解:A、3a•2b=6ab,故此选项错误;B、(﹣3)﹣2=,故此选项错误;C、(3.14﹣π)0=1,故此选项错误;D、+=3,正确.故选:D.【点评】此题主要考查了单项式乘以单项式以及负指数幂的性质和二次根式加减运算、零指数幂的性质等知识,正确掌握运算法则是解题关键.8.如图,直线AB∥CD,AE平分∠CAB.AE与CD相交于点E,∠ACD=50°,则∠BAE的度数是()A.50° B.65° C.70° D.130°【考点】JA:平行线的性质;IJ:角平分线的定义.【分析】先由平行线性质得出∠ACD与∠BAC互补,并根据已知∠ACD=50°计算出∠BAC的度数,再根据角平分线性质求出∠BAE的度数.【解答】解:∵AB∥CD,∴∠ACD+∠BAC=180°,∵∠ACD=50°,∴∠BAC=180°﹣50°=130°,∵AE平分∠CAB,∴∠BAE=∠BAC=×130°=65°,故选B.【点评】本题考查了平行线的性质和角平分线的定义,做好本题要熟练掌握:两直线平行,同旁内角互补.9.第31届夏季奥运会将于2016年8月5日﹣21日在巴西举行,为纪念此次体育盛事发行的奥运会纪念币,在中国发行450000套,450000这个数用科学记数法表示为()A.45×104B.4.5×105C.0.45×106D.4.5×106【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将450000用科学记数法表示为:4.5×105.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.某几何体的主视图和左视图如图所示,则该几何体可能是()A.长方体B.圆锥 C.圆柱 D.球【考点】U3:由三视图判断几何体.【分析】主视图、左视图是分别从物体正面、左面看,所得到的图形,根据该几何体的主视图和左视图都是长方形,可得该几何体可能是圆柱体.【解答】解:∵如图所示几何体的主视图和左视图,∴该几何体可能是圆柱体.故选C.【点评】本题考查由三视图确定几何体的形状,主要考查学生空间想象能力,掌握常见几何体的三视图是解题的关键.11.如图,过反比例函数y=(x>0)的图象上一点A作AB⊥x轴于点B,连接AO,若S△=2,则k的值为()AOBA.2 B.3 C.4 D.5【考点】G5:反比例函数系数k的几何意义;G4:反比例函数的性质.【分析】根据点A在反比例函数图象上结合反比例函数系数k的几何意义,即可得出关于k 的含绝对值符号的一元一次方程,解方程求出k值,再结合反比例函数在第一象限内有图象即可确定k值.【解答】解:∵点A是反比例函数y=图象上一点,且AB⊥x轴于点B,∴S△AOB=|k|=2,解得:k=±4.∵反比例函数在第一象限有图象,∴k=4.故选C.【点评】本题考查了反比例函数的性质以及反比例函数系数k的几何意义,解题的关键是找出关于k的含绝对值符号的一元一次方程.本题属于基础题,难度不大,解决该题型题目时,根据反比例函数系数k的几何意义找出关于k的含绝对值符号的一元一次方程是关键.12.某市测得一周PM2.5的日均值(单位:微克/立方米)如下:31,30,34,35,36,34,31,对这组数据下列说法正确的是()A.众数是35 B.中位数是34 C.平均数是35 D.方差是6【考点】W7:方差;W2:加权平均数;W4:中位数;W5:众数.【分析】根据众数、平均数、中位数和方差的计算公式分别进行计算即可得出答案.【解答】解:A、31和34出现了2次,出现的次数最多,则众数是31和34,故本选项错误;B、把这组数据从小到大排列,最中间的数是34,则中位数是34,故本选项错正确;C、这组数据的平均数是:(31+30+34+35+36+34+31)÷7=33,故本选项错误;D、这组数据的方差是: [2(31﹣33)2+(30﹣33)2+2(34﹣33)2+(35﹣33)2+(36﹣33)2]=,故本选项错误;故选B.【点评】本题考查了众数、平均数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.一般地设n个数据,x1,x2,…x n的平均数为,则方差S2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2].13.下列所述图形中,既是中心对称图形,又是轴对称图形的是()A.平行四边形B.菱形 C.正三角形 D.正五边形【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,故此选项错误;B、是轴对称图形,是中心对称图形,故此选项正确;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误.故选B.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.14.已知2是关于x的方程x2﹣2mx+3m=0的一个根,并且这个方程的两个根恰好是等腰三角形ABC的两条边长,则三角形ABC的周长为()A.10 B.14 C.10或14 D.8或10【考点】A8:解一元二次方程﹣因式分解法;A3:一元二次方程的解;K6:三角形三边关系;KH:等腰三角形的性质.【分析】先将x=2代入x2﹣2mx+3m=0,求出m=4,则方程即为x2﹣8x+12=0,利用因式分解法求出方程的根x1=2,x2=6,分两种情况:①当6是腰时,2是等边;②当6是底边时,2是腰进行讨论.注意两种情况都要用三角形三边关系定理进行检验.【解答】解:∵2是关于x的方程x2﹣2mx+3m=0的一个根,∴22﹣4m+3m=0,m=4,∴x2﹣8x+12=0,解得x1=2,x2=6.①当6是腰时,2是底边,此时周长=6+6+2=14;②当6是底边时,2是腰,2+2<6,不能构成三角形.所以它的周长是14.故选B.【点评】此题主要考查了一元二次方程的解,解一元二次方程﹣因式分解法,三角形三边关系定理以及等腰三角形的性质,注意求出三角形的三边后,要用三边关系定理检验.三、解答题(本大题共9个小题,满分70分)15.解方程: +1=.【考点】B3:解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:方程两边同乘以2(x﹣2),得:2(1﹣x)+2x﹣4=x,解得:x=﹣2,把x=﹣2代入原分式方程中,等式两边相等,经检验x=﹣2是分式方程的解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.16.如图,在矩形ABCD中.点E在边AB上,∠CDE=∠DCE.求证:AE=BE.【考点】LB:矩形的性质;KD:全等三角形的判定与性质.【分析】证出DE=CE,由HL证明Rt△DAE≌Rt△CBE,得出对应边相等即可.【解答】证明:∵四边形ABCD是矩形,∴∠A=∠B=90°,AD=BC,∵∠CDE=∠DCE,∴DE=CE,在Rt△DAE和Rt△CBE中,,∴Rt△DAE≌Rt△CBE(HL),∴AE=BE.【点评】本题考查了矩形的性质、全等三角形的判定与性质;证明三角形全等是解决问题的关键.17.某校九年级社会实践小组去商店调查商品销售情况,了解到该商店以每条80元的价格购进了某品牌牛仔裤50条,并以每条120元的价格销售了40条.商店准备采取促销措施,将剩下的牛仔裤降价销售.请你帮商店计算一下,每条牛仔裤降价多少元时,销售完这批牛仔裤正好达到盈利45%的预期目标?【考点】8A:一元一次方程的应用.【分析】设每条牛仔裤降价x元,根据销售总价=成本×(1+45%),即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设每条牛仔裤降价x元,根据题意得:120×40+(120﹣x)×10=80×50×(1+45%),解得:x=20.答:每条牛仔裤降价20元时,销售完这批牛仔裤正好达到盈利45%的预期目标.【点评】本题考查了一元一次方程的应用,根据销售总价=成本×(1+45%)列出关于x的一元一次方程是解题的关键.18.如图,在电线杆上的C处引拉线CE、CF固定电线杆,拉线CE和地面成60°角,在离电线杆6米的B处安置测角仪,在A处测得电线杆上C处的仰角为30°,已知测角仪高AB 为1.5米,求拉线CE的长(结果保留根号).【考点】TA:解直角三角形的应用﹣仰角俯角问题.【分析】由题意可先过点A作AH⊥CD于H.在Rt△ACH中,可求出CH,进而CD=CH+HD=CH+AB,再在Rt△CED中,求出CE的长.【解答】解:过点A作AH⊥CD,垂足为H,由题意可知四边形ABDH为矩形,∠CAH=30°,∴AB=DH=1.5,BD=AH=6,在Rt△ACH中,tan∠CAH=,∴CH=AH•tan∠CAH,∴CH=AH•tan∠CAH=6tan30°=6×(米),∵DH=1.5,∴CD=2+1.5,在Rt△CDE中,∵∠CED=60°,sin∠CED=,∴CE==(4+)(米),答:拉线CE的长为(4+)米.【点评】命题立意:此题主要考查解直角三角形的应用.要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.19.为了让书籍开拓学生的视野,陶冶学生的情操,某中学开展课外阅读活动.为了解全校学生课外阅读情况,抽样调查了50名学生平均每天课外阅读时间(单位:min),将抽查得到的数据分成5组,下面是尚未完成的频数、频率分布表:(1)将频数和频率分布表补全,直接写出上面的频数a、b、c和频率m、n、p的值;(2)请在给出的平面直角坐标系中画出相应的频数直方图;(3)如果该校有1500名学生,请你估计该校共有多少名学生平均每天阅读时间不少于50min?【考点】V8:频数(率)分布直方图;V5:用样本估计总体;V7:频数(率)分布表.【分析】(1)根据:频率=频数÷总数及频数之和等于总数即可求得a、b、c及m、n、p 的值;(2)根据分布表画出每个分组的小长方形即可得;(3)利用样本估计总体的思想,用相应的频率乘以总数可得.【解答】解:(1)根据题意可得:a=50×0.16=8(人),b=50×0.28=14(人),c=50﹣8﹣20﹣14﹣6=2(人)m=20÷50=0.40,n=6÷50=0.12,p=2÷50=0.04,补全表格如下:(2)作出条形统计图,如图所示:(3)根据题意得:1500×(0.28+0.12+0.04)=660(人),则该校共有660名学生平均每天阅读时间不少于50min.【点评】此题考查了频数分布直方图,用样本估计总体,以及频数分布表,弄清题中的数据是解本题的关键.20.将背面相同,正面分别标有数字1、2、3、4的四张卡片洗匀后,背面朝上放在桌子上.请用树状图或列表法解答下列问题:(1)从中随机抽取两张卡片,求卡片正面上的数字之积大于4的概率;(2)若先从中随机抽取一张卡片(不放回),将该卡片正面上的数字作为十位上的数字;再随机抽取一张,将该卡片正面上的数字作为个位上的数字,求组成的两位数恰好是3的倍数的概率.【考点】X6:列表法与树状图法.【分析】(1)画树状图展示所有12种等可能的结果数,找出卡片正面上的数字之积大于4的结果数,然后根据概率公式求解;(2)利用树状图得到共有12种等可能的结果数,再找出组成的两位数恰好是3的倍数的结果数,然后根据概率公式求解.【解答】解:(1)画树状图为:共有12种等可能的结果数,其中卡片正面上的数字之积大于4的结果数为6,所以卡片正面上的数字之积大于4的概率==;(2)共有12种等可能的结果数,其中组成的两位数恰好是3的倍数有4种情况,所以组成的两位数恰好是3的倍数的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.21.小敏上午8:00从家里出发,骑车去一家超市购物,然后从这家超市返回家中.小敏离家的路程y(米)和所经过的时间x(分)之间的函数图象如图所示.请根据图象回答下列问题:(1)小敏去超市途中的速度是多少?在超市逗留了多少时间?(2)小敏几点几分返回到家?【考点】FH:一次函数的应用.【分析】(1)根据观察横坐标,可得去超市的时间,根据观察纵坐标,可得去超市的路程,根据路程与时间的关系,可得答案;在超市逗留的时间即路程不变化所对应的时间段;(2)求出返回家时的函数解析式,当y=0时,求出x的值,即可解答.【解答】解:(1)小敏去超市途中的速度是:3000÷10=300(米/分),在超市逗留了的时间为:40﹣10=30(分).(2)设返回家时,y与x的函数解析式为y=kx+b,把(40,3000),(45,2000)代入得:,解得:,∴函数解析式为y=﹣200x+11000,当y=0时,x=55,∴返回到家的时间为:8:55.【点评】本题考查了一次函数的应用,观察函数图象获取信息是解题关键.22.如图,△ABC是⊙O的内接三角形,AB为直径,过点B的切线与AC的延长线交于点D,E是BD中点,连接CE.(1)求证:CE是⊙O的切线;(2)若AC=4,BC=2,求BD和CE的长.【考点】ME:切线的判定与性质.【分析】(1)连接OC,由弦切角定理和切线的性质得出∠CBE=∠A,∠ABD=90°,由圆周角定理得出∠ACB=90°,得出∠ACO+∠BCO=90°,∠BCD=90°,由直角三角形斜边上的中线性质得出CE=BD=BE,得出∠BCE=∠CBE=∠A,证出∠ACO=∠BCE,得出∠BCE+∠BCO=90°,得出CE⊥OC,即可得出结论;(2)由勾股定理求出AB,再由三角函数得出tanA===,求出BD=AB=,即可得出CE的长.【解答】(1)证明:连接OC,如图所示:∵BD是⊙O的切线,∴∠CBE=∠A,∠ABD=90°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACO+∠BCO=90°,∠BCD=90°,∵E是BD中点,∴CE=BD=BE,∴∠BCE=∠CBE=∠A,∵OA=OC,∴∠ACO=∠A,∴∠ACO=∠BCE,∴∠BCE+∠BCO=90°,即∠OCE=90°,CE⊥OC,∴CE是⊙O的切线;(2)解:∵∠ACB=90°,∴AB===2,∵tanA====,∴BD=AB=,∴CE=BD=.【点评】本题考查了切线的判定、弦切角定理、圆周角定理、直角三角形斜边上的中线性质、勾股定理、三角函数等知识;熟练掌握切线的判定和圆周角定理是解决问题的关键.23.已知,如图,在平面直角坐标系xOy中,点A、B、C分别为坐标轴上的三个点,且OA=1,OB=3,OC=4.(1)求经过A、B、C三点的抛物线的解析式及顶点坐标;(2)在抛物线上是否存在一点P,使△ACP的面积等于△ACB的面积?若存在,请求出点P的坐标;若不存在,请说明理由;(3)在平面直角坐标系xOy中是否存在一点Q,使得以点A、B、C、Q为顶点的四边形为菱形?若存在,请求出点Q的坐标;若不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)根据待定系数法,可得函数解析式,根据配方法,可得答案;(2)根据等底等高的三角形面积相等,可得P点的纵坐标,根据自变量与函数值的对应关系,可得答案;(3)根据菱形的四边相等,可得QB的长,根据菱形的对边平行,可得Q点的纵坐标.【解答】解:(1)设抛物线的解析式为y=ax2+bx+c,∵OA=1,OB=3,OC=4.∴A(1,0)、B(0,3)、C(﹣4,0),将A,B,C代入函数解析式,得∴解得:a=,b=,c=3,∴经过A、B、C三点的抛物线的解析式为y=x2x+3;∵y=x2x+3=(x+)2+∴抛物线的顶点坐标是(),(2)在抛物线上存在一点P,使△ACP的面积等于△ACB的面积,理由为:设点P的坐标为P(m,n),∵S△ACB=×5×3=,S△ACP=×5×|n|∴×5×|n|=,n=±3 ∴当n=3时,x 2x+3=3,解得x 1=0(舍),x 2=﹣3即P (﹣3,3)当n=﹣3时,x 2x+3=﹣3,解得x 1=,x 2=,即P 2(,﹣3),P 3(,﹣3)综上所述:P 的坐标为P 1(﹣3,3),P 2(,﹣3),P 3(,﹣3)(3)在平面直角坐标系xOy 中存在一点Q ,使得以点A 、B 、C 、Q 为顶点的四边形为菱形,理由为:∵OB=3,OC=4,OA=1,∴BC=AC=5,当BQ 平行且等于AC 时,四边形ACBP 为菱形,∴BQ=AC=BC=5,∵∵BQ ∥AC ,∴点Q 到x 轴的距离等于OB=3,∴点Q 的坐标为(5,3),当点Q 在第二、三象限时,以点A 、B 、C 、Q 为顶点的四边形只能是平行四边形,不是菱形, 则当点Q 的坐标为(5,3)时,以点A 、B 、C 、Q 为顶点的四边形为菱形.【点评】本题考查了二次函数综合题,解(1)的关键是待定系数法,解(2)的关键是利用等底等高的三角形面积相等得出P 点的纵坐标,有利用自变量与函数值的对应关系;解(3)的关键是利用菱形的四边相等得出QB 的长.。

2016年云南省中考数学试卷详细分析及解答过程

2016年云南省中考数学试卷详细分析及解答过程

2016年云南省中考数学试卷一、填空题(本大题共6个小题,每小题3分,满分18分)1. (3 分)(2016?云南)3|= _____________ .2. ________________________ (3分)(2016?云南)如图,直线a// b,直线c与直线a、b分别相交于A、B两点,若 / 仁60 ° 贝U / 2= .23. (3分)(2016?云南)因式分解:x -仁______________ .4. ________________________________________________________________________ (3分)(2016?云南)若一个多边形的边数为6,则这个多边形的内角和为____________________ 度.25. (3分)(2016?云南)如果关于x的一元二次方程x +2ax+a+2=0有两个相等的实数根,那么实数a的值为______________ .6. (3分)(2016?云南)如果圆柱的侧面展开图是相邻两边长分别为6, 16 n的长方形,那么这个圆柱的体积等于______________ .、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,满分32分)7. (4分)(2016?云南)据《云南省生物物种名录(2016版)的》介绍,在素有动植物王国”之美称的云南,已经发现的动植物有25434种,25434用科学记数法表示为()3 4 -3 -4A. 2.5434X10°B. 2.5434XI04C. 2.5434X10 3D. 2.5434 XI0 4& (4分)(2016?云南)函数y=丨的自变量x的取值范围为()K _2A . x >2B . X V 2C . x电D . x 老9. (4分)(2016?云南)若一个几何体的主视图、左视图、俯视图是半径相等的圆,则这个几何体是()A.圆柱B .圆锥C.球D.正方体10 . (4分)(2016?云南)下列计算,正确的是()A . (-2)-2=4B . - 2)2- - 2C . 46-(- 2)6=64D .庾■迈11 . (4分)(2016?云南)位于第一象限的点E在反比例函数的图象上,点F在x轴的正半轴上,O是坐标原点.若EO=EF , △ EOF的面积等于2,贝U k=()A . 4B . 2C . 1D . - 212 . (4分)(2016?云南)某校随机抽查了10名参加2016年云南省初中学业水平考试学生的体育成绩,得到的结果如表:成绩(分)4647484950人数(人)12124卜列说法止确的是()A .这10名同学的体育成绩的众数为 50B .这10名同学的体育成绩的中位数为 48C .这10名同学的体育成绩的方差为 50D •这10名同学的体育成绩的平均数为4813. (4分)(2016?云南)下列交通标志中,是轴对称图形但不是中心对称图形的是( )三•解答题(共9个小题,共70 分)16. (6 分)(2016?云南)如图:点 C 是 AE 的中点,/ A= / ECD , AB=CD ,求证:/ B= / D .食品安全是关乎民生的重要问题,在食品中添加过量的添加剂对 人体健康有害,但适量的添加剂对人体健康无害而且有利于食品的储存和运输. 为提高质量,做进一步研究,某饮料加工厂需生产 A 、B 两种饮料共100瓶,需加入同种添加剂 270克,其中A 饮料每瓶需加添加剂 2克,B 饮料每瓶需加添加剂 3克,饮料加工厂生产了 A 、B 两种饮料各多少瓶?18. (6分)(2016?云南)如图,菱形ABCD 的对角线 AC 与BD 交于点 O , / ABC : / BAD=1 : 2, BE // AC , CE // BD . (1 )求 tan / DBC 的值; (2)求证:四边形OBEC 是矩形.15. (6分)(2016?云南)解不等式组r2(x+3)>102x+lD . 5A . 15B . 10C .调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:(1)设学校这次调查共抽取了n名学生,直接写出n的值;(2 )请你补全条形统计图;(3)设该校共有学生1200名,请你估计该校有多少名学生喜欢跳绳?20. (8分)(2016?云南)如图,AB为O O的直径,C是O O上一点,过点C的直线交AB 的延长线于点 D , AE丄DC,垂足为E, F是AE与O O的交点,AC平分/BAE .(1)求证:DE是O O的切线;(2)若AE=6 , / D=30 °求图中阴影部分的面积.21. (8分)(2016?云南)某超市为庆祝开业举办大酬宾抽奖活动,凡在开业当天进店购物的顾客,都能获得一次抽奖的机会,抽奖规则如下:在一个不透明的盒子里装有分别标有数字1、2、3、4的4个小球,它们的形状、大小、质地完全相同,顾客先从盒子里随机取出一个小球,记下小球上标有的数字,然后把小球放回盒子并搅拌均匀,再从盒子中随机取出一个小球,记下小球上标有的数字,并计算两次记下的数字之和,若两次所得的数字之和为8,则可获得50元代金券一张;若所得的数字之和为6,则可获得30元代金券一张;若所得的数字之和为5,则可获得15元代金券一张;其他情况都不中奖.(1) 请用列表或树状图(树状图也称树形图)的方法(选其中一种即可) ,把抽奖一次可能 出现的结果表示出来;(2) 假如你参加了该超市开业当天的一次抽奖活动,求能中奖的概率P .22. ( 9分)(2016?云南)草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售 旺季,试销售成本为每千克 20元的草莓,规定试销期间销售单价不低于成本单价,也不高 于每千克40元,经试销发现,销售量 y (千克)与销售单价 x (元)符合一次函数关系,如 图是y 与x 的函数关系图象.(1 )求y 与x 的函数解析式(也称关系式); (2)设该水果销售店试销草莓获得的利润为W 元,求W 的最大值.2016年云南省中考数学试卷参考答案与试题解析一、填空题(本大题共 6个小题,每小题 3分,满分18分)第三个数是氏对任何正整数n ,第n 个数与第(n+1)个数的和等于 2 nX (n+2)(1 )经过探究,我们发现:设这列数的第5个数为a , L 二 JL _ ]]二丄 _ 1 1 二丄 _ 1 1X2' 22X3=7 33X4=7 7那么 且- £ ,哪个正确?b b □□ 5 6请你直接写出正确的结论;(2)请你观察第1个数、第2个数、第3个数,猜想这列数的第 n 个数(即用正整数 n 表示第n 数),并且证明你的猜想满足第n 个数与第(n +1)个数的和等于2 (3)设M 表示 ----- ,II 2 22这2016个数的和,即1'20ie £护3?20162求证:2016_<]ff<4031 2017 2016第二个数是臭1. (3 分)(2016?云南)31= 3 .【分析】根据负数的绝对值等于这个数的相反数,即可得出答案.【解答】解:3|=3.故答案为:3.【点评】此题主要考查了绝对值的性质,正确记忆绝对值的性质是解决问题的关键.2. (3分)(2016?云南)如图,直线a// b,直线c与直线a、b分别相交于A、B两点,若 / 1=60 ° 贝U / 2= 60°.【分析】先根据平行线的性质求出/ 3的度数,再由对顶角的定义即可得出结论.【解答】解:•••直线a/ b, /仁60°••• / 1 = / 3=60°•••/ 2与/ 3是对顶角,• / 2= / 3=60°故答案为:60°【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.3. (3 分)(2016?云南)因式分解:x2-仁(x+1)( x- 1) .【分析】方程利用平方差公式分解即可.【解答】解:原式=(x+1 )(X- 1 ).故答案为:(x+1)(x - 1).【点评】此题考查了因式分解-运用公式法,熟练掌握平方差公式是解本题的关键.4. (3分)(2016?云南)若一个多边形的边数为6,则这个多边形的内角和为720 度.【分析】根据多边形的内角和公式求解即可.【解答】解:根据题意得,180° (6- 2) =720° 故答案为:720【点评】此题是多边形的内角和外角, 主要考差了多边形的内角和公式, 解本题的关键是熟记多边形的内角和公式.25. ( 3分)(2016?云南)如果关于 x 的一元二次方程 x +2ax+a+2=0有两个相等的实数根, 那么实数a 的值为 -1或2.【分析】根据方程有两个相等的实数根列出关于 a 的方程,求出a 的值即可.【解答】解:•••关于x 的一元二次方程x 2+2ax+a+2=0有两个相等的实数根,/. △ =0,即 4a 2- 4 (a+2) =0,解得 a=- 1 或 2. 故答案为:-1或2.【点评】本题考查的是根的判别式,熟知一元二次方程的解与判别式之间的关系是解答此题 的关键. 6. ( 3 分)(2016?云南〕 么这个圆柱的体积等于)如果圆柱的侧面展开图是相邻两边长分别为6, 16 n 的长方形,那144 或 384 n .①底面周长为6咼为16 n ②底面周长为16 n 咼为6;先根据底面周长得到底面半径,再根据圆柱的体积公式计算即可求解.【解答】解:①底面周长为6高为16 n,2X I6n=144;②底面周长为16 n 高为6,=n 64>6 =384 n答:这个圆柱的体积可以是 144或384兀 故答案为:144或384 n.【点评】本题考查了展开图折叠成几何体, 本题关键是熟练掌握圆柱的体积公式, 注意分类思想的运用.二、选择题(本大题共 8小题,每小题只有一个正确选项,每小题4分,满分32分)7. ( 4分)(2016?云南)据《云南省生物物种名录( 2016版)的》介绍,在素有 动植物王 国”之美称的云南,已经发现的动植物有25434种,25434用科学记数法表示为()34-3-4A. 2.5434>0 B . 2.5434>0 C . 2.5434>0 D . 2.5434 >0【分析】科学记数法的表示形式为 a >0n 的形式,其中1弓a|v 10, n 为整数.确定n 的值时, 要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数 绝对值〉1时,n 是正数;当原数的绝对值v 1时,n 是负数.【解答】解:在素有动植物王国”之美称的云南,已经发现的动植物有 25434种,25434用科学记数法表示为 2.5434 >04, 故选:B .n X(>16 n【点评】此题考查科学记数法的表示方法. 科学记数法的表示形式为ax10n 的形式,其中1哼a|v 10, n 为整数,表示时关键要正确确定a 的值以及n 的值.【分析】根据当函数表达式的分母中含有自变量时, 自变量取值要使分母不为零, 即可.【解答】 解:•••函数表达式y= I 的分母中含有自变量 x ,x-2•••自变量x 的取值范围为:x - 2和, 即x 电. 故选D .【点评】本题考查了函数自变量取值范围的知识, 求自变量的取值范围的关键在于必须使含 有自变量的表达式都有意义.9. ( 4分)(2016?云南)若一个几何体的主视图、左视图、俯视图是半径相等的圆,则这个 几何体是( )A .圆柱B .圆锥C .球D .正方体【分析】利用三视图都是圆,则可得出几何体的形状. 【解答】 解:主视图、俯视图和左视图都是圆的几何体是球. 故选C .【点评】本题考查了由三视图确定几何体的形状, 学生的思考能力和对几何体三种视图的空 间想象能力.10. (4分)(2016?云南)下列计算,正确的是()A . (-2) 2=4B . 4( - 2)?二-2C . 46-(- 2) 6=64D •庾 ~ 近珂^【分析】依次根据负整指数的运算, 算术平方根的计算, 整式的除法,二次根式的化简和合 并进行判断即可.【解答】解:A 、(- 2) -2=,所以A 错误,B 、 — 丄一 =2,所以B 错误,C 、 46-( - 2) 6=212吃6=26=64,所以 C 正确;D 、 〔::£-•二=2 . :■:-:=.:,所以 D 错误, 故选C【点评】此题是二次根式的加减法, 主要考查了负整指数的运算,算术平方根的计算, 整式的除法,二次根式的化简和合并同类二次根式,熟练掌握这些知识点是解本题的关键.11. (4分)(2016?云南)位于第一象限的点 E 在反比例函数y 」-的图象上,点F 在x 轴的 正半轴上,O 是坐标原点.若 EO=EF , △ EOF 的面积等于2,则k=( )A . 4B . 2C . 1D . - 2& ( 4分)(2016?云南)函数A . x >2B . x v 2C . x 电D .的自变量%的取值范围为(x 老 判断求解【分析】此题应先由三角形的面积公式,再求解 k 即可.【解答】 解:因为位于第一象限的点 E 在反比例函数y 』二的图象上,点F 在x 轴的正半轴x上,O 是坐标原点.若 EO=EF , △ EOF 的面积等于2, 所以专畑尸2, 解得:xy=2, 所以:k=2 , 故选:B【点评】主要考查了反比例函数系数 k 的几何意义问题,关键是由三角形的面积公式, 再求解k .【分析】结合表格根据众数、平均数、中位数的概念求解即可.【解答】 解:10名学生的体育成绩中 50分出现的次数最多,众数为 50;y-[ (46 - 48.6) 2+2 X( 47 - 48.6) 2+ (48 - 48.6) 2+2 X (49 - 48.6) 2+4 X( 50 - 48.6)22]对0;•••选项A 正确,B 、C 、D 错误; 故选:A .【点评】本题考查了众数、平均数、中位数的知识,掌握各知识点的概念是解答本题的关键.C .【分析】根据轴对称图形与中心对称图形的概念求解.【解答】 解:A 、是轴对称图形,不是中心对称图形,符合题意; B 、 不是轴对称图形,也不是中心对称图形,不符合题意; C 、 不是轴对称图形,也不是中心对称图形,不符合题意; D 、 是轴对称图形,也是中心对称图形,不符合题意.12. (4分)(2016?云南)某校随机抽查了 10名参加2016年云南省初中学业水平考试学生 的体育成绩,得到的结果如表: 成绩(分) 46 人数(人) 1下列说法正确的是(A .这B .这C .这D .这47 248 149 250 4 )10名同学的体育成绩的众数为 10名同学的体育成绩的中位数为 10名同学的体育成绩的方差为 10名同学的体育成绩的平均数为 50 4850 48第5和第6名同学的成绩的平均值为中位数,中位数为: 49+49 2=49; 平均数=46+2 X 47+481-2 X 4 9+4 X 50=48 610方差=故选A .【点评】此题主要考查了中心对称图形与轴对称的定义, 的关键.14. (4 分)(2016?云南)如图,D 是厶ABC 的边 BC 上一点,AB=4 , AD=2 , / DAC= / B .如 果厶ABD 的面积为15,那么△ ACD 的面积为()A . 15B . 10C .. 5 2【分析】 首先证明△ ACD BCA ,由相似三角形的性质可得: △ ACD 的面积:△ ABC 的面积为1 : 4,因为△ ABD 的面积为9,进而求出△ ACD 的面积. 【解答】 解:•/ Z DAC= / B , / C=Z C ,•••△ ACD BCA ,•/ AB=4 , AD=2 ,• △ ACD 的面积:△ ABC 的面积为1: 4, • △ ACD 的面积:△ ABD 的面积=1: 3, •••△ ABD 的面积为15,• △ ACD 的面积ACD 的面积=5.故选D .【点评】本题考查了相似三角形的判定和性质: 相似三角形的面积比等于相似比的平方,是中考常见题型.三•解答题(共9个小题,共70 分) ^2(x43)>102x+l >篡£【分析】 分别解得不等式2 (x+3 )> 10和2x+1 > x ,然后取得这两个不等式解的公共部分 即可得出答案.【解答】解: •••解不等式①得:x > 2, 解不等式②得:x >- 1, •不等式组的解集为:x > 2.【点评】本题主要考查了解一元一次不等式组的知识,要掌握解集的规律: 取小;大小小大中间找;大大小小找不到.16. (6 分)(2016?云南)如图:点 C 是 AE 的中点,Z A= Z ECD , AB=CD ,求证:Z B= Z D .根据定义得出图形形状是解决问题15. (6分)(2016?云南)解不等式组同大取大;同小【分析】根据全等三角形的判定方法 SAS ,即可证明△ ABC ◎△ CDE ,根据全等三角形的 性质:得出结论.【解答】 证明:•••点C 是AE 的中点, ••• AC=CE ,rAC=CE在厶ABC 和厶CDE 中,〈乙FNECD ,I AB 二CD• △ ABC ◎△ CDE , • / B= / D .【点评】本题考查了全等三角形的判定和性质,全等三角形的判定方法: SSS, SAS , ASA ,AAS ,直角三角形还有 HL .17. ( 8分)(2016?云南)食品安全是关乎民生的重要问题,在食品中添加过量的添加剂对 人体健康有害,但适量的添加剂对人体健康无害而且有利于食品的储存和运输.为提高质量,做进一步研究,某饮料加工厂需生产 A 、B 两种饮料共100瓶,需加入同种添加剂 270克, 其中A 饮料每瓶需加添加剂 2克,B 饮料每瓶需加添加剂 3克,饮料加工厂生产了 A 、B 两种饮料各多少瓶?【分析】设A 种饮料生产了 x 瓶,B 种饮料生产了 y 瓶,根据:①A 种饮料瓶数+B 种饮料 瓶数=100,②A 种饮料添加剂的总质量 +B 种饮料的总质量=270,列出方程组求解可得. 【解答】 解:设A 种饮料生产了 x 瓶,B 种饮料生产了 根据题意,得:【点评】本题主要考查二元一次方程组的应用能力,在解题时要能根据题意得出等量关系, 列出方程组是本题的关键.18. (6分)(2016?云南)如图,菱形ABCD 的对角线 AC 与BD 交于点 O , / ABC : / BAD=1 : 2, BE // AC , CE // BD . (1 )求 tan / DBC 的值; (2)求证:四边形OBEC 是矩形.y 瓶,答:A 种饮料生产了 30瓶,B 种饮料生产了70 瓶. 解得:是菱形,得到对边平行,且 BD 为角平分线,利用两直线平 行得到一对同旁内角互补,根据已知角之比求出相应度数,进而求出/BDC 度数,即可求出tan / DBC 的值;(2)由四边形ABCD 是菱形,得到对角线互相垂直,利用两组对边平行的四边形是平行四 边形,再利用有一个角为直角的平行四边形是矩形即可得证.【解答】(1)解:•••四边形ABCD 是菱形,• / ABC+ / BAD=180 ° •/ / ABC : / BAD=1 : 2,• / ABC=60 °•/ BE // AC , CE // BD , • BE // OC , CE // OB ,•四边形OBEC 是平行四边形, 则四边形OBEC 是矩形.【点评】此题考查了矩形的判定,菱形的性质,以及解直角三角形,熟练掌握判定与性质是 解本题的关键.19. ( 7分)(2016?云南)某中学为了丰富学生的校园体育锻炼生活,决定根据学生的兴趣 爱好采购一批体育用品供学生课后锻炼使用,因此学校随机抽取了部分同学就兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:(2)证明: •••四边形ABCD 是菱则 tan / DBC=tan30• AC 丄 BD ,即 / BOC=90 ° ••• AD // BC , / DBC=ABC ,• / BDC=ABC=30 o(1)设学校这次调查共抽取了n名学生,直接写出n的值;(2 )请你补全条形统计图;(3)设该校共有学生1200名,请你估计该校有多少名学生喜欢跳绳?【分析】(1)根据喜欢篮球的人数有25人,占总人数的25%即可得出总人数;(2)根据总人数求出喜欢羽毛球的人数,补全条形统计图即可;(3)求出喜欢跳绳的人数占总人数的20%即可得出结论.【解答】解:(1)•••喜欢篮球的人数有25人,占总人数的25% ,…一=100 (人);25^(2)•••喜欢羽毛球的人数=100>20%=20人,•••条形统计图如图;(3)由已知得,1200X20%=240 (人).答;该校约有240人喜欢跳绳.【点评】本题考查的是条形统计图,熟知从条形图可以很容易看出数据的大小,便于比较是解答此题的关键.20. (8分)(2016?云南)如图,AB为O O的直径,C是O O上一点,过点C的直线交AB 的延长线于点 D , AE丄DC,垂足为E, F是AE与O O的交点,AC平分/BAE .(1)求DE是O O的切线;(2)若AE=6 , / D=30 °求图中阴影部分的面积.【分析】(1)连接0C,先证明/ OAC= / OCA,进而得到OC// AE,于是得到0C丄CD, 进而证明DE是O O的切线;(2)分别求出△ OCD的面积和扇形OBC的面积,利用S阴影=S^COD- S扇形OBC即可得到答案.【解答】解: (1)连接0C,•/ OA=OC ,••• / OAC= / OCA ,•/ AC 平分 / BAE ,•/ OAC= / CAE ,•/ OCA= / CAE ,•0C // AE ,•/ OCD= / E,•/ AE 丄DE ,•/ E=90°•/ OCD=90 °•0C 丄CD,•••点C在圆0上,0C为圆0的半径, •CD是圆0的切线;(2 )在Rt△ AED 中,•/ / D=30 ° AE=6 ,•AD=2AE=12 ,在Rt △0CD 中,I/ D=30 °•D0=20C=DB+0B=DB+0C ,•DB=0B=0C=丄AD=4 , D0=8 ,3• CD=和护_ 0严=(护_牡=4岛,S A 0CD•/ / D=30 ° / 0CD=90 °•/ D0C=60 °:2•S 扇形0BC=—Xn0C =—.16 o•/ S 阴影=S A COD—S 扇形OBC• S阴影=8【点评】本题主要考查了切线的判定以及扇形的面积计算,解( 1)的关键是证明0C 丄DE ,解(2)的关键是求出扇形 OBC 的面积,此题难度一般.21. (8分)(2016?云南)某超市为庆祝开业举办大酬宾抽奖活动,凡在开业当天进店购物 的顾客,都能获得一次抽奖的机会,抽奖规则如下:在一个不透明的盒子里装有分别标有数 字1、2、3、4的4个小球,它们的形状、大小、质地完全相同,顾客先从盒子里随机取出 一个小球,记下小球上标有的数字, 然后把小球放回盒子并搅拌均匀, 再从盒子中随机取出一个小球,记下小球上标有的数字,并计算两次记下的数字之和,若两次所得的数字之和为8, 则可获得50元代金券一张;若所得的数字之和为6,则可获得30元代金券一张;若所得的数字之和为5,则可获得15元代金券一张;其他情况都不中奖.(1) 请用列表或树状图(树状图也称树形图)的方法(选其中一种即可) ,把抽奖一次可能 出现的结果表示出来;(2) 假如你参加了该超市开业当天的一次抽奖活动,求能中奖的概率 P .【分析】(1)首先根据题意画出表格,然后由表格求得所有等可能的结果;次所得数字之和为8、6、5的结果有8种,所以抽奖一次中奖的概率为:F 丄. 答:抽奖一次能中奖的概率为 丄.【点评】此题考查的是用列表法或树状图法求概率与不等式的性质. 可以不重复不遗漏的列出所有可能的结果, 列表法适合于两步完成的事件;步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.22. ( 9分)(2016?云南)草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售 旺季,试销售成本为每千克 20元的草莓,规定试销期间销售单价不低于成本单价,也不高 于每千克40元,经试销发现,销售量 y (千克)与销售单价 x (元)符合一次函数关系,如 图是y 与x 的函数关系图象.(1 )求y 与x 的函数解析式(也称关系式); (2)设该水果销售店试销草莓获得的利润为W 元,求W 的最大值.【解答】解:(1)列表得:12 12 3 2 3 4 3454 5 6(2)由列表可知,所有可能出现的结果一共有3 4 5 67 4 5 6 78 16种,这些结果出现的可能性相同, 其中两注意树状图法与列表法树状图法适合两(2 )根据概率公式进行解答即可.【分析】(1)待定系数法求解可得;(2 )根据:总利润=每千克利润 埒肖售量,列出函数关系式,配方后根据 W 的最大值.【解答】 解:(1)设y 与x 的函数关系式为y=kx+b , 根据题意,得:l30ki-b=2SO解得:严-耳••• y 与x 的函数解析式为 y= - 2x+340 , (20冷詔0). (2)由已知得:W= (x - 20) (- 2x+340)2=-2x 2+380x - 68002=-2 (x - 95) +11250 ,•/ - 2V 0,•当xO5时,W 随x 的增大而增大, •/ 20纟詔0,•••当 x=40 时,W 最大,最大值为-2 (40 - 95) '+11250=5200 元. 【点评】本题主要考查待定系数法求一次函数解析式与二次函数的应用, 函数解析式,并由二次函数的性质确定其最值是解题的关键. 23. (12分)(2016?云南)有一列按一定顺序和规律排列的数 第一个数是1;1X2 第二个数是 12X3 第三个数是13X4请你直接写出正确的结论;(2)请你观察第1个数、第2个数、第3个数,猜想这列数的第 n 个数(即用正整数 n 表 示第n 数),并且证明你的猜想满足 第n 个数与第(n+1)个数的和等于〒:,-,这2016个数的和,即1 '20ie £ r 护 3? 2016【分析】(1)由已知规律可得;(2)先根据已知规律写出第 n 、n+1个数,再根据分式的运算化简可得;对任何正整数n ,第n 个数与第(n+1)个数的和等于设这列数的第5个数为a ,_ 11 a=— _ 15 65 6 5 6,哪个正确? 那么x 的取值范围可得根据相等关系列出(1 )经过探究,我们发现: nX tn+2)' 1 1 _ 1 1 二丄 _ 133X4^ 7(3)设M 表示 ----- ,I 2*辔 2016求证:(3)将每个分式根据2n可得结论.丄,展开后再全部相加nI解答】解:⑴由题意知第5个数a気弃违] 1 ,(n+1)(n+2)1 ]丄11(n-Fl) (n+2)n+1(2)•••第n个数为,第1-L1n n+2(n+1)个数为( )ntn+2)'即第n个数与第(n +1)个数的和等于2 ;nX CrH-2) L1..121X2(3) •/ 1 -v丄,11X21:—v・v 1 ==143X4 322X32=1 -v3 2X3122v1—1 L= 1201520162015X201631—1 .1201620172016X2017v1 - ++1护1-+"].i2014 X 2015.20141 ..i2015X20162015vvv 21 _2]201 52]20112016120161201612017即v2017 2232• 2016 彳403120152 20162015? +20^ 2 2016 54031【点评】本题主要考查分式的混合运算及数字的变化规律,根据已知规律11-1n n+1|n(n+li得到-丄是解题的关键.n1 =1n(n41) =n参与本试卷答题和审题的老师有:sd2011;王学峰;sks;星月相随;CJX; 2300680618; caicl; 1987483819;; gbl210 ;HLing ;733599;张其铎;三界无我;ZJX ;nhx600 (排名不分先后)菁优网2016 年7 月11 日。

2016云南省楚雄州初中学业水平考试数学试卷及答案分析说明

2016云南省楚雄州初中学业水平考试数学试卷及答案分析说明

2016年云南省楚雄州双柏县中考数学模拟试卷一、填空题(本大题共6个小题,每小题3分,满分181.﹣6的绝对值是.2.一元二次方程2x2﹣2=0的解是.3.如图,已知a∥b,∠1=135°,则∠2=.4.函数自变量的取值范围是.5.如图,⊙O的直径CD⊥AB,∠A=30°,则∠D=.6.如图,是用火柴棒拼成的图形,则第n个图形需根火柴棒.二、选择题(本大题共8个小题,每小题只有一个正确选项,每小题4分,满分32分)7.下列运算正确的是()A.a2•a2=a4B.(a﹣b)2=a2﹣b2C.2+=2D.(﹣a3)2=﹣a68.如图是由4个大小相同的正方体组合而成的几何体,其俯视图是()A.B.C.D.9.2016年3月全国两会政府工作报告中指出:城镇新增就业人数超过6400万人,城镇保障性安居工程住房建设4013万套,上亿群众喜迁新居.将6400万用科学记数法表示为()A.6.4×107B.6.4×108C.6.4×103D.64×10610.不等式组的解集是()A.x≥0 B.x>﹣2 C.﹣2<x≤3 D.x≤311.九年级某班40位同学的年龄如下表所示:则该班40名同学年龄的众数和中位数分别是()A.19,15 B.15,14.5 C.19,14.5 D.15,1512.已知扇形的面积为4π,扇形的弧长是π,则该扇形半径为()A.4 B.8 C.6 D.8π13.若等腰三角形的一个内角是40°,则它的顶角是()A.100°B.40°C.100°或40°D.60°14.直线y=﹣x与双曲线y=在同一坐标系中的大致位置是()A.B.C.D.三、解答题(本大题共9个小题,满分70分)15.计算:先化简,再求值:(﹣)÷,其中x=.16.如图,已知∠ABO=∠DCO,OB=OC,求证:△ABC≌△DCB.17.李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?18.如图,在数学活动课中,小敏为了测量校园内旗杆AB的高度,站在教学楼上的C处测得旗杆低端B的俯角为45°,测得旗杆顶端A的仰角为30°,如旗杆与教学楼的水平距离CD为9m,则旗杆的高度是多少?(结果保留根号)19.为了解我县1800名初中毕业生参加云南省数学学业水平考试的成绩情况(得分取整数),我们随机抽取了部分学生的数学成绩,将其等级情况制成不完整的统计表如下:根据以上提供的信息解答下列问题:(1)若抽取的学生的数学成绩的及格率(C级及其以上为及格)为77.5%,则抽取的学生数是多少人?其中成绩为C级的学生有多少人?(2)求出D级学生的人数在扇形统计图中的圆心角.(3)请你估计全县数学成绩为A级的学生总人数.20.为绿化校园,某校计划购进A、B两种树苗,共21课.已知A种树苗每棵90元,B种树苗每棵70元.设购买B种树苗x棵,购买两种树苗所需费用为y元.(1)y与x的函数关系式为:;(2)若购买B种树苗的数量少于A种树苗的数量,请给出一种费用最省的方案,并求出该方案所需费用.21.在阳光体育活动时间,小亮、小莹、小芳和大刚到学校乒乓球室打乒乓球,当时只有一副空球桌,他们只能选两人打第一场.(1)如果确定小亮打第一场,再从其余三人中随机选取一人打第一场,求恰好选中大刚的概率;(2)如果确定小亮做裁判,用“手心、手背”的方法决定其余三人哪两人打第一场.游戏规则是:三人同时伸“手心、手背”中的一种手势,如果恰好有两人伸出的手势相同,那么这两人上场,否则重新开始,这三人伸出“手心”或“手背”都是随机的,请用画树状图的方法求小莹和小芳打第一场的概率.22.如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.(1)求证:△ABM∽△EFA;(2)若AB=12,BM=5,求DE的长.23.如图,已知抛物线E1:y=x2经过点A(1,m),以原点为顶点的抛物线E2经过点B(2,2),点A、B关于y 轴的对称点分别为点A′,B′.(1)求m的值;(2)求抛物线E2所表示的二次函数的表达式;(2)在第一象限内,抛物线E1上是否存在点Q,使得以点Q、B、B′为顶点的三角形为直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由.2016年云南省楚雄州双柏县中考数学模拟试卷参考答案与试题解析一、填空题(本大题共6个小题,每小题3分,满分181.﹣6的绝对值是6.【考点】绝对值.【分析】根据绝对值的定义求解.【解答】解:|﹣6|=6.【点评】规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.一元二次方程2x2﹣2=0的解是x1=1,x2=﹣1.【考点】解一元二次方程-直接开平方法.【专题】计算题;一次方程(组)及应用.【分析】方程整理后,利用平方根定义开方即可求出解.【解答】解:方程整理得:x2=1,开方得:x=±1,解得:x1=1,x2=﹣1.故答案为:x1=1,x2=﹣1【点评】此题考查了解一元二次方程﹣直接开平方法,熟练掌握完全平方公式是解本题的关键.3.如图,已知a∥b,∠1=135°,则∠2=45°.【考点】平行线的性质.【分析】先求出∠3的度数,根据平行线的性质得出∠2=∠3,即可求出答案.【解答】解:∵∠1=135°,∴∠3=180°﹣∠1=45°,∵a∥b,∴∠2=∠3=45°,故答案为:45°【点评】本题考查了平行线的性质的应用,能根据平行线的性质得出∠2=∠3是解此题的关键,注意:两直线平行,内错角相等.4.函数自变量的取值范围是x≠﹣1.【考点】函数自变量的取值范围;分式有意义的条件.【专题】计算题.【分析】该函数由分式组成,故分母不等于0,就可以求出x的范围.【解答】解:根据题意得:x+1≠0,解得x≠﹣1.【点评】本题主要考查:当函数表达式是分式时,分式的分母不能为0.5.如图,⊙O的直径CD⊥AB,∠A=30°,则∠D=30°.【考点】圆周角定理;垂径定理.【分析】由⊙O的直径CD⊥AB,∠A=30°,由垂径定理得=,然后由圆周角定理,求得∠D的度数.【解答】解:∵⊙O的直径CD⊥AB,∠A=30°,∴=,∠AOC=90°﹣∠A=60°,∴∠D=∠AOC=30°.故答案为:30°.【点评】此题考查了圆周角定理与垂径定理.注意在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.6.如图,是用火柴棒拼成的图形,则第n个图形需2n+1根火柴棒.【考点】规律型:图形的变化类.【专题】压轴题.【分析】按照图中火柴的个数填表即可当三角形的个数为:1、2、3、4时,火柴棒的根数分别为:3、5、7、9,由此可以看出当三角形的个数为n时,三角形个数增加(n﹣1)个,那么此时火柴棒的根数应该为:3+2(n﹣1)进而得出答案.【解答】方法一:解:根据图形可得出:当三角形的个数为1时,火柴棒的根数为3;当三角形的个数为2时,火柴棒的根数为5;当三角形的个数为3时,火柴棒的根数为7;当三角形的个数为4时,火柴棒的根数为9;…由此可以看出:当三角形的个数为n时,火柴棒的根数为3+2(n﹣1)=2n+1.故答案为:2n+1.方法二:当n=1时,s=3,当n=2时,s=5,当n=3时,s=7,经观察,此数列为一阶等差,∴设s=kn+b,,∴,∴s=2n+1.【点评】此题主要考查了图形变化类,本题解题关键根据第一问的结果总结规律是得到规律:三角形的个数每增加一个,火柴棒的根数增加2根,然后由此规律解答.二、选择题(本大题共8个小题,每小题只有一个正确选项,每小题4分,满分32分)7.下列运算正确的是()A.a2•a2=a4B.(a﹣b)2=a2﹣b2C.2+=2D.(﹣a3)2=﹣a6【考点】完全平方公式;实数的运算;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂的乘法、完全平方公式、幂的乘方,即可解答.【解答】解:A、a2•a2=a4,正确;B、(a﹣b)2=a2﹣2ab+b2,故错误;C、2与不能合并,故错误;D、(﹣a3)2=a6,故错误;故选:A.【点评】本题考查了同底数幂的乘法、完全平方公式、幂的乘方,解决本题的关键是熟记完全平方公式.8.如图是由4个大小相同的正方体组合而成的几何体,其俯视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:几何体的俯视图是横着的“目”字.故选D.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.9.2016年3月全国两会政府工作报告中指出:城镇新增就业人数超过6400万人,城镇保障性安居工程住房建设4013万套,上亿群众喜迁新居.将6400万用科学记数法表示为()A.6.4×107B.6.4×108C.6.4×103D.64×106【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:6400万=64000000=6.4×107,故选A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.不等式组的解集是()A.x≥0 B.x>﹣2 C.﹣2<x≤3 D.x≤3【考点】解一元一次不等式组.【分析】先求出两个不等式的解集,再求其公共解.【解答】解:,解①得:x≤3,解②得:x>﹣2,则不等式组的解集是:﹣2x≤3.故选C.【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).11.九年级某班40位同学的年龄如下表所示:则该班40名同学年龄的众数和中位数分别是()A.19,15 B.15,14.5 C.19,14.5 D.15,15【考点】众数;中位数.【分析】找中位数要把数据按从小到大的顺序排列,这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.众数是一组数据中出现次数最多的数据.【解答】解:根据众数的定义在这组数据中15出现次数最多,则众数为15,则中位数是(15+15)÷2=15,∴该班唱团成员年龄的众数和中位数分别为15,15.故选D.【点评】本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.12.已知扇形的面积为4π,扇形的弧长是π,则该扇形半径为()A.4 B.8 C.6 D.8π【考点】扇形面积的计算;弧长的计算.【分析】设该扇形的半径为r,再由扇形的面积公式即可得出结论.【解答】解:设该扇形的半径为r,则πr=4π,解得r=8.故选B.【点评】本题考查的是扇形面积的计算,熟记扇形的面积公式是解答此题的关键.13.若等腰三角形的一个内角是40°,则它的顶角是()A.100°B.40°C.100°或40°D.60°【考点】等腰三角形的性质.【专题】分类讨论.【分析】已知等腰三角形的一个内角为40°,根据等腰三角形的性质可分情况解答:当40°是顶角或者40°是底角两种情况.【解答】解:此题要分情况考虑:①40°是它的顶角;②40°是它的底角,则顶角是180°﹣40°×2=100°.所以这个等腰三角形的顶角为40°或100°.故选C.【点评】本题考查了等腰三角形的性质及三角形内角和定理;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.14.直线y=﹣x与双曲线y=在同一坐标系中的大致位置是()A.B.C.D.【考点】反比例函数的图象;正比例函数的图象.【分析】根据函数解析式中系数k的符合判定函数图象所经过的象限,然后作出判断即可.【解答】解:∵直线y=﹣x中的k=﹣1<0,∴该直线经过第二、四象限;∵双曲线y=中的k=1>0,∴该直线经过第一、三象限;观察选项,D选项符合题意.故选:D.【点评】本题考查了正比例函数的图象及反比例函数的图象,能根据函数关系式判断出所经过的象限是解答本题的关键.三、解答题(本大题共9个小题,满分70分)15.计算:先化简,再求值:(﹣)÷,其中x=.【考点】分式的化简求值.【分析】根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.【解答】解:原式=•﹣•=3(x+2)﹣(x﹣2)=3x+6﹣x+2=2x+8,当x=时,原式=2x+8=2×+8=9.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.16.如图,已知∠ABO=∠DCO,OB=OC,求证:△ABC≌△DCB.【考点】全等三角形的判定;全等三角形的性质;等腰三角形的性质.【专题】证明题.【分析】根据ASA推出△ABO≌△DCO,根据全等三角形的性质得出∠A=∠D,求出∠ABC=∠DCB,根据AAS推出即可.【解答】证明:∵在△ABO和△DCO中∴△ABO≌△DCO(ASA),∴∠A=∠D,∵OB=OC,∴∠OBC=∠OCB,∵∠ABO=∠DCO,∴∠ABO+∠OBC=∠DCO+∠OCB,即∠ABC=∠DCB,在△ABC和△DCB中,∴△ABC≌△DCB(AAS).【点评】本题考查了全等三角形的判定定理、性质定理和等腰三角形的性质的应用,能综合运用定理进行推理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,符合SSA 和AAA不能推出两三角形全等.17.李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?【考点】二元一次方程组的应用.【专题】应用题;方程思想.【分析】由题意得出两个相等关系为:甲、乙两种蔬菜共10亩和共获利18000元,依次列方程组求解.【解答】解:设甲、乙两种蔬菜各种植了x、y亩,依题意得:,解得:,答:李大叔去年甲、乙两种蔬菜各种植了6亩、4亩.【点评】此题考查的是二元一次方程组的应用,关键是确定两个相等关系列方程组求解.18.如图,在数学活动课中,小敏为了测量校园内旗杆AB的高度,站在教学楼上的C处测得旗杆低端B的俯角为45°,测得旗杆顶端A的仰角为30°,如旗杆与教学楼的水平距离CD为9m,则旗杆的高度是多少?(结果保留根号)【考点】解直角三角形的应用-仰角俯角问题.【分析】根据在Rt△ACD中,tan∠ACD=,求出AD的值,再根据在Rt△BCD中,tan∠BCD=,求出BD的值,最后根据AB=AD+BD,即可求出答案.【解答】解:在Rt△ACD中,∵tan∠ACD=,∴tan30°=,∴=,∴AD=3m,在Rt△BCD中,∵tan ∠BCD=,∴tan45°=, ∴BD=9m ,∴AB=AD+BD=3+9(m ).答:旗杆的高度是(3+9)m . 【点评】此题考查了解直角三角形的应用﹣仰角俯角问题,本题要求学生借助俯角构造直角三角形,并结合图形利用三角函数解直角三角形.19.为了解我县1800名初中毕业生参加云南省数学学业水平考试的成绩情况(得分取整数),我们随机抽取了部分学生的数学成绩,将其等级情况制成不完整的统计表如下:根据以上提供的信息解答下列问题:(1)若抽取的学生的数学成绩的及格率(C 级及其以上为及格)为77.5%,则抽取的学生数是多少人?其中成绩为C 级的学生有多少人?(2)求出D 级学生的人数在扇形统计图中的圆心角.(3)请你估计全县数学成绩为A 级的学生总人数.【考点】扇形统计图;用样本估计总体.【分析】(1)根据D 级的人数和所占的百分比求出抽取的学生总人数,再用总人数减去其它级的人数,即可求出成绩为C 级的学生数;(2)用360°乘以D 级学生的人数所占的百分比即可;(3)全县的人数乘以A 级的学生所占的百分比即可.【解答】解:(1)根据题意得:18÷(1﹣77.5%)=18÷22.5%=80(人),则80﹣22﹣28﹣18=12(人);答:抽取的学生数是80人,其中成绩为C级的学生有12人;(2)D级学生的人数在扇形统计图中的圆心角度数是:360°×22.5%=81°;(3)根据题意得:1800×(22÷80)=495(人).答:估计全县数学成绩为A级的学生总人数有495人.【点评】本题考查的是图表和扇形统计图的综合运用,读懂统计表,从统计表中得到必要的信息是解决问题的关键.20.为绿化校园,某校计划购进A、B两种树苗,共21课.已知A种树苗每棵90元,B种树苗每棵70元.设购买B种树苗x棵,购买两种树苗所需费用为y元.(1)y与x的函数关系式为:y=﹣20x+1890;(2)若购买B种树苗的数量少于A种树苗的数量,请给出一种费用最省的方案,并求出该方案所需费用.【考点】一次函数的应用.【分析】(1)根据购买两种树苗所需费用=A种树苗费用+B种树苗费用,即可解答;(2)根据购买B种树苗的数量少于A种树苗的数量,列出不等式,确定x的取值范围,再根据(1)得出的y与x之间的函数关系式,利用一次函数的增减性结合自变量的取值即可得出更合算的方案.【解答】解:(1)y=90(21﹣x)+70x=﹣20x+1890,故答案为:y=﹣20x+1890.(2)∵购买B种树苗的数量少于A种树苗的数量,∴x<21﹣x,解得:x<10.5,又∵x≥1,∴x的取值范围为:1≤x≤10,且x为整数,∵y=﹣20x+1890,k=﹣20<0,∴y随x的增大而减小,∴当x=10时,y有最小值,最小值为:﹣20×10+1890=1690,∴使费用最省的方案是购买B种树苗10棵,A种树苗11棵,所需费用为1690元.【点评】题考查的是一元一次不等式及一次函数的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系和不等关系.21.在阳光体育活动时间,小亮、小莹、小芳和大刚到学校乒乓球室打乒乓球,当时只有一副空球桌,他们只能选两人打第一场.(1)如果确定小亮打第一场,再从其余三人中随机选取一人打第一场,求恰好选中大刚的概率;(2)如果确定小亮做裁判,用“手心、手背”的方法决定其余三人哪两人打第一场.游戏规则是:三人同时伸“手心、手背”中的一种手势,如果恰好有两人伸出的手势相同,那么这两人上场,否则重新开始,这三人伸出“手心”或“手背”都是随机的,请用画树状图的方法求小莹和小芳打第一场的概率.【考点】列表法与树状图法;概率公式.【专题】计算题.【分析】(1)由小亮打第一场,再从其余三人中随机选取一人打第一场,求出恰好选中大刚的概率即可;(2)画树状图得出所有等可能的情况数,找出小莹和小芳伸“手心”或“手背”恰好相同的情况数,即可求出所求的概率.【解答】解:(1)∵确定小亮打第一场,∴再从小莹,小芳和大刚中随机选取一人打第一场,恰好选中大刚的概率为;(2)列表如下:所有等可能的情况有8种,其中小莹和小芳伸“手心”或“手背”恰好相同且与大刚不同的结果有2个,则小莹与小芳打第一场的概率为=.【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.22.如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.(1)求证:△ABM∽△EFA;(2)若AB=12,BM=5,求DE的长.【考点】相似三角形的判定与性质;正方形的性质.【分析】(1)由正方形的性质得出AB=AD,∠B=90°,AD∥BC,得出∠AMB=∠EAF,再由∠B=∠AFE,即可得出结论;(2)由勾股定理求出AM,得出AF,由△ABM∽△EFA得出比例式,求出AE,即可得出DE的长.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=AD,∠B=90°,AD∥BC,∴∠AMB=∠EAF,又∵EF⊥AM,∴∠AFE=90°,∴∠B=∠AFE,∴△ABM∽△EFA;(2)解:∵∠B=90°,AB=12,BM=5,∴AM==13,AD=12,∵F是AM的中点,∴AF=AM=6.5,∵△ABM∽△EFA,∴,即,∴AE=16.9,∴DE=AE﹣AD=4.9.【点评】本题考查了正方形的性质、相似三角形的判定与性质、勾股定理;熟练掌握正方形的性质,并能进行推理计算是解决问题的关键.23.如图,已知抛物线E1:y=x2经过点A(1,m),以原点为顶点的抛物线E2经过点B(2,2),点A、B关于y 轴的对称点分别为点A′,B′.(1)求m的值;(2)求抛物线E2所表示的二次函数的表达式;(2)在第一象限内,抛物线E1上是否存在点Q,使得以点Q、B、B′为顶点的三角形为直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)将A(1,m)代入y=x2,求得m的值即可;(2)设抛物线E2的函数表达式为y=ax2(a≠0),将点B(2,2)代入抛物线的解析式求得a的值即可;(3)当∠BB′Q=90°时,将x=2代入y=x2,可求得点Q的纵坐标,当∠BQB′=90°时,设点Q2的坐标为(t,t2),依据两点间的距离公式和勾股定理的逆定理列出关于t的方程求解即可.【解答】解:(1)∵抛物线E1经过点A(1,m)∴m=12=1(2)∵抛物线E2的顶点在原点,可设它对应的函数表达式为y=ax2(a≠0)又∵点B(2,2)在抛物线E2上∴2=a×22,解得:a=∴抛物线E2所对应的二次函数表达式为y=x2(3)如图所示:①当点B为直角顶点时,过B作Q1B⊥BB′交抛物线E1于Q,则点Q1与B的横坐标相等且为2,将x=2代入y=x2得y=4,∴点Q1的坐标为(2,4).②当点Q2为直角顶点时,则有Q2B′2+Q2B2=B′B2,过点Q2作GQ2⊥BB′于G,设点Q2的坐标为(t,t2)(t>0),则有(t+2)2+(t2﹣2)2+(2﹣t)2+(t2﹣2)2=4,整理得:t4﹣3t2=0,∵t>0,∴t2﹣3=0,解得t1=,t2=﹣(舍去),∴点Q的坐标为(,3),综上所述,存在符合条件的点Q坐标为(2,4)与(,3).【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了二次函数图象上点的坐标与函数解析式的关系、待定系数法求二次函数的解析式、勾股定理的逆定理的应用、两点间的距离公式,依据勾股定理的逆定理和两点间的距离公式列出关于t的方程是解题的关键.。

2016年云南省楚雄州双柏县中考数学二模试卷(解析版)

2016年云南省楚雄州双柏县中考数学二模试卷一、填空题(本大题共6个小题,每小题3分,满分18分)1.(3分)﹣5的倒数是.2.(3分)计算:(﹣1)2016+(3.14﹣π)0=.3.(3分)函数中自变量x的取值范围是.4.(3分)《云南省“十三五”规划纲要》中指出:到2020年,昆明中心城市人口达到400万人左右.将400万用科学记数法表示为.5.(3分)已知扇形的半径为3,扇形的圆心角是120°,则该扇形面积为.6.(3分)我们把分子为1的分数叫做单位分数.如,…,任何一个单位分数都可以拆成两个不同的单位分数的和,如=+,=+,=+,…,根据对上述式子的观察,请你写出=.二、选择题(本大题共8个小题,每小题只有一个正确选项,每小题4分,满分32分)7.(4分)下列运算正确的是()A.a4÷a2=a2B.(a+b)(a+b)=a2+b2C.﹣=D.(﹣)﹣2=﹣48.(4分)下列四个几何体中,主视图为矩形的是()A.B.C.D.9.(4分)下列图形中,既是中心对称又是轴对称图形的是()A.等边三角形B.平行四边形C.梯形D.矩形10.(4分)不等式4﹣x≤2(3﹣x)的正整数解有()A.1个B.2个C.3个D.无数个11.(4分)如图,已知:CD∥BE,∠1=68°,那么∠B的度数为()A.68°B.102°C.110°D.112°12.(4分)在今年“全国助残日”捐款活动中,某班级第一小组7名同学积极捐出自己的零花钱,奉献自己的爱心,他们捐款的数额分别是(单位:元)50、20、50、30、25、50、55,这组数据的众数和中位数分别是()A.50元,30元B.50元,40元C.50元,50元D.55元,50元13.(4分)如图,△ABC是⊙O内接三角形,∠ACB=26°,则∠ABO的度数是()A.64°B.52°C.54°D.70°14.(4分)已知,函数y=的图象经过点(﹣1,2),则函数y=kx+2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限三、解答题(本大题共9个小题,满分70分)15.(7分)先化简,再求值:,其中x=2.16.(7分)如图,在平行四边形ABCD中,E、F为对角线AC上两点,且AE=CF,请你从图中找出一对全等三角形,并给予证明.17.(8分)如图,小明在一块平地上测山高,先在B处测得山顶A的仰角为30°,然后向山脚直行100米到达C处,再测得山顶A的仰角为45°,求山高AD是多少?(结果保留整数,测角仪忽略不计,参考数据≈1.414,≈1.73)18.(7分)昆楚高速公路全长170千米,甲、乙两车同时从昆明、楚雄两地高速路收费站相向匀速开出,经过50分钟相遇,甲车比乙车每小时多行驶10千米.求甲、乙两车的速度.19.(8分)某超市计划在“十周年”庆典当天开展购物抽奖活动,凡当天在该超市购物的顾客,均有一次抽奖的机会,抽奖规则如下:将如图所示的圆形转盘平均分成四个扇形,分别标上1,2,3,4四个数字,抽奖者连续转动转盘两次,当每次转盘停止后指针所指扇形内的数为每次所得的数(若指针指在分界线时重转);当两次所得数字之和为8时,返现金20元;当两次所得数字之和为7时,返现金15元;当两次所得数字之和为6时返现金10元.(1)试用树状图或列表的方法表示出一次抽奖所有可能出现的结果;(2)某顾客参加一次抽奖,能获得返还现金的概率是多少?20.(8分)某校组织了一次初三科技小制作比赛,有A、B、C、D四个班共提供了100件参赛作品,C班提供的参赛作品的获奖率为50%,其他几个班的参赛作品情况及获奖情况绘制在下列图1和图2两幅尚不完整的统计图中.(1)B班参赛作品有多少件?(2)请你将图2的统计图补充完整;(3)通过计算说明,哪个班的获奖率高?21.(8分)联通公司手机话费收费有A套餐(月租费15元,通话费每分钟0.1元)和B套餐(月租费0元,通话费每分钟0.15元)两种.设A套餐每月话费为y1(元),B套餐每月话费为y2(元),月通话时间为x分钟.(1)分别表示出y1与x,y2与x的函数关系式.(2)月通话时间为多长时,A、B两种套餐收费一样?(3)什么情况下A套餐更省钱?22.(8分)如图,矩形ABCD中,AB=8,AD=6,点E、F分别在边CD、AB上.(1)若DE=BF,求证:四边形AFCE是平行四边形;(2)若四边形AFCE是菱形,求菱形AFCE的周长.23.(9分)如图,已知抛物线y=x2+bx+c与x轴交于A,B两点,与y轴交于点C,O是坐标原点,点A的坐标是(﹣1,0),点C的坐标是(0,﹣3).(1)求抛物线的函数表达式;(2)求直线BC的函数表达式和∠ABC的度数;(3)在线段BC上是否存在一点P,使△ABP∽△CBA?若存在,求出点P的坐标;如果不存在,请说明理由.2016年云南省楚雄州双柏县中考数学二模试卷参考答案与试题解析一、填空题(本大题共6个小题,每小题3分,满分18分)1.(3分)﹣5的倒数是.【解答】解:因为﹣5×()=1,所以﹣5的倒数是.2.(3分)计算:(﹣1)2016+(3.14﹣π)0=2.【解答】解:原式=1+1=2,故答案为:2.3.(3分)函数中自变量x的取值范围是x≥﹣5.【解答】解:根据题意得:x+5≥0,解得x≥﹣5.4.(3分)《云南省“十三五”规划纲要》中指出:到2020年,昆明中心城市人口达到400万人左右.将400万用科学记数法表示为4×106.【解答】解:将400万用科学记数法表示为4×106,故答案为:4×106.5.(3分)已知扇形的半径为3,扇形的圆心角是120°,则该扇形面积为3π.【解答】解:∵扇形的圆心角为120°,其半径为3,∴S扇形==3π.故答案为:3π.6.(3分)我们把分子为1的分数叫做单位分数.如,…,任何一个单位分数都可以拆成两个不同的单位分数的和,如=+,=+,=+,…,根据对上述式子的观察,请你写出=.【解答】解:根据题意可得规律为:,所以可得:,故答案为:.二、选择题(本大题共8个小题,每小题只有一个正确选项,每小题4分,满分32分)7.(4分)下列运算正确的是()A.a4÷a2=a2B.(a+b)(a+b)=a2+b2C.﹣=D.(﹣)﹣2=﹣4【解答】解:A、a4÷a2=a2,正确;B、(a+b)(a+b)=a2+2ab+b2,错误;C、与不能合并,错误;D、,错误;故选:A.8.(4分)下列四个几何体中,主视图为矩形的是()A.B.C.D.【解答】解:A、正方体的主视图是正方形,不符合题意;B、球的主视图是圆,不符合题意;C、圆柱的主视图是矩形,符合题意;D、圆锥的主视图是三角形,不符合题意.故选:C.9.(4分)下列图形中,既是中心对称又是轴对称图形的是()A.等边三角形B.平行四边形C.梯形D.矩形【解答】解:A、是轴对称图形,不是中心对称图形.故本选项错误;B、不是轴对称图形,是中心对称图形.故本选项错误;C、是轴对称图形,不是中心对称图形.故本选项错误;D、既是轴对称图形,又是中心对称图形.故本选项正确.故选:D.10.(4分)不等式4﹣x≤2(3﹣x)的正整数解有()A.1个B.2个C.3个D.无数个【解答】解:去括号得:4﹣x≤6﹣2x,移项得:﹣x+2x≤6﹣4,合并同类项得:x≤2,∴不等式的正整数解是:2、1,故选:B.11.(4分)如图,已知:CD∥BE,∠1=68°,那么∠B的度数为()A.68°B.102°C.110°D.112°【解答】解:由对顶角相等可得∠2=∠1=68°,∵CD∥BE,∴∠B=180°﹣∠2=180°﹣68°=112°.故选:D.12.(4分)在今年“全国助残日”捐款活动中,某班级第一小组7名同学积极捐出自己的零花钱,奉献自己的爱心,他们捐款的数额分别是(单位:元)50、20、50、30、25、50、55,这组数据的众数和中位数分别是()A.50元,30元B.50元,40元C.50元,50元D.55元,50元【解答】解:50出现了3次,出现的次数最多,则众数是50;把这组数据从小到大排列为:20,25,30,50,50,50,55,最中间的数是50,则中位数是50.故选:C.13.(4分)如图,△ABC是⊙O内接三角形,∠ACB=26°,则∠ABO的度数是()A.64°B.52°C.54°D.70°【解答】解:∵∠ACB=26°,∴∠AOB=52°.∵OA=OB,∴∠ABO==64°.故选:A.14.(4分)已知,函数y=的图象经过点(﹣1,2),则函数y=kx+2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵函数y=的图象经过点(﹣1,2),∴k=(﹣1)×2=﹣2,∴函数y=kx+2的解析式为y=﹣2x+2,∵k=﹣2<0,b=2>0,∴函数图象经过一、二、四象限,不经过第三象限.故选:C.三、解答题(本大题共9个小题,满分70分)15.(7分)先化简,再求值:,其中x=2.【解答】解:=×==,把x=2代入上式得:原式==1.16.(7分)如图,在平行四边形ABCD中,E、F为对角线AC上两点,且AE=CF,请你从图中找出一对全等三角形,并给予证明.【解答】解:△AED≌△CFB;∵四边形ABCD是平行四边形,∴DA=BC,DA∥BC,CD=AB,∴∠DAC=∠BCA,在△AED和△CFB中,∴△AED≌△CFB(SAS).∴DE=BF,∵AE=CF,∴AE+EF=CF+EF,∴AF=CE,在△DEC和△BF A中,∴△DEC≌△BF A(SSS),在△ADC和△CBA中,∴△ADC≌△CBA(SSS).17.(8分)如图,小明在一块平地上测山高,先在B处测得山顶A的仰角为30°,然后向山脚直行100米到达C处,再测得山顶A的仰角为45°,求山高AD是多少?(结果保留整数,测角仪忽略不计,参考数据≈1.414,≈1.73)【解答】解:由题意得,∠ABD=30°,∠ACD=45°,BC=100m,设AD=xm,在Rt△ACD中,∵tan∠ACD=,∴CD=AD=x,∴BD=BC+CD=x+100,在Rt△ABD中,∵tan∠ABD=,∴x=(x+100),∴x=50(+1)≈137米,答:山高AD约为137米.18.(7分)昆楚高速公路全长170千米,甲、乙两车同时从昆明、楚雄两地高速路收费站相向匀速开出,经过50分钟相遇,甲车比乙车每小时多行驶10千米.求甲、乙两车的速度.【解答】解:50分钟=小时设乙车的速度为x千米/时,甲车的速度为x+10千米/时,则(x+x+10)=170,解得:x=97∴甲车的速度为:x+10=97+10=107(千米/时)答:甲车的速度为107千米/时,乙车的速度为97千米/时.19.(8分)某超市计划在“十周年”庆典当天开展购物抽奖活动,凡当天在该超市购物的顾客,均有一次抽奖的机会,抽奖规则如下:将如图所示的圆形转盘平均分成四个扇形,分别标上1,2,3,4四个数字,抽奖者连续转动转盘两次,当每次转盘停止后指针所指扇形内的数为每次所得的数(若指针指在分界线时重转);当两次所得数字之和为8时,返现金20元;当两次所得数字之和为7时,返现金15元;当两次所得数字之和为6时返现金10元.(1)试用树状图或列表的方法表示出一次抽奖所有可能出现的结果;(2)某顾客参加一次抽奖,能获得返还现金的概率是多少?【解答】解:(1)画树状图得:则共有16种等可能的结果;(2)∵某顾客参加一次抽奖,能获得返还现金的有6种情况,∴某顾客参加一次抽奖,能获得返还现金的概率是:=.20.(8分)某校组织了一次初三科技小制作比赛,有A、B、C、D四个班共提供了100件参赛作品,C班提供的参赛作品的获奖率为50%,其他几个班的参赛作品情况及获奖情况绘制在下列图1和图2两幅尚不完整的统计图中.(1)B班参赛作品有多少件?(2)请你将图2的统计图补充完整;(3)通过计算说明,哪个班的获奖率高?【解答】解:(1)B组参赛作品数是:100×(1﹣35%﹣20%﹣20%)=25(件);(2)∵C班提供的参赛作品的获奖率为50%,∴C班的参赛作品的获奖数量为:100×20%×50%=10(件),如图所示:;(3)A班的获奖率为:×100%=40%,B班的获奖率为:×100%=44%,C班的获奖率为:50%;D班的获奖率为:×100%=40%,故C班的获奖率高.21.(8分)联通公司手机话费收费有A套餐(月租费15元,通话费每分钟0.1元)和B套餐(月租费0元,通话费每分钟0.15元)两种.设A套餐每月话费为y1(元),B套餐每月话费为y2(元),月通话时间为x分钟.(1)分别表示出y1与x,y2与x的函数关系式.(2)月通话时间为多长时,A、B两种套餐收费一样?(3)什么情况下A套餐更省钱?【解答】解:(1)A套餐的收费方式:y1=0.1x+15;B套餐的收费方式:y2=0.15x;(2)由0.1x+15=0.15x,得到x=300,答:当月通话时间是300分钟时,A、B两种套餐收费一样;(3)由0.1x+15<0.15x,得到x>300,当月通话时间多于300分钟时,A套餐更省钱.22.(8分)如图,矩形ABCD中,AB=8,AD=6,点E、F分别在边CD、AB上.(1)若DE=BF,求证:四边形AFCE是平行四边形;(2)若四边形AFCE是菱形,求菱形AFCE的周长.【解答】解;(1)∵四边形ABCD为矩形,∴AB=CD,AB∥CD,∵DE=BF,∴AF=CE,AF∥CE,∴四边形AFCE是平行四边形;(2)∵四边形AFCE是菱形,∴AE=CE,设DE=x,则AE=,CE=8﹣x,则=8﹣x,化简有16x﹣28=0,解得:x=,将x=代入原方程检验可得等式两边相等,即x=为方程的解.则菱形的边长为:8﹣=,周长为:4×=25,故菱形AFCE的周长为25.23.(9分)如图,已知抛物线y=x2+bx+c与x轴交于A,B两点,与y轴交于点C,O是坐标原点,点A的坐标是(﹣1,0),点C的坐标是(0,﹣3).(1)求抛物线的函数表达式;(2)求直线BC的函数表达式和∠ABC的度数;(3)在线段BC上是否存在一点P,使△ABP∽△CBA?若存在,求出点P的坐标;如果不存在,请说明理由.【解答】解:(1)将点A的坐标(﹣1,0),点C的坐标(0,﹣3)代入抛物线解析式得:,解得:,故抛物线解析式为:y=x2﹣2x﹣3;(2)由(1)得:0=x2﹣2x﹣3,解得:x1=﹣1,x2=3,故B点坐标为:(3,0),设直线BC的解析式为:y=kx+d,则,解得:,故直线BC的解析式为:y=x﹣3,∵B(3,0),C(0,﹣3),∴BO=OC=3,∴∠ABC=45°;(3)存在一点P,使△ABP∽△CBA连接AP、AC,过点P作PD⊥x轴于点D,∵△ABP∽△CBA,∴=,∵BO=OC=3,∴BC=3,∵A(﹣1,0),B(3,0),∴AB=4,∴=,解得:BP=,由题意可得:PD∥OC,∴DB=DP=,∴OD=3﹣=,则P(,﹣).。

云南省楚雄州双柏县2016届中考数学模拟试题(含解析)

云南省楚雄州双柏县2016届中考数学模拟试题一、填空题(本大题共6个小题,每小题3分,满分181.﹣6的绝对值是.2.一元二次方程2x2﹣2=0的解是.3.如图,已知a∥b,∠1=135°,则∠2= .4.函数自变量的取值范围是.5.如图,⊙O的直径CD⊥AB,∠A=30°,则∠D= .6.如图,是用火柴棒拼成的图形,则第n个图形需根火柴棒.二、选择题(本大题共8个小题,每小题只有一个正确选项,每小题4分,满分32分)7.下列运算正确的是()A.a2•a2=a4B.(a﹣b)2=a2﹣b2C.2+=2D.(﹣a3)2=﹣a68.如图是由4个大小相同的正方体组合而成的几何体,其俯视图是()A.B.C.D.9.2016年3月全国两会政府工作报告中指出:城镇新增就业人数超过6400万人,城镇保障性安居工程住房建设4013万套,上亿群众喜迁新居.将6400万用科学记数法表示为()A.6.4×107B.6.4×108C.6.4×103D.64×10610.不等式组的解集是()A.x≥0 B.x>﹣2 C.﹣2<x≤3D.x≤3A.19,15 B.15,14.5 C.19,14.5 D.15,1512.已知扇形的面积为4π,扇形的弧长是π,则该扇形半径为()A.4 B.8 C.6 D.8π13.若等腰三角形的一个内角是40°,则它的顶角是()A.100°B.40° C.100°或40°D.60°14.直线y=﹣x与双曲线y=在同一坐标系中的大致位置是()A.B.C.D.三、解答题(本大题共9个小题,满分70分)15.计算:先化简,再求值:(﹣)÷,其中x=.16.如图,已知∠ABO=∠DCO,OB=OC,求证:△ABC≌△DCB.17.李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?18.如图,在数学活动课中,小敏为了测量校园内旗杆AB的高度,站在教学楼上的C处测得旗杆低端B的俯角为45°,测得旗杆顶端A的仰角为30°,如旗杆与教学楼的水平距离CD为9m,则旗杆的高度是多少?(结果保留根号)19.为了解我县1800名初中毕业生参加云南省数学学业水平考试的成绩情况(得分取整数),我们(1)若抽取的学生的数学成绩的及格率(C级及其以上为及格)为77.5%,则抽取的学生数是多少人?其中成绩为C级的学生有多少人?(2)求出D级学生的人数在扇形统计图中的圆心角.(3)请你估计全县数学成绩为A级的学生总人数.20.为绿化校园,某校计划购进A、B两种树苗,共21课.已知A种树苗每棵90元,B种树苗每棵70元.设购买B种树苗x棵,购买两种树苗所需费用为y元.(1)y与x的函数关系式为:;(2)若购买B种树苗的数量少于A种树苗的数量,请给出一种费用最省的方案,并求出该方案所需费用.21.在阳光体育活动时间,小亮、小莹、小芳和大刚到学校乒乓球室打乒乓球,当时只有一副空球桌,他们只能选两人打第一场.(1)如果确定小亮打第一场,再从其余三人中随机选取一人打第一场,求恰好选中大刚的概率;(2)如果确定小亮做裁判,用“手心、手背”的方法决定其余三人哪两人打第一场.游戏规则是:三人同时伸“手心、手背”中的一种手势,如果恰好有两人伸出的手势相同,那么这两人上场,否则重新开始,这三人伸出“手心”或“手背”都是随机的,请用画树状图的方法求小莹和小芳打第一场的概率.22.如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.(1)求证:△ABM∽△EFA;(2)若AB=12,BM=5,求DE的长.23.如图,已知抛物线E1:y=x2经过点A(1,m),以原点为顶点的抛物线E2经过点B(2,2),点A、B关于y 轴的对称点分别为点A′,B′.(1)求m的值;(2)求抛物线E2所表示的二次函数的表达式;(2)在第一象限内,抛物线E1上是否存在点Q,使得以点Q、B、B′为顶点的三角形为直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由.2016年云南省楚雄州双柏县中考数学模拟试卷参考答案与试题解析一、填空题(本大题共6个小题,每小题3分,满分181.﹣6的绝对值是 6 .【考点】绝对值.【分析】根据绝对值的定义求解.【解答】解:|﹣6|=6.【点评】规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.一元二次方程2x2﹣2=0的解是x1=1,x2=﹣1 .【考点】解一元二次方程-直接开平方法.【专题】计算题;一次方程(组)及应用.【分析】方程整理后,利用平方根定义开方即可求出解.【解答】解:方程整理得:x2=1,开方得:x=±1,解得:x1=1,x2=﹣1.故答案为:x1=1,x2=﹣1【点评】此题考查了解一元二次方程﹣直接开平方法,熟练掌握完全平方公式是解本题的关键.3.如图,已知a∥b,∠1=135°,则∠2=45°.【考点】平行线的性质.【分析】先求出∠3的度数,根据平行线的性质得出∠2=∠3,即可求出答案.【解答】解:∵∠1=135°,∴∠3=180°﹣∠1=45°,∵a∥b,∴∠2=∠3=45°,故答案为:45°【点评】本题考查了平行线的性质的应用,能根据平行线的性质得出∠2=∠3是解此题的关键,注意:两直线平行,内错角相等.4.函数自变量的取值范围是x≠﹣1 .【考点】函数自变量的取值范围;分式有意义的条件.【专题】计算题.【分析】该函数由分式组成,故分母不等于0,就可以求出x的范围.【解答】解:根据题意得:x+1≠0,解得x≠﹣1.【点评】本题主要考查:当函数表达式是分式时,分式的分母不能为0.5.如图,⊙O的直径CD⊥AB,∠A=30°,则∠D=30°.【考点】圆周角定理;垂径定理.【分析】由⊙O的直径CD⊥AB,∠A=30°,由垂径定理得=,然后由圆周角定理,求得∠D的度数.【解答】解:∵⊙O的直径CD⊥AB,∠A=30°,∴=,∠AOC=90°﹣∠A=60°,∴∠D=∠AOC=30°.故答案为:30°.【点评】此题考查了圆周角定理与垂径定理.注意在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.6.如图,是用火柴棒拼成的图形,则第n个图形需2n+1 根火柴棒.【考点】规律型:图形的变化类.【专题】压轴题.【分析】按照图中火柴的个数填表即可当三角形的个数为:1、2、3、4时,火柴棒的根数分别为:3、5、7、9,由此可以看出当三角形的个数为n时,三角形个数增加(n﹣1)个,那么此时火柴棒的根数应该为:3+2(n﹣1)进而得出答案.【解答】方法一:解:根据图形可得出:当三角形的个数为1时,火柴棒的根数为3;当三角形的个数为2时,火柴棒的根数为5;当三角形的个数为3时,火柴棒的根数为7;当三角形的个数为4时,火柴棒的根数为9;…由此可以看出:当三角形的个数为n时,火柴棒的根数为3+2(n﹣1)=2n+1.故答案为:2n+1.方法二:当n=1时,s=3,当n=2时,s=5,当n=3时,s=7,经观察,此数列为一阶等差,∴设s=kn+b,,∴,∴s=2n+1.【点评】此题主要考查了图形变化类,本题解题关键根据第一问的结果总结规律是得到规律:三角形的个数每增加一个,火柴棒的根数增加2根,然后由此规律解答.二、选择题(本大题共8个小题,每小题只有一个正确选项,每小题4分,满分32分)7.下列运算正确的是()A.a2•a2=a4B.(a﹣b)2=a2﹣b2C.2+=2D.(﹣a3)2=﹣a6【考点】完全平方公式;实数的运算;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂的乘法、完全平方公式、幂的乘方,即可解答.【解答】解:A、a2•a2=a4,正确;B、(a﹣b)2=a2﹣2ab+b2,故错误;C、2与不能合并,故错误;D、(﹣a3)2=a6,故错误;故选:A.【点评】本题考查了同底数幂的乘法、完全平方公式、幂的乘方,解决本题的关键是熟记完全平方公式.8.如图是由4个大小相同的正方体组合而成的几何体,其俯视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:几何体的俯视图是横着的“目”字.故选D.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.9.2016年3月全国两会政府工作报告中指出:城镇新增就业人数超过6400万人,城镇保障性安居工程住房建设4013万套,上亿群众喜迁新居.将6400万用科学记数法表示为()A.6.4×107B.6.4×108C.6.4×103D.64×106【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:6400万=64000000=6.4×107,故选A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.不等式组的解集是()A.x≥0 B.x>﹣2 C.﹣2<x≤3D.x≤3【考点】解一元一次不等式组.【分析】先求出两个不等式的解集,再求其公共解.【解答】解:,解①得:x≤3,解②得:x>﹣2,则不等式组的解集是:﹣2x≤3.故选C.【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).则该班40名同学年龄的众数和中位数分别是()A.19,15 B.15,14.5 C.19,14.5 D.15,15【考点】众数;中位数.【分析】找中位数要把数据按从小到大的顺序排列,这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.众数是一组数据中出现次数最多的数据.【解答】解:根据众数的定义在这组数据中15出现次数最多,则众数为15,则中位数是(15+15)÷2=15,∴该班唱团成员年龄的众数和中位数分别为15,15.故选D.【点评】本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.12.已知扇形的面积为4π,扇形的弧长是π,则该扇形半径为()A.4 B.8 C.6 D.8π【考点】扇形面积的计算;弧长的计算.【分析】设该扇形的半径为r,再由扇形的面积公式即可得出结论.【解答】解:设该扇形的半径为r,则πr=4π,解得r=8.故选B.【点评】本题考查的是扇形面积的计算,熟记扇形的面积公式是解答此题的关键.13.若等腰三角形的一个内角是40°,则它的顶角是()A.100°B.40° C.100°或40°D.60°【考点】等腰三角形的性质.【专题】分类讨论.【分析】已知等腰三角形的一个内角为40°,根据等腰三角形的性质可分情况解答:当40°是顶角或者40°是底角两种情况.【解答】解:此题要分情况考虑:①40°是它的顶角;②40°是它的底角,则顶角是180°﹣40°×2=100°.所以这个等腰三角形的顶角为40°或100°.故选C.【点评】本题考查了等腰三角形的性质及三角形内角和定理;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.14.直线y=﹣x与双曲线y=在同一坐标系中的大致位置是()A.B.C.D.【考点】反比例函数的图象;正比例函数的图象.【分析】根据函数解析式中系数k的符合判定函数图象所经过的象限,然后作出判断即可.【解答】解:∵直线y=﹣x中的k=﹣1<0,∴该直线经过第二、四象限;∵双曲线y=中的k=1>0,∴该直线经过第一、三象限;观察选项,D选项符合题意.故选:D.【点评】本题考查了正比例函数的图象及反比例函数的图象,能根据函数关系式判断出所经过的象限是解答本题的关键.三、解答题(本大题共9个小题,满分70分)15.计算:先化简,再求值:(﹣)÷,其中x=.【考点】分式的化简求值.【分析】根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.【解答】解:原式=•﹣•=3(x+2)﹣(x﹣2)=3x+6﹣x+2=2x+8,当x=时,原式=2x+8=2×+8=9.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.16.如图,已知∠ABO=∠DCO,OB=OC,求证:△ABC≌△DCB.【考点】全等三角形的判定;全等三角形的性质;等腰三角形的性质.【专题】证明题.【分析】根据ASA推出△ABO≌△DCO,根据全等三角形的性质得出∠A=∠D,求出∠ABC=∠DCB,根据AAS推出即可.【解答】证明:∵在△ABO和△DCO中∴△ABO≌△DCO(ASA),∴∠A=∠D,∵OB=OC,∴∠OBC=∠OCB,∵∠ABO=∠DCO,∴∠ABO+∠OBC=∠DCO+∠OCB,即∠ABC=∠DCB,在△ABC和△DCB中,∴△ABC≌△DCB(AAS).【点评】本题考查了全等三角形的判定定理、性质定理和等腰三角形的性质的应用,能综合运用定理进行推理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,符合SSA和AAA 不能推出两三角形全等.17.李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?【考点】二元一次方程组的应用.【专题】应用题;方程思想.【分析】由题意得出两个相等关系为:甲、乙两种蔬菜共10亩和共获利18000元,依次列方程组求解.【解答】解:设甲、乙两种蔬菜各种植了x、y亩,依题意得:,解得:,答:李大叔去年甲、乙两种蔬菜各种植了6亩、4亩.【点评】此题考查的是二元一次方程组的应用,关键是确定两个相等关系列方程组求解.18.如图,在数学活动课中,小敏为了测量校园内旗杆AB的高度,站在教学楼上的C处测得旗杆低端B的俯角为45°,测得旗杆顶端A的仰角为30°,如旗杆与教学楼的水平距离CD为9m,则旗杆的高度是多少?(结果保留根号)【考点】解直角三角形的应用-仰角俯角问题.【分析】根据在Rt△ACD中,tan∠ACD=,求出AD的值,再根据在Rt△BCD中,tan∠BCD=,求出BD的值,最后根据AB=AD+BD,即可求出答案.【解答】解:在Rt△ACD中,∵tan∠ACD=,∴tan30°=,∴=,∴AD=3m,在Rt△BCD中,∵tan∠BCD=,∴tan45°=,∴BD=9m,∴AB=AD+BD=3+9(m).答:旗杆的高度是(3+9)m.【点评】此题考查了解直角三角形的应用﹣仰角俯角问题,本题要求学生借助俯角构造直角三角形,并结合图形利用三角函数解直角三角形.19.为了解我县1800名初中毕业生参加云南省数学学业水平考试的成绩情况(得分取整数),我们(1)若抽取的学生的数学成绩的及格率(C级及其以上为及格)为77.5%,则抽取的学生数是多少人?其中成绩为C级的学生有多少人?(2)求出D级学生的人数在扇形统计图中的圆心角.(3)请你估计全县数学成绩为A级的学生总人数.【考点】扇形统计图;用样本估计总体.【分析】(1)根据D级的人数和所占的百分比求出抽取的学生总人数,再用总人数减去其它级的人数,即可求出成绩为C级的学生数;(2)用360°乘以D级学生的人数所占的百分比即可;(3)全县的人数乘以A级的学生所占的百分比即可.【解答】解:(1)根据题意得:18÷(1﹣77.5%)=18÷22.5%=80(人),则80﹣22﹣28﹣18=12(人);答:抽取的学生数是80人,其中成绩为C级的学生有12人;(2)D级学生的人数在扇形统计图中的圆心角度数是:360°×22.5%=81°;(3)根据题意得:1800×(22÷80)=495(人).答:估计全县数学成绩为A级的学生总人数有495人.【点评】本题考查的是图表和扇形统计图的综合运用,读懂统计表,从统计表中得到必要的信息是解决问题的关键.20.为绿化校园,某校计划购进A、B两种树苗,共21课.已知A种树苗每棵90元,B种树苗每棵70元.设购买B种树苗x棵,购买两种树苗所需费用为y元.(1)y与x的函数关系式为:y=﹣20x+1890 ;(2)若购买B种树苗的数量少于A种树苗的数量,请给出一种费用最省的方案,并求出该方案所需费用.【考点】一次函数的应用.【分析】(1)根据购买两种树苗所需费用=A种树苗费用+B种树苗费用,即可解答;(2)根据购买B种树苗的数量少于A种树苗的数量,列出不等式,确定x的取值范围,再根据(1)得出的y与x之间的函数关系式,利用一次函数的增减性结合自变量的取值即可得出更合算的方案.【解答】解:(1)y=90(21﹣x)+70x=﹣20x+1890,故答案为:y=﹣20x+1890.(2)∵购买B种树苗的数量少于A种树苗的数量,∴x<21﹣x,解得:x<10.5,又∵x≥1,∴x的取值范围为:1≤x≤10,且x为整数,∵y=﹣20x+1890,k=﹣20<0,∴y随x的增大而减小,∴当x=10时,y有最小值,最小值为:﹣20×10+1890=1690,∴使费用最省的方案是购买B种树苗10棵,A种树苗11棵,所需费用为1690元.【点评】题考查的是一元一次不等式及一次函数的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系和不等关系.21.在阳光体育活动时间,小亮、小莹、小芳和大刚到学校乒乓球室打乒乓球,当时只有一副空球桌,他们只能选两人打第一场.(1)如果确定小亮打第一场,再从其余三人中随机选取一人打第一场,求恰好选中大刚的概率;(2)如果确定小亮做裁判,用“手心、手背”的方法决定其余三人哪两人打第一场.游戏规则是:三人同时伸“手心、手背”中的一种手势,如果恰好有两人伸出的手势相同,那么这两人上场,否则重新开始,这三人伸出“手心”或“手背”都是随机的,请用画树状图的方法求小莹和小芳打第一场的概率.【考点】列表法与树状图法;概率公式.【专题】计算题.【分析】(1)由小亮打第一场,再从其余三人中随机选取一人打第一场,求出恰好选中大刚的概率即可;(2)画树状图得出所有等可能的情况数,找出小莹和小芳伸“手心”或“手背”恰好相同的情况数,即可求出所求的概率.【解答】解:(1)∵确定小亮打第一场,∴再从小莹,小芳和大刚中随机选取一人打第一场,恰好选中大刚的概率为;(2)列表如下:所有等可能的情况有8种,其中小莹和小芳伸“手心”或“手背”恰好相同且与大刚不同的结果有2个,则小莹与小芳打第一场的概率为=.【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.22.如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.(1)求证:△ABM∽△EFA;(2)若AB=12,BM=5,求DE的长.【考点】相似三角形的判定与性质;正方形的性质.【分析】(1)由正方形的性质得出AB=AD,∠B=90°,AD∥BC,得出∠AMB=∠EAF,再由∠B=∠AFE,即可得出结论;(2)由勾股定理求出AM,得出AF,由△ABM∽△EFA得出比例式,求出AE,即可得出DE的长.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=AD,∠B=90°,AD∥BC,∴∠AMB=∠EAF,又∵EF⊥AM,∴∠AFE=90°,∴∠B=∠AFE,∴△ABM∽△EFA;(2)解:∵∠B=90°,AB=12,BM=5,∴AM==13,AD=12,∵F是AM的中点,∴AF=AM=6.5,∵△ABM∽△EFA,∴,即,∴AE=16.9,∴DE=AE﹣AD=4.9.【点评】本题考查了正方形的性质、相似三角形的判定与性质、勾股定理;熟练掌握正方形的性质,并能进行推理计算是解决问题的关键.23.如图,已知抛物线E1:y=x2经过点A(1,m),以原点为顶点的抛物线E2经过点B(2,2),点A、B关于y 轴的对称点分别为点A′,B′.(1)求m的值;(2)求抛物线E2所表示的二次函数的表达式;(2)在第一象限内,抛物线E1上是否存在点Q,使得以点Q、B、B′为顶点的三角形为直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)将A(1,m)代入y=x2,求得m的值即可;(2)设抛物线E2的函数表达式为y=ax2(a≠0),将点B(2,2)代入抛物线的解析式求得a的值即可;(3)当∠BB′Q=90°时,将x=2代入y=x2,可求得点Q的纵坐标,当∠BQB′=90°时,设点Q2的坐标为(t,t2),依据两点间的距离公式和勾股定理的逆定理列出关于t的方程求解即可.【解答】解:(1)∵抛物线E1经过点A(1,m)∴m=12=1(2)∵抛物线E2的顶点在原点,可设它对应的函数表达式为y=ax2(a≠0)又∵点B(2,2)在抛物线E2上∴2=a×22,解得:a=∴抛物线E2所对应的二次函数表达式为y=x2(3)如图所示:①当点B为直角顶点时,过B作Q1B⊥BB′交抛物线E1于Q,则点Q1与B的横坐标相等且为2,将x=2代入y=x2得y=4,∴点Q1的坐标为(2,4).②当点Q2为直角顶点时,则有Q2B′2+Q2B2=B′B2,过点Q2作GQ2⊥BB′于G,设点Q2的坐标为(t,t2)(t>0),则有(t+2)2+(t2﹣2)2+(2﹣t)2+(t2﹣2)2=4,整理得:t4﹣3t2=0,∵t>0,∴t2﹣3=0,解得t1=,t2=﹣(舍去),∴点Q的坐标为(,3),综上所述,存在符合条件的点Q坐标为(2,4)与(,3).【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了二次函数图象上点的坐标与函数解析式的关系、待定系数法求二次函数的解析式、勾股定理的逆定理的应用、两点间的距离公式,依据勾股定理的逆定理和两点间的距离公式列出关于t的方程是解题的关键.。

云南省2016年中考数学试卷解析版

)))))2016年云南省中考数学试卷1836分)一、填空题(本大题共分,满分个小题,每小题1|3|= ..﹣2abcabAB1=602= °∥.分别相交于.如图,直线、两点,若∠,直线与直线,则∠、2 1=3x..因式分解:﹣72046度..若一个多边形的边数为,则这个多边形的内角和为2 +2ax+a+2=0xxa5.有两个相等的实数根,那么实数的值为.如果关于的一元二次方程616 6π.如果圆柱的侧面展开图是相邻两边长分别为,那么这个圆柱的体积等于.的长方形,3284分)二、选择题(本大题共分,满分小题,每小题只有一个正确选项,每小题20167”“之美称的云南,已经发现的动植版)的》介绍,在素有.据《云南省生物物种名录(动植物王国2543425434)物有种,用科学记数法表示为(4334﹣﹣10DA2.54341010B2.54342.5434C2.543410××××....x8y=)的取值范围为(.函数的自变量2x2 Cx2 DxAx2 B≠≤.<...>9).若一个几何体的主视图、左视图、俯视图是半径相等的圆,则这个几何体是(C DA B .正方体.球.圆锥.圆柱10).下列计算,正确的是(662﹣2A2=64 D=4 B C4÷.).(﹣.).(﹣EO=EFy=11OEFx,在若.是坐标原点.位于第一象限的点轴的正半轴上,在反比例函数的图象上,点k=EOF2△)的面积等于,则(22 CA4 B1 D.﹣...10122016年云南省初中学业水平考试学生的体育成绩,得到的结果如表:.某校随机抽查了名参加)))))).))))))下列说法正确的是(50 10A名同学的体育成绩的众数为.这48 10B名同学的体育成绩的中位数为.这50 10C名同学的体育成绩的方差为.这4810D名同学的体育成绩的平均数为.这13).下列交通标志中,是轴对称图形但不是中心对称图形的是( D AB C....ACDABDABCDBCAB=4AD=2DAC=B1514△△∠△∠那么的面积为,.的边如图,上一点,,如果.,是)的面积为(5AD10 C15 B ....709分)个小题,共三.解答题(共15..解不等式组DECDAB=CDB=A=16CAE∠∠.,求证:∠.如图:点,是的中点,∠17.食品安全是关乎民生的重要问题,在食品中添加过量的添加剂对人体健康有害,但适量的添加剂对人BA两种、体健康无害而且有利于食品的储存和运输.为提高质量,做进一步研究,某饮料加工厂需生产2A100B3270克,饮料共克,饮料每瓶需加添加剂瓶,需加入同种添加剂克,其中饮料每瓶需加添加剂BA两种饮料各多少克?饮料加工厂生产了、)))))).)))))18ABCDACBDOABCBAD=12BEACCEBD ∥∥.,.如图,菱形:∠的对角线,与交于点:,∠1tanDBC ∠的值;)求(2OBEC 是矩形.()求证:四边形19.某中学为了丰富学生的校园体育锻炼生活,决定根据学生的兴趣爱好采购一批体育用品供学生课后锻将收集的数据整理并绘制成下列两幅统计图,因此学校随机抽取了部分同学就兴趣爱好进行调查,炼使用,请根据图中的信息,完成下列问题:nn1的值;(名学生,直接写出)设学校这次调查共抽取了2)请你补全条形统计图;(31200名,请你估计该校有多少名学生喜欢跳绳?)设该校共有学生(DCABCDAEO20ABCO⊥,垂足为的延长线于点上一点,过点.如图,,为⊙的直径,的直线交是⊙BAEACEFAEO.平分∠,的交点,是与⊙DE1O的切线;(是⊙)求证:D=30AE=62°,求图中阴影部分的面积.)若,∠()))))).)))))21.某超市为庆祝开业举办大酬宾抽奖活动,凡在开业当天进店购物的顾客,都能获得一次抽奖的机会,12344个小球,它们的形状、大小、、的、抽奖规则如下:在一个不透明的盒子里装有分别标有数字、质地完全相同,顾客先从盒子里随机取出一个小球,记下小球上标有的数字,然后把小球放回盒子并搅拌均匀,再从盒子中随机取出一个小球,记下小球上标有的数字,并计算两次记下的数字之和,若两次所得850630元代金券一张;若所,则可获得,则可获得元代金券一张;若所得的数字之和为的数字之和为515 元代金券一张;其他情况都不中奖.得的数字之和为,则可获得1)请用列表或树状图(树状图也称树形图)的方法(选其中一种即可),把抽奖一次可能出现的结果(表示出来;2P .()假如你参加了该超市开业当天的一次抽奖活动,求能中奖的概率2220元的.草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季,试销售成本为每千克40y(千克)与草莓,规定试销期间销售单价不低于成本单价,也不高于每千克元,经试销发现,销售量xyx 的函数关系图象.(元)符合一次函数关系,如图是销售单价与1yx 的函数解析式(也称关系式)(与)求2WW 的最大值.(元,求)设该水果销售店试销草莓获得的利润为12201623?云南)有一列按一定顺序和规律排列的数:.(分)(;第一个数是;第二个数是;第三个数是…nnn+1.个数与第()个数的和等于对任何正整数,第 1 )经过探究,我们发现:(a5,,哪个正确?,,那么设这列数的第个数为请你直接写出正确的结论;)))))).)))))2123nnn数),()请你观察第个数,猜想这列数的第个数、第个数(即用正整数个数、第表示第n+1n”“;第并且证明你的猜想满足个数与第()个数的和等于20163M…,个数的和,即,这,()设表示,,,.求证:)))))).)))))2016年云南省中考数学试卷参考答案与试题解析1863分)个小题,每小题一、填空题(本大题共分,满分1|3|=3 .﹣.【考点】绝对值.【分析】根据负数的绝对值等于这个数的相反数,即可得出答案.|3|=3 .【解答】解:﹣3 .故答案为:【点评】此题主要考查了绝对值的性质,正确记忆绝对值的性质是解决问题的关键.2abcabAB1=602=60 °°∥.分别相交于、、两点,若∠.如图,直线,则∠,直线与直线【考点】平行线的性质.3的度数,再由对顶角的定义即可得出结论.【分析】先根据平行线的性质求出∠1=60ab°∥,,∠【解答】解:∵直线3=601=°∴∠∠.23∵∠是对顶角,与∠3=602=°∠∴∠.60°.故答案为:【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.)))))).)))))21=x+1x1 x3.﹣()(.因式分解:)﹣-运用公式法.【考点】因式分解【专题】因式分解.【分析】方程利用平方差公式分解即可.=x+1x1 ).【解答】解:原式)((﹣x+1x1 ).故答案为:(﹣)(【点评】此题考查了因式分解﹣运用公式法,熟练掌握平方差公式是解本题的关键.46 720 度..若一个多边形的边数为,则这个多边形的内角和为【考点】多边形内角与外角.【分析】根据多边形的内角和公式求解即可.18062=720 °°)﹣【解答】解:根据题意得,(720 故答案为【点评】此题是多边形的内角和外角,主要考差了多边形的内角和公式,解本题的关键是熟记多边形的内角和公式.2+2ax+a+2=0a1xx2 5.的一元二次方程﹣有两个相等的实数根,那么实数或的值为.如果关于【考点】根的判别式.aa 的值即可.【分析】根据方程有两个相等的实数根列出关于的方程,求出2+2ax+a+2=0 xx有两个相等的实数根,【解答】解:∵关于的一元二次方程24a+2=0a==04a12 ∴△.,即,解得或﹣﹣()12 .故答案为:﹣或【点评】本题考查的是根的判别式,熟知一元二次方程的解与判别式之间的关系是解答此题的关键.616 6144384ππ或如果圆柱的侧面展开图是相邻两边长分别为.,那么这个圆柱的体积等于.的长方形,【考点】几何体的展开图.616166π②①π;先根据底面周长得到底面半底面周长为高为底面周长为【分析】分两种情况:高为;径,再根据圆柱的体积公式计算即可求解.616 π①,底面周长为高为【解答】解:)))))).)))))2 16π×π×)(=16ππ××=144;616π②,底面周长为高为26×π×)(6 =64×π×=384π.384144π.答:这个圆柱的体积可以是或384144π.故答案为:或【点评】本题考查了展开图折叠成几何体,本题关键是熟练掌握圆柱的体积公式,注意分类思想的运用.3284分)小题,每小题只有一个正确选项,每小题二、选择题(本大题共分,满分20167”“之美称的云南,已经发现的动植.据《云南省生物物种名录(动植物王国版)的》介绍,在素有2543425434)种,用科学记数法表示为(物有4334﹣﹣2.5434C2.543410DA2.543410B2.54341010××××....—表示较大的数.【考点】科学记数法n n10na101|a|≤×的值时,要看把原数,的形式,其中<为整数.确定【分析】科学记数法的表示形式为nn1a是正数;的绝对值与小数点移动的位数相同.当原数绝对值>变成时,时,小数点移动了多少位,n1是负数.时,当原数的绝对值<2543425434”“用科学记数法表动植物王国【解答】解:在素有种,之美称的云南,已经发现的动植物有4 102.5434×,示为B.故选:n na1|a|1010≤×为【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为,的形式,其中<an的值.的值以及整数,表示时关键要正确确定8y=x)的自变量的取值范围为(.函数2 2 D2 C2 BAxxxx≠≤..>.<.【考点】函数自变量的取值范围.【分析】根据当函数表达式的分母中含有自变量时,自变量取值要使分母不为零,判断求解即可.)))))).)))))xy=,的分母中含有自变量【解答】解:∵函数表达式0xx2≠∴自变量,的取值范围为:﹣2x ≠.即D.故选【点评】本题考查了函数自变量取值范围的知识,求自变量的取值范围的关键在于必须使含有自变量的表达式都有意义.9).若一个几何体的主视图、左视图、俯视图是半径相等的圆,则这个几何体是(DBA C.正方体.圆柱.球.圆锥【考点】由三视图判断几何体.【分析】利用三视图都是圆,则可得出几何体的形状.【解答】解:主视图、俯视图和左视图都是圆的几何体是球.C.故选【点评】本题考查了由三视图确定几何体的形状,学生的思考能力和对几何体三种视图的空间想象能力.10).下列计算,正确的是(626﹣=4 B C4=64 DA22÷.(﹣..(﹣).)【考点】二次根式的加减法;有理数的乘方;负整数指数幂;二次根式的性质与化简.【分析】依次根据负整指数的运算,算术平方根的计算,整式的除法,二次根式的化简和合并进行判断即可.2﹣=AA2错误,,所以)【解答】解:、(﹣=2BB错误,、,所以666126 =2C4C2=64=22÷÷正确;,所以(﹣、)=2DD=错误,,所以、﹣﹣C故选【点评】此题是二次根式的加减法,主要考查了负整指数的运算,算术平方根的计算,整式的除法,二次根式的化简和合并同类二次根式,熟练掌握这些知识点是解本题的关键.)))))).)))))EO=EFFx11OEy=,在是坐标原点.位于第一象限的点若在反比例函数轴的正半轴上,的图象上,.点2k=EOF△)(的面积等于,则22 C1 DA4 B.﹣...k的几何意义.【考点】反比例函数系数k即可.【分析】此题应先由三角形的面积公式,再求解Oy=FxE是坐标原的图象上,点在反比例函数轴的正半轴上,【解答】解:因为位于第一象限的点在EO=EFEOF2△,点.若的面积等于,,所以xy=2,解得:k=2,所以:B故选:kk.的几何意义问题,关键是由三角形的面积公式,再求解【点评】主要考查了反比例函数系数20161210年云南省初中学业水平考试学生的体育成绩,得到的结果如表:名参加.某校随机抽查了50 A10名同学的体育成绩的众数为.这48 B10名同学的体育成绩的中位数为.这50 C10名同学的体育成绩的方差为.这48 D10名同学的体育成绩的平均数为.这【考点】方差;加权平均数;中位数;众数.【分析】结合表格根据众数、平均数、中位数的概念求解即可.505010;名学生的体育成绩中【解答】解:分出现的次数最多,众数为=4956 ;和第第名同学的成绩的平均值为中位数,中位数为:==48.6,平均数22222 50≠;]48.648.64948.64848.647=48.646 [+2+50+2+4×××)(﹣)((﹣方差)(﹣)﹣(﹣)ABCD ∴选项错误;正确,、、A .故选:)))))).)))))【点评】本题考查了众数、平均数、中位数的知识,掌握各知识点的概念是解答本题的关键.13 ).下列交通标志中,是轴对称图形但不是中心对称图形的是(D B C A....【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.A、是轴对称图形,不是中心对称图形,符合题意;【解答】解:B、不是轴对称图形,也不是中心对称图形,不符合题意;C、不是轴对称图形,也不是中心对称图形,不符合题意;D、是轴对称图形,也是中心对称图形,不符合题意.A.故选【点评】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.ACD15BABDBC14DABCAB=4AD=2DAC=△∠△∠△那么上一点,的面积为,.,.如图,是如果的边,)的面积为(5A15 B D10 C....【考点】相似三角形的判定与性质.4ABCBCAACD1ACD△△△∽△,:的面积:【分析】首先证明的面积为,由相似三角形的性质可得:9ACDABD△△的面积.因为的面积为,进而求出CDAC=BC=∠∠,【解答】解:∵∠,∠ACDBCA∽△∴△,AB=4AD=2∵,,14ABCACD△∴△,:的面积为的面积:ACDABD=13△∴△,的面积:的面积:ABD15∵△,的面积为)))))).)))))ACDACD=5 ∴△.的面积的面积∴△D .故选【点评】本题考查了相似三角形的判定和性质:相似三角形的面积比等于相似比的平方,是中考常见题型.709分)个小题,共三.解答题(共15..解不等式组【考点】解一元一次不等式组.x102x+1 2x+3,然后取得这两个不等式解的公共部分即可得出答案.和【分析】分别解得不等式)>(>,【解答】解:∵x2①∴解不等式,得:>1x②,>﹣解不等式得:2x∴不等式组的解集为:.>【点评】本题主要考查了解一元一次不等式组的知识,要掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.ECDAB=CDB=DA=16CAE∠∠..如图:点是,求证:∠的中点,∠,【考点】全等三角形的判定与性质.【专题】证明题.CDE SASABC≌△△得出结论.,根据全等三角形的性质:,即可证明根据全等三角形的判定方法【分析】AEC的中点,是【解答】证明:∵点AC=CE∴,CDEABC△△,和中,在ABCCDE≌△∴△,B=D ∠∴∠.)))))).)))))SSSSASASAAAS,直角,【点评】本题考查了全等三角形的判定和性质,全等三角形的判定方法:,,HL .三角形还有17.食品安全是关乎民生的重要问题,在食品中添加过量的添加剂对人体健康有害,但适量的添加剂对人AB两种体健康无害而且有利于食品的储存和运输.为提高质量,做进一步研究,某饮料加工厂需生产、B3100270A2克,其中瓶,需加入同种添加剂饮料每瓶需加添加剂饮料每瓶需加添加剂克,克,饮料共AB 两种饮料各多少克?、饮料加工厂生产了【考点】二元一次方程组的应用.ByA+B=100AAx②①瓶,种饮料生产了种饮料瓶数【分析】种饮料瓶数设,种饮料生产了根据:瓶,+B=270 ,列出方程组求解可得.种饮料添加剂的总质量种饮料的总质量AxBy瓶,瓶,【解答】解:设种饮料生产了种饮料生产了,根据题意,得:,解得:30B70A瓶.瓶,种饮料生产了种饮料生产了答:【点评】本题主要考查二元一次方程组的应用能力,在解题时要能根据题意得出等量关系,列出方程组是本题的关键.BD2BEACCEO18ABCDACBDABCBAD=1∥∥.:∠.如图,菱形:的对角线与,交于点,∠,1tanDBC∠的值;)求(2OBEC是矩形.)求证:四边形(【考点】矩形的判定;菱形的性质;解直角三角形.正方形.菱形【专题】计算题;矩形BD1ABCD为角平分线,利用两直线平行得到一对同)由四边形是菱形,得到对边平行,且【分析】(BDCtanDBC∠的值;旁内角互补,根据已知角之比求出相应度数,进而求出∠度数,即可求出)))))).)))))2ABCD是菱形,得到对角线互相垂直,利用两组对边平行的四边形是平行四边形,再利用()由四边形有一个角为直角的平行四边形是矩形即可得证.1ABCD 是菱形,)解:∵四边形【解答】(DBC=BCABCAD∠∴∥,,∠ABC+BAD=180°∠∴∠,BAD=12ABC∵∠,::∠ABC=60°∴∠,ABC=30BDC=°∠∴∠,DBC=tan30=tan°∠;则2ABCD是菱形,)证明:∵四边形(BOC=90ACBD°∴⊥,,即∠BDBEACCE∥∵∥,,BEOCCEOB∥∥∴,,OBEC∴四边形是平行四边形,OBEC是矩形.则四边形熟练掌握判定与性质是解本题的关键.菱形的性质,以及解直角三角形,【点评】此题考查了矩形的判定,19.某中学为了丰富学生的校园体育锻炼生活,决定根据学生的兴趣爱好采购一批体育用品供学生课后锻将收集的数据整理并绘制成下列两幅统计图,因此学校随机抽取了部分同学就兴趣爱好进行调查,炼使用,请根据图中的信息,完成下列问题:nn1的值;)设学校这次调查共抽取了(名学生,直接写出2)请你补全条形统计图;(12003名,请你估计该校有多少名学生喜欢跳绳?()设该校共有学生)))))).)))))【考点】条形统计图;用样本估计总体;扇形统计图.12525% 即可得出总人数;)根据喜欢篮球的人数有【分析】(人,占总人数的2 )根据总人数求出喜欢羽毛球的人数,补全条形统计图即可;(320% 即可得出结论.()求出喜欢跳绳的人数占总人数的12525% ,)∵喜欢篮球的人数有人,占总人数的【解答】解:(=100∴(人);20%=202=100×人,()∵喜欢羽毛球的人数∴条形统计图如图;3120020%=240×(人).()由已知得,240人喜欢跳绳.答;该校约有【点评】本题考查的是条形统计图,熟知从条形图可以很容易看出数据的大小,便于比较是解答此题的关键.DCABDAECAB20OCO⊥,垂足为的延长线于点上一点,过点.如图,为⊙的直线交的直径,是⊙,BAEOEFAEAC.的交点,,是平分∠与⊙1DEO的切线;()求证:是⊙D=302AE=6°,求图中阴影部分的面积.,∠()若)))))).)))))【考点】切线的判定;扇形面积的计算.DECDOCAEOC1OCOAC=OCA⊥∠∥,进而证明,进而得到,先证明∠【分析】(,于是得到)连接O的切线;是⊙SS=S2OCDOBC△即可得到答案.(的面积和扇形)分别求出﹣的面积,利用COD△OBC扇形阴影OC1,【解答】解:()连接OA=OC ∵,OAC=OCA∠∴∠,ACBAE∵,平分∠OAC=CAE∠∴∠,OCA=CAE∠∴∠,OCAE ∥∴,EOCD=∠∴∠,DEAE⊥∵,E=90°∴∠,OCD=90°∴∠,CDOC⊥∴,OCOCO ∵点的半径,为圆上,在圆CDO∴的切线;是圆AED2Rt△中,()在AE=6D=30°∵∠,,AD=2AE=12∴,RtD=30°,中,∵∠在OCD△DO=2OC=DB+OB=DB+OC∴,DO=8DB=OB=OC=AD=4∴,,)))))).)))))=4CD==∴,=8==S∴,OCD△D=30OCD=90°°∵∠,,∠DOC=60°∴∠,2 ==SOC×π×∴,OBC扇形SS=S∵﹣COD△OBC扇形阴影S=8∴,﹣阴影8 ∴阴影部分的面积为.﹣2OCDE1⊥)的关,解(【点评】本题主要考查了切线的判定以及扇形的面积计算,解()的关键是证明OBC的面积,此题难度一般.键是求出扇形21.某超市为庆祝开业举办大酬宾抽奖活动,凡在开业当天进店购物的顾客,都能获得一次抽奖的机会,44123个小球,它们的形状、大小、、、的抽奖规则如下:在一个不透明的盒子里装有分别标有数字、质地完全相同,顾客先从盒子里随机取出一个小球,记下小球上标有的数字,然后把小球放回盒子并搅拌均匀,再从盒子中随机取出一个小球,记下小球上标有的数字,并计算两次记下的数字之和,若两次所得305086元代金券一张;若所的数字之和为,则可获得,则可获得元代金券一张;若所得的数字之和为515元代金券一张;其他情况都不中奖.得的数字之和为,则可获得1)请用列表或树状图(树状图也称树形图)的方法(选其中一种即可),把抽奖一次可能出现的结果(表示出来;2P.()假如你参加了该超市开业当天的一次抽奖活动,求能中奖的概率【考点】列表法与树状图法.1)首先根据题意画出表格,然后由表格求得所有等可能的结果;【分析】(2)根据概率公式进行解答即可.(1)列表得:【解答】解:()))))).)))))4 2 1 35 2 3 4 16 3 4 5 27 5 4 6 386754162种,这些结果出现的可能性相同,其中两次所得数字之()由列表可知,所有可能出现的结果一共有=58P=68.的结果有种,所以抽奖一次中奖的概率为:、、和为.答:抽奖一次能中奖的概率为【点评】此题考查的是用列表法或树状图法求概率与不等式的性质.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;=所求情况数与总情况数之比.注意概率2022元的.草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季,试销售成本为每千克y40(千克)与草莓,规定试销期间销售单价不低于成本单价,也不高于每千克元,经试销发现,销售量xyx的函数关系图象.销售单价与(元)符合一次函数关系,如图是x1y的函数解析式(也称关系式))求(与WW2的最大值.)设该水果销售店试销草莓获得的利润为(元,求【考点】二次函数的应用.1)待定系数法求解可得;【分析】(xW=2×的最大值.的取值范围可得(销售量,列出函数关系式,配方后根据)根据:总利润每千克利润y=kx+b1yx,)设与【解答】解:(的函数关系式为,根据题意,得:,解得:)))))).)))))yxy=2x+34020x40 ≤≤∴).与﹣的函数解析式为,(2W=x202x+340 )(﹣)由已知得:)(﹣(2+380x6800 =2x﹣﹣2+11250 2x95=,()﹣﹣20 ∵﹣,<x95Wx ≤∴当的增大而增大,随时,20x40 ≤∵≤,2+11250=5200 4095x=40W2∴当元.﹣时,(最大,最大值为﹣)【点评】本题主要考查待定系数法求一次函数解析式与二次函数的应用,根据相等关系列出函数解析式,并由二次函数的性质确定其最值是解题的关键.23122016 ?云南)有一列按一定顺序和规律排列的数:分)(.(;第一个数是;第二个数是;第三个数是…n+1nn.,第)个数的和等于对任何正整数个数与第( 1 )经过探究,我们发现:(a5,哪个正确?,那么,设这列数的第个数为,请你直接写出正确的结论;nnn3122数),表示第个数、第个数,猜想这列数的第()请你观察第个数(即用正整数个数、第nn+1”“;)个数的和等于并且证明你的猜想满足第个数与第(2016M3…,个数的和,即,,,这,)设(表示,.求证:【考点】分式的混合运算;规律型:数字的变化类.1)由已知规律可得;【分析】(2n+1n个数,再根据分式的运算化简可得;、()先根据已知规律写出第)))))).)))))3==,展开后再全部相加可得结论.﹣<<(﹣)将每个分式根据a=51= 个数【解答】解:()由题意知第﹣;2nn+1,,第(个数为()个数为)∵第+=+∴)(=×=×=,n+1n;个数与第(即第)个数的和等于=31=1,)∵(﹣<=1=,﹣<<==,<<﹣﹣…==,<﹣<﹣==,﹣<﹣<2++1+++…∴,﹣﹣<<+++++…,<即<∴.=﹣根据已知规律【点评】本题主要考查分式的混合运算及数字的变化规律,得到﹣==是解题的关键.﹣<<)))))).。

楚雄彝族自治州中考数学二模试卷

楚雄彝族自治州中考数学二模试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)的相反数是A . ﹣6B . 8C .D .2. (2分)如图,已知一坡面的坡度i=1:,则坡角α为()A . 15°B . 20°C . 30°D . 45°3. (2分)给出下列图形名称:(1)线段;(2)直角;(3)等腰三角形;(4)平行四边形;(5)长方形,在这五种图形中是轴对称图形的有()A . 1个B . 2个C . 3个D . 4个4. (2分)(2018·五华模拟) 据国土资源部数据显示,我国是全球“可燃冰”资源储量最多的国家之一,海、陆总储量约为39000000000吨油当量,将39000000000用科学记数法表示为A .B .C .D .5. (2分)如图,放置的一个机器零件(图1),若其主视图如(图2)所示,则其俯视图为()A .B .C .D .6. (2分) (2017八下·徐州期末) 若正方形的面积是12cm2 ,则边长a满足()A . 2cm<a<3cmB . 3cm<a<4cmC . 4cm<a<5cmD . 5cm<a<6cm7. (2分) (2017八下·新野期末) 计算的结果为()A .B .C . ﹣1D . 28. (2分) (2019八上·锦州期末) 若是关于x、y的方程x+ay=3的解,则a值为()A . 1B . 2C . 3D . 49. (2分)(2020·贵港模拟) 如图,在矩形中,是边的中点,与垂直,交于点,连接,则下列结论错误的是()A .B .C .D .10. (2分)(2019·北部湾) 若点(-1,y1),(2,y2).(3,y3)在反比例函数y= (k<0)的图象上,则y1 ,y2 , y3的大小关系是()A . y1>y2>y3B . y3>y2>y1C . y1>y3>y2D . y2>y3>y111. (2分)如图,已知AD=AE,BE=CD,∠1=∠2=110°,∠BAC=80°,则∠CAE的度数是()A . 20°B . 30°C . 40°D . 50°12. (2分) (2019八下·乌兰浩特期中) 下列图象中,有可能是一次函数y=ax-a(a≠0)的大致图象的是()A .B .C .D .二、填空题 (共5题;共6分)13. (1分)(2019·上海模拟) 计算:a﹣2b2•(a2b﹣2)﹣3=________.14. (1分)计算:=________.15. (1分) (2020九下·广陵月考) 已知在一个布袋中有红球6个,黄球若干个,它们除颜色外都相同.若随机取出一个球恰好是黄球的概率是,则黄球的个数是________.16. (2分)(2018·桂林) 如图,矩形OABC的边AB与x轴交于点D,与反比例函数 (k>0)在第一象限的图像交于点E,∠AOD=30°,点E的纵坐标为1,ΔODE的面积是,则k的值是________17. (1分)如图,AE=BF,AD∥BC,AD=BC,则有△ADF≌________,且DF=________.三、解答题 (共8题;共41分)18. (2分) (2019七下·长春期中) 在5×5的正方形网格中,每个小正方形的边长均为1,点A、B在网格格点上,若点C也在网格格点上,分别在下面的3个图中画出△ABC使其面积为2(形状完全相同算一种).19. (2分)解不等式组请结合题意,完成本题解答.(1)解不等式①,得________ ;(2)解不等式②,得________ ;(3)把不等式①和②的解集在数轴上表示出来:;(4)原不等式组的解集为________ .20. (2分)(2020·南昌模拟) 某校为了调查学生对卫生健康知识,特别是疫情防控下的卫生常识的了解,现从九年级1000名学生中随机抽取了部分学生参加测试,并根据测试成绩绘制了如下频数分布表和扇形统计图(尚不完整).组别成绩 /分人数第1组第2组第3组第4组第5组请结合图表信息完成下列各题.(1)表中a的值为________,b的值为________;在扇形统计图中,第1组所在扇形的圆心角度数为________°;(2)若测试成绩不低于80分为优秀,请你估计从该校九年级学生中随机抽查一个学生,成绩为优秀的概率.(3)若测试成绩在60分以上(含60分)均为合格,其他为不合格,请你估计该校九年级学生中成绩不合格的有多少人.21. (10分) (2015九上·郯城期末) 如图,BD为⊙O的直径,AB=AC,AD交BC于点E,AE=2,ED=4,(1)求证:△ABE∽△ADB;(2)求AB的长;(3)延长DB到F,使得BF=BO,连接FA,试判断直线FA与⊙O的位置关系,并说明理由.22. (2分)(2014·韶关) 如图,某数学兴趣小组想测量一棵树CD的高度,他们先在点A处测得树顶C的仰角为30°,然后沿AD方向前行10m,到达B点,在B处测得树顶C的仰角高度为60°(A、B、D三点在同一直线上).请你根据他们测量数据计算这棵树CD的高度(结果精确到0.1m).(参考数据:≈1.414,≈1.732)23. (11分)(2017·邳州模拟) 甲、乙两家超市进行促销活动,甲超市采用“买100减50”的促销方式,即购买商品的总金额满100元但不足200元,少付50元;满200元但不足300元,少付100元;….乙超市采用“打6折”的促销方式,即顾客购买商品的总金额打6折.(1)若顾客在甲商场购买商品的总金额为x(100≤x<200)元,优惠后得到商家的优惠率为p(p= ),写出p与x之间的函数关系式,并说明p随x的变化情况;(2)王强同学认为:如果顾客购买商品的总金额超过100元,实际上甲超市采用“打5折”、乙超市采用“打6折”,那么当然选择甲超市购物.请你举例反驳;(3)品牌、质量、规格等都相同的某种商品,在甲乙两商场的标价都是x(300≤x<400)元,认为选择哪家商场购买商品花钱较少?请说明理由.24. (10分)(2020·广西模拟) 如图①,已知点G在正方形ABCD的对角线AC上,GE⊥BC,垂足为点E,GF⊥CD,垂足为点F.(1)证明与推断:①求证:四边形CEGF是正方形;________②推断的值为________(2)探究与证明:将正方形CEGF绕点C顺时针方向旋转α(0°<α<45°),如图②所示,试探究线段AG与BE之间的数量关系,并说明理由;(3)拓展与运用:正方形CEGF在旋转过程中,当B,E,F三点在一条直线上时,如图③所示,延长CG交AD于点H.若AG=6,GH=2 ,则BC=________25. (2分)(2017·虎丘模拟) 如图,在边长为4的正方形ABCD中,P是BC边上一动点(不与B、C两点重合),将△ABP沿直线AP翻折,点B落在点E处;在CD上取一点M,使得将△CMP沿直线MP翻折后,点C落在直线PE上的点F处,直线PE交CD于点N,连接AM、AN.(1)若P为BC的中点,则sin∠CPM=________;(2)求证:∠PAN的度数不变;(3)当P在BC边上运动时,△ADM的面积是否存在最小值,若存在,请求出PB的长;若不存在,请说明理由.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共5题;共6分)13-1、14-1、15-1、16-1、17-1、三、解答题 (共8题;共41分)18-1、19-1、19-2、19-3、19-4、20-1、20-2、20-3、21-1、21-2、21-3、22-1、23-1、23-2、23-3、24-1、24-2、24-3、25-1、25-2、25-3、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016年云南省楚雄州双柏县中考数学二模试卷一、填空题(本大题共6个小题,每小题3分,满分18分)1.(3分)﹣5的倒数是.2.(3分)计算:(﹣1)2016+(3.14﹣π)0=.3.(3分)函数中自变量x的取值范围是.4.(3分)《云南省“十三五”规划纲要》中指出:到2020年,昆明中心城市人口达到400万人左右.将400万用科学记数法表示为.5.(3分)已知扇形的半径为3,扇形的圆心角是120°,则该扇形面积为.6.(3分)我们把分子为1的分数叫做单位分数.如,…,任何一个单位分数都可以拆成两个不同的单位分数的和,如=+,=+,=+,…,根据对上述式子的观察,请你写出=.二、选择题(本大题共8个小题,每小题只有一个正确选项,每小题4分,满分32分)7.(4分)下列运算正确的是()A.a4÷a2=a2B.(a+b)(a+b)=a2+b2 C.﹣= D.(﹣)﹣2=﹣4 8.(4分)下列四个几何体中,主视图为矩形的是()A.B.C. D.9.(4分)下列图形中,既是中心对称又是轴对称图形的是()A.等边三角形B.平行四边形C.梯形D.矩形10.(4分)不等式4﹣x≤2(3﹣x)的正整数解有()A.1个 B.2个 C.3个 D.无数个11.(4分)如图,已知:CD∥BE,∠1=68°,那么∠B的度数为()A.68°B.102° C.110° D.112°12.(4分)在今年“全国助残日”捐款活动中,某班级第一小组7名同学积极捐出自己的零花钱,奉献自己的爱心,他们捐款的数额分别是(单位:元)50、20、50、30、25、50、55,这组数据的众数和中位数分别是()A.50元,30元B.50元,40元C.50元,50元D.55元,50元13.(4分)如图,△ABC是⊙O内接三角形,∠ACB=26°,则∠ABO的度数是()A.64°B.52°C.54°D.70°14.(4分)已知,函数y=的图象经过点(﹣1,2),则函数y=kx+2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限三、解答题(本大题共9个小题,满分70分)15.(7分)先化简,再求值:,其中x=2.16.(7分)如图,在平行四边形ABCD中,E、F为对角线AC上两点,且AE=CF,请你从图中找出一对全等三角形,并给予证明.17.(8分)如图,小明在一块平地上测山高,先在B处测得山顶A的仰角为30°,然后向山脚直行100米到达C处,再测得山顶A的仰角为45°,求山高AD是多少?(结果保留整数,测角仪忽略不计,参考数据≈1.414,≈1.73)18.(7分)昆楚高速公路全长170千米,甲、乙两车同时从昆明、楚雄两地高速路收费站相向匀速开出,经过50分钟相遇,甲车比乙车每小时多行驶10千米.求甲、乙两车的速度.19.(8分)某超市计划在“十周年”庆典当天开展购物抽奖活动,凡当天在该超市购物的顾客,均有一次抽奖的机会,抽奖规则如下:将如图所示的圆形转盘平均分成四个扇形,分别标上1,2,3,4四个数字,抽奖者连续转动转盘两次,当每次转盘停止后指针所指扇形内的数为每次所得的数(若指针指在分界线时重转);当两次所得数字之和为8时,返现金20元;当两次所得数字之和为7时,返现金15元;当两次所得数字之和为6时返现金10元.(1)试用树状图或列表的方法表示出一次抽奖所有可能出现的结果;(2)某顾客参加一次抽奖,能获得返还现金的概率是多少?20.(8分)某校组织了一次初三科技小制作比赛,有A、B、C、D四个班共提供了100件参赛作品,C班提供的参赛作品的获奖率为50%,其他几个班的参赛作品情况及获奖情况绘制在下列图1和图2两幅尚不完整的统计图中.(1)B班参赛作品有多少件?(2)请你将图2的统计图补充完整;(3)通过计算说明,哪个班的获奖率高?21.(8分)联通公司手机话费收费有A套餐(月租费15元,通话费每分钟0.1元)和B套餐(月租费0元,通话费每分钟0.15元)两种.设A套餐每月话费为y1(元),B套餐每月话费为y2(元),月通话时间为x分钟.(1)分别表示出y1与x,y2与x的函数关系式.(2)月通话时间为多长时,A、B两种套餐收费一样?(3)什么情况下A套餐更省钱?22.(8分)如图,矩形ABCD中,AB=8,AD=6,点E、F分别在边CD、AB上.(1)若DE=BF,求证:四边形AFCE是平行四边形;(2)若四边形AFCE是菱形,求菱形AFCE的周长.23.(9分)如图,已知抛物线y=x2+bx+c与x轴交于A,B两点,与y轴交于点C,O是坐标原点,点A的坐标是(﹣1,0),点C的坐标是(0,﹣3).(1)求抛物线的函数表达式;(2)求直线BC的函数表达式和∠ABC的度数;(3)在线段BC上是否存在一点P,使△ABP∽△CBA?若存在,求出点P的坐标;如果不存在,请说明理由.2016年云南省楚雄州双柏县中考数学二模试卷参考答案与试题解析一、填空题(本大题共6个小题,每小题3分,满分18分)1.(3分)﹣5的倒数是.【解答】解:因为﹣5×()=1,所以﹣5的倒数是.2.(3分)计算:(﹣1)2016+(3.14﹣π)0=2.【解答】解:原式=1+1=2,故答案为:2.3.(3分)函数中自变量x的取值范围是x≥﹣5.【解答】解:根据题意得:x+5≥0,解得x≥﹣5.4.(3分)《云南省“十三五”规划纲要》中指出:到2020年,昆明中心城市人口达到400万人左右.将400万用科学记数法表示为4×106.【解答】解:将400万用科学记数法表示为4×106,故答案为:4×106.5.(3分)已知扇形的半径为3,扇形的圆心角是120°,则该扇形面积为3π.【解答】解:∵扇形的圆心角为120°,其半径为3,==3π.∴S扇形故答案为:3π.6.(3分)我们把分子为1的分数叫做单位分数.如,…,任何一个单位分数都可以拆成两个不同的单位分数的和,如=+,=+,=+,…,根据对上述式子的观察,请你写出=.【解答】解:根据题意可得规律为:,所以可得:,故答案为:.二、选择题(本大题共8个小题,每小题只有一个正确选项,每小题4分,满分32分)7.(4分)下列运算正确的是()A.a4÷a2=a2B.(a+b)(a+b)=a2+b2 C.﹣= D.(﹣)﹣2=﹣4【解答】解:A、a4÷a2=a2,正确;B、(a+b)(a+b)=a2+2ab+b2,错误;C、与不能合并,错误;D、,错误;故选A.8.(4分)下列四个几何体中,主视图为矩形的是()A.B.C. D.【解答】解:A、正方体的主视图是正方形,不符合题意;B、球的主视图是圆,不符合题意;C、圆柱的主视图是矩形,符合题意;D、圆锥的主视图是三角形,不符合题意.故选C.9.(4分)下列图形中,既是中心对称又是轴对称图形的是()A.等边三角形B.平行四边形C.梯形D.矩形【解答】解:A、是轴对称图形,不是中心对称图形.故本选项错误;B、不是轴对称图形,是中心对称图形.故本选项错误;C、是轴对称图形,不是中心对称图形.故本选项错误;D、既是轴对称图形,又是中心对称图形.故本选项正确.故选D.10.(4分)不等式4﹣x≤2(3﹣x)的正整数解有()A.1个 B.2个 C.3个 D.无数个【解答】解:去括号得:4﹣x≤6﹣2x,移项得:﹣x+2x≤6﹣4,合并同类项得:x≤2,∴不等式的正整数解是:2、1,故选:B.11.(4分)如图,已知:CD∥BE,∠1=68°,那么∠B的度数为()A.68°B.102° C.110° D.112°【解答】解:由对顶角相等可得∠2=∠1=68°,∵CD∥BE,∴∠B=180°﹣∠2=180°﹣68°=112°.故选D.12.(4分)在今年“全国助残日”捐款活动中,某班级第一小组7名同学积极捐出自己的零花钱,奉献自己的爱心,他们捐款的数额分别是(单位:元)50、20、50、30、25、50、55,这组数据的众数和中位数分别是()A.50元,30元B.50元,40元C.50元,50元D.55元,50元【解答】解:50出现了3次,出现的次数最多,则众数是50;把这组数据从小到大排列为:20,25,30,50,50,50,55,最中间的数是50,则中位数是50.故选C.13.(4分)如图,△ABC是⊙O内接三角形,∠ACB=26°,则∠ABO的度数是()A.64°B.52°C.54°D.70°【解答】解:∵∠ACB=26°,∴∠AOB=52°.∵OA=OB,∴∠ABO==64°.故选A.14.(4分)已知,函数y=的图象经过点(﹣1,2),则函数y=kx+2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵函数y=的图象经过点(﹣1,2),∴k=(﹣1)×2=﹣2,∴函数y=kx+2的解析式为y=﹣2x+2,∵k=﹣2<0,b=2>0,∴函数图象经过一、二、四象限,不经过第三象限.故选C.三、解答题(本大题共9个小题,满分70分)15.(7分)先化简,再求值:,其中x=2.【解答】解:=×==,把x=2代入上式得:原式==1.16.(7分)如图,在平行四边形ABCD中,E、F为对角线AC上两点,且AE=CF,请你从图中找出一对全等三角形,并给予证明.【解答】解:△AED≌△CFB;∵四边形ABCD是平行四边形,∴DA=BC,DA∥BC,CD=AB,∴∠DAC=∠BCA,在△AED和△CFB中,∴△AED≌△CFB(SAS).∴DE=BF,∵AE=CF,∴AE+EF=CF+EF,∴AF=CE,在△DEC和△BFA中,∴△DEC≌△BFA(SSS),在△ADC和△CBA中,∴△ADC≌△CBA(SSS).17.(8分)如图,小明在一块平地上测山高,先在B处测得山顶A的仰角为30°,然后向山脚直行100米到达C处,再测得山顶A的仰角为45°,求山高AD是多少?(结果保留整数,测角仪忽略不计,参考数据≈1.414,≈1.73)【解答】解:由题意得,∠ABD=30°,∠ACD=45°,BC=100m,设AD=xm,在Rt△ACD中,∵tan∠ACD=,∴CD=AD=x,∴BD=BC+CD=x+100,在Rt△ABD中,∵tan∠ABD=,∴x=(x+100),∴x=50(+1)≈137米,答:山高AD约为137米.18.(7分)昆楚高速公路全长170千米,甲、乙两车同时从昆明、楚雄两地高速路收费站相向匀速开出,经过50分钟相遇,甲车比乙车每小时多行驶10千米.求甲、乙两车的速度.【解答】解:50分钟=小时设乙车的速度为x千米/时,甲车的速度为x+10千米/时,则(x+x+10)=170,解得:x=97∴甲车的速度为:x+10=97+10=107(千米/时)答:甲车的速度为107千米/时,乙车的速度为97千米/时.19.(8分)某超市计划在“十周年”庆典当天开展购物抽奖活动,凡当天在该超市购物的顾客,均有一次抽奖的机会,抽奖规则如下:将如图所示的圆形转盘平均分成四个扇形,分别标上1,2,3,4四个数字,抽奖者连续转动转盘两次,当每次转盘停止后指针所指扇形内的数为每次所得的数(若指针指在分界线时重转);当两次所得数字之和为8时,返现金20元;当两次所得数字之和为7时,返现金15元;当两次所得数字之和为6时返现金10元.(1)试用树状图或列表的方法表示出一次抽奖所有可能出现的结果;(2)某顾客参加一次抽奖,能获得返还现金的概率是多少?【解答】解:(1)画树状图得:则共有16种等可能的结果;(2)∵某顾客参加一次抽奖,能获得返还现金的有6种情况,∴某顾客参加一次抽奖,能获得返还现金的概率是:=.20.(8分)某校组织了一次初三科技小制作比赛,有A、B、C、D四个班共提供了100件参赛作品,C班提供的参赛作品的获奖率为50%,其他几个班的参赛作品情况及获奖情况绘制在下列图1和图2两幅尚不完整的统计图中.(1)B班参赛作品有多少件?(2)请你将图2的统计图补充完整;(3)通过计算说明,哪个班的获奖率高?【解答】解:(1)B组参赛作品数是:100×(1﹣35%﹣20%﹣20%)=25(件);(2)∵C班提供的参赛作品的获奖率为50%,∴C班的参赛作品的获奖数量为:100×20%×50%=10(件),如图所示:;(3)A班的获奖率为:×100%=40%,B班的获奖率为:×100%=44%,C班的获奖率为:50%;D班的获奖率为:×100%=40%,故C班的获奖率高.21.(8分)联通公司手机话费收费有A套餐(月租费15元,通话费每分钟0.1元)和B套餐(月租费0元,通话费每分钟0.15元)两种.设A套餐每月话费为y1(元),B套餐每月话费为y2(元),月通话时间为x分钟.(1)分别表示出y1与x,y2与x的函数关系式.(2)月通话时间为多长时,A、B两种套餐收费一样?(3)什么情况下A套餐更省钱?【解答】解:(1)A套餐的收费方式:y1=0.1x+15;B套餐的收费方式:y2=0.15x;(2)由0.1x+15=0.15x,得到x=300,答:当月通话时间是300分钟时,A、B两种套餐收费一样;(3)由0.1x+15<0.15x,得到x>300,当月通话时间多于300分钟时,A套餐更省钱.22.(8分)如图,矩形ABCD中,AB=8,AD=6,点E、F分别在边CD、AB上.(1)若DE=BF,求证:四边形AFCE是平行四边形;(2)若四边形AFCE是菱形,求菱形AFCE的周长.【解答】解;(1)∵四边形ABCD为矩形,∴AB=CD,AB∥CD,∵DE=BF,∴AF=CE,AF∥CE,∴四边形AFCE是平行四边形;(2)∵四边形AFCE是菱形,∴AE=CE,设DE=x,则AE=,CE=8﹣x,则=8﹣x,化简有16x﹣28=0,将x=代入原方程检验可得等式两边相等,即x=为方程的解.则菱形的边长为:8﹣=,周长为:4×=25,故菱形AFCE的周长为25.23.(9分)如图,已知抛物线y=x2+bx+c与x轴交于A,B两点,与y轴交于点C,O是坐标原点,点A的坐标是(﹣1,0),点C的坐标是(0,﹣3).(1)求抛物线的函数表达式;(2)求直线BC的函数表达式和∠ABC的度数;(3)在线段BC上是否存在一点P,使△ABP∽△CBA?若存在,求出点P的坐标;如果不存在,请说明理由.【解答】解:(1)将点A的坐标(﹣1,0),点C的坐标(0,﹣3)代入抛物线解析式得:,解得:,故抛物线解析式为:y=x2﹣2x﹣3;(2)由(1)得:0=x2﹣2x﹣3,解得:x1=﹣1,x2=3,故B点坐标为:(3,0),设直线BC的解析式为:y=kx+d,则,故直线BC的解析式为:y=x﹣3,∵B(3,0),C(0,﹣3),∴BO=OC=3,∴∠ABC=45°;(3)存在一点P,使△ABP∽△CBA连接AP、AC,过点P作PD⊥x轴于点D,∵△ABP∽△CBA,∴=,∵BO=OC=3,∴BC=3,∵A(﹣1,0),B(3,0),∴AB=4,∴=,解得:BP=,由题意可得:PD∥OC,∴DB=DP=,∴OD=3﹣=,则P(,﹣).。

相关文档
最新文档