必修五 《不等式》单元试题
(好题)高中数学必修五第三章《不等式》测试(包含答案解析)

一、选择题1.设x ,y R +∈,1x y +=,求14x y+的最小值为( ). A .2B . 4C .8D .92.若实数x ,y 满足约束条件21010x y x y -+≥⎧⎨--≤⎩,则2z x y =-的最大值是( )A .1-B .2C .3D .4 3.已知实数满足约束条件020360x y x y x y -≤⎧⎪+-≥⎨⎪-+≥⎩,则2z x y =-的最小值为( )A .4-B .3-C .2-D .1-4.不等式20ax bx c -+>的解集为{}|21x x -<<,则函数2y ax bx c =++的图像大致为( )A .B .C .D .5.设,x y 满足24122x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩,则z x y =+的最小值是( )A .7-B .2C .3D .5-6.已知0x >,0y >,21x y +=,若不等式2212m m x y+>+恒成立,则实数m 的取值范围是( ) A .4m ≥或2m ≤- B .2m ≥或4m ≤- C .24m -<<D .42m -<<7.在各项均为正数的等差数列{}n a 中,n S 为其前n 项和,7S =14,则2614t a a =+的最小值为( ) A .9 B .94C .52D .28.不等式112x x ->+的解集是( ). A .{}|2x x <-B .{}|21x x -<<C .{}|1x x <D .{}|x x ∈R9.已知2212,202b m a a n b a -=+>=≠-()(),则m ,n 之间的大小关系是 A .m =n B .m <n C .m >n D .不确定10.已知变量,x y 满足不等式组22003x y x y y +-≥⎧⎪-≤⎨⎪≤⎩,则2z x y =-的最大值为( )A .3-B .23-C .1D .211.已知函数()3x f x -=,对任意的1x ,2x ,且12x x <,则下列四个结论中,不一定正确的是( )A .()()()1212f x x f x f x +=⋅B .()()()1212f x x f x f x ⋅=+C .()()()12120x x f x f x --<⎡⎤⎣⎦D .()()121222f x f x x x f ++⎛⎫<⎪⎝⎭12.命题p :变量(),x y 满足约束条件3450y x x y ≤⎧⎪≤⎨⎪+-≥⎩,则y z x =的最小值为14,命题q :直线2x =的倾斜角为2π,下列命题正确的是( ) A .p q ∧B .()()p q ⌝∧⌝C .()p q ⌝∧D .()p q ∧⌝二、填空题13.若实数m 和n 满足242329231m m n n m n ⨯-⋅+⨯=++,则23m n +的取值范围为______.14.已知0x >,0y >,且212+=x y ,若2322+≥-x y m m 恒成立,则实数m 的取值范围_______.15.已知0,0a b >>,若313m a b a b+≥+恒成立,则m 的取值范围是_____.16.已知变量,x y 满足约束条件04010x y x y y -≥⎧⎪+-≤⎨⎪-≥⎩,若目标函数(0)z ax by a b =+>>的最小值为1,则28a b+的最小值为__________. 17.已知正实数,x y 满足 20x y xy +-=,则2x y +的最小值为 ,y 的取值范围是 .18.已知ABC 中,D 、E 分别为AB 、AC 的中点,DF tDE =,AF x AB y AC =+,则xy 的最大值为________.19.若对定义域内任意x ,都有()()f x a f x +>(a 为正常数),则称函数()f x 为“a 距”增函数.若()3144f x x x =-+,x ∈R 是“a 距”增函数,则a 的取值范围是________.20.已知函数245x y a +=-(0a >,且1a ≠)的图像横过定点P ,若点P 在直线20Ax By ++=上,且0AB >,则12A B+的最小值为_________. 三、解答题21.已知函数()223f x x x =--+. (1)解不等式()0f x ≥;(2)若对任意实数x ,都有()3f x a x ≥-,求实数a 的取值范围.22.已知实数x ,y 满足不等式组204030x y x y x -+≥⎧⎪+-≥⎨⎪-≤⎩,求目标函数23z x y =-的最值及相应的最优解.23.已知函数()21f x x x =-++. (1)求不等式()5f x ≤的解集; (2)若()f x 的最小值是m ,且3m a b +=,求212a b +的最小值.24.已知0a >,0b >.(1)求证:()2232a b b a b +≥+;(2)若2a b ab +=,求ab 的最小值.25.已知定义域在()0,∞+上的函数()f x 满足对于任意的(),0,x y ∈+∞,都有()()()f xy f x f y =+,当且仅当1x >时,()0f x <成立.(1)设(),0,x y ∈+∞,求证()()y f f y f x x ⎛⎫=-⎪⎝⎭; (2)设()12,0,x x ∈+∞,若()()12f x f x <,试比较x 1与x 2的大小; (3)若13a -<<,解关于x 的不等式()2110f x a x a ⎡⎤-+++>⎣⎦.26.已知关于x 的一元二次不等式()22600kx x k k -+<≠.(1)若不等式的解集是{|3x x <-或}2x >-,求k 的值; (2)若不等式的解集是R ,求k 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】由“1”有代换利用基本不等式可得最小值. 【详解】因为x ,y R +∈,1x y +=,所以14144()559x y x y x y x y y x ⎛⎫+=++=++≥+= ⎪⎝⎭,当且仅当4x y y x =,即12,33x y ==时,等号成立.故选:D . 【点睛】易错点睛:本题考查用基本不等式求最小值.解题关键是利用“1”的代换凑配出定值.用基本不等式求最值必须满足三个条件:一正二定三相等.特别是相等这个条件常常会不满足,因此就不能用基本不等式求得最值.2.D解析:D 【分析】画出不等式组对应的平面区域,利用z 的几何意义,利用数形结合即可得到结论. 【详解】画出约束条件210110x y x x y -+≥⎧⎪≥⎨⎪--≤⎩或210110x y x x y -+≥⎧⎪<⎨⎪+-≥⎩所表示的平面区域,如图所示,.目标函数2z x y =-,可化为2y x z =-, 由图象可知,当直线2y x z =-经过点A 时, 使得目标函数2z x y =-取得最大值, 又由10210x y x y --=⎧⎨-+=⎩,解得(3,2)A ,所以目标函数的最大值为2324z =⨯-=, 故选:D. 【点睛】思路点睛:本题主要考查线性规划中,利用可行域求目标函数的最值,属于中等题. 求目标函数最值的一般步骤是“一画、二移、三求”: (1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.3.A解析:A 【分析】根据约束条件作出可行域,将目标函数变形为122zy x =-,通过平移直线法可求出2z -的最大值,从而可得z 的最小值. 【详解】作出已知不等式组所表示的平面区域,如图所示:将目标函数2z x y =-变形为122zy x =-,由图可知当直线经过点(0,2)A 时,截距2z -最大,所以,2z x y =-的最小值为4-. 故选:A 【点睛】方法点睛:解决线性规划问题的关键是正确地作出可行域,准确地理解z 的几何意义,求最优解时采用“平移直线法”. 利用线性规划求最值,一般用图解法求解,其步骤是: (1)在平面直角坐标系内作出可行域;(2)考虑目标函数的几何意义,将目标函数进行变形;(3)确定最优解:在可行域内平行移动目标函数变形后的直线,从而确定最优解; (4)求最值:将最优解代入目标函数即可求出最大值或最小值.4.C解析:C 【分析】根据一元二次不等式的解集与一元二次方程的解求出,,a b c 的关系,然后再判断二次函数的图象. 【详解】∵不等式20ax bx c ++>的解集为{}|21x x -<<,∴21210b a c a a ⎧-+=⎪⎪⎪-⨯=⎨⎪<⎪⎪⎩,∴20b a c a a =-⎧⎪=-⎨⎪<⎩, 2222(2)y ax bx c ax ax a a x x =++=--=--,图象开口向下,两个零点为2,1-.故选:C . 【点睛】关键点点睛:本题考查一元二次不等式的解集,二次函数的图象,解题关键是掌握一元二次不等式的解集与一元二次方程的解、二次函数的图象之间的关系.5.B解析:B 【分析】由约束条件可得可行域,将问题转化为y x z =-+在y 轴截距最小值的求解问题,利用数形结合的方法可得到结果. 【详解】由约束条件可得可行域如下图阴影部分所示:由z x y =+得:y x z =-+,当z 取最小值时,y x z =-+在y 轴截距最小, 由图象可知:当y x z =-+过A 时,在y 轴截距最小, 又()2,0A ,min 202z ∴=+=. 故选:B. 【点睛】方法点睛:线性规划问题中,通常有三种类型的最值或取值范围问题: (1)截距型:形如z ax by =+的形式,转化为a zy x b b=-+,将问题转化为直线在y 轴截距的求解问题;(2)斜率型:形如cy d z ax b+=+的形式,转化为d y c c b a x a+⋅+,将问题转化为(),x y 与,b d a c ⎛⎫-- ⎪⎝⎭连线斜率的求解问题; (3)距离型:形如z Ax By C =++的形式,转化为2222Ax By C z A B A B ++=++题转化为(),x y 到直线0Ax By C ++=的距离的求解问题.6.D解析:D 【分析】先根据已知结合基本不等式得218x y+≥,再解不等式228m m +<即可得答案. 【详解】解:由于0x >,0y >,21x y +=, 所以()212142448y x x y x y x y x y ⎛⎫+=++=++≥+= ⎪⎝⎭, 当且仅当4y x x y =,即122x y ==时等号成立, 由于不等式2212m m x y+>+成立,故228m m +<,解得:42m -<<. 故实数m 的取值范围是:42m -<<. 故选:D. 【点睛】本题考查利用基本不等式求最值,一元二次不等式的解法,考查运算能力,是中档题.7.B解析:B 【分析】根据等差数列的性质和前n 项和公式求得26a a +,然后由“1”的代换应用基本不等式求得最小值. 【详解】 由题意172677()7()1422a a a a S ++===,∴264a a +=, ∴26262614114()()4t a a a a a a =+=++62264119(5)(5444a a a a =++≥+=,当且仅当62264a a a a =,即622a a =时等号成立. 故选:B . 【点睛】本题考查等差数列的性质,考查基本不等式求最值.解题基础是掌握等差数列的性质,掌握基本不等式求最值中“1”的代换法.8.A解析:A【解析】分析:首先对原式进行移项、通分得到302x ->+,之后根据不等式的性质可得20x +<,从而求得不等式的解集.详解:将原不等式化为1202x x x --->+,即302x ->+, 即302x <+,则有20x +<,解得2x <-, 所以不等式102x x ->+的解集为{}|2x x <-,故选A. 点睛:该题是一道关于求不等式解集的题目,解答该题的关键是熟练掌握分式不等式的解法,属于简单题目.9.C解析:C 【解析】因为a >2,所以a -2>0,所以()112222m a a a a =+=-++≥--24+=,当且仅当a =3时取等号,故[4m ∈,)+∞.由b ≠0得b 2>0,所以2-b 2<2,所以222b -<4,即n <4,故()0,4n ∈.综 上可得m >n ,故选C .10.B解析:B 【分析】画出不等式组表示的区域,将目标函数2z x y =-转化为22x zy =-,表示斜率为12截距为2z-平行直线系,当截距最小时,z 取最大值,由图即可求解. 【详解】解:画出不等式组表示的区域,如图中阴影部分所示:故将目标函数2z x y =-转化为22x z y =-, 表示斜率为12截距为2z -平行直线系, 所以当截距最小时,z 取最大值,由图可知,使得直线22x zy =-经过可行域且截距最小时的解为22,33C ⎛⎫ ⎪⎝⎭, 此时242333max z =-=-. 故选:B 【点睛】本题考查了线性规划的应用,注意将目标函数化成斜截式,从而由截距的最值确定目标函数的最值.11.B解析:B 【分析】将函数()3xf x -=代入选项,由指数幂的运算性质可判断A 、B ;由函数的单调性可判断C ;由基本不等式可判断D ;即可得解. 【详解】对于A ,1212)(1212()333()()x x x x f x x f x f x -+--=⋅=⋅+=,故A 一定正确;对于B ,()12123x x f x x -=⋅,1212()()33x x f x f x --++=,()()()1212f x x f x f x ⋅=+不一定成立,故B 不一定正确;对于C ,因为()3xf x -=为减函数,故满足1212()[()()]0x x f x f x --<,故C 一定正确;对于D ,因为12x x <,所以121212()12()()22233333x x x x x x f x f x -----+++⋅=>=1212232x x x x f +-+⎛⎫= ⎪⎝⎭=,故D 一定正确. 故选:B. 【点睛】本题考查了指数函数性质及基本不等式的应用,考查了运算求解能力与转化化归思想,属于中档题.12.A解析:A 【分析】由约束条件作出可行域,由yz x=的几何意义求得最小值判断p 为真命题,由直线2x =的倾斜角判断q 为真命题,再由复合命题的真假判断得答案. 【详解】解:变量(),x y 满足约束条件3450y x x y ≤⎧⎪≤⎨⎪+-≥⎩作出可行域如图:目标式yz x=表示可行域内点(),x y 与()0,0的连线的斜率,由图可知,当过点()4,1D 时,min 14z =,即y z x =的最小值为14,命题p 为真命题; 直线2x =的倾斜角为2π正确,故命题q 为真命题. 所以p q ∧为真命题,()()p q ⌝∧⌝为假命题,()p q ⌝∧为假命题,()p q ∧⌝为假命题; 故选:A 【点睛】本题考查简单的线性规划,考查数形结合的解题思想方法,考查复合命题的真假判断,属于中档题.二、填空题13.【分析】设方程化简为得到再结合基本不等式得到根据一元二次不等式不等式的解法即可求解【详解】设因为可得所以解得或又由当且仅当时即时等号成立整理得解得所以即则的取值范围为故答案为:【点睛】方法点睛:设利解析:(1,2]. 【分析】设23m n t =+,方程化简为221523m n t t --=⨯⨯,得到2210t t -->,再结合基本不等式,得到23440t t --≤,根据一元二次不等式不等式的解法,即可求解. 【详解】 设23m n t =+,因为242329231m m n n m n ⨯-⋅+⨯=++,可得221523m n t t --=⨯⨯, 所以2210t t -->,解得1t >或12t <-, 又由222235215235()24m n mnt t t +--=⨯⨯≤⨯=, 当且仅当23m n =时,即0m n ==时等号成立,整理得23440t t --≤,解得223t -≤≤, 所以12t <≤,即则23m n +的取值范围为(1,2].故答案为:(1,2]. 【点睛】方法点睛:设23m n t =+,利用换元法把方程化简为221523m n t t --=⨯⨯,根据指数函数的性质和基本不等式,得出不等式2210t t -->和23440t t --≤是解答的关键.14.【分析】利用1的替换求出的最小值再解不等式即可【详解】因为当且仅当即时等号成立所以解得故答案为:【点睛】本题主要考查基本不等式求最值涉及到解一元二次不等式是一道中档题解析:3,32⎡⎤-⎢⎥⎣⎦【分析】利用“1”的替换求出2x y +的最小值92,再解不等式23922m m -≤即可.【详解】 因为121122192()(2)(5)(54)2222y x x y x y x y x y +=++=++≥+=,当且仅当22y x x y=, 即32x y ==时等号成立,所以23922m m -≤,解得332m -≤≤.故答案为:3,32⎡⎤-⎢⎥⎣⎦【点睛】本题主要考查基本不等式求最值,涉及到解一元二次不等式,是一道中档题.15.【分析】先将问题转化为恒成立再结合基本不等式求解即可得答案【详解】解:根据题意若恒成立等价于恒成立由于当且仅当即时等号成立所以故答案为:【点睛】本题考查利用基本不等式解决恒成立问题是基础题 解析:(],12-∞【分析】先将问题转化为()313a b m a b ⎛⎫++≥ ⎪⎝⎭恒成立,再结合基本不等式求解即可得答案.【详解】解:根据题意,0,0a b >>,若313m a b a b +≥+恒成立等价于()313a b m a b ⎛⎫++≥ ⎪⎝⎭恒成立,由于0,0a b >>,()31993336612b a a b a b a b a b a b ⎛⎫++=+++=++≥+= ⎪⎝⎭, 当且仅当9b aa b=,即3a b =时等号成立. 所以12m ≤ 故答案为:(],12-∞ 【点睛】本题考查利用基本不等式解决恒成立问题,是基础题.16.【解析】分析:画出不等式组表示的平面区域因为直线的斜率为由可得因为直线的斜率为-1所以当直线过点时取得最小值1可得利用基本不等式可得详解:画出不等式组表示的平面区域为及其内部如图由可得点当直线过点时解析:【解析】分析:画出不等式组表示的平面区域,因为直线(0)z ax by a b =+>>的斜率为a kb =-,由0a b >>可得10ak b-<=-<,因为直线40x y +-=的斜率为-1,所以当直线z ax by =+过点(1,1)B 时,取得最小值1.可得1a b +=.282828()()10b a a b a b a b a b+=++=++,利用基本不等式可得2828281010218b a b a a b a b a b+=++≥+⨯=. 详解:画出不等式组表示的平面区域为ABC ∆及其内部,如图. 由10y x y -=⎧⎨-=⎩ 可得点(1,1)B .当直线z ax by =+过点(1,1)B 时,取得最小值1.所以1a b +=. 所以28282828()()1010218b a b a a b a b a b a b a b+=++=++≥+⨯=. 当且仅当2810,0b aa b a b a b ⎧=⎪⎪+=⎨⎪>>⎪⎩即12,33a b ==时,上式取“=”号.所以28a b+的最小值为18. 点睛:⑴ 线性规划问题应先画出平面区域,求(0)z ax by a b =+>>的最值时,当0b >时,直线z ax by =+越向上平移,z 取值越大;当0b <时,直线z ax by =+越向上平移,z 取值越小;⑵ 用基本不等式求最值时,和定积最大,积定和最小.若,a b m m +=为常数,则111111()()(2)b aa b a b m a b m a b+=++=++,然后利用基本不等式求最值即可. 17.【解析】试题分析:因故又因为因故即所以故应填答案考点:基本不等式的运用【易错点晴】基本不等式是高中数学中的重要内容和解答数学问题的重要工具之一本题设置的目的是考查基本不等式的灵活运用和灵活运用所学知 解析:()8,1,+∞【解析】试题分析:因20x y xy +-=,故,又因为.因,故,即,所以.故应填答案.8,1y >.考点:基本不等式的运用.【易错点晴】基本不等式是高中数学中的重要内容和解答数学问题的重要工具之一.本题设置的目的是考查基本不等式的灵活运用和灵活运用所学知识去分析问题解决问题的能力.求解时先将已知20x y xy +-=,变形为,然后将其代入可得,最后达到获解之目的.关于的范围问题,则借助题设条件,推得,解之得.18.【分析】首先根据平面向量的线性运算表示出再根据向量相等得到最后利用基本不等式计算可得;【详解】解:因为DE 分别为ABAC 的中点所以又所以由所以当且仅当时取等号;故答案为:【点睛】本题考查平面向量基本 解析:116【分析】首先根据平面向量的线性运算表示出()11122AF t AB AC =-+,再根据向量相等得到12x y +=,最后利用基本不等式计算可得;【详解】解:因为D 、E 分别为AB 、AC 的中点,DF tDE =, 所以()12AF AD DF AD tDE AB t AE AD =+=+=+- ()11111122222AB t AC AB t AB AC ⎛⎫=+-=-+ ⎪⎝⎭ 又AF x AB y AC =+,所以()11212x t y t ⎧=-⎪⎪⎨⎪=⎪⎩,由12x y +=所以21216x y xy +⎛⎫≤= ⎪⎝⎭,当且仅当14x y ==时取等号; 故答案为:116【点睛】本题考查平面向量基本定理的应用,以及基本不等式的应用,属于中档题.19.【分析】由题中定义得出作差变形后得出对任意的恒成立结合得出由此可求得实数的取值范围【详解】因为函数是距增函数所以恒成立由所以因此实数的取值范围是故答案为:【点睛】本题考查函数新定义考查二次不等式恒成解析:(1,)+∞【分析】由题中定义得出()()f x a f x +>,作差变形后得出22313304ax a x a a ++->对任意的x ∈R 恒成立,结合0a >得出∆<0,由此可求得实数a 的取值范围. 【详解】()()()()332231114433444f x a f x x a x a x x ax a x a a ⎡⎤⎛⎫+-=+-++--+=++- ⎪⎢⎥⎣⎦⎝⎭,因为函数()y f x =是“a 距”增函数,所以22313304ax a x a a ++->恒成立, 由0a >,所以2210912014a a a ⎛⎫∆<⇒--<⇒> ⎪⎝⎭. 因此,实数a 的取值范围是()1,+∞. 故答案为:()1,+∞. 【点睛】本题考查函数新定义,考查二次不等式恒成立问题,考查运算求解能力,属于中等题.20.4【分析】先求出定点的坐标由题得再利用基本不等式求的最小值得解【详解】令所以定点的坐标为所以所以当且仅当时取等号所以的最小值为4故答案为:4【点睛】本题主要考查指数型函数的定点问题考查基本不等式求最解析:4 【分析】先求出定点P 的坐标,由题得22A B +=,再利用基本不等式求12A B+的最小值得解. 【详解】令020,2,451x x y a +=∴=-∴=⨯-=-,所以定点P 的坐标为(2,1)--. 所以(2)20,22,0,0,0A B A B A B A B ⨯--+=∴+=⋅>∴>>.所以12112141(2)()(4)[44222A B A B A B A B B A +=⨯+⨯+=++≥+=. 当且仅当1,12A B ==时取“等号”. 所以12A B +的最小值为4. 故答案为:4 【点睛】本题主要考查指数型函数的定点问题,考查基本不等式求最值,意在考查学生对这些知识的理解掌握水平.三、解答题21.(1)5{|5}3x x -≤≤;(2) 5a ≤. 【解析】试题分析:(1) 零点分段法去绝对值,将()f x 表示成分段函数,由此解得解集为55,3⎡⎤-⎢⎥⎣⎦;(2)原不等式等价于23x x a -++≥恒成立.左边()23235x x x x -++≥--+=,故5a ≤.(1)1.当0x ≤时,()22322350f x x x x x x =--+=-++=+≥ 解得50x -≤≤2.当2x ≥时,()22322310f x x x x x x =--+=--+=-+≥ 解得无解3.当02x <<时,()223223350f x x x x x x =--+=--+=-+≥ 解得503x <≤综上可知不等式解集5{|5}3x x -≤≤(2)()3f x a x ≥-恒成立,即()23f x x x a =-++≥恒成立()23235x x x x -++≥--+=,故有5a ≤.22.在35x y =⎧⎨=⎩时,取得最小值min 9z =-,在31x y =⎧⎨=⎩时,取得最大值max 3z =.【分析】作出可行域,作出目标函数对应的直线,平移直线可得最优解. 【详解】作出可行域,如图ABC 内部(含边界),由2=030x y x -+⎧⎨-=⎩得()3A ,5,由+4=030x y x -⎧⎨-=⎩得()31B ,,由2=0+40x y x y -+⎧⎨-=⎩得()13C ,,作直线:230l x y -=,向上平移直线l ,z 减小,当l 过点()3A ,5时,z 取得最小值23359⨯-⨯=-;向下平移直线l ,z 增大,当l 过点()31B ,时,z 取得最大值23313⨯-⨯=;所以目标函数23z x y =-在35x y =⎧⎨=⎩时,取得最小值min 9z =-,在31x y =⎧⎨=⎩时,取得最大值max 3z =.【点睛】本题考查简单的线性规划问题,解题方法是作出可行域,作出线性目标函数对应的直线,平移直线求得最优解,如果目标函数不是线性的,则可根据其几何意义求解,如直线的斜率、两点间的距离等,属于中档题.23.(1)[]23,-;(2)92. 【分析】(1)将()f x 解析式中绝对值符号去掉,求得分段函数解析式;再在每一段中求得()5f x ≤时的解集;从而得出答案;(2)先由(1)求出()f x 的最小值3m =,所以得1a b +=;再将212a b+构造成符合基本不等式的形式,从而求其最小值. 【详解】解:(1)21,1()213,1221,2x x f x x x x x x -+≤⎧⎪=-++=-<<⎨⎪-≥⎩,()5f x ≤等价于1,215x x ≤-⎧⎨-+≤⎩或1235x -<<⎧⎨≤⎩或2215x x ≥⎧⎨-≤⎩,解得21x -≤≤-或12x -<<或23x ≤≤.故不等式()5f x ≤的解集为[]23,-. (2)由(1)可知3m =,则1a b +=,则21212559()2222222b a a b a b a b a b ⎛⎫+=++=++≥+= ⎪⎝⎭(当23a =,13b =时,等号成立). 故212a b +最小值为92. 【点睛】本题主要考查分段函数和基本不等式的相关性质,考查运算求解能力,属于基础题型. 24.(1)证明见解析;(2)1.【分析】(1)对不等式两边式子作差,分解因式,判断作差的结果的符号,可得证.(2)根据2a b ab +=,可得2ab a b =+≥1,进而求得1≥ab ,注意等号成立的条件,得到结果. 【详解】证明:(1)∵()()222223220a b b a b a ab b a b +-+=-+=-≥, ∴()2232a b b a b +≥+.(2)∵0a >,0b >,∴2ab a b =+≥2ab ≥ ∴1≥,∴1≥ab .当且仅当1a b ==时取等号,此时ab 取最小值1. 【点睛】该题主要是考查不等式的证明和运用基本不等式求最值,在证明不等式时,可以运用综合法也可以运用分析法,一般的比较大小的最重要的方法就是作差法,然后结合综合法和分析法来一起证明,属于中档题.25.(1)证明见解析;(2)12x x >;(3)答案见解析 【分析】 (1)取yy x x=⋅,代入已知等式即可证得结果; (2)由()()12f x f x <,结合(1)中等式()()y f f y f x x ⎛⎫=-⎪⎝⎭,得到120x f x ⎛⎫< ⎪⎝⎭,再根据当且仅当1x >时,()0f x <成立得到121x x >,从而得到12x x >; (3)在已知等式中取特值1x y ==求出()10f =,由(2)可知函数f (x )在定义域()0,∞+上是减函数,在不等式()2110f x a x a ⎡⎤-+++>⎣⎦中,用()1f 替换0后利用函数的单调性脱掉“f ”,则不等式的解集可求. 【详解】(1)证明:∵()()()f xy f x f y =+,∴()()y f f x f y x ⎛⎫+=⎪⎝⎭, ∴()()y f f y f x x ⎛⎫=-⎪⎝⎭; (2)解:∵()()12f x f x <,∴()()120f x f x -<,又()()11220x f f x f x x ⎛⎫=-< ⎪⎝⎭,所以120x f x ⎛⎫< ⎪⎝⎭,∵当且仅当1x >时,()0f x <成立,∴当()0f x <时,1x >,∴121x x >,12x x >; (3)解:1x y ==代入()()()f xy f x f y =+得()()()111f f f =+,即()10f =, ∴()2110f x a x a ⎡⎤-+++>⎣⎦可得()()2111f x a x a f ⎡⎤-+++>⎣⎦,由(2)可知函数()f x 在定义域()0,∞+上是减函数,∴()20111x a x a <-+++<,当13a -<<时,()()22141230a a a a ∆=+-+=--<, 所以()2110x a x a -+++>恒成立;故只需满足()2111x a x a -+++<即()210x a x a -++<成立即可;即()()10x a x --<.当11a -<<时,1<<a x ;当1a =时,x ∈∅; 当13a <<时,1x a <<;综上可得:当11a -<<时,(),1x a ∈;当1a =时,x ∈∅;当13a <<时,()1,x a ∈ 【点睛】本题考查了函数单调性的定义,考查了含参一元二次不等式的求解.本题的关键是由已知不等式结合函数的单调性得含有参数的不等式.26.(1)25-;(2)6⎛⎫-∞ ⎪ ⎪⎝⎭,-. 【分析】(1)由不等式的解集为{}32x x x <->-或知0k <,且3-,2-是方程2260kx x k -+=的两根,代入可解.(2)不等式的解集为R ,知二次函数图像恒在x 轴下方,则利用0k <且24240k ∆=-<可解【详解】(1)∵不等式的解集为{}32x x x <->-或 ∴3-,2-是方程2260kx x k -+=的两根,且0k < ∴25k =-(2)∵不等式的解集为R ∴0k <且24240k ∆=-<∴k <∴k 的取值范围是(6-∞,- 【点睛】解含参数的一元二次不等式时分类讨论的依据(1)二次项中若含有参数应讨论是等于0,小于0,还是大于0,然后将不等式转化为一次不等式或二次项系数为正的形式.(2)当不等式对应方程的实根的个数不确定时,讨论判别式 与0的关系.(3)确定无实根时可直接写出解集,确定方程有两个实根时,要讨论两实根的大小关系,从而确定解集形式.。
(典型题)高中数学必修五第三章《不等式》测试卷(答案解析)

一、选择题1.若实数x ,y 满足约束条件220103x y x y x y +-≥⎧⎪--≥⎨⎪+≤⎩,则()222x y +-的最小值为( )A .12B .45C .92D .4192.已知正数a 、b 满足1a b +=,则411a ba b+--的最小值是( ) A .1B .2C .4D .83.已知实数x ,y 满足221x y x m-≤-≤⎧⎨≤≤⎩且2z y x =-的最小值为-6,则实数m 的值为( ). A .2 B .3 C .4 D .8 4.设,x y 满足24122x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩,则z x y =+的最小值是( )A .7-B .2C .3D .5-5.已知实数,x y 满足24240x y x y y -≥⎧⎪+≤⎨⎪≤⎩,则32z x y =-的最小值是 ( )A .4B .5C .6D .7 6.当0x >时,不等式290x mx -+>恒成立,则实数m 的取值范围是( )A .(6)∞-,B .(6]∞-,C .[6)∞,+D .(6)∞,+7.若正实数a b c 、、满足22ab bc ac a ++=-,则2a b c ++的最小值为( )A .2B .1CD .8.已知函数()32f x x ax bx c =+++,且()()()01233f f f <-=-=-≤,则( ) A .c 3≤ B .3c 6<≤ C .6c 9<≤D .c 9>9.设x ,y 满足约束条件261322x y x y y -≤⎧⎪⎪+≥⎨⎪≤⎪⎩,则1z x y =-+的最小值是( )A .1-B .0C .1D .210.对于任意实数a ,b ,若a >b ,则下列不等式一定成立的是( )A .11a b< B .a 2>b 2 C .a 3>b 3 D .a b b a> 11.设变量,x y 、满足约束条件236y x x y y x ≤⎧⎪+≥⎨⎪≥-⎩,则目标函数2z x y =+的最大值为( )A .2B .3C .4D .912.已知正数a ,b 满足2a b +=,则2238a b ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭的最小值为( ) A .36B .42C .49D .60二、填空题13.若实数a ,b 满足22221a b +=,则22141a b ++的最小值为___________. 14.若0x >,0y >,若()()144x y --=则x y +的最小值为_________. 15.若正数,x y 满足113122x y xy++=,则xy 的最小值为_________. 16.若x ,y 满足约束条件0202x y x y y -≤⎧⎪-≥⎨⎪⎩,则32z x y =+的最大值是_________.17.若关于x 的不等式()0f x <和()0g x <的解集分别为(),a b 和11,b a ⎛⎫⎪⎝⎭,则称这两个不等式为“对偶不等式”.若不等式()2220x x θ-+<和不等式()224sin 210x x θ++<为“对偶不等式”,且,2πθπ⎛⎫∈ ⎪⎝⎭,则θ=______.18.已知实数,x y 满足40{1010x y x y +-≤-≥-≥,则x yx+的取值范围是__________. 19.已知实数,x y 满足不等式组201030y x y x y -≤⎧⎪--≤⎨⎪+-≥⎩,则yx 的取值范围为__________.20.已知函数245x y a +=-(0a >,且1a ≠)的图像横过定点P ,若点P 在直线20Ax By ++=上,且0AB >,则12A B+的最小值为_________. 三、解答题21.已知定义域为R 的函数()22x xb n f x b +=--是奇函数,且指数函数xy b =的图象过点(2,4).(Ⅰ)求()f x 的表达式;(Ⅱ)若方程()23()0f x x f a x ++-+=,(4,)x ∈-+∞恰有2个互异的实数根,求实数a 的取值集合;(Ⅲ)若对任意的[1,1]t ∈-,不等式()22(1)0f t a f at -+-≥恒成立,求实数a 的取值范围.22.已知函数2()(21)f x ax a x c =-++,且(0)2f =. (1)若()0f x <的解集为{|28}x x <<,求函数()f x y x=的值域; (2)当0a >时,解不等式()0f x <.23.为摆脱美国政府针对中国高科技企业的封锁,加强自主性,某企业计划加大对芯片研发部的投入.据了解,该企业研发部原有100名技术人员,年人均投入a 万元,现把原有技术人员分成两部分:技术人员和研发人员,其中技术人员x 名(x ∈N 且4575x ≤≤),调整后研发人员的年人均投入增加()4%x ,技术人员的年人均投入调整为225x a m ⎛⎫- ⎪⎝⎭万元.(1)要使这100x -名研发人员的年总投入不低于调整前100名技术人员的年总投入,求调整后的技术人员的人数最多多少人?(2)是否存在这样的实数m ,使得技术人员在已知范围内调整后,同时满足以下两个条件:①技术人员的年人均投入始终不减少;②研发人员的年总投入始终不低于技术人员的年总投入.若存在,求出m 的范围;若不存在,说明理由.24.设矩形ABCD 的周长为20,其中AB AD >,如图所示,把它沿对角线AC 对折后,AB 交DC 于点P .设AD x =,DP y =.(1)将y 表示成x 的函数,并求定义域; (2)求ADP △面积的最大值.25.新冠肺炎疫情造成医用防护服短缺,某地政府决定为防护服生产企业A 公司扩大生产提供([0,10])∈x x (万元)的专项补贴,并以每套80元的价格收购其生产的全部防护服.A 公司在收到政府x (万元)补贴后,防护服产量将增加到1264t k x ⎛⎫=⋅-⎪+⎝⎭(万件),其中k 为工厂工人的复工率([0.5,1]k ∈).A 公司生产t 万件防护服还需投入成本(20950)x t ++(万元).(1)将A 公司生产防护服的利润y (万元)表示为补贴x (万元)的函数(政府补贴x 万元计入公司收入);(2)在复工率为k 时,政府补贴多少万元才能使A 公司的防护服利润达到最大? (3)对任意的[0,10]x ∈(万元),当复工率k 达到多少时,A 公司才能不产生亏损?(精确到0.01).26.已知a >0,b >0,a +b =3. (1)求11+2+a b的最小值; (2)证明:92+a b b aab【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】作出可行域,利用()222x y +-的几何意义:表示可行域内点(,)x y 与定点(0,2)的距离的平方.可求得最小值. 【详解】作出可行域,如图ABC 内部(含边界),()222x y +-表示可行域内点(,)P x y 与定点(0,2)M 的距离的平方,由图可知min0213222PM--==,(点M 到直线BC 的距离) ∴()222x y +-的最小值是232922⎛⎫= ⎪ ⎪⎝⎭. 故选:C .【点睛】思路点睛:本题考查求简单的线性规划的非线性目标函数的最值.作出可行域是解题的基础.对非线性目标函数,常常利用其几何意义求解,主要有两种类型:(1)22()()x a y b -+-,两点间的距离公式;(2)y bx a--:两点连线斜率, 2.C解析:C 【分析】 化简得出441511a b a b b a +=+---,将代数式14a b+与+a b 相乘,展开后利用基本不等式可求得411a b a b +--的最小值. 【详解】已知正数a 、b 满足1a b +=,则()414141511b a ba ab b a b a--+=+=+---()41454a b a b b a b a ⎛⎫=++-=+≥= ⎪⎝⎭,当且仅当2b a =时,等号成立,因此,411a ba b +--的最小值是4. 故选:C. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.3.C解析:C 【分析】作出不等式组221x y x m -≤-≤⎧⎨≤≤⎩对应的区域,利用数形结合平移直线即可得到结论 .【详解】由题意可作图:当2z y x =-经过点P 时,z 取最小值6,此时P 符合:2x my x =⎧⎨=-⎩,即(,2)P m m -代入2z y x =-得:m -2-2m =-6,解得m =4 故选:C 【点睛】简单线性规划问题的解题步骤: (1)画出可行域;(2)作出目标函数所表示的某条直线(通常选作过原点的直线),移动此直线并观察此直线经过可行域的哪个(些)点时,函数有最大(小)值; (3)求(写)出最优解和相应的最大(小)值; (4)下结论.4.B解析:B 【分析】由约束条件可得可行域,将问题转化为y x z =-+在y 轴截距最小值的求解问题,利用数形结合的方法可得到结果. 【详解】由约束条件可得可行域如下图阴影部分所示:由z x y =+得:y x z =-+,当z 取最小值时,y x z =-+在y 轴截距最小, 由图象可知:当y x z =-+过A 时,在y 轴截距最小, 又()2,0A ,min 202z ∴=+=. 故选:B. 【点睛】方法点睛:线性规划问题中,通常有三种类型的最值或取值范围问题: (1)截距型:形如z ax by =+的形式,转化为a zy x b b=-+,将问题转化为直线在y 轴截距的求解问题;(2)斜率型:形如cy d z ax b+=+的形式,转化为d y c c b a x a+⋅+,将问题转化为(),x y 与,b d a c ⎛⎫-- ⎪⎝⎭连线斜率的求解问题; (3)距离型:形如z Ax By C =++的形式,转化为2222Ax By C z A B A B ++=++题转化为(),x y 到直线0Ax By C ++=的距离的求解问题.5.C解析:C 【分析】由约束条件画出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组得到最优解的坐标,代入目标函数得到答案. 【详解】由实数x,y满足2424x yx yy-≥⎧⎪+≤⎨⎪≤⎩得到可行域如图:z=3x﹣2y变形为y=32x﹣2z,由24yx y=⎧⎨-=⎩,解得B(2,0)当此直线经过图中B时,在y轴的截距最大,z最小,所以z的最小值为3×2﹣2×0=6;故选C.【点睛】本题主要考查线性规划中利用可行域求目标函数的最值,求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.6.A解析:A【分析】当x>0时,不等式x2﹣mx+9>0恒成立⇔m<(x9x+)min,利用基本不等式可求得(x9x+)min=6,从而可得实数m的取值范围.【详解】当x>0时,不等式x2﹣mx+9>0恒成立⇔当x>0时,不等式m<x9x+恒成立⇔m<(x9x+)min,当x>0时,x9x+≥9xx⋅=6(当且仅当x=3时取“=”),因此(x9x+)min=6,所以m<6,故选A.【点睛】本题考查函数恒成立问题,分离参数m 是关键,考查等价转化思想与基本不等式的应用,属于中档题.7.D解析:D 【解析】分析:根据基本不等式的性质求出2a+b+c 的最小值即可. 详解:由题得:因为a 2+ac+ab+bc=2, ∴(a+b )(a+c )=2,又a ,b ,c 均为正实数,∴2a+b+c=(a+b )+(a+c ), 当且仅当a+b=a+c 时,即b=c 取等号. 故选D.点睛:本题考查了绝对值的意义,考查基本不等式的性质,是一道基础题.8.C解析:C 【分析】由()()()123f f f -=-=-可求得a b ,的值,代回不等关系得出c 的取值范围 【详解】由()()()123f f f -=-=-可得184********a b c a b ca b c a b c -+-+=-+-+⎧⎨-+-+=-+-+⎩解得611a b =⎧⎨=⎩则()32611f x x x x c =+++ 所以()16f c -=-,()013f <-≤所以0c 63-≤<,解得6c 9≤<, 故选C . 【点睛】本题主要考查了函数的性质,运用待定系数法求出参量的值,然后结合题意求出取值范围,较为基础.9.C解析:C 【分析】作出约束条件所表示的平面区域,结合图象确定目标函数的最优解,代入求解,即可得到答案. 【详解】作出x,y满足约束条件261322x yx yy-≤⎧⎪⎪+≥⎨⎪≤⎪⎩,所对应的可行域,如图所示,目标函数1z x y=-+可化为1y x z=+-,当直线1y x z=+-过点A时,此时直线在y轴上的截距最大值,此时目标函数取得最小值,又由2132yx y=⎧⎪⎨+=⎪⎩,解得(2,2)A,所以目标函数的最小值为min2211z=-+=.故选:C.【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.10.C解析:C【解析】根据题意,依次分析选项:对于A,当2a=,2b=-时,11a b>,故A错误;对于B,当1a=,2b=-时,22a b<,故B错误;对于C,由不等式的性质可得C正确;对于D,当1a=,1b=-时,a bb a=,故D错误;故选C.11.D解析:D【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,把最优解的坐标代入目标函数得结论.【详解】画出满足约束条件236y x x y y x ≤⎧⎪+≥⎨⎪≥-⎩的可行域,如图,画出可行域ABC ∆,(2,0)A ,(1,1)B ,(3,3)C , 平移直线2z x y =+,由图可知,直线2z x y =+经过(3,3)C 时 目标函数2z x y =+有最大值,2z x y =+的最大值为9.故选D. 【点睛】本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.12.C解析:C 【分析】由已知可得2294(3)(8)(4)(9)37b a b aa b a b a b++=++=++,然后结合基本不等式即可求解.【详解】解:因为正数a ,b 满足2a b +=,所以229494(3)(8)(4)(9)3737249b a b a b aa b a b a b a b++=++=+++=,当且仅当65a =,45b =时取等号. 故选:C . 【点睛】本题主要考查了利用基本不等式求解最值,属于基础题.二、填空题13.6【分析】由条件可得则由均值不等式可得答案【详解】实数满足即所以则当且仅当又即时取得等号故答案为:6【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的三个条件:(1)一正二定三相等一正就是各解析:6 【分析】由条件可得()22312a b ++=,则()222222142141131a b a b a b ⎛⎫⎡⎤+=⨯+++ ⎪⎣⎦++⎝⎭由均值不等式可得答案. 【详解】实数a ,b 满足22221a b +=,即2212a b +=,所以()22312a b ++=则()222222142141131a b a b a b ⎛⎫⎡⎤+=⨯+++ ⎪⎣⎦++⎝⎭()2222214221455463133b a a b ⎛⎛⎫+=⨯+++≥⨯+=⨯+= ⎪ +⎝⎭⎝ 当且仅当2222141b a a b +=+, 又2212a b +=,即22120a b ⎧=⎪⎨⎪=⎩ 时,取得等号. 故答案为:6 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方,这时改用勾型函数的单调性求最值.14.【分析】先整理已知条件得则再利用基本不等式求解即可【详解】由得又得则当且仅当即时取等号故答案为:9【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的三个条件:(1)一正二定三相等一正就是各项解析:【分析】 先整理已知条件得411y x +=,则()41y x x y x y +⎛⎫+=+ ⎪⎝⎭,再利用基本不等式求解即可. 【详解】由()()144x y --=, 得40xy x y --=, 又0x >,0y >, 得411y x+=,则()455941x y x y x y y x x y +⎛⎫+=+=++≥+=⎪⎝⎭,当且仅当4x yy x=即3,6x y ==时取等号. 故答案为:9. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.15.【分析】将化为后利用基本不等式得再解一元二次不等式可得结果【详解】由得因为所以当且仅当时等号成立所以所以所以或所以或(舍)所以即的最小值为故答案为:【点睛】易错点睛:利用基本不等式求最值时要注意其必解析:92【分析】将113122x y xy++=化为232y x xy ++=后,利用基本不等式得23xy -≥一元二次不等式可得结果. 【详解】 由113122x y xy++=得232y x xy ++=,因为0,0x y >>,所以232xy y x -=+≥2y x =时,等号成立.所以2302≥,所以2)22≥2-≥2≤,2≥2≤-(舍),所以92xy ≥,即xy 的最小值为92. 故答案为:92. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方16.10【分析】作出不等式组对于的平面区域利用数形结合即可得到结论【详解】解:作出不等式组对于的平面区域如图:由则平移直线由图象可知当直线经过点时直线在轴上的截距最大此时最大由解得此时故答案为:10【点解析:10 【分析】作出不等式组对于的平面区域,利用数形结合即可得到结论. 【详解】解:作出不等式组对于的平面区域如图: 由32z x y =+,则322z y x =-+, 平移直线322zy x =-+, 由图象可知当直线322zy x =-+, 经过点A 时,直线322z y x =-+, 在y 轴上的截距最大,此时z 最大,由2y x y =⎧⎨-=⎩,解得(2,2)A ,此时322210max z =⨯+⨯=, 故答案为:10.【点睛】本题主要考查线性规划的应用,利用z 的几何意义,利用数形结合是解决本题的关键.17.【分析】由对偶不等式的定义结合一元二次不等式与一元二次方程的关系以及韦达定理可得化简得即可得解【详解】设不等式和不等式的解集分别为和则为方程的两个根为方程的两个根由韦达定理得所以即又所以所以即故答案 解析:56π 【分析】由对偶不等式的定义结合一元二次不等式与一元二次方程的关系以及韦达定理可得432a b θ+=,2ab =,112sin 2a b θ+=-,1112a b ⋅=,化简得tan 23θ=即可得解. 【详解】设不等式()243220x x θ-+<和不等式()224sin 210x x θ++<的解集分别为(),a b 和11,b a⎛⎫ ⎪⎝⎭, 则a ,b 为方程()243220x x θ-+=的两个根,1a ,1b为方程()224sin 210x x θ++=的两个根, 由韦达定理得432a b θ+=,2ab =,112sin 2a b θ+=-,1112a b ⋅=, 43cos 22sin 2θθ=-即tan 23θ= 又 ,2πθπ⎛⎫∈⎪⎝⎭,所以()2,2θππ∈,所以523πθ=即56πθ=. 故答案为:56π. 【点睛】本题考查了一元二次不等式和一元二次方程之间的关系,考查了对于新概念的理解和三角函数的以值求角,属于中档题.18.【解析】先画出可行域如图:因为目标函数表示动点与定点连线斜率再加1;由图可知;最小最大;联立可得即联立可得即故:∴所以:故答案为点睛:本题考查线性规划问题难点在于目标函数几何意义近年来高考线性规划问解析:4,43⎡⎤⎢⎥⎣⎦【解析】先画出可行域如图:因为目标函数表示动点()P x y ,与定点00O (,)连线斜率k 再加1; 由图可知;OC k 最小,OA k 最大;联立1{4x x y =+=,可得13x y ,即()1,3A ,联立1{4y x y =+=,可得31x y =⎧⎨=⎩,即()3,1C ,故:13OC k =,3OA k =,∴133OP k ≤≤,所以:041[4]03x y y u x x +-=+∈-=,,故答案为4,43⎡⎤⎢⎥⎣⎦. 点睛:本题考查线性规划问题,难点在于目标函数几何意义,近年来高考线性规划问题高考数学考试的热点,数形结合是数学思想的重要手段之一,是连接代数和几何的重要方法.随着要求数学知识从书本到实际生活的呼声不断升高,线性规划这一类新型数学应用问题要引起重视;①画可行域②明确目标函数几何意义,目标函数表示动点()P x y ,与定点()00O ,连线斜率k 再加1,③过O 做直线与可行域相交可计算出直线PO 斜率,从而得出所求目标函数范围.19.【分析】作出可行域表示与(00)连线的斜率结合图形求出斜率的最小值最大值即可求解【详解】如图不等式组表示的平面区域(包括边界)所以表示与(00)连线的斜率因为所以故【点睛】本题主要考查了简单的线性规解析:1,22⎡⎤⎢⎥⎣⎦【分析】 作出可行域,yx表示(),x y 与(0,0)连线的斜率,结合图形求出斜率的最小值,最大值即可求解. 【详解】如图,不等式组201030y x y x y -⎧⎪--⎨⎪+-⎩表示的平面区域ABC (包括边界),所以yx 表示(),x y 与(0,0)连线的斜率,因为()()1,22,1A B ,,所以122OA OB k k ==,,故1,22y x ⎡⎤∈⎢⎥⎣⎦.【点睛】本题主要考查了简单的线性规划问题,涉及斜率的几何意义,数形结合的思想,属于中档题.20.4【分析】先求出定点的坐标由题得再利用基本不等式求的最小值得解【详解】令所以定点的坐标为所以所以当且仅当时取等号所以的最小值为4故答案为:4【点睛】本题主要考查指数型函数的定点问题考查基本不等式求最解析:4 【分析】先求出定点P 的坐标,由题得22A B +=,再利用基本不等式求12A B+的最小值得解.【详解】令020,2,451x x y a +=∴=-∴=⨯-=-,所以定点P 的坐标为(2,1)--. 所以(2)20,22,0,0,0A B A B A B A B ⨯--+=∴+=⋅>∴>>.所以12112141(2)()(4)[44222A B A B A B A B B A +=⨯+⨯+=++≥+=. 当且仅当1,12A B ==时取“等号”. 所以12A B +的最小值为4. 故答案为:4 【点睛】本题主要考查指数型函数的定点问题,考查基本不等式求最值,意在考查学生对这些知识的理解掌握水平.三、解答题21.(Ⅰ)121()22x x f x +-+=+;(Ⅱ){}40a a -<<;(Ⅲ){}0a a ≥.【分析】(Ⅰ)先利用已知条件得到b 的值,再利用奇函数得到()00f =,进而得到n 的值,经检验即可得出结果;(Ⅱ)先利用指数函数的单调性判断()f x 的单调性,再利用奇偶性和单调性得到23x x a x +=-,把23x x a x +=-在(4,)x ∈-+∞恰有2个互异的实数根转化为()24f x x x a =+-在(4,)x ∈-+∞恰与x 轴有两个交点,求解即可;(Ⅲ)先利用函数()f x 为R 上的减函数且为奇函数,得到221t a at -≤-,把问题转化为2210t at a +--≤对任意的[1,1]t ∈-恒成立,令()221g t t at a =+--,利用二次函数的图像特点求解即可. 【详解】(Ⅰ)由指数函数xy b =的图象过点(2,4),得2b =,所以2()222x xnf x +=-⋅-, 又()f x 为R 上的奇函数, 所以()00f =, 得1n =-,经检验,当1n =-时,符合()()f x f x -=-,所以121()22x x f x +-+=+;(Ⅱ)12111()22221x x xf x +-+==-+++, 因为21xy =+在定义域内单调递增, 则121x y =+在定义域内单调递减, 所以()f x 在定义域内单调递增减, 由于()f x 为R 上的奇函数, 所以由()23()0f x x f a x ++-+=, 可得()()23()f x x f a x f a x +=--+=-,则23x x a x +=-在(4,)x ∈-+∞恰有2个互异的实数根, 即()24f x x x a =+-在(4,)x ∈-+∞恰与x 轴有两个交点,则()()4000440204f a a a f a ⎧-><⎧⎪⎪∆>⇒>-⇒-<<⎨⎨⎪⎪-<>-⎩⎩, 所以实数a 的取值集合为{}40a a -<<.(Ⅲ)由(Ⅱ)知函数()f x 为R 上的减函数且为奇函数,由()22(1)0f t a f at -+-≥,得()()221f ta f at -≥-,所以221t a at -≤-,即2210t at a +--≤对任意的[1,1]t ∈-恒成立, 令()221g t t at a =+--,由题意()()1010g g ⎧-≤⎪⎨≤⎪⎩,得0a ≥,所以实数a 的取值范围为:{}0a a ≥. 【点睛】关键点睛:利用函数的奇偶性求解析式,(Ⅱ)把问题转化为()24f x x x a =+-在(4,)x ∈-+∞恰与x 轴有两个交点的问题;(Ⅲ)把问题转化为2210t at a +--≤对任意的[1,1]t ∈-恒成立是解决本题的关键.22.(1)91,,44⎛⎤⎡⎫-∞-⋃-+∞ ⎪⎥⎢⎝⎦⎣⎭;(2)答案见解析.【分析】(1)由()0f x <的解集转化为2和8是方程2(21)20ax a x -++=的两根,求得18a =,得出()12584f x x x x =+-,再分0x >和0x <两种情况,结合基本不等式,即可求解; (2)由题意,得到(1)(2)0ax x --<,分类讨论,即可求得不等式的解集.【详解】(1)由题意,函数2()(21)f x ax a x c =-++,且(0)2f c ==,所以2()(21)2f x ax a x =-++,因为()0f x <的解集为{|28}x x <<,即2和8是方程2(21)20ax a x -++=的两根,所以228c a a ⨯==,所以18a =,所以()12584f x y x x x ==+-,当0x >时,125518444x x +-≥=-,当且仅当4x =时等号成立;当0x <时,12512559848444x x x x ⎡⎤⎛⎫⎛⎫+-=--+--≤-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 当且仅当4x =-时等号成立. 故函数()f x y x =的值域城为91,,44⎛⎤⎡⎫-∞-⋃-+∞ ⎪⎥⎢⎝⎦⎣⎭.(2)由2()(21)2(1)(2)0f x ax a x ax x =-++=--<,因为0a >时,分三种情况讨论: ①当12a <,即12a >时,1()02f x x a<⇒<<; ②当12a =,即12a =时,无解; ③当12a >,即102a <<时,1()02f x x a<⇒<<,综上所述,当12a >时,不等式()0f x <的解集为1|2x x a ⎧⎫<<⎨⎬⎩⎭; 当12a =时,不等式()0f x <的解集为∅; 当102a <<时,不等式()0f x <的解集为1|2x x a ⎧⎫<<⎨⎬⎩⎭. 【点睛】解含参数的一元二次不等式的步骤:(1)若二次项含有参数,应先讨论参数是等于0、小于0,还是大于0,然后整理不等式;(2)当二次项系数不为0时,讨论判别式与0的关系,判断方程的根的个数;(3)确定无根时可直接写出解集,确定方程有两个根时,要讨论两根的大小关系,从而确定解集的形式.23.(1)最多75人;(2)存在,{}7m ∈.【分析】(1)根据题意直接列出不等式可求解;(2)由①可得2125x m ≥+,由②可得100325x m x ≤++,分别利用函数单调性和基本不等式即可求解.【详解】(1)依题意可得调整后研发人员的年人均投入为()14%x a +⎡⎤⎣⎦万元,则()()10014%100x x a a -+≥⎡⎤⎣⎦,(0a >)解得075x ≤≤, 4575x ,所以调整后的技术人员的人数最多75人;(2)①由技术人员年人均投入不减少有225x a m a ⎛⎫-≥ ⎪⎝⎭,解得2125x m ≥+. ②由研发人员的年总投入始终不低于技术人员的年总投入有()()210014%25x x x a x m a ⎛⎫-+≥-⎡⎤ ⎪⎣⎦⎝⎭, 两边同除以ax 得1002112525x x m x ⎛⎫⎛⎫-+≥-⎪⎪⎝⎭⎝⎭, 整理得100325x m x ≤++, 故有2100132525x x m x +≤≤++,因为10033725x x ++≥=,当且仅当50x =时等号成立,所以7m ≤, 又因为4575x ≤≤,当75x =时,225x 取得最大值7,所以7m ≥, 77m ∴≤≤,即存在这样的m 满足条件,使得其范围为{}7m ∈.【点睛】本题考查不等式的应用,解题的关键是正确理解题中数量关系,建立正确的不等式,进而求解.24.(1)501010y x=--,(0,5)x ∈;(2)75-(1)由题意得10AB CD x ==-,则10CP x y =--,根据ADP Rt CBP ≌,可得DP BP y ==,所以222+(10)y x x y =--,化简整理,即可求得y 与x 的关系,根据AB AD >,即可求得x 的范围,即可得答案;(2)由(1)可得501010y x=--,(0,5)x ∈,则ADP △的面积12505(10)75210S xy x x ==-++-,根据x 的范围,结合基本不等式,即可求得答案. 【详解】(1)由题意得:10AB CD x ==-,则10CP x y =--,因为在Rt ADP 和Rt CBP 中,,APD CPB AD BC ∠==,所以ADP Rt CBP ≌,即DP BP y ==,所以在Rt CBP 中,222+(10)y x x y =--,所以2222+10020202y x x y x y xy =++--+, 化简可得501010y x=--, 因为AB AD >,所以100x x ->>,解得05x <<, 所以501010y x=--,(0,5)x ∈; (2)由(1)可得501010y x =--,(0,5)x ∈, 所以ADP △面积115025250(10)55(10)7522101010x S xy x x x x x x ==⋅-=-=-++---, 因为(0,5)x ∈,所以100x -<,所以2502505(10)[5(10)]1010x x x x -+=--+≤-=---当且仅当2505(10)10x x-=-,即10x =-时等号成立,此时面积250[5(10)]757510S x x =--++≤--即ADP △面积最大值为75-【点睛】解题的关键是根据条件,表示出各个边长,根据三角形全等,结合勾股定理,进行求解,易错点为:利用基本不等式求解时,需满足“①正”,“②定”,“③相等”,注意检验取等条件是否成立,考查分析理解,计算化简的能力,属中档题.25.(1)3601808204k y k x x =---+,[0,10]x ∈,[0.5,1]k ∈;(2)4-;(3)0.65(1)根据已知条件列出关系式,即可得出答案;(2)由()36045180820180128444k k y k x k x x x ⎡⎤=---=+-++⎢⎥++⎣⎦,进而结合基本不等式求出()4544k x x +++的最小值,此时y 取得最大值,从而可求出答案; (3)对任意的[0,10]x ∈(万元),A 公司都不产生亏损,可知36018082004k k x x ---≥+在[0,10]x ∈上恒成立,利用参变分离,可得()()20841802x x k x ++≥+,求出()()20842x x x +++的最大值,令()()max20841802x x k x ++⎡⎤≥⎢⎥+⎣⎦,即可得出答案. 【详解】(1)由题意,80(20950)y x t x t =+-++30820t x =--123068204k x x ⎛⎫=⋅--- ⎪+⎝⎭3601808204k k x x =---+, 即3601808204k y k x x =---+,[0,10]x ∈,[0.5,1]k ∈. (2)()36045180820180128444k k y k x k x x x ⎡⎤=---=+-++⎢⎥++⎣⎦, 因为[0,10]x ∈,所以4414x ≤+≤,所以()4544k x x ++≥=+4544k x x +=+,即4x =时,等号成立.所以()451801284180124k y k x k x ⎡⎤=+-++≤+-⎢⎥+⎣⎦故政府补贴为4万元才能使A 公司的防护服利润达到最大,最大为18012k +-.(3)对任意的[0,10]x ∈(万元),A 公司都不产生亏损,则36018082004k k x x ---≥+在[0,10]x ∈上恒成立,不等式整理得,()()20841802x x k x ++≥+, 令2m x =+,则[]2,12m ∈,则()()()()208484288202x x m m m x m m++++==+++,由函数()8820h m m m=++在[]2,12上单调递增,可得()()max 821281*********h m h ==⨯++=+, 所以21801163k ≥+,即211630.65180k +≥≈. 所以当复工率k 达到0.65时,对任意的[0,10]x ∈(万元),A 公司都不产生亏损.【点睛】本题考查函数模型及其应用,考查利用基本不等式求最值,考查不等式恒成立问题,考查学生分析问题、解决问题的能力,属于中档题.26.(1)45;(2)证明见解析 【分析】(1)由所给等式得()215a b ++=,再利用基本不等式即可求得最小值;(2)利用()2222a b a b ++≥即可逐步证明.【详解】 (1)3a b +=,()215a b ++∴=,且200a b +>>,, ∴()1111112++2225252b a a b a b a b a b +⎛⎫⎛⎫=++=++ ⎪ ⎪+++⎝⎭⎝⎭14255⎛≥+= ⎝,当且仅当2=2b a a b ++即1522a b ==,时等号成立, ∴11+2+a b 的最小值为45. (2)因为a >0,b >0,所以要证92+a b b a ab ,需证2292a b +≥, 因为()222239222a b a b ++≥==, 所以92+a b b aab ,当且仅当32a b ==时等号成立. 【点睛】 本题考查条件等式求最值、基本不等式的应用,属于中档题.。
新北师大版高中数学必修五第三章《不等式》测试题(含答案解析)

一、选择题1.已知实数x ,y 满足221x y x m -≤-≤⎧⎨≤≤⎩且2z y x =-的最小值为-6,则实数m 的值为( ). A .2B .3C .4D .82.实数x ,y 满足约束条件40250270x y x y x y +-≤⎧⎪-+≤⎨⎪-+≥⎩,则242x y z x +-=-的最大值为( )A .53-B .15-C .13D .953.已知实数,x y 满足条件202035x y x y x y -≥⎧⎪+≥⎨⎪+≤⎩,则2z x y =+的最大值是( )A .0B .3C .4D .54.设实数x ,y 满足约束条件21,22,x y x y -≤⎧⎨-≥⎩则x y +的最小值是( )A .2B .-2C .1D .-15.已知关于x 的不等式210x ax -+≥在区间[1,2]上有解,则实数a 的取值范围为( ) A .2a ≤B .2a ≥C .52a ≥D .52a ≤6.若正实数a b c 、、满足22ab bc ac a ++=-,则2a b c ++的最小值为( ) A .2B .1CD .7.已知α,β满足11123αβαβ-≤+≤⎧⎨≤+≤⎩,则3αβ+的取值范围是( )A .[1,7]B .[5,13]-C .[5,7]-D .[1,13]8.不等式112x x ->+的解集是( ). A .{}|2x x <-B .{}|21x x -<<C .{}|1x x <D .{}|x x ∈R9.已知实数x ,y 满足222y x x y x ≥⎧⎪+≤⎨⎪≥-⎩,3z x y =-,则z 的最小值是( )A .2-B .4-C .6-D .8-10.函数()21f x nx x =+- (0,)bx a b a R +>∈的图像在点()(),b f b 处的切线斜率的最小值是( )A.BC .1D .211.已知变量,x y 满足不等式组22003x y x y y +-≥⎧⎪-≤⎨⎪≤⎩,则2z x y =-的最大值为( )A .3-B .23-C .1D .212.若a ,b 是任意实数,且a >b ,则下列不等式成立的是( ) A .a 2>b 2B .1b a< C .lg(a -b )>0D .11()()33ab<二、填空题13.设点(),P x y 位于线性约束条件32102x y x y y x +≤⎧⎪-+≤⎨⎪≤⎩,所表示的区域内(含边界),则目标函数4z x y =-的最大值是_________.14.已知实数,x y 满足约束条件222,22x y x y x y -≤⎧⎪-≥-⎨⎪+≥⎩则2z x y =-的最大值为___.15.若x ,y ,z 满足约束条件4802400x y x y y --≤⎧⎪-+≥⎨⎪≤⎩,则z =__________.16.已知0a >,0b >,182+1a b +=,则2a b +的最小值为__________. 17.已知ABC 中,D 、E 分别为AB 、AC 的中点,DF tDE =,AF x AB y AC =+,则xy 的最大值为________.18.已知实数,x y 满足不等式组201030y x y x y -≤⎧⎪--≤⎨⎪+-≥⎩,则yx 的取值范围为__________.19.已知a >0,b >0,则p =2b a﹣a 与q =b ﹣2a b 的大小关系是_____.20.已知函数245x y a +=-(0a >,且1a ≠)的图像横过定点P ,若点P 在直线20Ax By ++=上,且0AB >,则12A B+的最小值为_________. 三、解答题21.选修4-5 不等式选讲已知函数f (x )=|x -1|-2|x +1|的最大值为m .(1)求m ;(2)若a ,b ,c ∈(0,+∞),a 2+2b 2+c 2=2m ,求ab +bc 的最大值. 22.已知关于x 的一元二次不等式2(3)30x m x m -++<. (Ⅰ)若不等式的解集为(2,3)-,求实数m 的值;(Ⅱ)若不等式的解集中恰有两个整数,求实数m 的取值范围. 23.已知函数()251f x x x =--+. (1)解不等式()3f x x <;(2)当[]1,2x ∈时,2()3f x ax x -+恒成立,求实数a 的取值范围.24.在平面直角坐标系中,圆C 是以(1,1)为圆心、半径为1的圆,过坐标原点O 的直线l 的斜率为k ,直线l 交圆C 于P ,Q 两点,点A(1)写出圆C 的标准方程; (2)求△APQ 面积的最大值.25.已知函数2()2,,f x x ax x R a R =-∈∈. (1)当1a =时,求满足()0f x <的x 的取值范围;(2)解关于x 的不等式2()3f x a <.26.已知a >0,b >0,a +b =3. (1)求11+2+a b的最小值; (2)证明:92+a b b aab【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】作出不等式组221x y x m-≤-≤⎧⎨≤≤⎩对应的区域,利用数形结合平移直线即可得到结论 .【详解】由题意可作图:当2z y x =-经过点P 时,z 取最小值6,此时P 符合:2x my x =⎧⎨=-⎩,即(,2)P m m -代入2z y x =-得:m -2-2m =-6,解得m =4 故选:C 【点睛】简单线性规划问题的解题步骤: (1)画出可行域;(2)作出目标函数所表示的某条直线(通常选作过原点的直线),移动此直线并观察此直线经过可行域的哪个(些)点时,函数有最大(小)值; (3)求(写)出最优解和相应的最大(小)值; (4)下结论.2.D解析:D 【分析】首先画出可行域,变形24222x y y z x x +-==+--,利用2yx -的几何意义求z 的最大值.【详解】24222x y yz x x +-==+--设2ym x =-,m 表示可行域内的点和()2,0D 连线的斜率, 4250x y x y +=⎧⎨-+=⎩,解得:1,3x y ==,即()1,3C ,250270x y x y -+=⎧⎨-+=⎩ ,解得:3,1x y =-=,即()3,1B -, 如图,101325BD k -==---,30312CD k -==--,所以m 的取值范围是13,5⎡⎤--⎢⎥⎣⎦,即z 的取值范围是91,5⎡⎤-⎢⎥⎣⎦,z 的最大值是95.故选:D 【点睛】关键点点睛:本题的关键是变形242x y z x +-=-,并理解z 的几何意义,利用数形结合分析问题.3.C解析:C 【分析】画出满足条件的目标区域,将目标函数化为斜截式2y x z =-+,由直线方程可知,要使z 最大,则直线2y x z =-+的截距要最大,结合可行域可知当直线2y x z =-+过点A 时截距最大,因此,解出A 点坐标,代入目标函数,即可得到最大值. 【详解】画出满足约束条件202035x y x y x y -≥⎧⎪+≥⎨⎪+≤⎩的目标区域,如图所示:由2z x y =+,得2y x z =-+,要使z 最大,则直线2y x z =-+的截距要最大,由图可知,当直线2y x z =-+过点A 时截距最大,联立20350x y x y -=⎧⎨+-=⎩,解得(1,2)A , 所以2z x y =+的最大值为:1224⨯+=, 故选::C. 【点睛】方法点睛:求目标函数最值的一般步骤是“一画、二移、三求”: (1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.4.C解析:C 【分析】先作出约束条件对应的可行域,然后分析目标函数的几何意义,结合图形即可求解. 【详解】作出约束条件2122x y x y -≤⎧⎨-≥⎩所表示的平面区域如图所示:移动直线x y z +=,可知当其过点A 时取得最小值, 解方程组2122x y x y -≤⎧⎨-≥⎩,求得1x y =⎧⎨=⎩,即(1,0)A ,代入求得101=+=z ,所以x y +的最小值是1, 故选:C. 【点睛】方法点睛:该题考查的是有关线性规划的问题,解题方法如下: (1)根据题中所给的约束条件画出可行域; (2)根据目标函数的意义找到最优解; (3)解方程组求得最优解的坐标; (4)代入求得最小值,得到结果.5.D解析:D 【分析】由题意得分离参数将不等式等价于不等式1a x x ≤+在区间[1,2]上有解,设()1f x x x =+,由函数()1f x x x=+在[1,2]上单调递增,可求得实数a 的取值范围.【详解】由题意得:关于x 的不等式210x ax -+≥在区间[1,2]上有解,等价于不等式1a x x≤+在区间[1,2]上有解,设()1f x x x =+,则函数()1f x x x =+在[1,2]上单调递增,所以()()(152)2f f f x ≤=≤,所以实数a 的取值范围为52a ≤, 故选:D. 【点睛】方法点睛:对于不等式有解的问题,常常有以下情况:()m f x >有解⇔()min m f x >,()m f x <有解⇔()max m f x <. 6.D解析:D 【解析】分析:根据基本不等式的性质求出2a+b+c 的最小值即可. 详解:由题得:因为a 2+ac+ab+bc=2, ∴(a+b )(a+c )=2,又a ,b ,c 均为正实数,∴2a+b+c=(a+b )+(a+c ), 当且仅当a+b=a+c 时,即b=c 取等号.故选D.点睛:本题考查了绝对值的意义,考查基本不等式的性质,是一道基础题.7.A解析:A【解析】分析:该问题是已知不等关系求范围的问题,可以用待定系数法来解决.详解:设α+3β=λ(α+β)+v(α+2β)=(λ+v)α+(λ+2v)β.比较α、β的系数,得123vvλλ+=⎧⎨+=⎩,从而解出λ=﹣1,v=2.分别由①、②得﹣1≤﹣α﹣β≤1,2≤2α+4β≤6,两式相加,得1≤α+3β≤7.故α+3β的取值范围是[1,7].故选A点睛:本题考查待定系数法,考查不等式的基本性质,属于基础题.8.A解析:A【解析】分析:首先对原式进行移项、通分得到32x->+,之后根据不等式的性质可得20x+<,从而求得不等式的解集.详解:将原不等式化为122x xx--->+,即32x->+,即32x<+,则有20x+<,解得2x<-,所以不等式12xx->+的解集为{}|2x x<-,故选A.点睛:该题是一道关于求不等式解集的题目,解答该题的关键是熟练掌握分式不等式的解法,属于简单题目.9.D解析:D【分析】根据约束条件画出可行域,将问题转化为133zy x=-在y轴截距最大值的求解问题,利用数形结合的方式可求得结果.【详解】由约束条件可得可行域如下图阴影部分所示:由3z x y =-得:133z y x =-, ∴当z 取最小值时,133zy x =-在y 轴截距最大;由图象可知,当133zy x =-过点A 时,在y 轴截距最大, 由222x x y =-⎧⎨+=⎩得:()2,2A -,min 2328z ∴=--⨯=-. 故选:D . 【点睛】本题考查线性规划中的最值问题的求解,关键是能够将所求最值转化为直线在y 轴截距的最值的求解问题,属于常考题型.10.D解析:D 【分析】先求导数,根据导数几何意义得切线斜率,再根据基本不等式求最值. 【详解】111()2()22f x x b k f b b b x b b''=+-∴==+≥⋅= ,当且仅当1b =时取等号,因此切线斜率的最小值是2,选D. 【点睛】利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化. 在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.11.B解析:B 【分析】画出不等式组表示的区域,将目标函数2z x y =-转化为22x zy =-,表示斜率为12截距为2z-平行直线系,当截距最小时,z 取最大值,由图即可求解. 【详解】解:画出不等式组表示的区域,如图中阴影部分所示:故将目标函数2z x y =-转化为22x z y =-, 表示斜率为12截距为2z -平行直线系, 所以当截距最小时,z 取最大值,由图可知,使得直线22x zy =-经过可行域且截距最小时的解为22,33C ⎛⎫ ⎪⎝⎭, 此时242333max z =-=-. 故选:B 【点睛】本题考查了线性规划的应用,注意将目标函数化成斜截式,从而由截距的最值确定目标函数的最值.12.D解析:D 【详解】试题分析:A 中1,2a b ==-不成立,B 中1,12a b =-=-不成立,C 中0,1a b ==-不成立,D 中由指数函数单调性可知是成立的二、填空题13.【分析】根据线性约束条件画出可行域将目标函数化为直线方程通过平移即可求得目标函数的最大值【详解】由题意作出可行域如图目标函数可化为上下平移直线数形结合可得当直线过点A 时z 取最大值由可得所以故答案为: 解析:163【分析】根据线性约束条件,画出可行域,将目标函数化为直线方程,通过平移即可求得目标函数的最大值.【详解】由题意作出可行域,如图,目标函数4z x y =-可化为4y x z =-,上下平移直线4y x z =-,数形结合可得,当直线过点A 时,z 取最大值,由2103x y x y -+=⎧⎨+=⎩,可得54,33A ⎛⎫ ⎪⎝⎭, 所以54164333max z =⨯-=. 故答案为:163. 【点睛】 方法点睛:求线性目标函数的在约束条件下的最值问题的求解步骤是:①作图,画出约束条件(不等式组)所确定的平面区域和目标函数所表示的平行直线系中的任意一条直线l ; ②平移,将l 平行移动,以确定最优解所对应的点的位置;③求值,解有关的方程组求出最优点的坐标,再代入目标函数,求出目标函数的最值.14.1【分析】作出不等式组对应的平面区域利用目标函数的几何意义进行求最值即可【详解】由z=x-2y 得作出不等式组对应的平面区域如图(阴影部分):平移直线的截距最小此时z 最大由得A (10)代入目标函数z=解析:1【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,进行求最值即可.【详解】由z=x-2y 得1122y x z =-,作出不等式组对应的平面区域如图(阴影部分): 平移直线1122y x z =-,,1122y x z =-,的截距最小, 此时z 最大, 由22 22x y x y -⎧⎨+⎩== ,得A (1,0). 代入目标函数z=x-2y ,得z=1-2×0=1,故答案为1.【点睛】本题主要考查线性规划的基本应用,利用目标函数的几何意义是解决问题的关键,利用数形结合是解决问题的基本方法. 15.【分析】画出满足条件的平面区域结合的几何意义以及点到直线的距离求出的最小值即可【详解】画出满足约束条件的平面区域如图所示:而的几何意义表示平面区域内的点到点的距离显然到直线的距离是最小值由得最小值是 解析:455【分析】画出满足条件的平面区域,结合22(4)z x y =++z 的最小值即可.【详解】画出x ,y ,z 满足约束条件4802400x y x y y --≤⎧⎪-+≥⎨⎪≤⎩,的平面区域,如图所示:而22(4)z x y =++()40-,的距离, 显然()40-,到直线240x y -+=的距离是最小值, 由8445541d -+==+,得最小值是55, 45. 【点睛】 本题主要考查了简单的线性规划问题,考查数形结合思想,属于中档题.16.8【解析】由题意可得:则的最小值为当且仅当时等号成立点睛:在应用基本不等式求最值时要把握不等式成立的三个条件就是一正——各项均为正;二定——积或和为定值;三相等——等号能否取得若忽略了某个条件就会出 解析:8【解析】由题意可得:()211182121116110211161102219,a b a b a b a b b a a b b a ++⎛⎫⎡⎤=++⨯+ ⎪⎣⎦+⎝⎭+⎛⎫=++ ⎪+⎝⎭⎛+≥+⨯ +⎝= 则2a b +的最小值为918-=. 当且仅当3,52a b ==时等号成立. 点睛:在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.17.【分析】首先根据平面向量的线性运算表示出再根据向量相等得到最后利用基本不等式计算可得;【详解】解:因为DE 分别为ABAC 的中点所以又所以由所以当且仅当时取等号;故答案为:【点睛】本题考查平面向量基本 解析:116【分析】 首先根据平面向量的线性运算表示出()11122AF t AB AC =-+,再根据向量相等得到12x y +=,最后利用基本不等式计算可得; 【详解】解:因为D 、E 分别为AB 、AC 的中点,DF tDE =, 所以()12AF AD DF AD tDE AB t AE AD =+=+=+- ()11111122222AB t AC AB t AB AC ⎛⎫=+-=-+ ⎪⎝⎭ 又AF x AB y AC =+,所以()11212x t y t ⎧=-⎪⎪⎨⎪=⎪⎩,由12x y += 所以21216x y xy +⎛⎫≤= ⎪⎝⎭,当且仅当14x y ==时取等号; 故答案为:116【点睛】本题考查平面向量基本定理的应用,以及基本不等式的应用,属于中档题. 18.【分析】作出可行域表示与(00)连线的斜率结合图形求出斜率的最小值最大值即可求解【详解】如图不等式组表示的平面区域(包括边界)所以表示与(00)连线的斜率因为所以故【点睛】本题主要考查了简单的线性规 解析:1,22⎡⎤⎢⎥⎣⎦【分析】 作出可行域,y x表示(),x y 与(0,0)连线的斜率,结合图形求出斜率的最小值,最大值即可求解.【详解】如图,不等式组201030y x y x y -⎧⎪--⎨⎪+-⎩表示的平面区域ABC (包括边界),所以y x 表示(),x y 与(0,0)连线的斜率,因为()()1,22,1A B ,,所以122OA OB k k ==,,故1,22y x ⎡⎤∈⎢⎥⎣⎦. 【点睛】本题主要考查了简单的线性规划问题,涉及斜率的几何意义,数形结合的思想,属于中档题. 19.【分析】由已知结合作差法进行变形后即可比较大小【详解】因为与所以时取等号所以故答案为:【点睛】本题主要考查了不等式大小的比较作差法的应用是求解问题的关键解析:p q【分析】由已知结合作差法进行变形后即可比较大小.【详解】因为0a >,0b >,2b p a a =-与2a qb b=-, 所以2222222()()()()0b a b a b a b a b a b a p q a b ab ba-----+-=-==,b a =时取等号, 所以p q .故答案为:p q .【点睛】本题主要考查了不等式大小的比较,作差法的应用是求解问题的关键.20.4【分析】先求出定点的坐标由题得再利用基本不等式求的最小值得解【详解】令所以定点的坐标为所以所以当且仅当时取等号所以的最小值为4故答案为:4【点睛】本题主要考查指数型函数的定点问题考查基本不等式求最 解析:4【分析】先求出定点P 的坐标,由题得22A B +=,再利用基本不等式求12A B+的最小值得解. 【详解】 令020,2,451x x y a +=∴=-∴=⨯-=-,所以定点P 的坐标为(2,1)--.所以(2)20,22,0,0,0A B A B A B A B ⨯--+=∴+=⋅>∴>>.所以12112141(2)()(4)[44222A B A B A B A B B A +=⨯+⨯+=++≥+=. 当且仅当1,12A B ==时取“等号”. 所以12A B+的最小值为4. 故答案为:4【点睛】本题主要考查指数型函数的定点问题,考查基本不等式求最值,意在考查学生对这些知识的理解掌握水平.三、解答题21.(1) m =2 (2) ab +bc 的最大值为2【解析】试题分析:(1)根据绝对值内的零点,分类讨论,去掉绝对值符号,求出函数的最大值,即可得到m .(2)利用重要不等式求解ab+bc 的最大值.(1)当x ≤-1时,f (x )=3+x ≤2;当-1<x <1时,f (x )=-1-3x <2;当x ≥1时,f (x )=-x -3≤-4.故当x =-1时,f (x )取得最大值2,即m =2.(2)因为a 2+2b 2+c 2=(a 2+b 2)+(b 2+c 2)≥2ab +2bc =2(ab +bc ),当且仅当a =b =c =1时取等号,所以ab +bc ≤22222a b c ++ =2,即ab +bc 的最大值为2. 22.(Ⅰ)2m =-;(Ⅱ)[0,1)(5,6]⋃.【分析】(1)根据不等式的解集为(2,3)-,得到关于x 的一元二次方程2(3)30x m x m -++=的两根分别为2-、3,代入方程求解即可.(2)将不等式2(3)30x m x m -++<,转化为()(3)0x m x --<,然后分3m <和3m >讨论求解.【详解】(1)由题意可知,关于x 的一元二次方程2(3)30x m x m -++=的两根分别为2-、3,则2(2)2(3)30m m -+++=,整理得5100m +=,解得2m =-;(2)不等式2(3)30x m x m -++<,即为()(3)0x m x --<.①当3m <时,原不等式的解集为(,3)m ,则解集中的两个整数分别为1、2,此时01m ≤<;②当3m >时,原不等式的解集为(3,)m ,则解集中的两个整数分别为4、5,此时56m <≤.综上所述,实数m 的取值范围是[0,1)(5,6]⋃.【点睛】本题主要考查一元二次不等式的解法以及应用,还考查了分类讨论求解问题的能力,属于中档题.23.(1)23x x ⎧⎫>⎨⎬⎩⎭;(2)3,4⎡⎫-+∞⎪⎢⎣⎭. 【分析】 (1)分别在1x ≤-、512x -<<、52x ≥去除绝对值符号可得到不等式;综合各个不等式的解集可求得结果;(2)根据x 的范围可转化为2433x ax x -≤-+在[]1,2x ∈上恒成立,通过分离变量可得2max 12a x x ⎛⎫≥-⎪⎝⎭,通过求解最大值可得到结果. 【详解】(1)当1x ≤-时,()()25163f x x x x x =-+++=-+<,解集为∅ 当512x -<<时,()251343f x x x x x =-+--=-+<,解得:25,32x ⎛⎫∈ ⎪⎝⎭ 当52x ≥时,()25163f x x x x x =---=-<,解得:52x ≥ 综上所述,()3f x x <的解集为:23x x ⎧⎫>⎨⎬⎩⎭ (2)当[]1,2x ∈时,()43f x x =- ∴不等式可化为:2433x ax x -≤-+,即:212a x x ≥- 当[]1,2x ∈时,11,12x ⎡⎤∈⎢⎥⎣⎦当112x =,即2x =时,2max 1234x x ⎛⎫-=- ⎪⎝⎭ 34a ∴≥-即a 的取值范围为:3,4⎡⎫-+∞⎪⎢⎣⎭【点睛】 本题考查绝对值不等式的求解、含绝对值不等式的恒成立问题的求解;解绝对值不等式的关键是能够通过分类讨论的方式得到函数在每个区间上的解析式;常用的恒成立问题的处理方法是通过分离变量的方式将问题转化为所求变量与函数最值之间的关系.24.(1)()()22111x y -+-=;(2)12+【分析】(1)根据圆心和半径,即可直接写出圆C 的方程;(2)联立直线l 方程和圆方程,求得k 的范围,结合弦长公式,求得PQ ,再利用点到直线的距离公式,即可求得点A 到直线l 的距离,结合基本不等式,即可求得面积的最大值.【详解】(1)根据题意可得,圆C 的圆心为()1,1,半径1r =,故圆方程为:()()22111x y -+-=;(2)设直线l 的方程为y kx =,联立圆C 方程可得: ()()2212210k x k x +-++=, 因为直线l 圆交于两点,故可得()()22Δ22410k k=+-+>, 解得0k >;又圆心()1,1到直线l的距离d =故可得PQ ==;又点A 到直线l的距离h =故三角形APQ的面积)()21112212121k S PQ h k k k +=⨯⨯==≤=++++-+. 当且仅当1k =时取得面积的最大值12+. 【点睛】本题考查圆方程的求解,涉及直线截圆的弦长求解,涉及基本不等式的应用,属综合中档题.25.(1)(0,2);(2)当0a >时,解集为(,3)a a -;当0a =时,解集为空集;当0a <时,解集为(3,)a a -.【分析】(1)解一元二次不等式可得;(2)分类讨论,根据两根据的大小分类讨论.【详解】(1)当1a =时,2()2f x x x =-,所以()0f x <,即220x x -<解得02x <<.所以()2f x 的解集为(0,2).(2) 由2()3f x a <,得 22230x ax a --<,所以 (3)()0x a x a -+<,当0a >时,解集为(,3)a a -;当0a =时,解集为空集;当0a <时,解集为(3,)a a -.【点睛】本题考查解一元二次不等式,对含参数的不等式一般需要分类讨论,分类的层次有三个:一是最高次项系数的正负或者是0,二是对应的一元二次方程有无实数解,三是方程有实数解,方程两根的大小关系.26.(1)45;(2)证明见解析 【分析】(1)由所给等式得()215a b ++=,再利用基本不等式即可求得最小值;(2)利用()2222a b a b ++≥即可逐步证明.【详解】(1)3a b +=,()215a b ++∴=,且200a b +>>,, ∴()1111112++2225252b a a b a b a b a b +⎛⎫⎛⎫=++=++ ⎪ ⎪+++⎝⎭⎝⎭14255⎛≥+= ⎝,当且仅当2=2b a a b ++即1522a b ==,时等号成立, ∴11+2+a b 的最小值为45. (2)因为a >0,b >0,所以要证92+a b b a ab ,需证2292a b +≥, 因为()222239222a b a b ++≥==, 所以92+a b b a ab ,当且仅当32a b ==时等号成立.【点睛】本题考查条件等式求最值、基本不等式的应用,属于中档题.。
河南省济源市第一中学必修五第三章《不等式》测试卷(有答案解析)

一、选择题1.已知正数a 、b 满足1a b +=,则411a ba b+--的最小值是( ) A .1B .2C .4D .82.设,x y 满足24122x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩,则z x y =+的最小值是( )A .7-B .2C .3D .5-3.当02x π<<时,函数21cos 28sin ()sin 2x xf x x++=的最小值为( )A .2B.C .4D.4.若,x y 满足条件11x yx y y ≥⎧⎪+≤⎨⎪≥-⎩,则2z x y =-+的最大值为( )A .1B .12-C .2D .-55.已知实数x y 、满足不等式组21010x x y m x y ≤⎧⎪-+≥⎨⎪+-≥⎩,若目标函数2z x y =-+的最大值不超过4,则实数m 的取值范围是 A.(B.⎡⎣ C.⎡⎤⎣⎦D .[6.设x ,y 满足约束条件103030x y x y y -+≤⎧⎪-≥⎨⎪-≤⎩,则z x y =+的最小值为( )A .-1B .2C .4D .57.设,x y 满足约束条件0{4312x y xx y ≥≥+≤,且231x y z x ++=+,则z 的取值范围是( ) A .[]1,5B .2,6C .[]2,10D .[]3,118.设m 1>,在约束条件1y x y mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数z=x+my 的最大值小于2,则m 的取值范围为( )A.(1,1 B.()1+∞ C .(1,3)D .(3,+∞)9.下列函数中,最小值为4的是( ) A .4y x x=+B .()4sin 0πsin y x x x=+<< C .e 4e x x y -=+D.y =10.已知,20a b c a b c >>++=,则ca的取值范围是( ) A .31ca-<<- B .113c a -<<- C .21ca-<<- D .112c a -<<- 11.已知直线l 的方程为2x +3y =5,点P (a ,b )在l 上位于第一象限内的点,则124123a b +++的最小值为( ) ABCD12.已知4213332,3,25a b c ===,则 A .b a c << B .a b c << C .b c a <<D .c a b <<二、填空题13.若实数a ,b 满足22221a b +=,则22141a b ++的最小值为___________. 14.123,,x x x 为实数,只要满足条件1230x x x >>>,就有不等式121233log 20202log 2020log 2020x x x x x x k +≥恒成立,则k 的最大值是__________.15.已知实数x ,y 满足x y 10x y 20x 0-+≤⎧⎪+-≤⎨⎪≥⎩,则z x 2y =-的最大值为______.16.实数,x y 满足约束条件20,10,0,x y x y y -≥⎧⎪--≤⎨⎪≥⎩若目标函数(0,0)z ax by a b =+>>的最大值为4,则ab 的最大值为______17.已知正实数,x y 满足 20x y xy +-=,则2x y +的最小值为 ,y 的取值范围是 .18.已知正实数,x y 满足x y xy +=,则3211x yx y +--的最小值为______.19.设x ,y 满足约束条件33,1,0,x y x y y +≥⎧⎪-≥⎨⎪≥⎩则z x y =+的最小值为__________.20.对一切R θ∈,213sin cos 2m m θθ->恒成立,则实数m 的取值范围是_______. 三、解答题21.在“基本不等式”应用探究课中,甲和乙探讨了下面两个问题: (1)已知正数x 、y 满足21x y +=,求12x y+的最小值.甲给出的解法是:由21x y +=≥,则128x y +≥=≥,所以12x y +的最小值为8.而乙却说这是错的.请你指出其中的问题,并给出正确解法; (2)结合上述问题(1)的结构形式,试求函数()1310122f x x x x ⎛⎫=+<< ⎪-⎝⎭的最小值. 22.已知函数()251f x x x =--+. (1)解不等式()3f x x <;(2)当[]1,2x ∈时,2()3f x ax x -+恒成立,求实数a 的取值范围.23.已知关于x 的一元二次不等式2(1)0ax a x b -++<的解集为112x x x⎧⎫-⎨⎬⎩⎭或. (Ⅰ)求,a b 的值;(Ⅱ)若不等式2(2)30bx m a x m +++-≥对任意实数[0,4]m ∈恒成立,求实数x 的取值范围.24.在观察物体时,从物体上、下沿引出的光线在人眼处所成的夹角叫视角.研究表明,视角在[26,30]︒︒范围内视觉效果最佳.某大广场竖立的大屏幕,屏幕高为20米,屏幕底部距离地面11.5米.站在大屏幕正前方,距离屏幕所在平面x 米处的某人,眼睛位置距离地面高度为1.5米,观察屏幕的视角为θ(情景示意图如图所示).(1)为探究视觉效果,请从sin θ,cos θ,tan θ中选择一个作为y ,并求()y f x =的表达式;(2)根据(1)的选择探究θ是否有达到最佳视角效果的可能. 25.已知2()2(2)f x x a x a =-++,a R ∈. (1)解关于x 的不等式()0f x >;(2)若方程()1f x x =+有两个正实数根1x ,2x ,求2112x x x x +的最小值. 26.已知0a >,0b >且3a b +=.(Ⅰ)求311()a b +的最大值及此时a ,b 的值; (Ⅱ)求2231a b a b +++的最小值及此时a ,b 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】 化简得出441511a b a b b a +=+---,将代数式14a b+与+a b 相乘,展开后利用基本不等式可求得411a b a b+--的最小值. 【详解】已知正数a 、b 满足1a b +=,则()414141511b a ba ab b a b a--+=+=+---()4144524a b a b a b b a b a b a ⎛⎫=++-=+≥⋅= ⎪⎝⎭,当且仅当2b a =时,等号成立, 因此,411a ba b+--的最小值是4. 故选:C. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.2.B解析:B 【分析】由约束条件可得可行域,将问题转化为y x z =-+在y 轴截距最小值的求解问题,利用数形结合的方法可得到结果. 【详解】由约束条件可得可行域如下图阴影部分所示:由z x y =+得:y x z =-+,当z 取最小值时,y x z =-+在y 轴截距最小, 由图象可知:当y x z =-+过A 时,在y 轴截距最小, 又()2,0A ,min 202z ∴=+=. 故选:B.【点睛】方法点睛:线性规划问题中,通常有三种类型的最值或取值范围问题: (1)截距型:形如z ax by =+的形式,转化为a zy x b b=-+,将问题转化为直线在y 轴截距的求解问题;(2)斜率型:形如cy d z ax b+=+的形式,转化为d y c c b a x a+⋅+,将问题转化为(),x y 与,b d a c ⎛⎫-- ⎪⎝⎭连线斜率的求解问题; (3)距离型:形如z Ax By C =++的形式,转化为2222Ax By C z A B A B ++=⋅++,将问题转化为(),x y 到直线0Ax By C ++=的距离的求解问题.3.C解析:C 【解析】0,tan 02xx π<∴,()21cos28sin sin2x x f x x++=2222cos 8sin 28tan 114tan 24tan 42sin cos 2tan tan tan x x x x x x x x x x ++===+≥⨯=,当且仅当1tan 2x =时取等号,函数()21cos28sin sin2x x f x x++=的最小值为4,选C.4.A解析:A 【解析】作出不等式组11x yx y y ≥⎧⎪+≤⎨⎪≥-⎩表示的平面区域,如图,得到如图的ABC 及其内部,其中()()111,1,2,1,,22A B C ⎛⎫--- ⎪⎝⎭,设2z x y =-+,将直线:2l z x y =-+进行平移,当l 经过点A 时,目标函数z 达到最大值,∴()=211=1Z -⨯--最大值,故选A.点睛:本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.5.D解析:D 【分析】将2z x y =-+化为2y x z =+,作出可行域和目标函数基准直线2y x =(如图所示),当直线2y x z =+将左上方平移时,直线2y x z =+在y 轴上的截距z 增大,由图象,得当直线2y x z =+过点A 时,z 取得最大值,联立2010x y m x y ⎧-+=⎨+-=⎩,得2211,22m m A ⎛⎫-+ ⎪⎝⎭,则22112422m m -+-⨯+≤,解得33m -≤≤;故选D.点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一、准确无误地作出可行域;二、画标准函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三、一般情况下,目标函数的最大或最小会在可行域的端点或边界上取得.6.B解析:B 【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【详解】解:由约束条件103030x y x y y -+⎧⎪-⎨⎪-⎩作出可行域如图,化目标函数z x y =+为y x z =-+,由图可知,当直线y x z =-+过点A 时, 直线在y 轴上的截距最小,z 有最小值.联立1030x y x y -+=⎧⎨-=⎩,解得1(2A ,3)2.z ∴的最小值为13222+=.故选:B . 【点睛】本题考查简单的线性规划,考查数形结合的解题思想方法,属于中档题.7.D解析:D 【分析】试题分析:作出不等式组0{4312x y xx y ≥≥+≤表示的平面区域,如下图阴影部分所示,目标函数()()12123112111x y x y y z x x x ++++++===+⨯+++表示可行域内的点到()1,1--的连线的斜率,其斜率的最小值为min 1,k =最大值为 ()()max 41501k --==--,所以z 的取值范围是[]3,11,故选D.考点:简单的线性规划.【方法点晴】本题主要考查了简单的线性规划,属于中档题.线性规划问题首先要作出准确、清晰的可行域,这是正确解题的前提,其次是找准目标函数的几何意义,常见的有“截距型”、“距离型”和“斜率型”,本题中通过吧目标函数231x y z x ++=+变形可知其表示可行域内的点到点 ()1,1--连线斜率的2倍在加上 1,这样问题就转化为求可行域内的点与定点连线的斜率的范围问题,通过数形结合就容易解答了.8.A解析:A 【解析】 试题分析:∵,故直线与直线交于点,目标函数对应的直线与直线垂直,且在点,取得最大值,其关系如图所示:即,解得,又∵,解得,选:A .考点:简单线性规划的应用.【方法点睛】本题考查的知识点是简单线性规划的应用,我们可以判断直线的倾斜角位于区间上,由此我们不难判断出满足约束条件的平面区域的形状,其中根据平面直线方程判断出目标函数对应的直线与直线垂直,且在点取得最大值,并由此构造出关于的不等式组是解答本题的关键.9.C解析:C 【分析】逐个分析每个选项,结合基本不等式和函数性质即可判断. 【详解】 A 项,4y x x=+没有最值,故A 项错误; B 项,令sin t x =,则01t <≤,4y t t=+,由于函数在(]0,1上是减函数, 所以min ()(1)5f x f ==,故B 项错误; C 项,44e 4e e 2e 4e ex x x x x xy -=+=+≥⋅=,当且仅当4e e x x =, 即e 2x =时,等号成立,所以函数e 4e x x y -=+的最小值为4,故C 项正确; D 项,221221y x x =+≥+2211x x +=+212x +=2211y x x =++22D项错误. 故选:C . 【点睛】本题考查基本不等式的应用,属于基础题.10.A解析:A 【分析】先将20a b c ++=变形为2b a c =--,再代入不等式a b >,b c >,解这两个不等式,即可得a 与c 的比值关系,联立可求ca的取值范围 【详解】解:因为,20a b c a b c >>++=, 所以0,0a c ><,2b a c =--, 因为a b c >>,所以2a c a --<,即3a c >-,解得3ca>-, 将2b a c =--代入b c >中,得2a c c -->, 即a c <-,得1ca<-, 所以31ca-<<-, 故选:A 【点睛】此题考查一元一次不等式的应用,考查不等式性质的应用,考查转化思想,属于中档题11.C解析:C 【分析】由题意可得2a +3b =5,a ,b >0,可得4a =10﹣6b ,(3b <5),将所求式子化为b 的关系式,由基本不等式可得所求最小值. 【详解】直线l 的方程为2x +3y =5,点P (a ,b )在l 上位于第一象限内的点, 可得2a +3b =5,a ,b >0,可得4a =10﹣6b ,(3b <5), 则1216412311696a b b b+=+++-+ 120=[(11﹣6b )+(9+6b )](1611696b b+-+)120=(7()61169611696b b b b -+++-+)≥当且仅当()61169611696b b b b -+=-+时,即b 156-=,a 54=,上式取得最小值, 故选:C . 【点评】本题考查基本不等式的运用:求最值,考查变形能力和化简运算能力,属于中档题.12.A解析:A 【详解】因为422233332=4,3,5a b c ===,且幂函数23y x =在(0,)+∞ 上单调递增,所以b <a <c . 故选A.点睛:本题主要考查幂函数的单调性及比较大小问题,解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间()()(),0,0,1,1,-∞+∞ );二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用;三是借助于中间变量比较大小.二、填空题13.6【分析】由条件可得则由均值不等式可得答案【详解】实数满足即所以则当且仅当又即时取得等号故答案为:6【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的三个条件:(1)一正二定三相等一正就是各解析:6 【分析】由条件可得()22312a b ++=,则()222222142141131a b a b a b ⎛⎫⎡⎤+=⨯+++ ⎪⎣⎦++⎝⎭由均值不等式可得答案. 【详解】实数a ,b 满足22221a b +=,即2212a b +=,所以()22312a b ++=则()222222142141131a b a b a b ⎛⎫⎡⎤+=⨯+++ ⎪⎣⎦++⎝⎭()2222214221455463133b a a b ⎛⎛⎫+=⨯+++≥⨯+=⨯+= ⎪ +⎝⎭⎝ 当且仅当2222141b a a b +=+, 又2212a b +=,即22120a b ⎧=⎪⎨⎪=⎩ 时,取得等号. 故答案为:6 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方,这时改用勾型函数的单调性求最值.14.【分析】根据对数的运算性质可得设原不等式可化为由可得令小于等于的最小值即可【详解】由题意设则又所以原不等式可化为由可得则原不等式可化为又当且仅当时等号成立所以即的最大值为故答案为:【点睛】关键点点睛解析:3+【分析】根据对数的运算性质,可得1212lg 2020log 2020lg lg x x x x =-,23232lg 20202log 2020lg lg x x x x =-,1313lg 2020log 2020lg lg x x k k x x =-,设12lg lg a x x =-,23lg lg b x x =-,原不等式可化为12k a b a b +≥+,由0,0a b >>,可得()12k a b a b ⎛⎫≤++ ⎪⎝⎭,令k 小于等于()12a b a b ⎛⎫++ ⎪⎝⎭的最小值即可. 【详解】 由题意,121122lg 2020lg 2020log 2020lg lg lg x x x x x x ==-,2322332lg 20202lg 20202log 2020lg lg lg x x x x x x ==-,131133lg 2020lg 2020log 2020lg lg lg x x k k k x x x x ==-, 设12lg lg a x x =-,23lg lg b x x =-,则13lg lg x x a b -=+, 又lg 20200>,所以原不等式可化为12ka b a b+≥+, 由1230x x x >>>,可得0,0a b >>,则原不等式可化为()12k a b a b ⎛⎫≤++ ⎪⎝⎭, 又()1221233b a a b a b a b ⎛⎫++=+++≥++⎪⎝⎭2b a a b =时,等号成立,所以3k ≤+k的最大值为3+故答案为:3+ 【点睛】关键点点睛:本题考查不等式恒成立问题,解题关键是将原不等式转化为()12k a b a b ⎛⎫≤++ ⎪⎝⎭.本题中利用对数的运算性质,将三个对数转化为以10为底的对数,进而设12lg lg a x x =-,23lg lg b x x =-,可将原不等式化为12k a b a b+≥+,进而结合,a b 的范围可得到()12k a b a b ⎛⎫≤++ ⎪⎝⎭.考查学生的逻辑推理能力,计算求解能力,属于中档题.15.-2【详解】根据题意得到如图可行域是封闭的三角形顶点是(01)()(02)目标函数可得到当目标函数过点A(01)有最大值-2故得到答案为:-2点睛:利用线性规划求最值的步骤:(1)在平面直角坐标系内解析:-2 【详解】根据题意得到如图可行域 是封闭的三角形,顶点是(0,1) (13,22)(0,2)目标函数2z x y =-,1,22zy x =-可得到当目标函数过点A(0,1),有最大值-2, 故得到答案为:-2.点睛:利用线性规划求最值的步骤:(1)在平面直角坐标系内作出可行域.(2)考虑目标函数的几何意义,将目标函数进行变形.常见的类型有截距型(ax by +型)、斜率型(y bx a++型)和距离型(()()22x a y b +++型).(3)确定最优解:根据目标函数的类型,并结合可行域确定最优解.(4)求最值:将最优解代入目标函数即可求出最大值或最小值.16.2【分析】作出不等式对应的平面区域利用z 的几何意义确定取得最大值的条件然后利用基本不等式进行求可得的最大值【详解】作出不等式对应的平面区域由得则目标函数对应直线的斜率平移直线由图象可知当直线经过点A解析:2 【分析】作出不等式对应的平面区域,利用z 的几何意义确定取得最大值的条件,然后利用基本不等式进行求,可得ab 的最大值. 【详解】作出不等式对应的平面区域,由(0,0)z ax by a b =+>>得a z y x b b=-+, 则目标函数对应直线的斜率0a b -<,平移直线ay x b=-, 由图象可知当直线经过点A 时,直线的截距最大,此时z 最大. 由2010x y x y -=⎧⎨--=⎩解得(2,1)A此时z 的最大值为2422z a b ab =+=,当且仅当2,1b a ==时取等号.24ab ∴解2ab 故答案为: 2. 【点睛】本题主要考查线性规划的基本应用,以及基本不等式的应用,利用数形结合求出目标函数取得最大值的条件是解决本题的关键.17.【解析】试题分析:因故又因为因故即所以故应填答案考点:基本不等式的运用【易错点晴】基本不等式是高中数学中的重要内容和解答数学问题的重要工具之一本题设置的目的是考查基本不等式的灵活运用和灵活运用所学知 解析:()8,1,+∞【解析】试题分析:因20x y xy +-=,故,又因为.因,故,即,所以.故应填答案.8,1y >.考点:基本不等式的运用.【易错点晴】基本不等式是高中数学中的重要内容和解答数学问题的重要工具之一.本题设置的目的是考查基本不等式的灵活运用和灵活运用所学知识去分析问题解决问题的能力.求解时先将已知20x y xy +-=,变形为,然后将其代入可得,最后达到获解之目的.关于的范围问题,则借助题设条件,推得,解之得.18.【详解】正实数满足故得到等号成立的条件为点睛:在利用基本不等式求最值时要特别注意拆拼凑等技巧使其满足基本不等式中正(即条件要求中字母为正数)定(不等式的另一边必须为定值)等(等号取得的条件)的条件才解析:526+ 【详解】正实数,x y 满足x y xy +=,1111132321111111111x y x y x y x y x y yx ⎧=-⎪⎪+=⇒⇒+=+⎨--⎪--=-⎪⎩ 故得到113121323211=5++5+26111111x 1111y x y x x y y x y x y⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭+=++≥------()()112131-y x ⎫⎫-⎪⎪⎭⎭. 点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.19.2【分析】由约束条件作出可行域化目标函数为直线方程的斜截式数形结合得到最优解联立方程组求得最优解的坐标把最优解的坐标代入目标函数得结论【详解】画出表示的可行域如图由可得将变形为平移直线由图可知当直经解析:2 【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,把最优解的坐标代入目标函数得结论. 【详解】画出3310x y x y y +≥⎧⎪-≥⎨⎪≥⎩约束条件表示的可行域,如图,由10330x y x y --=⎧⎪⎨⎪+-=⎩可得3212x y ⎧=⎪⎪⎨⎪⎪=⎩, 将z x y =+变形为y x z =-+,平移直线y x z =-+, 由图可知当直y x z =-+经过点31,22⎛⎫⎪⎝⎭时, 直线在y 轴上的截距最小, 最大值为31222z =+=,故答案为2. 【点睛】本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.20.【分析】求出的最大值然后解相应的不等式即可得【详解】由得或故答案为:【点睛】本题考查不等式恒成立问题根据参数出现的位置首先求出三角式的最大值然后只要解不等式即可得这实质上就是不等式恒成立问题中的分离解析:121,,3⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭【分析】求出sin cos θθ的最大值,然后解相应的不等式即可得. 【详解】11sin cos sin 222θθθ=≤, 由211322m m ->得13m <-或12m >. 故答案为:121,,3⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭.【点睛】本题考查不等式恒成立问题,根据参数出现的位置,首先求出三角式sin cosθθ的最大值,然后只要解不等式即可得.这实质上就是不等式恒成立问题中的分离参数法,只是本题中不等式已经参变分离了.三、解答题21.(1)答案见解析;(2)最小值为5+ 【分析】(1)本题可通过两次基本不等式取等号的情况不能同时成立判断出甲的解法错误,然后将12x y+转化为2214y xx y +++,通过基本不等式即可求出最值;(2)本题首先可令x m =、12x n -=,将题意转化为“已知21m n +=,求min13m n ⎛⎫+ ⎪⎝⎭”,然后将13+m n 转化为65n m m n ++,通过基本不等式即可求出最值. 【详解】(1)甲的解法错误,原因是:使用了两次基本不等式,两次基本不等式取等号的情况不能同时成立. 正确解法:()12122221459y x x y x y x y x y⎛⎫+=++=+++≥+= ⎪⎝⎭, 当且仅当13x y ==时等号成立. (2)令x m =,12x n -=,则0m >,0n >, 即可将“求函数()1312f x x x =+-最小值”转化为“已知21m n +=,求min13m n ⎛⎫+ ⎪⎝⎭”,因为()13136255n mm n m n m n m n ⎛⎫+=++=++≥+ ⎪⎝⎭m =立,所以当x =时,函数()1312f x x x =+-取最小值,最小值为5+【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足“一正二定三相等”: (1)“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方. 22.(1)23x x ⎧⎫>⎨⎬⎩⎭;(2)3,4⎡⎫-+∞⎪⎢⎣⎭. 【分析】(1)分别在1x ≤-、512x -<<、52x ≥去除绝对值符号可得到不等式;综合各个不等式的解集可求得结果;(2)根据x 的范围可转化为2433x ax x -≤-+在[]1,2x ∈上恒成立,通过分离变量可得2max 12a x x ⎛⎫≥- ⎪⎝⎭,通过求解最大值可得到结果. 【详解】(1)当1x ≤-时,()()25163f x x x x x =-+++=-+<,解集为∅ 当512x -<<时,()251343f x x x x x =-+--=-+<,解得:25,32x ⎛⎫∈ ⎪⎝⎭当52x ≥时,()25163f x x x x x =---=-<,解得:52x ≥ 综上所述,()3f x x <的解集为:23x x ⎧⎫>⎨⎬⎩⎭(2)当[]1,2x ∈时,()43f x x =-∴不等式可化为:2433x ax x -≤-+,即:212a x x≥- 当[]1,2x ∈时,11,12x ⎡⎤∈⎢⎥⎣⎦当112x =,即2x =时,2max 1234xx ⎛⎫-=- ⎪⎝⎭ 34a ∴≥-即a 的取值范围为:3,4⎡⎫-+∞⎪⎢⎣⎭【点睛】本题考查绝对值不等式的求解、含绝对值不等式的恒成立问题的求解;解绝对值不等式的关键是能够通过分类讨论的方式得到函数在每个区间上的解析式;常用的恒成立问题的处理方法是通过分离变量的方式将问题转化为所求变量与函数最值之间的关系. 23.(Ⅰ)2,1a b =-=;(Ⅱ){}(,1]1[3,)-∞-⋃⋃+∞. 【详解】试题分析:(1)一元二次不等式的解集的端点即相应的二次方程的根;(2)二次不等式恒成立问题结合相应的函数图象特征,抓端点值即可. 试题(Ⅰ)由根与系数的关系得11122,1112a aa b b a +⎧-+=⎪⎪⇒=-=⎨⎪-⨯=⎪⎩ (Ⅱ)由题意()2430x m x m +-+-≥对任意[]0,4m ∈恒成立,即()21430m x x x -+-+≥令()()2143g m x m x x =-+-+,即()()220430410g x x g x ⎧=-+≥⎪⎨=-≥⎪⎩, 故(]{}[),113,x ∈-∞-⋃⋃+∞. 24.(1)sin θ=;(2)视角30达到最佳.【分析】(1)过点A 作AF CE ⊥于F ,则 1.5EF AB ==,10DF DE EF =-=,30CF =,设CAF α∠=,DAF β∠=,sin sin()sin cos cos sin θαβαβαβ=-=-,化简即可得出答案.(2)由基本不等式可得1sin 2θ=≤=,即可得出答案. 【详解】解:过点A 作AF CE ⊥于F ,则 1.5EF AB ==10DF DE EF =-=,30CF =,设CAF α∠=,DAF β∠=(1)sin sin()θαβ=-sin cos cos sin αβαβ=-=-=(2)421sin21600100090000x x θ=≤=++, 当且仅当2290000x x =,即103x =时,sin θ取到最大值12 因为sin θ在(0,90)︒上单调递增,所以观察屏幕视角最大值为[]3026,30︒∈︒︒即此时视角达到最佳.【点睛】本题考查了解三角形的应用,考查了基本不等式,考查了三角恒等变换.求最值时,我们常用的思路有:根据函数图像求最值,根据函数单调性求最值,结合导数求最值,运用基本不等式求最值,换元法求最值等.在运用基本不等式求最值时,易错点在于忽略一正二定三相等. 25.(1)答案见解析;(2)6.【分析】(1)根据函数2()2(2)f x x a x a =-++的解析式,可将()0f x >化为(2)(1)0x a x -->,分类讨论可得不等式的解集.(2)由方程()1f x x =+有两个正实数根1x ,21x a ⇒>,利用韦达定理可得2222211212121212123()()21422141a x x x x x x x x a x x x x x x a a +++--+===-=+--,再结合均值不等式即可. 【详解】(1)由()0f x >得(2)(1)0x a x -->,当2a >时,原不等式的解集为(-∞,1)(2a ⋃,)+∞, 当2a =时,原不等式的解集为{|1}x x ≠,当2a <时,原不等式的解集为(-∞,)(12a ⋃,)+∞; (2)方程()1f x x =+有两个正实数根1x ,2x ,等价于22(3)10x a x a -++-=有两个正实数根1x ,2x ,∴()()2121238103012102a a a x x a a x x ⎧⎪=+--≥⎪+⎪+=>⇒>⎨⎪-⎪=>⎪⎩, 则2222211212121212123()()211622[(1)]21212a x x x x x x x x a a x x x x x x a +++-+===-=-++--12?62≥+= 当且仅当5a =时取等号,故2112x x x x +的最小值为6. 【点睛】本题考查了二次函数的性质、解含参数一元二次不等式、韦达定理、均值不等式,属于综合题.26.(Ⅰ)32a b==时,11a b ⎛⎫+ ⎪⎝⎭取得最大值为2-;(Ⅱ)6a =-3b =-+3; 【分析】(Ⅰ)利用“乘1法”与基本不等式的性质,对数函数的单调性即可得出;(Ⅱ)先对已知式子进行化简,然后结合基本不等式即可求解. 【详解】 解:(Ⅰ)1133224233333333333a b a b b a b a a b a b a b a b a b +++=+=+=+++=, 当且仅当33b a a b =且3a b +=,即32a b ==时取等号, 321123log a b ⎛⎫∴+=- ⎪⎝⎭即最大值为2-, (Ⅱ)3a b +=, ∴223313131(1)121111a b a b a b a b a b a b a b ++=++-+=+-++=++++++ 3113(1)3(1)2()()332314444(1)a b ba b a a b a b ++=+++=+++=+++ 当且仅当3(1)44(1)b a a b +=+且3a b +=,即6a =-3b =-+时取等号, 【点睛】本题考查了基本不等式的性质、方程的解法,考查了推理能力与计算能力,属于中档题.。
(好题)高中数学必修五第三章《不等式》测试题(答案解析)

一、选择题1.设0,0a b >>,若4a b +=.则49a b +的最小值为( ) A .254 B .252 C .85 D .1252.已知正数a 、b 满足1a b +=,则411a b a b +--的最小值是( ) A .1 B .2 C .4 D .83.设x ,y 满足约束条件5010550x x y x y -≤⎧⎪-+≥⎨⎪+-≥⎩,且(0,0)z ax by a b =+>>的最大值为1,则56a b+的最小值为( ) A .64 B .81 C .100 D .1214.若实数x ,y 满足约束条件21010x y x y -+≥⎧⎨--≤⎩,则2z x y =-的最大值是( ) A .1- B .2 C .3 D .45.已知0x >,0y >,21x y +=,若不等式2212m m x y+>+恒成立,则实数m 的取值范围是( )A .4m ≥或2m ≤-B .2m ≥或4m ≤-C .24m -<<D .42m -<<6.在各项均为正数的等差数列{}n a 中,n S 为其前n 项和,7S =14,则2614t a a =+的最小值为( )A .9B .94C .52D .27.已知α,β满足11123αβαβ-≤+≤⎧⎨≤+≤⎩,则3αβ+的取值范围是( ) A .[1,7] B .[5,13]- C .[5,7]- D .[1,13]8.设,x y 满足约束条件321104150250x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则z x y =+的最小值为( )A .3B .4C .5D .109.设x ,y 满足约束条件103030x y x y y -+≤⎧⎪-≥⎨⎪-≤⎩,则z x y =+的最小值为( )A .-1B .2C .4D .510.若实数,x y 满足约束条件22x x y y x ≤⎧⎪+≥⎨⎪≤⎩,则z x y =+的最大值为( )A .5B .4C .3D .211.设变量,x y 、满足约束条件236y x x y y x ≤⎧⎪+≥⎨⎪≥-⎩,则目标函数2z x y =+的最大值为( )A .2B .3C .4D .912.设函数2()1f x mx mx =--,若对于任意的x ∈{x |1 ≤ x ≤ 3},()4f x m <-+恒成立,则实数m 的取值范围为( )A .m ≤0B .0≤m <57C .m <0或0<m <57D .m <57二、填空题13.设点(),P x y 位于线性约束条件32102x y x y y x +≤⎧⎪-+≤⎨⎪≤⎩,所表示的区域内(含边界),则目标函数4z x y =-的最大值是_________.14.若,0x y >满足35x y xy +=,则34x y +的最小值是___________.15.已知函数2()4f x x =+,()g x ax =,当[]1,4x ∈时,()f x 的图象总在()g x 图象的上方,则a 的取值范围为_________.16.设ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c ,且3cos 2cos a C c A b ⋅=⋅+,则()tan A C -的最大值为__________.17.已知实数,x y 满足102801x y x y x -+≤⎧⎪+-≤⎨⎪≥⎩,则3y x +的最大值为_______. 18.已知不等式24x a x ≤+对任意的[]1,3x ∈恒成立,则实数a 的范围为_______. 19.已知ABC 中,D 、E 分别为AB 、AC 的中点,DF tDE =,AF x AB y AC =+,则xy 的最大值为________.20.已知11()2x x f x e e a --=++只有一个零点,则a =____________.三、解答题21.给出下面三个条件:①函数()y f x =的图象与直线1y =-只有一个交点;②函数(1)f x +是偶函数;③函数()f x 的两个零点的差为2,在这三个条件中选择一个,将下面问题补充完整,使函数()f x 的解析式确定问题:二次函数2()f x ax bx c =++满足(1)()21f x f x x +-=-,且___________(填所选条件的序号).(1)求()f x 的解析式;(2)若对任意()31,27,2log 09x f x m ⎡⎤∈+⎢⎥⎣⎦恒成立,求实数m 的取值范围; (3)若函数()()(21)3232x x g x t f =--⨯-有且仅有一个零点,求实数t 的取值范围. 注:如果选择多个条件分别解答,按第一个解答计分.22.已知m R ∈,命题p :对任意[]0,1x ∈,不等式2223x m m -≥-恒成立;命题q :存在[]1,1x ∈-,使得m ax ≤成立.(1)若p 为真命题,求m 的取值范围;(2)当1a =时,若p q ∨为真,p q ∧为假,求m 的取值范围.23.选修4-5 不等式选讲已知函数f (x )=|x -1|-2|x +1|的最大值为m .(1)求m ;(2)若a ,b ,c ∈(0,+∞),a 2+2b 2+c 2=2m ,求ab +bc 的最大值.24.(1)若关于x 的不等式m 2x 2﹣2mx >﹣x 2﹣x ﹣1恒成立,求实数m 的取值范围. (2)解关于x 的不等式(x ﹣1)(ax ﹣1)>0,其中a <1.25.已知集合(){}2log 421x A x y ==-+∣,1,11B y y x a x x ⎧⎫==++>-⎨⎬+⎩⎭∣. (1)求集合A 和集合B ;(2)若“R x B ∈”是“x A ∈”的必要不充分条件,求a 的取值范围.26.已知2()3(5)f x x a a x b =-+-+.(1)当不等式()0f x >的解集为(1,3)-时,求实数,a b 的值;(2)若对任意实数,(2)0a f <恒成立,求实数b 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】用“1”的代换凑配出定值后用基本不等式可得最小值.【详解】0,0,4a b a b >>+=()(4914914912513134444b a a b a b a b a b ⎛⎫⎛⎫∴+=++=++≥⨯+= ⎪ ⎪⎝⎭⎝⎭ 当且仅当49b a a b =,即812,55a b ==时取等号. 故选:A .【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方2.C解析:C【分析】 化简得出441511a b a b b a +=+---,将代数式14a b +与+a b 相乘,展开后利用基本不等式可求得411a b a b+--的最小值. 【详解】已知正数a 、b 满足1a b +=,则()414141511b a b a a b b a b a--+=+=+---()41454a b a b b a b a ⎛⎫=++-=+≥= ⎪⎝⎭, 当且仅当2b a =时,等号成立, 因此,411a b a b+--的最小值是4. 故选:C.【点睛】 易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.3.D解析:D【分析】作出可行域,作出目标函数对应的直线,平移该直线得最优解,从而得,a b 的关系式561a b +=,然后用“1”的代换,配凑出积为定值,用基本不等式得最小值.【详解】作出约束条件表示的可行域,如图,ABC 内部(含边界),作直线直线0ax by += , z ax by =+中,由于0,0a b >>,a b 是直线的纵截距,直线向上平移时,纵截距增大, 所以当直线z ax by =+经过点()5,6时,z 取得最大值,则561a b +=,所以()56565661306160121b a a b a b a b a b ⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪⎝⎭⎝⎭, 当且仅当111a b ==时,等号成立,故56a b+的最小值为121. 故选:D .【点睛】关键点点睛:本题考查简单的线性规划,考查用基本不等式求最值.解题思路是利用简单的线性规划求得变量,a b 满足的关系式,然后用“1”的代换凑配出定值,再用基本不等式求得最小值.求最值时注意基本不等式的条件:一正二定三相等,否则易出错.4.D解析:D【分析】画出不等式组对应的平面区域,利用z 的几何意义,利用数形结合即可得到结论.【详解】画出约束条件210110x y x x y -+≥⎧⎪≥⎨⎪--≤⎩或210110x y x x y -+≥⎧⎪<⎨⎪+-≥⎩所表示的平面区域,如图所示,.目标函数2z x y =-,可化为2y x z =-,由图象可知,当直线2y x z =-经过点A 时,使得目标函数2z x y =-取得最大值,又由10210x y x y --=⎧⎨-+=⎩,解得(3,2)A , 所以目标函数的最大值为2324z =⨯-=,故选:D.【点睛】思路点睛:本题主要考查线性规划中,利用可行域求目标函数的最值,属于中等题. 求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.5.D解析:D【分析】 先根据已知结合基本不等式得218x y +≥,再解不等式228m m +<即可得答案. 【详解】解:由于0x >,0y >,21x y +=, 所以()21214424428y x y x x y x y x y x y x y⎛⎫+=++=++≥+⋅= ⎪⎝⎭,当且仅当4y x x y =,即122x y ==时等号成立, 由于不等式2212m m x y +>+成立, 故228m m +<,解得:42m -<<.故实数m 的取值范围是:42m -<<.故选:D.【点睛】本题考查利用基本不等式求最值,一元二次不等式的解法,考查运算能力,是中档题. 6.B解析:B【分析】根据等差数列的性质和前n 项和公式求得26a a +,然后由“1”的代换应用基本不等式求得最小值.【详解】 由题意172677()7()1422a a a a S ++===,∴264a a +=, ∴26262614114()()4t a a a a a a =+=++62264119(5)(5444a a a a =++≥+=,当且仅当62264a a a a =,即622a a =时等号成立. 故选:B .【点睛】本题考查等差数列的性质,考查基本不等式求最值.解题基础是掌握等差数列的性质,掌握基本不等式求最值中“1”的代换法.7.A解析:A【解析】分析:该问题是已知不等关系求范围的问题,可以用待定系数法来解决.详解:设α+3β=λ(α+β)+v (α+2β)=(λ+v )α+(λ+2v )β.比较α、β的系数,得123v v λλ+=⎧⎨+=⎩, 从而解出λ=﹣1,v=2.分别由①、②得﹣1≤﹣α﹣β≤1,2≤2α+4β≤6,两式相加,得1≤α+3β≤7.故α+3β的取值范围是[1,7].故选A点睛:本题考查待定系数法,考查不等式的基本性质,属于基础题.8.B解析:B【分析】结合题意画出可行域,然后运用线性规划知识来求解【详解】如图由题意得到可行域,改写目标函数得y x z =-+,当取到点(3,1)A 时得到最小值,即314z =+=故选B【点睛】本题考查了运用线性规划求解最值问题,一般步骤:画出可行域,改写目标函数,求出最值,需要掌握解题方法9.B解析:B【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【详解】解:由约束条件103030x y x y y -+⎧⎪-⎨⎪-⎩作出可行域如图,化目标函数z x y =+为y x z =-+,由图可知,当直线y x z =-+过点A 时,直线在y 轴上的截距最小,z 有最小值.联立1030x y x y -+=⎧⎨-=⎩,解得1(2A ,3)2. z ∴的最小值为13222+=.故选:B .【点睛】本题考查简单的线性规划,考查数形结合的解题思想方法,属于中档题.10.B解析:B【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求目标函数的最大值.【详解】解:作出不等式组对应的平面区域如图:由z x y =+得y x z =-+,平移直线y x z =-+,由图象可知当直线y x z =-+经过点B 时,直线y x z =-+的截距最大,此时z 最大.由2x y x=⎧⎨=⎩解得(2,2)B . 代入目标函数z x y =+得224z =+=.即目标函数z x y =+的最大值为4.故选:B .【点睛】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.利用平移确定目标函数取得最优解的条件是解决本题的关键,属于中档题.11.D解析:D【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,把最优解的坐标代入目标函数得结论.【详解】画出满足约束条件236y x x y y x ≤⎧⎪+≥⎨⎪≥-⎩的可行域,如图,画出可行域ABC ∆,(2,0)A ,(1,1)B ,(3,3)C ,平移直线2z x y =+,由图可知,直线2z x y =+经过(3,3)C 时目标函数2z x y =+有最大值,2z x y =+的最大值为9.故选D.【点睛】本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.12.D解析:D【分析】将()4f x m <-+恒成立转化为g (x ) = mx 2-mx +m -5 < 0恒成立,分类讨论m 并利用一元二次不等式的解法,求m 的范围【详解】若对于任意的x ∈{x |1 ≤ x ≤ 3},()4f x m <-+恒成立即可知:mx 2-mx +m -5 < 0在x ∈{x |1 ≤ x ≤ 3}上恒成立 令g (x )=mx 2-mx +m -5,对称轴为12x = 当m =0时,-5 < 0恒成立当m < 0时,有g (x )开口向下且在[1,3]上单调递减∴在[1,3]上max ()(1)50g x g m ==-<,得m < 5,故有m < 0 当m >0时,有g (x ) 开口向上且在[1,3]上单调递增 ∴在[1,3]上max ()(3)750g x g m ==-<,得507m << 综上,实数m 的取值范围为57m < 故选:D 【点睛】本题考查了一元二次不等式的应用,将不等式恒成立等价转化为一元二次不等式在某一区间内恒成立问题,结合一元二次不等式解法,应用分类讨论的思想求参数范围二、填空题13.【分析】根据线性约束条件画出可行域将目标函数化为直线方程通过平移即可求得目标函数的最大值【详解】由题意作出可行域如图目标函数可化为上下平移直线数形结合可得当直线过点A 时z 取最大值由可得所以故答案为: 解析:163【分析】根据线性约束条件,画出可行域,将目标函数化为直线方程,通过平移即可求得目标函数的最大值. 【详解】由题意作出可行域,如图,目标函数4z x y =-可化为4y x z =-,上下平移直线4y x z =-,数形结合可得,当直线过点A 时,z 取最大值,由2103x y x y -+=⎧⎨+=⎩,可得54,33A ⎛⎫⎪⎝⎭,所以54164333max z =⨯-=. 故答案为:163. 【点睛】方法点睛:求线性目标函数的在约束条件下的最值问题的求解步骤是:①作图,画出约束条件(不等式组)所确定的平面区域和目标函数所表示的平行直线系中的任意一条直线l ; ②平移,将l 平行移动,以确定最优解所对应的点的位置;③求值,解有关的方程组求出最优点的坐标,再代入目标函数,求出目标函数的最值.14.【分析】化简得到结合基本不等式即可求解【详解】由满足可得则当且仅当时即时等号成立所以的最小值是故答案为:【点睛】通过常数代换法利用基本不等式求解最值的基本步骤:(1)根据已知条件或其变形确定定值(常 解析:5【分析】化简35x y xy +=,得到315x y +=,134(34)()531x y x y x y⋅+++=,结合基本不等式,即可求解. 【详解】由,0x y >满足35x y xy +=,可得315x y+=, 则311134(34)()(13123)55y xx y x y y x yx +=⋅++=++⨯11(13(1312)555≥⋅+=+=,当且仅当123y x x y =时,即21x y ==时等号成立,所以34x y +的最小值是5. 故答案为:5. 【点睛】通过常数代换法利用基本不等式求解最值的基本步骤: (1)根据已知条件或其变形确定定值(常数); (2)把确定的定值(常数)变形为1;(3)把“1”的表达式与所求的最值的表达式相乘或相除,进而构造或积为定值的形式; (4)利用基本不等式求最值.15.【分析】由参变量分离法可得知不等式对任意的恒成立利用基本不等式求出的最小值即可得出实数的取值范围【详解】由题意可得则从而有由基本不等式可得当且仅当时等号成立所以因此实数的取值范围是故答案为:【点睛】 解析:(),4-∞【分析】由参变量分离法可得知,不等式4a x x<+对任意的[]1,4x ∈恒成立,利用基本不等式求出4x x+的最小值,即可得出实数a 的取值范围. 【详解】由题意可得[]1,4x ∀∈,则24x ax +>,从而有4a x x<+,由基本不等式可得44x x +≥=,当且仅当2x =时,等号成立,所以,4a <. 因此,实数a 的取值范围是(),4-∞. 故答案为:(),4-∞. 【点睛】结论点睛:利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解: (1)x D ∀∈,()()min m f x m f x ≤⇔≤; (2)x D ∀∈,()()max m f x m f x ≥⇔≥; (3)x D ∃∈,()()max m f x m f x ≤⇔≤; (4)x D ∃∈,()()min m f x m f x ≥⇔≥.16.【分析】利用正弦定理将化为然后利用三角形内角和定理将用代换再利用两角和的正弦公式展开整理可得再由同角三角函数关系可得将其代入展开式消去结合基本不等式即可求出的最大值【详解】解:∵由正弦定理边角互化得解析:12【分析】利用正弦定理将3cos 2cos a C c A b ⋅=⋅+化为3sin cos 2sin cos sin A C C A B ⋅=⋅+,然后利用三角形内角和定理将B 用()A C π-+代换,再利用两角和的正弦公式展开整理可得2sin cos 3sin cos A C C A ⋅=⋅,再由同角三角函数关系可得3tan tan 2A C =,将其代入()tan A C -展开式消去tan A ,结合基本不等式即可求出()tan A C -的最大值. 【详解】解:∵ 3cos 2cos a C c A b ⋅=⋅+由正弦定理边角互化得3sin cos 2sin cos sin A C C A B ⋅=⋅+,又∵ ()()sin sin sin sin cos cos sin B A C A C A C A C π=-+=+=+⎡⎤⎣⎦, ∴ 3sin cos 2sin cos sin cos cos sin A C A C C A A C +⋅=⋅+, ∴ 2sin cos 3sin cos A C C A ⋅=⋅∵ 当cos 0C ≤或cos 0A ≤时,等式不成立, ∴ ,0,2A C π⎛⎫∈ ⎪⎝⎭,3tan tan 2A C =, ∴ ()22tan tan tan tan tan tan 112tan ==32123132tan tan tan tan CA C C A C C C A C C C-==++++-, 又∵ tan 0C >,∴2tan tan 3C C ≥=+当且仅当23tan tan C C ==,即tan 3C =等号成立, ∴()tan tan tan tan tan tan 1tan =213A CA CC CA C -≤++-=故答案为:12【点睛】本题主要考查正弦定理,两角差的正切公式及基本不等式的应用,需要注意的是在利用基本不等式时,要根据条件确定tan 0C >.17.【分析】根据约束条件画出可行域目标函数可以看成是可行域内的点和的连线的斜率从而找到最大值时的最优解得到最大值【详解】根据约束条件可以画出可行域如下图阴影部分所示目标函数可以看成是可行域内的点和的连线解析:78【分析】根据约束条件,画出可行域,目标函数可以看成是可行域内的点(),x y 和()3,0-的连线的斜率,从而找到最大值时的最优解,得到最大值. 【详解】根据约束条件102801x y x y x -+≤⎧⎪+-≤⎨⎪≥⎩可以画出可行域,如下图阴影部分所示,目标函数3yx +可以看成是可行域内的点(),x y 和()3,0-的连线的斜率, 因此可得,当在点A 时,斜率最大联立2801x yx+-=⎧⎨=⎩,得172xy=⎧⎪⎨=⎪⎩即71,2A⎛⎫⎪⎝⎭所以此时斜率为()7072138-=--,故答案为78.【点睛】本题考查简单线性规划问题,求目标函数为分式的形式,关键是要对分式形式的转化,属于中档题.18.【分析】利用基本不等式求得在的最大值即可求得实数的范围【详解】因为则当且仅当时即等号成立即在的最大值为又由不等式对任意的恒成立所以即实数的范围为故答案为:【点睛】本题主要考查不等式的恒成立问题其中解解析:1[,)4+∞.【分析】利用基本不等式求得24xx+在[]1,3x∈的最大值,即可求得实数a的范围.【详解】因为[]1,3x∈,则21144442xx xxx x=≤=++⨯,当且仅当4xx=时,即2x=等号成立,即24xx+在[]1,3x∈的最大值为14,又由不等式24x a x ≤+对任意的[]1,3x ∈恒成立,所以14a ≥ 即实数a 的范围为1[,)4+∞.故答案为:1[,)4+∞.【点睛】本题主要考查不等式的恒成立问题,其中解答中熟练应用基本不等式求得24xx +的最大值是解答的关键,着重考查推理与运算能力.19.【分析】首先根据平面向量的线性运算表示出再根据向量相等得到最后利用基本不等式计算可得;【详解】解:因为DE 分别为ABAC 的中点所以又所以由所以当且仅当时取等号;故答案为:【点睛】本题考查平面向量基本 解析:116【分析】首先根据平面向量的线性运算表示出()11122AF t AB AC =-+,再根据向量相等得到12x y +=,最后利用基本不等式计算可得;【详解】解:因为D 、E 分别为AB 、AC 的中点,DF tDE =, 所以()12AF AD DF AD tDE AB t AE AD =+=+=+- ()11111122222AB t AC AB t AB AC ⎛⎫=+-=-+ ⎪⎝⎭ 又AF x AB y AC =+,所以()11212x t y t ⎧=-⎪⎪⎨⎪=⎪⎩,由12x y +=所以21216x y xy +⎛⎫≤= ⎪⎝⎭,当且仅当14x y ==时取等号; 故答案为:116【点睛】本题考查平面向量基本定理的应用,以及基本不等式的应用,属于中档题.20.【分析】由函数只有一个零点转化为方程有唯一的实数解结合基本不等式求得得到即可求解【详解】由题意函数只有一个零点即有唯一的实数根即方程有唯一的实数解令因为所以当且仅当时即等号成立因为方程有唯一的实数解解析:1-【分析】 由函数11()2x x f x e e a --=++只有一个零点,转化为方程112x x e e a --+=-有唯一的实数解,结合基本不等式,求得112x x e e --+≥=,得到22a -=,即可求解. 【详解】由题意,函数11()2x x f x ee a --=++只有一个零点,即()0f x =有唯一的实数根,即方程112x x e e a --+=-有唯一的实数解, 令()11x x g x e e --=+因为110,0x x ee -->>,所以()112x x g x e e --≥+==,当且仅当11x x e e --=时,即1x =等号成立,因为方程112x x e e a --+=-有唯一的实数解,所以22a -=,即1a =-. 故答案为:1-. 【点睛】本题主要考查了根据函数的零点公式求解参数问题,以及基本不等式的应用,其中解答中把函数的零点个数转化为方程解得个数,结合基本不等式求解是解答的关键,着重考查推理与运算能力.三、解答题21.(1). 2()2f x x x =-;(2). 16m ≤- (3). 12t >或12t -= 【分析】(1).首先根据(1)()21f x f x x +-=-求得,a b 的值,再根据① ② ③ 解得c 的值; (2). 将任意()31,27,2log 09x f x m ⎡⎤∈+⎢⎥⎣⎦恒成立问题转化为2()m f t ≤-在[]2,3t ∈-上恒成立的问题,从而转化为最值问题进行求解;(3).将问题转化为方程()(21)220m t f m ---=有且仅有一个正实根,接着对参数进行分类讨论即可. 【详解】(1)因为二次函数2()f x ax bx c =++满足(1)()21f x f x x +-=- 又22(1)()(1)(1)2f x f x a x b x c ax bx c ax a b +-=++++---=++, 所以212x ax a b -=++,221a a b =⎧∴⎨+=-⎩解得:12a b =⎧∴⎨=-⎩因为二次函数2()2f x x x c =-+选① :因为函数()y f x =的图象与直线1y =-只有一个交点,所以2(1)11f c -=+=-0c ∴=;选② :因 为 函数(1)f x +是偶函数,所以22(1)=(1)2(1)1f x x x c x c ++-++=+-,所以c 取任意值.选③ :设 12,x x 是函数()f x 的两个零点,则122x x -=, 由韦达定理可知:12122,x x x x c +==所以122x x -=解得:0c;综上:()f x 的解析式为2()2f x x x =-.(2) 因为对任意()31,27,2log 09x f x m ⎡⎤∈+⎢⎥⎣⎦恒成立,32(log )m f x ∴≤-,[]31,27,log 2,39x x ⎡⎤∈∴∈-⎢⎥⎣⎦令3log t x =, 原不等式等价于2()m f t ≤-在[]2,3t ∈-上恒成立min (2())2(2)16m f t f ∴≤-=--=-,所以实数m 的取值范围为16m ≤-. (3) 因为函数()()(21)3232xxg x t f =--⨯-有且仅有一个零点,令30x m =>,所以方程()(21)220m t f m ---=有且仅有一个正实根, 因为2()2f x x x =-即2(21)420t m tm ---=有且仅有一个正实根,当21=0t -即12t =时,220m --=解得1m =-不合题意; 当210t ->即12t >时,2(21)420t m tm ---=表示的二次函数对应的函数图像是开口向上的抛物线,又恒过点(0,2)-,所以方程2(21)420t m tm ---=恒有一个正实根;当210t -<即12t时, 要想2(21)420t m tm ---=有且仅有一个正实根,只有()21682102021t t tx t ⎧=+-=⎪⎨=>⎪-⎩对解得:t =,综上:实数t 的取值范围为12t >或12t -=. 【点睛】二次函数、二次方程与二次不等式统称“三个二次”,它们常结合在一起,有关二次函数的问题,数形结合,密切联系图象是探求解题思路的有效方法.一般从:①开口方向;②对称轴位置;③判别式;④端点函数值符号四个方面分析. 22.(1)[]1,2;(2)()(],11,2-∞.【分析】(1)由p 为真命题,若()[]()220,1f x x x =-∈,只需()2min 3f x m m ≥-恒成立,即可求m 的取值范围;(2)若q 为真时1m ,结合已知条件:讨论p 真q 假、p 假q 真,分别求得m 的范围,取并集即可. 【详解】解:(1)对任意[]0,1x ∈,不等式2223x m m -≥-恒成立, 令()[]()220,1f x x x =-∈,则()2min 3f x m m ≥-,当[]0,1x ∈时,()()min 02f x f ==-,即232m m -≤-,解得12m ≤≤. 因此,当p 为真命题时,m 的取值范围是[]1,2.(2)当1a =时,若q 为真命题,则存在[]1,1x ∈-,使得m x ≤成立,所以1m ;故当命题q 为真时,1m .又∵p ,q 中一个是真命题,一个是假命题. 当p 真q 假时,由121m m ≤≤⎧⎨>⎩,得12m <≤;当p 假q 真时,有1m <或2m >,且1m ,得1m <. 综上所述,m 的取值范围为()(],11,2-∞.【点睛】 关键点点睛:(1)函数不等式在闭区间内恒成立,有()2min 3f x m m ≥-求参数范围.(2)由复合命题的真假讨论简单命题的真假组合,并求对应参数范围取并集即可. 23.(1) m =2 (2) ab +bc 的最大值为2 【解析】试题分析:(1)根据绝对值内的零点,分类讨论,去掉绝对值符号,求出函数的最大值,即可得到m .(2)利用重要不等式求解ab+bc 的最大值. (1)当x ≤-1时,f (x )=3+x ≤2; 当-1<x <1时,f (x )=-1-3x <2; 当x ≥1时,f (x )=-x -3≤-4.故当x =-1时,f (x )取得最大值2,即m =2.(2)因为a 2+2b 2+c 2=(a 2+b 2)+(b 2+c 2)≥2ab +2bc =2(ab +bc ), 当且仅当a =b =c =1时取等号,所以ab +bc ≤22222a b c ++ =2,即ab +bc 的最大值为2. 24.(1) m 34->;(2)见解析 【分析】(1)利用△<0列不等式求出实数m 的取值范围;(2)讨论0<a <1、a =0和a <0,分别求出对应不等式的解集. 【详解】(1)不等式m 2x 2﹣2mx >﹣x 2﹣x ﹣1化为(m 2+1)x 2﹣(2m ﹣1)x +1>0, 由m 2+1>0知,△=(2m ﹣1)2﹣4(m 2+1)<0, 化简得﹣4m ﹣3<0,解得m 34->, 所以实数m 的取值范围是m 34->; (2)0<a <1时,不等式(x ﹣1)(ax ﹣1)>0化为(x ﹣1)(x 1a -)>0,且1a>1, 解得x <1或x 1a>, 所以不等式的解集为{x |x <1或x 1a>}; a =0时,不等式(x ﹣1)(ax ﹣1)>0化为﹣(x ﹣1)>0, 解得x <1,所以不等式的解集为{x |x <1};a <0时,不等式(x ﹣1)(ax ﹣1)>0化为(x ﹣1)(x 1a -)<0,且1a<1, 解得1a<x <1,所以不等式的解集为{x |1a<x <1}.综上知,0<a <1时,不等式的解集为{x |x <1或x 1a>}; a =0时,不等式的解集为{x |x <1}; a <0时,不等式的解集为{x |1a<x <1}. 【点睛】本题考查了不等式恒成立问题和含有字母系数的不等式解法与应用问题,是基础题. 25.(1)(,2)A =-∞,[1,)B a =++∞;(2)1a >.【分析】(1)由对数函数的性质求对数型复合函数的定义域,即集合A ,利用基本不等式求函数的值域可得集合B ;(2)根据必要不充分条件与集合包含之间的关系确定a 的范围.【详解】(1)4202x x ->⇒<,所以(,2)A =-∞,因为1x >-,所以10x +>,所以11(1)11111y x a x a a a x x =++=+++-≥-=+++,当且仅当111x x +=+,即0x =时等号成立. 所以[1,)B a =++∞. (2)由(1)(,1)R B a =-∞+,因为“R x B ∈”是“x A ∈”的必要不充分条件,所以A 是B R 的真子集,所以12a +>,所以1a >.【点睛】本题考查求函数的定义域和值域,考查充分必要条件与集合包含之间的关系,考查对数函数、指数函数性质,考查基本不等式求最值,考查由集合包含关系求参数取值范围.知识点较多,但内容较基础.属于中档题.26.(1)29a b =⎧⎨=⎩或39a b =⎧⎨=⎩;(2)1,2⎛⎫-∞- ⎪⎝⎭. 【分析】(1)由题意知,1x =-和3x =是方程23(5)0x a a x b -+-+=的两个根,即可得到方程3(5)0273(5)0a a b a a b +--=⎧⎨---=⎩,解得即可. (2)若()20f <恒成立,可根据二次不等式恒成立的条件,构造关于b 的不等式,解不等式可求出实数b 的取值范围;【详解】解:(1)由()0f x >,得23(5)0x a a x b -+-+>.23(5)0x a a x b ∴---<又()0f x >的解集为(1,3)-,所以1x =-和3x =是方程23(5)0x a a x b -+-+=的两个根 3(5)0273(5)0a a b a a b +--=⎧∴⎨---=⎩29a b =⎧∴⎨=⎩或39a b =⎧⎨=⎩(2)由(2)0f <,得122(5)0a a b -+-+< 即2210120a a b -+->又对任意实数a ,(2)0f <恒成立,即2210120a a b -+->,对任意实数a 恒成立,2(10)42(12)0b ∴∆=--⨯-<,解得12b <-, ∴实数b 取值范围为1,2⎛⎫-∞-⎪⎝⎭. 【点睛】本题考查一元二次不等式的解法,一元二次不等式恒成立问题,属于中档题.。
高中数学必修五第三章《不等式》知识点归纳及单元测试题

第三章 不等式 单元测试题一、选择题1.已知 a 、 b 、 c 、 dR,且 a b0,cd )a, 则以下各式恒建立的是(bA bcadB bcadabDa bCc dcd2.若 a0, 1 b 0, 则有( )Aaab ab 2B aabab 2C abaab 2 D abab 2a(x-3)(2-x)(x+1)>0 的解集为()A ( -1,1) B( 1,0)(2,3) C (, 1) (2,3) D ( , 1)(0,2)(3,)4. 在第二象限, sin42m, cos m3 ,则 m 知足( )m 5m5A m<-5 或 m>3B 3<m<9C m=0 或 m=8D m=0(1x )(1x)的解集为()5.不等式A ( -1,1)B ( , 1)(1, ) C ( , 1)( 1,1)D ( 1,1)(1,)6.已知不等式 ax 2bx c0( a0) 的解集是 ,则( )A a 0,0 B a 0, 0C a 0,0 D a 0,7.图中暗影部分可用二元一次不等式组表示( ) Ay 1y2x y 2 0By122x y 2 0-1Oxx 0Cy2y=-22xy 4 0x 0 Dy22x y 4 08.已知在( -1,1)上的奇函数f(x) 是增函数,若f (1 a)f (1 a 2 ) 0 ,则 a 的取值范围是()A ( -1,1)B (0,2 )C ( 0,1)D (1,2 )9. 2. “ a b0 ”是“ aba 2b 2()2”的A .充足而不用要条件B .必需而不充足条件C .充要条件D .既不充足也不用要条件10.不等式 ax2bx 20 的解集是 (1 , 1) ,则 a b 的值等于()2 3A .- 14B .14C .- 10D . 10二、填空题11.点 ( a, b) 在直线 x+2y=3 上挪动,则 2a 4b 的最小值是.12.设 0<x<5, 则函数 f (x) 3x(8 x) 的最大值为.13.不等式 ax2bx 2 0 的解集是 { x1 x1} ,则 a+b=.2314.若 x 0, y0且x y 1,则zx y 的最大值是.x 2 ax (a 1)的解为 -1<x<5 ,则 a=.15.若不等式x 23x 416.设 f ( x) ax 2bx,且1 f ( 1)2,3f (1)4, 则 f ( 2) 的取值范围是.三、解答题(共 4 题,满分 36 分)17.已知会合 A{ xx4 0},B{ x x 2 4 x 30},求 AB, AB (8分)x418.求证: a 2b 2 1 aba b(8 分)19.解对于 x 的不等式 ax 2(a 1) x 1 0(10 分)20.某学校办工厂有破坏的房子一座,留有一面14m 的旧墙,现准备利用这面墙的一段为面墙,建筑2平面图形为矩形且面积为126 m的厂房(不论墙高) ,工程的造价是:( 1)修 1m 旧墙的花费是造 1m 新墙花费的 25%;(2)拆去 1m 旧墙用所得的资料来建 1m 新墙的花费是建1m 新墙花费的 50%.问怎样利用旧墙才能使建墙的花费最低( 10 分)参照答案一、选择题ADBD CCCC AC二、填空题234. 15. 46.[10,14]三、解答题x 4 0 的解集为: -4<x41,解:由于 不等式4x不等式 x 2 4x 30 的解集为: x 1或x 3因此 AB R AB(-4,1][3,4]2,证明:222aba 2 +1 2a22ba +bb +1把以上三个式子相加得:2(a 2 +b 2 +1) 2(ab+a+b)a 2b 21 ab a b3,解:就 a 的范围进行议论:1)当 a=0 时,原不等式可化为: -x+10 得不等式的解集{ x x1}12)当 a>0 时, 原不等式可化为: (x-1)(x- )<0{ x1a当 a>1 时,不等式的解集为:x1}a当 0<x<1 时,不等式的解集为:{ x 1 x1}a当 a=1 时,不等式的解集为 :3,当 a<0 时,原不等式可化为:(x-1)(x-1解之得: { x x1或 x1 )>0}aa4,解:设保存旧墙 x m,即拆去旧墙( 14-x ) m 修新墙,设建1m 新墙花费为a 元,则修旧墙的花费为y 1=25% ? ax=11 a(14-x); 建新墙的花费为:ax; 拆旧墙建新墙的花费为 y 2 =(14-x) ? 50 %a=42y 3 =(252+2x-14)a.x于是,所需的总花费为: y=y 1 + y 2 + y 3 =[( 7 x 252)7] a7252 [2x ? 7 ]a=35a,4 x4x当且仅当 7x252 ,即 x=12 时上式的“ =”建立; 4x故保存 12 m 的旧墙时总花费为最低。
(典型题)高中数学必修五第三章《不等式》测试卷(含答案解析)(1)
一、选择题1.已知正数x ,y 满足1431x y +=+,则x y +的最小值为( ) A .53B .2C .73D .62.设实数x ,y 满足约束条件21,22,x y x y -≤⎧⎨-≥⎩则x y +的最小值是( )A .2B .-2C .1D .-13.已知a b >,不等式220ax x b ++≥对于一切实数x 恒成立,且0x R ∃∈,使得20020ax x b ++=成立,则22a b a b+-的最小值为( )A .1BC .2D.4.若x 、y 满足约束条件36022x y x y y +-≤⎧⎪+≥⎨⎪≤⎩,则22x y +的最小值为( )A .5B .4C .2D5.已知实数,x y 满足24240x y x y y -≥⎧⎪+≤⎨⎪≤⎩,则32z x y =-的最小值是 ( )A .4B .5C .6D .76.设,x y 满足约束条件321104150250x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则z x y =+的最小值为( )A .3B .4C .5D .107.若函数()1xy a a =>的图象与不等式组40,20,1x y y x -≤⎧⎪-≥⎨⎪≤+⎩,表示的区域有公共点,则a 的取值范围为( ) A .[]2,4B.⎤⎦C .(][)1,24,⋃+∞D.([)2,⋃+∞8.已知函数()32f x x ax bx c =+++,且()()()01233f f f <-=-=-≤,则( )A .c 3≤B .3c 6<≤C .6c 9<≤D .c 9>9.设x ,y 满足约束条件261322x y x y y -≤⎧⎪⎪+≥⎨⎪≤⎪⎩,则1z x y =-+的最小值是( )A .1-B .0C .1D .210.在ABC 中,BAC ∠的平分线交BC 于D .若3BAC π∠=,4AB AC +=,则AD 长度的最大值为( ) AB .2C .3D.11.设函数2()1f x mx mx =--,若对于任意的x ∈{x |1 ≤ x ≤ 3},()4f x m <-+恒成立,则实数m 的取值范围为( ) A .m ≤0 B .0≤m <57C .m <0或0<m <57D .m <5712.已知不等式230ax bx a --≥的解集是[]4,1-,则b a 的值为( ) A .-64B .-36C .36D .64二、填空题13.若正实数x 、y 、z ,满足3z x y +=,4z y x +=,则x y x y z++-的最小值为_______.14.已知x ,y 满足不等式组220,10,30x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩,则11x z y -=+,则z 的最大值为________.15.若关于x 的不等式250ax x b -+< 的解集为{|23}x x << ,则+a b 的值是__________.16.若不等式20++≥x mx m 在[1,2]x ∈上恒成立,则实数m 的最小值为________ 17.在下列函数中, ①1y x x=+②1123212y x x x ⎛⎫=++< ⎪-⎝⎭③()2114141x y x x x x ⎛⎫=++> ⎪+⎝⎭ ④22221πsin cos 0,sin cos 2y x x x x x ⎛⎫⎛⎫=+∈ ⎪ ⎪⎝⎭⎝⎭其中最小值为2的函数是__________.18.若关于x 的不等式()0f x <和()0g x <的解集分别为(),a b 和11,b a ⎛⎫⎪⎝⎭,则称这两个不等式为“对偶不等式”.若不等式()2220x x θ-+<和不等式()224sin 210x x θ++<为“对偶不等式”,且,2πθπ⎛⎫∈ ⎪⎝⎭,则θ=______.19.若实数x ,y 满足约束条件103030x y x y x -+≥⎧⎪+-≥⎨⎪-≤⎩,则3z x y =-的最小值为__________.20.记等差数列{}n a 的前n 项和为n S ,满足570a a ,1122S =,则7811572a a a a a 的最小值为_________.三、解答题21.2020年受疫情影响,全球经济均受到不同程度的冲击.为稳妥有序地推进复工复产,2月11日晚,郑州市相关政府部门印发了《郑州市关于应对新型冠状病毒肺炎疫情促进经济平稳健康发展的若干举措》的通知,并出台多条举措促进全市经济平稳健康发展.某工厂为拓宽市场,计划生产某种热销产品,经调查,该产品一旦投入市场就能全部售出.若不举行促销活动,该产品的年销售量为28万件,若举行促销活动,年销售量y (单位;万件)与年促销费用()0x x ≥(单位;万元)满足3010(ky k x =-+为常数).已知生产该产品的固定成本为80万元,每生产1万件该产品需要再投入生产成本160万元,厂家将每件产品的销售价格定为每件产品平均成本的1.5倍(产品成本包括固定成本和生产成本,不包括促销成本). (1)求k 的值,并写出该产品的利润L (单位:万元)与促销费用x (单位:万元)的函数关系﹔ (2)该工厂计划投入促销费用多少万元,才能获得最大利润?22.已知m R ∈,命题p :对任意[]0,1x ∈,不等式2223x m m -≥-恒成立;命题q :存在[]1,1x ∈-,使得m ax ≤成立.(1)若p 为真命题,求m 的取值范围;(2)当1a =时,若p q ∨为真,p q ∧为假,求m 的取值范围. 23.已知()f x 是偶函数,()g x 是奇函数,且2()()2f x g x x x +=+-. (1)求()f x 和()g x 的解析式;(2)设2()33h x mx mx =+-(其中m R ∈),解不等式()()h x g x <.24.已知函数2221,()?23,x ax x af x x ax x a ⎧-+<⎪⎪=⎨⎪+-≥⎪⎩,其中 0a >. (1)若()()01ff =,求a 的值.(2)若函数()f x 的图象在x 轴的上方,求a 的取值范围. 25.已知函数()()21,4f x ax bx a b R =++∈,且()10f -=,对任意实数x ,()0f x ≥成立.(1)求函数()f x 的解析式;(2)若0c ≥,解关于x 的不等式()2131424f x c x x c ⎛⎫⎛⎫>+-++ ⎪ ⎪⎝⎭⎝⎭. 26.某单位计划建造一间背面靠墙的小屋,其地面面积为12m 2,墙面的高度为3m ,经测算,屋顶的造价为5800元,房屋正面每平方米的造价为1200元,房屋侧面每平方米的造价为800元,设房屋正面地面长方形的边长为x m ,房屋背面和地面的费用不计. (1)用含x 的表达式表示出房屋的总造价; (2)当x 为多少时,总造价最低?最低造价是多少?【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】化简114[(1)]()131x y x y x y +=++⨯+-+,再利用基本不等式求解. 【详解】由题得1114(1)1[(1)]31[(1)]()1331x y x y x y x y x y +=++-=++⨯-=++⨯+-+ 1141(5)1(5)123131y x x y y +=++-≥+-=++ 当且仅当1x y ==时取等. 所以x y +的最小值为2. 故选:B 【点睛】方法点睛:利用基本不等式求最值时,常用到常量代换,即把所求代数式中的某一常量换成已知中的代数式,再利用基本不等式求解.2.C解析:C 【分析】先作出约束条件对应的可行域,然后分析目标函数的几何意义,结合图形即可求解. 【详解】作出约束条件2122x y x y -≤⎧⎨-≥⎩所表示的平面区域如图所示:移动直线x y z +=,可知当其过点A 时取得最小值, 解方程组2122x y x y -≤⎧⎨-≥⎩,求得10x y =⎧⎨=⎩,即(1,0)A ,代入求得101=+=z ,所以x y +的最小值是1, 故选:C. 【点睛】方法点睛:该题考查的是有关线性规划的问题,解题方法如下: (1)根据题中所给的约束条件画出可行域; (2)根据目标函数的意义找到最优解; (3)解方程组求得最优解的坐标; (4)代入求得最小值,得到结果.3.D解析:D 【分析】根据条件对于一切实数x 不等式恒成立和0x R ∃∈使得方程成立结合二次不等式、二次方程、二次函数,可得1ab =,将22a b a b+-化成2a b a b -+-,再结合基本不等式求解即可.【详解】解:因为不等式220ax x b ++≥对于一切实数x 恒成立,所以0440a ab >⎧⎨-≤⎩,又因为0x R ∃∈,使得20020ax x b ++=成立,所以440ab -≥,所以440ab -=, 即0,0,1a b ab >>=,所以222()2222a b a b ab a b a b a b a b+-+==-+≥---,当且仅当2a b a b-=-时取得最小值. 故选:D. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.4.C解析:C 【分析】由不等式组作出可行域,如图,目标函数22xy +可视为可行域中的点与原点距离的平方,故其最小值应为原点到直线2x y +=的距离平方,根据点到直线的距离公式可得选项. 【详解】由不等式组做出可行域如图,目标函数22xy +可视为可行域内的点与原点距离的平方,故其最小值为原点到直线2x y +=的距离的平方,由点到直线的距离公式可知,原点到直线2x y +=的距离为22d ==,所以所求最小值为2. 故选:C.【点睛】本题主要考查线性规划问题,首先由不等式组作出相应的可行域,作图时,可将不等式0Ax By C ++≥转化为y kx b ≤+(或y kx b ≥+),明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.5.C解析:C【分析】由约束条件画出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组得到最优解的坐标,代入目标函数得到答案.【详解】由实数x,y满足2424x yx yy-≥⎧⎪+≤⎨⎪≤⎩得到可行域如图:z=3x﹣2y变形为y=32x﹣2z,由24yx y=⎧⎨-=⎩,解得B(2,0)当此直线经过图中B时,在y轴的截距最大,z最小,所以z的最小值为3×2﹣2×0=6;故选C.【点睛】本题主要考查线性规划中利用可行域求目标函数的最值,求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.6.B解析:B【分析】结合题意画出可行域,然后运用线性规划知识来求解【详解】如图由题意得到可行域,改写目标函数得y x z =-+,当取到点(3,1)A 时得到最小值,即314z =+=故选B 【点睛】本题考查了运用线性规划求解最值问题,一般步骤:画出可行域,改写目标函数,求出最值,需要掌握解题方法7.B解析:B 【分析】由约束条件作出可行域,再由指数函数的图象经过A ,B 两点求得a 值,则答案可求. 【详解】解:由约束条件40,20,1x y y x -⎧⎪-⎨⎪+⎩作出可行域如图:当1x =时,2y a =≤;当4x =时,42y a =≥,则42a ≥故a 的取值范围为42,2⎡⎤⎣⎦.故选:B . 【点睛】本题考查简单的线性规划,考查数形结合的解题思想方法,属于中档题.8.C解析:C 【分析】由()()()123f f f -=-=-可求得a b ,的值,代回不等关系得出c 的取值范围 【详解】由()()()123f f f -=-=-可得184********a b c a b ca b c a b c -+-+=-+-+⎧⎨-+-+=-+-+⎩解得611a b =⎧⎨=⎩则()32611f x x x x c =+++ 所以()16f c -=-,()013f <-≤所以0c 63-≤<,解得6c 9≤<, 故选C . 【点睛】本题主要考查了函数的性质,运用待定系数法求出参量的值,然后结合题意求出取值范围,较为基础.9.C解析:C 【分析】作出约束条件所表示的平面区域,结合图象确定目标函数的最优解,代入求解,即可得到答案. 【详解】作出x ,y 满足约束条件261322x y x y y -≤⎧⎪⎪+≥⎨⎪≤⎪⎩,所对应的可行域,如图所示,目标函数1z x y =-+可化为1y x z =+-,当直线1y x z =+-过点A 时, 此时直线在y 轴上的截距最大值,此时目标函数取得最小值,又由2132y x y =⎧⎪⎨+=⎪⎩,解得(2,2)A , 所以目标函数的最小值为min 2211z =-+=. 故选:C.【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.10.A解析:A 【分析】根据题意,设,,,AD t AB c AC b ===由三角形面积公式1sin 2S a b θ=⋅⋅可表示出,,ACD ABD ABC ∆∆∆三者之间的关系,进而得边长关系为3,t bc =最后通过基本不等式求得AD 的最大值。
人教B版高中数学必修五 不等式单元测试题.doc
不等式单元测试题一、选择题1.,a b 是任意实数,且a b >,则下列结论正确的是( )A.22a b >B.1b a < C.1lg()lg a b a b->- D. 33a b --< 2.若点(,)A x y 在第一象限且在236x y +=上移动,则3322log log x y + ( ) A 、最大值为1 B 、最小值为1 C 、最大值为2 D 、没有最大、小值3.已知集合S =R ,2{|230},{||2|2}A x x x B t t =--≤=-<,那么集合()S C A B ⋃等于 A .}30|{≤<x x B .R C .}3,0|{<≤x x x 或 D .{|1,4}x x x <-≥或4.下列各一元二次不等式中,解集为空集的是 ( )A .(x +3)(x -1)>0B .(x +4)(x -1)<0C .x 2-2x +3<0D .2x 2-3x -2>0 5.若0<a <1,则不等式(x -a )(x -1a)>0的解集是 ( ) A .(a ,1a ) B .(1a,a ) C .(-∞,a )∪(1a ,+∞) D .(-∞,1a )∪(a ,+∞) 6.条件:||p x x >,条件2:q x x ≥,则p q 是的( )A 、充要条件B 、既不充分也不必要条件C 、必要不充分条件D 、充分不必要条件7.如果点p (5,b )在平行直线6810x y -+=和 3450x y -+= 之间,则 b 应取值的整数值为 ( )A. 5B. -5C. 4 D . -48.设变量x 、y 满足约束条件⎪⎩⎪⎨⎧-≥≥+≤632x y y x x y ,则目标函数y x z +=2的最小值为( )A .2B .3C .4D .99.设x,y 为正数, 则(x+y)(1x + 4y)的最小值为( )A.6B.9C.12D.1510.不等式212x x <++的解集是( ) A 、(3,2)(0,)--+∞U B 、(,3)(2,0)-∞--U C 、(3,0)- D 、(,3)(0,)-∞-+∞U11.已知平面区域D 由以A(1,3),B(5,2),C(3,1)为顶点的三角形内部及边界组成,若在区域D 上有无穷多个点(,)x y 可使目标函数z x my =+取得最小值,则m 等于A. -2B. -1C. 1D.412.某工厂的年产值第二年比第一年的增长率为p 1,第三年比第二年的增长率是p 2,而这两年中的年平均增长率为p ,在p 1+p 2为定值的情况下,p 的最大值是 ( ) A.21p p B.221p p + C.221p p D.)1)(1(21p p ++二、填空题13.不等式1-x ax <1的解集为{x |x <1或x >2},那么a 的值为__________. 14.动点P(a ,b)在不等式组20x y x y y +-⎧⎪-⎨⎪⎩≤0≥≥0表示的平面区域内部及边界上运动,则12--=a b ω的取值范围是_____________.15.已知关于x 的不等式250ax x a-<-的解集为M ,若5M ∉,则实数a 的取值范围是______. 16.已知两个正实数x 、y 满足x +y =4,则使不等式x 1+y4≥m 恒成立的实数m 的取值范围是__________.三、解答题 17. 设全集为R,集合A={x ∣21log (3-x )2-≥},B={x ∣125≥+x },求)(B A C R ⋂. 18.设2()(8),f x ax b x a ab =+---不等式()0f x >的解集是(-3,2).(1)求()f x ;(2)当函数f (x )的定义域是[0,1]时,求函数()f x 的值域.19.解关于x 的不等式2)1(--x x a >1(a ≠1) 20.央视为改版后的《非常6+1》栏目播放两套宣传片.其中宣传片甲播映时间为3分30秒,广告时间为30秒,收视观众为60万,宣传片乙播映时间为1分钟,广告时间为1分钟,收视观众为20万.广告公司规定每周至少有3.5分钟广告,而电视台每周只能为该栏目宣传片提供不多于16分钟的节目时间.电视台每周应播映两套宣传片各多少次,才能使得收视观众最多? 21.已知函数22(),[1,)x x a f x x x++=∈+∞ (Ⅰ)当12a =时,求函数()f x 的最小值; (Ⅱ)若对任意[1,)x ∈+∞,()0f x >恒成立,试求实数a 的取值范围.22.已知集合},0)]13()[2(|{<+--=a x x x A B=},0)1(2|{2<+--a x a x x 其中.1≠a (1)当2=a 时,求B A I ;(2)求使A B ⊆的实数a 的取值范围不等式综合练习参考答案:一、选择题DADCC DCBBA CB二、填空题 13.21 ;14.(,2][2,)-∞-⋃+∞;15.[1,25] ;16.(-∞,49] 三、解答题 17. 解:A =[-1,3) , B=(-2,3]=B A ⋂∴[-1,3) ),3[)1,()C R +∞--∞=Y I B A (18. 解Q 不等式()0f x >的解集是(-3,2)于是不等式()0f x =的解是-3,2(3)0f -=。
必修五第三章不等式模块测试题
1 必修五第三章不等式测试题 时间120分钟分钟 总分150分 一、选择题(本大题共12小题,每小题5分,共60分.在每小题所给的四个选项中,只有一
项是符合题目要求的) 1.若a<0,-1A.a2.设0<a<b,则下列不等式中正确的是( )
A.a<b<ab<
a+b2 B.a<ab<a+b
2<b
C.a<ab<b<
a+b2 D.ab<a<a+b
2<b
3.不等式组
îí
ì x22-1<0,
x2-
3x<0
的解集是( )
A.{x|-14.设a>0,b<0,若3是3a与3b的等比中项,则1a+1b的最小值为( )
A.4 B.8 C.1 D.14
5.已知x>0,y>0.若2yx+8xy>m2+2m恒成立,则实数m的取值范围是的取值范围是
( ) A.m≥4或m≤-2 B.m≥2或m≤-4 C.-2
6.直线2x+y-10=0与不等式组
î
íì
x≥0,
y≥0,
x-y≥-2,
4x+3y≤20
表示的平面区域的公共点有( )
A.0个 B.1个 C.2个 D.无数个.无数个
7.二次不等式ax2+bx+1>0的解集为{x|-1的值为(的值为( )
A.-6 B.6 C.-5 D.5
8.设实数x,y满足不等式组
îí
ì x+2y-5>0,
2x+y-7>0,
x≥0,y≥0.若x,y为整数,为整数,则则3x+4y的最小值是( ) 2
A.14 B.16 C.17 D.19 9.若函数ƒ(x)=x+1x-2(x>2)在
x=a处取最小值,则a
=( )
A.1+2 B.1+3 C.3 D.4 10、某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产
x
件,则平均仓
储时间为x8天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品( ) A.60件 B.80件 C.100件 D.120件
11、对任意实数x,不等式
2(2)2(2)40axax-+--<恒成立,则a
(压轴题)高中数学必修五第三章《不等式》测试题(包含答案解析)(1)
一、选择题1.设正数m ,n ,2m n u +=,222v m n mn =++,则2u v ⎛⎫ ⎪⎝⎭的最大值是( ) A .14B .13C .12D .12.已知x ,y 满足约束条件20030x y x y m x -+≥⎧⎪+-≥⎨⎪-≤⎩,若34z x y =-的最大值为9,则m 的值为( ) A .32-B .28-C .2D .33.已知正实数a ,b 满足231a b +=,则12a b+的最小值为( ) A .15B.8+C .16D.8+4.已知实数,x y 满足24240x y x y y -≥⎧⎪+≤⎨⎪≤⎩,则32z x y =-的最小值是 ( )A .4B .5C .6D .75.当02x π<<时,函数21cos 28sin ()sin 2x xf x x++=的最小值为( )A .2B.C .4D.6.已知函数()()log 31a f x x =+-(0a >且1a ≠)的图象恒过定点A ,若点A 在直线40mx ny ++=上,其中0mn >,则12m n+的最小值为( ) A .23B .43C .2D .47.已知实数x y 、满足不等式组21010x x y m x y ≤⎧⎪-+≥⎨⎪+-≥⎩,若目标函数2z x y =-+的最大值不超过4,则实数m 的取值范围是 A.(B.⎡⎣ C.⎡⎤⎣⎦D .[ 8.在ABC 中,BAC ∠的平分线交BC 于D .若3BAC π∠=,4AB AC +=,则AD 长度的最大值为( ) AB .2C .3D.9.对于任意实数a ,b ,若a >b ,则下列不等式一定成立的是( ) A .11a b< B .a 2>b 2 C .a 3>b 3 D .a b b a> 10.设m 1>,在约束条件1y x y mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数z=x+my 的最大值小于2,则m 的取值范围为( ) A.(1,1 B.()1++∞ C .(1,3)D .(3,+∞)11.设变量,x y 、满足约束条件236y xx y y x ≤⎧⎪+≥⎨⎪≥-⎩,则目标函数2z x y =+的最大值为( )A .2B .3C .4D .912.若a ,b ,c ∈R ,a >b ,则下列不等式恒成立的是( ) A .1a <1bB .a 2>b 2C .21a c +>21b c + D .a |c |>b |c |二、填空题13.123,,x x x 为实数,只要满足条件1230x x x >>>,就有不等式121233log 20202log 2020log 2020x x x x x x k +≥恒成立,则k 的最大值是__________.14.若x ,y ,z 满足约束条件4802400x y x y y --≤⎧⎪-+≥⎨⎪≤⎩,则z =__________.15.已知x ,y 满足041x y x y x -≤⎧⎪+≤⎨⎪≥⎩,则2z x y =+的最大值为________.16.已知实数x ,y 满足约束条件2020220x y x y x y +-≥⎧⎪--≤⎨⎪--≥⎩,则2z x y =+的最小值为________.17.已知实数,x y 满足不等式组201030y x y x y -≤⎧⎪--≤⎨⎪+-≥⎩,则yx 的取值范围为__________.18.记等差数列{}n a 的前n 项和为n S ,满足570a a ,1122S =,则7811572a a a a a 的最小值为_________.19.某港口的水深y (米)随着时间t (小时)呈现周期性变化,经研究可用sincos66y a t b t c ππ=++来描述,若潮差(最高水位与最低水位的差)为3米,则+a b的取值范围为_______.20.已知正实数x ,y 满足22462x y xy ++=,则2x y +的最小值是_________.三、解答题21.设矩形ABCD 的周长为20,其中AB AD >,如图所示,把它沿对角线AC 对折后,AB 交DC 于点P .设AD x =,DP y =.(1)将y 表示成x 的函数,并求定义域; (2)求ADP △面积的最大值. 22.选修4-5 不等式选讲已知函数f (x )=|x -1|-2|x +1|的最大值为m . (1)求m ;(2)若a ,b ,c ∈(0,+∞),a 2+2b 2+c 2=2m ,求ab +bc 的最大值. 23.已知函数()243f x ax ax =--(1)当a=-1时,求不等式f(x)>0的解集;(2)若对于任意的x ∈R,均有不等式f(x)≤0成立,求实数a 的取值范围.24.若不等式2122x x mx -+>的解集为{}|02x x <<. (1)求m 的值;(2)已知正实数a ,b 满足4a b mab +=,求+a b 的最小值. 25.已知函数2()2,,f x x ax x R a R =-∈∈. (1)当1a =时,求满足()0f x <的x 的取值范围;(2)解关于x 的不等式2()3f x a <.26.(1)已知()2f x kx =+,不等式()3f x <的解集为()1,5-,不等式()1xf x ≥的解集为A .求集合A ;(2)解关于x 的不等式()2220ax a x +--≥.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】 化简22211()44u mn vm n mn=+⨯++,再结合基本不等式,即可求解. 【详解】由题意,正数m ,n ,2m nu +=,222v m n mn =++, 则2222222222()12112()444m n u m n mn mn v m n mn m n mn m n mn+++===+⨯++++++ 2111111111444444213()11mnm m m n n n n m=+⨯=+⨯≤+⨯=+++++, 当且仅当m n n m =时,即m n =时,等号成立,所以2u v ⎛⎫ ⎪⎝⎭的最大值是为13.故选:B . 【点睛】利用基本不等式求最值时,要注意其满足的三个条件:“一正、二定、三相等”: (1)“一正”:就是各项必须为正数;(2)“二定”:就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”:利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.2.D解析:D 【分析】作出x ,y 满足约束条件20030x y x y m x -+≥⎧⎪+-≥⎨⎪-≤⎩,表示的可行域如图中阴影部分所示,再利用数形结合分析得()max 33439z m =⨯--=,解得参数即可. 【详解】作出x ,y 满足约束条件20030x y x y m x -+≥⎧⎪+-≥⎨⎪-≤⎩,表示的可行域如图中阴影部分所示,由z =3x -4y 得344z yx =-,它表示斜率为34纵截距为4z-的一系列直线, 当直线经过点A 时,直线的纵截距4z-最小,z 最大.由03x y m x +-=⎧⎨=⎩,解得A (3,m -3),故()max 33439z m =⨯--=,解得3m =. 故选:D. 【点睛】方法点睛:线性规划问题一般用图解法,其步骤如下: (1)根据题意,设出变量,x y ; (2)列出线性约束条件;(3)确定线性目标函数(,)z f x y =;(4)画出可行域(即各约束条件所示区域的公共区域); (5)利用线性目标函数作平行直线系()(y f x z =为参数).3.D解析:D 【分析】妙用“1”的代换,利用()121223a b a b a b ⎛⎫+=++ ⎪⎝⎭拼凑基本不等式,求和式的最小值即可. 【详解】正实数a ,b 满足231a b +=,则()12122388282343412843a b a b a b a b a b a b a b⎛⎫+=++=++≥+⋅=+=+ ⎪⎝⎭,当且仅当34b a b a =,即3133,46a b --==时等号成立,故12a b +的最小值为843+. 故选:D. 【点睛】 思路点睛:利用基本不等式求最值时,需注意取等号条件是否成立. (1)积定,利用2x y xy +≥,求和的最小值;(2)和定,利用()24x y xy +≤,求积的最大值;(3)已知和式(倒数和)或为定值时,妙用“1”拼凑基本不等式求最值.4.C解析:C 【分析】由约束条件画出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组得到最优解的坐标,代入目标函数得到答案. 【详解】由实数x ,y 满足24240x y x y y -≥⎧⎪+≤⎨⎪≤⎩得到可行域如图:z =3x ﹣2y 变形为y =32x ﹣2z,由024y x y =⎧⎨-=⎩,解得B (2,0)当此直线经过图中B 时,在y 轴的截距最大,z 最小, 所以z 的最小值为3×2﹣2×0=6; 故选C .【点睛】本题主要考查线性规划中利用可行域求目标函数的最值,求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.5.C解析:C 【解析】0,tan 02xx π<∴,()21cos28sin sin2x x f x x++=2222cos 8sin 28tan 14tan 42sin cos 2tan tan x x x x x x x x ++===+≥=,当且仅当1tan 2x =时取等号,函数()21cos28sin sin2x x f x x ++=的最小值为4,选C.6.C解析:C 【分析】由对数函数的图象得出A 点坐标,代入直线方程得,m n 的关系,从而用凑出基本不等式形式后可求得最小值. 【详解】令31+=x ,2x =-,(2)1f -=-,∴(2,1)A --,点A 在直线40mx ny ++=上,则240m n --+=,即24m n +=, ∵0mn >,24m n +=,∴0,0m n >>,∴12112141(2)442444n m m n m n m n m n ⎛⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝, 当且仅当4n mm n=,即1,2m n ==时等号成立. 故选:C . 【点睛】本题考查对数函数的性质,考查点在直线上,考查用基本不等式求最小值.是一道综合题,属于中档题.7.D解析:D 【分析】将2z x y =-+化为2y x z =+,作出可行域和目标函数基准直线2y x =(如图所示),当直线2y x z =+将左上方平移时,直线2y x z =+在y 轴上的截距z 增大,由图象,得当直线2y x z =+过点A 时,z 取得最大值,联立2010x y m x y ⎧-+=⎨+-=⎩,得2211,22m m A ⎛⎫-+ ⎪⎝⎭,则22112422m m -+-⨯+≤,解得33m -≤≤;故选D.点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一、准确无误地作出可行域;二、画标准函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三、一般情况下,目标函数的最大或最小会在可行域的端点或边界上取得.8.A解析:A 【分析】根据题意,设,,,AD t AB c AC b ===由三角形面积公式1sin 2S a b θ=⋅⋅可表示出,,ACD ABD ABC ∆∆∆三者之间的关系,进而得边长关系为3,t bc =最后通过基本不等式求得AD 的最大值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
- 1 -
1、下列命题正确的是( )
A、若a>b,c>d,则ac>bd B、若a>b>0,c>d>0,则dbca
C、若a>b,c
2、若aA、ba11 B、aba11 C、ba D、22ba
3.不在 3x+ 2y < 6 表示的平面区域内的一个点是 ( )
A.(0,0) B.(1,1) C.(0,2) D.(2,0)
4.已知点(3 , 1)和点(-4 , 6)在直线 3x–2y + m = 0 的两侧,则
( )
A.m<-7或m>24 B.-7<m<24
C.m=-7或m=24 D.-7≤m≤ 24
5.在△ABC中,三顶点坐标为A(2 ,4),B(-1,2),C(1 ,0 ), 点P(x,y)
在△ABC内部及边界运动,则 z= x – y 的最大值和最小值分别是 ( )
A.3,1 B.-1,-3 C.1,-3 D.3,-1
6.设实数,xy满足不等式组250270,0xyxyx>>≥,y≥0,若,xy为整数,则34xy的最小值是
A.14 B.16 C.17 D.19
7.若集合{},{}xAxxBxx,则AB
A. {}xx B. {}xx
C. {}xx D.{}xx
8.设集合A={x|x>3},B={x|x-1x-4<0},则A∩B=( )
A.∅ B.(3,4)
- 2 -
C.(-2,1) D.(4,+∞)
9.已知点P(x,y)在不等式组 x-2≤0,y-1≤0,x+2y-2≥0表示的平面区域内运动,则
z=x-y
的取值范围是( )
A.[-2,-1] B.[-2,1]
C.[-1,2] D.[1,2]
.10.不等式(x-2y+1)(x+y-3)<0表示的区域为( )
11.f(x)=ax2+ax-1在R上满足f(x)<0,则a的取值范围是( )
A.(-∞,0] B.(-∞,-4)
C.(-4,0) D.(-4,0]
12.由 x+2y+1≤0,x+y+2≥0,y≥0组成的平面区域的面积为( )
A.2 B.1
C.4 D.12
二、填空题
13.点(-2,t)在直线2x-3y+6=0的上方,则t的取值范围是________.
14.函数y=13-2x-x2的定义域是________.
15、. 不等式13xx的解为 。
16、已知关于x的不等式0))((cxbxax的解为21x或3x,则不等式
0))((
bxax
cx
的解集为____________.
- 3 -
16.约束条件 0≤x≤1,0≤y≤1,y-x≤12表示的平面区域的面积为________.
16.已知x,y满足03201052yxyxyx, 则xy的最大值为___________,最小值为
____________.
三、解答题
17.(10分)已知全集U=R,A={x|-34x2+x+1>0},B={x|3x2-4x+1>0},
求∁U(A∩B).
17.(本小题满分10分)
若变量,xy满足约束条件1,0,20,yxyxy求2zxy的最大值.
20.(12分)不等式kx2-2x+6k<0(k≠0).
(1)若不等式的解集为{x|x<-3或x>-2},求k的值;
(2)若不等式的解集为R,求k的取值范围.
19.(本小题满分12分)
已知a,b,x,y∈R+(a,b为常数),a+b=10, 1ybxa,若 x+y的最小值为
18,求a,b的值.
- 4 -
20.(本小题满分12分)
20.(12分)某汽车公司有两家装配厂,生产甲、乙两种不同型号的汽车,若
A厂每小时可完成1辆甲型车和2辆乙型车;B
厂每小时可完成3辆甲型车和1辆
乙型车.今欲制造40辆甲型车和20辆乙型车,问这两家工厂各工作几小时,才
能使所费的总工时最少?