北师大版八年级数学上册《第一章勾股定理》单元测试(含答案)

合集下载

第一章 勾股定理数学八年级上册-单元测试卷-北师大版(含答案)

第一章 勾股定理数学八年级上册-单元测试卷-北师大版(含答案)

第一章勾股定理数学八年级上册-单元测试卷-北师大版(含答案)一、单选题(共15题,共计45分)1、若,,为的三边长,则下列条件中不能判定是直角三角形的是()A. ,,B.C.D.2、如图,矩形ABCD的两条对角线相交于点O,∠ACB=30°,AB=2,则矩形的面积为()A. B.2 C.4 D.3、如图,小明将一张长为20cm,宽为15cm的长方形纸(AE>DE)剪去了一角,量得AB=3cm,CD=4cm,则剪去的直角三角形的斜边长为()A.5cmB.12cmC.16cmD.20cm4、如图,O是正内一点,,,,将线段BO以点B为旋转中心逆时针旋转得到线段,下列五个结论中,其中正确的结论是()可以由绕点B逆时针旋转得到;点O与的距离为4;;;.A. B. C. D.5、如图:图形A的面积是()A.225B.144C.81D.无法确定6、如图,一个小球沿倾斜角为的斜坡向下滚动,经过5秒时,测得小球的平均速度为米秒.已知,则小球下降的高度是()A.1米B.1.5米C.2米D.2.5米7、用圆心角为120°,半径为3 cm的扇形纸片卷成一个圆锥形无底纸冒(如图所示),则这个纸冒的高是()A.3 cmB.2 cmC.3 cmD.4 cm8、在Rt△ABC中,∠C=90°,AB=15,AC:BC=3:4,则这个直角三角形的面积是()A.24B.48C.54D.1089、如图,在△ABC中,AB=AC=5,P是BC边上除B、C点外的任意一点,则代数式AP2+PB•PC等于()A.25B.15C.20D.3010、如图,AB是⊙O的弦,AB=5,点C是⊙O上的一个动点,且∠ACB=45°,点M,N分别是AB,AC的中点,则线段MN长的最大值为()A.5B.C.5D.11、在直角坐标系中,点P(-2,3)到原点的距离是( )A. B. C. D.212、如图所示,点B,D在数轴上,OB=3,OD=BC=1,∠OBC=90°,以D为圆心,DC长为半径画弧,与数轴正半轴交于点A,则点A表示的实数是()A. B. 1 C. 1 D.不能确定13、如图,将一边长为a的正方形(最中间的小正方形)与四块边长为b的正方形(其中b>a)拼接在一起,则四边形ABCD的面积为()A.b 2+(b﹣a)2B.b 2+a 2C.(b+a)2D.a 2+2ab14、如图,在矩形中,,,过对角线交点作交于点,交于点,则的长是( )A.1B.C.2D.15、如图,将等腰直角三角形()沿折叠,使点落在边的中点处,,那么线段的长度为()A.5B.4C.4. 25D.二、填空题(共10题,共计30分)16、如图,等边的边与轴交于点,点是反比例函数图像上一点,若为边的三等分点时,则等边的边长为________.17、如图,在△ABC中,AB=BC=6,AO=BO,P是射线CO上在AB下方的一个动点,∠AOC =45°.则当△PAB为直角三角形时,AP的长为________.18、如图,巳知AB是⊙O的一条直径,延长AB至C点,使得AC=3BC,CD与⊙O相切,切点为D.若CD= ,则线段BC的长度等于________.19、《九章算术》中有一个“折竹抵地”问题:“今有竹高九尺,末折抵地,去本三尺,问折者高几何?”意思是:现有竹子高9尺,折后竹尖抵地与竹子底部的距离为3尺,问折处高几尺?即:如图,AB+AC=9尺,BC=3尺,则AC=________尺.20、已知△ABC中,AB=5,AC=3,BC=4,P为边AB上一点,且△APC为等腰三角形,则CP 的长为________21、如图,已知菱形ABCD的周长为16,面积为8 ,E为AB的中点,若P为对角线BD 上一动点,则EP+AP的最小值为________.22、如图,长方体的底面边长分别为1cm和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,那么所用细线最短需要________cm.23、如图,线段AB=2,过点B作BD⊥AB,使BD= AB,连接AD,在AD上截取DE=DB.在AB上截取AC=AE.那么线段AC的长为________.24、在⊙O中,弦AB=24cm,圆心O到弦AB的距离为5cm,则⊙O的半径为________cm.25、如图,在等腰Rt△OAA1中,∠OAA1=90°,OA=1,以OA1为直角边作等腰Rt△OA1A2,以OA2为直角边作等腰Rt△OA2A3,…则OA8的长度为________.三、解答题(共5题,共计25分)26、如图,已知在△ABC中,CD⊥AB于D,AC=20,BC=15,DB=9.求AB的长.27、如图,在平面直角坐标系xOy中,点A、B坐标分别为(4,2)、(0,2),线段CD 在于x轴上,CD=,点C从原点出发沿x轴正方向以每秒1个单位长度向右平移,点D随着点C同时同速同方向运动,过点D作x轴的垂线交线段AB于点E、交OA于点G,连结CE交OA于点F.设运动时间为t,当E点到达A点时,停止所有运动.(1)求线段CE的长;(2)记S为RtΔCDE与ΔABO的重叠部分面积,试写出S关于t的函数关系式及t的取值范围;(3)连结DF,①当t取何值时,有DF=CD?②直接写出ΔCDF的外接圆与OA相切时t的值.28、在Rt△ABC中,∠ACB=90°,AC=BC,D为AB边的中点,点P为BC边上一点,把△PBD沿PD翻折,点B落在点E处,设PE交AC于F,连接CD(1)求证:△PCF的周长=CD;(2)设DE交AC于G,若, CD=6,求FG的长29、将一个直角三角形纸片ABO,放置在平面直角坐标系中,点A(,0),点B (0,1),点0(0,0).过边OA上的动点M(点M不与点O,A重合)作MN丄AB于点N,沿着MN折叠该纸片,得顶点A的对应点A′,设OM=m,折叠后的△AM′N与四边形OMNB重叠部分的面积为S.(Ⅰ)如图①,当点A′与顶点B重合时,求点M的坐标;(Ⅱ)如图②,当点A′,落在第二象限时,A′M与OB相交于点C,试用含m的式子表示S;(Ⅲ)当S= 时,求点M的坐标(直接写出结果即可).30、如图,AB是的直径,弦于点E,若,,求的长.参考答案一、单选题(共15题,共计45分)1、D2、A3、D4、C5、C6、B7、B8、C9、A10、D11、B12、C13、A14、B15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)28、29、30、。

北师大八年级数学上《第1章勾股定理》单元检测试题(含答案)

北师大八年级数学上《第1章勾股定理》单元检测试题(含答案)

八年级数学上册第1章勾股定理单元检测试题班级:__________姓名:__________一、单选题(共10题;共30分)1.下列各组数中,能构成直角三角形的是()A. 4,5,6B. 6,8,11C. 1,1,D. 5,12,22.已知一个Rt△的两边长分别为3和4,则第三边长的平方是()A. 25B. 14,C. 7D. 7或253.已知a、b、c是三角形的三边长,如果满足(a-6)2+=0,则三角形的形状是( )A. 底与腰不相等的等腰三角形B. 等边三角形C. 钝角三角形D. 直角三角形4.一座建筑物发生了火灾,消防车到达现场后,发现最多只能靠近建筑物底端5m,消防车的云梯最大升长为13m,则云梯可以达到该建筑物的最大高度是()A. 12mB. 13mC. 14mD. 15m5.一块木板如图所示,已知AB=4,BC=3,DC=12,AD=13,∠B=90°,木板的面积为()A. 60B. 30C. 24D. 126.如图,在5×5的正方形网格中,从在格点上的点A,B,C,D中任取三点,所构成的三角形恰好是直角三角形的个数为()A. 1B. 2C. 3D. 47.一个三角形的三边的长分别是3、4、5,则这个三角形最长边上的高是()A. 4B.C.D.8.如图,在△ABD中,∠D=90°,CD=6,AD=8,∠ACD=2∠B,则BD的长是()A. 12B. 14C. 16D. 189.图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则图1中正方形顶点A、B在围成的正方体中的距离是()A. 0B. 1C.D.10.△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,由下列条件不能判定△ABC为直角三角形的是()A. ∠A+∠B=∠CB. ∠A:∠B:∠C=1:2:3C. a2=c2﹣b2D. a:b:c=3:4:6二、填空题(共8题;共24分)11.如图为某楼梯的侧面,测得楼梯的斜长AB为13米,高BC为5米,计划在楼梯表面铺地毯,地毯的长度至少需要________米.12.在直角三角形ABC中,斜边AB=2,则AB2+AC2+BC2=________.13.一直角三角形的一条斜边和一直角边的长度分别是4和3,则它的另一直角边长是________.14.已知直角三角形的两边的长分别是3和4,则第三边长为________.15.将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为hcm,则h的取值范围是________ .16.在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4=________17.要在一个长方体中放入一细直木条,现知长方体的长为2,宽为,高为,则放入木盒的细木条最大长度为________ .18.如图,一根旗杆在离地面9米处断裂,旗杆顶部落在离旗杆底部12米处,则旗杆折断之前有________米.三、解答题(共66分)19.已知:如图,在△ABC 中,∠C=90°,D 是BC 的中点,AB=10,A C=6.求AD 的长度.20.求如图的Rt△ABC的面积.21.如图,∠AOB=90°,OA=90cm,OB=30cm,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿直线匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?22.一个25米长的梯子AB,斜靠在一竖直的墙AO上,这时的AO距离为24米,如果梯子的顶端A沿墙下滑4米,那么梯子底端B也外移4米,对吗?为什么?23.铁路上A,B两站(视为直线上的两点)相距50km,C,D为两村庄(视为两个点),DA⊥AB于点A,CB⊥AB于点B(如图).已知DA=20km,CB=10km,现在要在铁路AB上建一个土特产收购站E,使得C,D 两村庄到收购站E的直线距离相等,请你设计出收购站的位置,并计算出收购站E到A站的距离.24.如图,南北向MN为我国领海线,即MN以西为我国领海,以东为公海,上午9时50分,我国反走私A艇发现正东方有一走私艇以13海里/时的速度偷偷向我领海开来,便立即通知正在MN线上巡逻的我国反走私艇B密切注意.反走私艇A和走私艇C的距离是13海里,A、B两艇的距离是5海里;反走私艇B 测得距离C艇12海里,若走私艇C的速度不变,最早会在什么时候进入我国领海?25.已知在中,,,.(1)判断△ABC的形状,并说明理由;(2)试在下面的方格纸上补全△ABC,使它的顶点都在方格的顶点上。

第一章 勾股定理数学八年级上册-单元测试卷-北师大版(含答案)

第一章 勾股定理数学八年级上册-单元测试卷-北师大版(含答案)

第一章勾股定理数学八年级上册-单元测试卷-北师大版(含答案)一、单选题(共15题,共计45分)1、如图,数轴上的点A表示的数是-1,点B表示的数是1,CB⊥AB于点B,且BC=2,以点A为圆心,AC为半径画弧交数轴于点D,则点D表示的数为()A.2.8B. -C.D.2、如图,在Rt△ABC中,∠ACB=90°,以点A为圆心,AC长为半径作圆弧交边AB于点D.若 AC=3,BC=4.则BD的长是()A.2B.3C.4D.53、如图,在四边形ABCD中,,,,.分别以点A,C为圆心,大于长为半径作弧,两弧交于点E,作射线BE交AD于点F,交AC于点O.若点O是AC的中点,则CD的长为()4、如图是一圆柱形输水管的横截面,阴影部分为有水部分,如果水面AB宽为8cm,水面最深地方的高度为2cm,则该输水管的半径为()A.3cmB.4cmC.5cmD.6cm5、如图,在平行四边形中,对角线与相交于点,则的长为()A.8B.4C.3D.56、如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC相似的是( )A. B. C. D.7、如图,已知正方形ABCD的边长为3,E为CD上一点,DE=1,以点A为中心,把△ADE 顺时针旋转90°得△ABE',连接EE',则EE'的长度为( )8、如图,O是正△ABC内一点,OA=3,OB=4,OC=5,将线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,下列结论:①△BO′A可以由△BOC绕点B逆时针旋转60°得到;②点O与O′的距离为4;③∠AOB=150°;④S四边形AOBO′=6+3;⑤S△AOC+S△=6+.其中正确的结论是()AOBA.①②③⑤B.①②③④C.①②③④⑤D.①②③9、下列四组数中,不能构成直角三角形边长的一组是( )A. B. C. D.10、如图,在ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=,则ΔCEF的周长等于A.8B.9.5C.10D.11.511、满足下列条件的,不是直角三角形的是()A. B. C.D.12、图1为一个长方体,AD=AB=10,AE=6,M,N为所在棱的中点,图2为图1的表面展开图,则图2中MN的长度为()A.11B.10C.10D.813、已知:如图在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④BE2=2(AD2+AB2)﹣CD2,其中结论正确的个数是()A.1B.2C.3D.414、将矩形纸片ABCD 按如图所示的方式折叠,得到菱形AECF.若AB=3,则BC 的长为()A. B.2 C.1.5 D.15、在直角三角形中,自锐角顶点引的两条中线为和,则这个直角三角形的斜边长是( )A.3B.2C.2D.6二、填空题(共10题,共计30分)16、《九章算术》是我国古代重要的数学著作之一,在“勾股”中记载了一道“折竹抵地”问题:“今有竹高一丈,未折抵地,去本三尺,问折者高几何?”翻译成数学问题是:如图所示,△ABC中,∠ACB=90°,AC+AB=10,BC=3,求AC的长,如果设AC=x,则可列方程求出AC的长为________.17、如图,正方形ABCD中,AB=2,对角线AC,BD相交于点O,将△OBC绕点B逆时针旋转得到△O′BC′,当射线O′C′经过点D时,线段DC′的长为________.18、在中,若,,,则________.19、如图,在矩形中,,,对角线相交于点O,点P为边上一动点,连接,以为折痕,将折叠,点A的对应点为点E,线段与相交于点F.若为直角三角形,则的长________.20、如图,Rt△ABC中,∠ACB=90°,AC=4,BC=6,D为线段AC上一动点,连接BD,过点C作CH⊥BD于H,连接AH,则AH的最小值为________.21、在△ABC中,AB=4,AC=3,BC=5,则△ABC的面积是________.22、如图,平面直角坐标系内有一点A(3,4),O为坐标原点.点B在x轴上,若△AOB 为等腰三角形,则点B的坐标为________.23、如图,长方形ABCD中,AB=3,BC=4,点E是BC边上任一点,连接AE,把∠B沿AE 折叠,使点B落在点B′处,当CE的长为________时,△CEB′恰好为直角三角形.24、在《九章算术》中有一个问题(如图):今有竹高一丈,末折抵地,去本三尺,问折者高几何?它的意思是:一根竹子原高一丈(尺),中部一处折断,竹梢触地面处离竹根尺,试问折断处离地面________尺.25、在直角三角形ABC中,∠C=90º,如果c=13,a=5,那么b=________.三、解答题(共5题,共计25分)26、如图,在Rt△ABC中,∠C=90°,BC=8,tanB= ,点D在BC上,且BD=AD,求AC 的长和cos∠ADC的值.27、如图,在四边形ABCD中,AB=BC=2,CD=3,AD=1,且∠ABC=90°,试求∠A的度数.28、已知:如图,在四边形ABCD中,∠B=90°,AB=BC=2,CD=3,AD=1,求∠DAB的度数.29、如图,学校有一块空地ABCD,准备种草皮绿化已知∠ADC=90°,AD=4米,CD=3米,AB=13米,BC=12米,求这块地的面积.30、如图,校园内有一棵与地面垂直的树,数学兴趣小组两次测量它在地面上的影子,第一次是阳光与地面成60°角时,第二次是阳光与地面成30°角时,两次测量的影长相差8米,求树高AB多少米.(结果保留根号)参考答案一、单选题(共15题,共计45分)1、B2、A3、A4、C5、B6、B7、A8、A9、B10、A11、C12、A13、D14、D15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、29、。

北师大版八年级数学上册 第一章 勾股定理单元测试卷(含答案)

北师大版八年级数学上册 第一章 勾股定理单元测试卷(含答案)

第一章勾股定理单元测试卷一.选择题(共12小题)1.如图,四边形ABCD的对角线AC与BD互相垂直,若AB=3,BC=4,CD=5,则AD的长为()A.3B.4 C.2D.4(第1题) (第4题) (第5题)2.△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,由下列条件不能判定△ABC为直角三角形的是()A.∠A+∠B=∠C B.∠A:∠B:∠C=1:2:3C.a2=c2﹣b2D.a:b:c=3:4:63.三角形的三边长a,b,c满足2ab=(a+b)2﹣c2,则此三角形是()A.钝角三角形B.锐角三角形C.直角三角形D.等边三角形4.如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=,则BC 的长为()A.﹣1 B.+1 C.﹣1 D.+15.如图所示,△ABC的顶点A、B、C在边长为1的正方形网格的格点上,BD⊥AC于点D,则BD的长为()A.B.C.D.6.以下列各组线段为边长,能构成直角三角形的是()A.1,1,B.3,4,5 C.5,10,13 D.2,3,47.如图,一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口2小时后,则两船相距()A.25海里B.30海里C.40海里D.50海里(第7题) (第9题) (第10题)8.△ABC中,边AB=15,AC=13,高AD=12,则△ABC的周长是()A.42 B.32 C.42或32 D.不能确定9.如图,在Rt△ABC中,∠ACB=90°,AB=,BC=2,则这个直角三角形的面积为()A.3 B.6 C.D.10.如图,有4个相同的直角三角形与中间的小正方形拼成一个大正方形,若大正方形面积是17,小正方形面积是5,直角三角形较长直角边为a,较短直角边为b,则ab的值是()A.4 B.6 C.8 D.1011.如图①所示,有一个由传感器A控制的灯,要装在门上方离地高4、5m的墙上,任何东西只要移至该灯5m及5m以内时,灯就会自动发光.请问一个身高1、5m的学生要走到离墙多远的地方灯刚好发光?()A.4米B.3米C.5米D.7米(第11题) (第12题)12.如图表示的是一个十字路口,O是两条公路的交点,点A、B、C、D表示的是公路上的四辆车,若OC=8cm,AC=17cm,AB=5cm,BD=10m,则C,D两辆车之间的距离为()A.5m B.4m C.3m D.2m二.填空题(共5小题)13.如图,在△ABC中,AB=AC=4,AO=BO,P是射线CO上的一个动点,∠AOC=120°,则当△P AB为直角三角形时,AP的长为.(第13题) (第14题) (第15题) 14.如图,一架10米长的梯子斜靠在墙上,刚好梯顶抵达8米高的路灯.当电工师傅沿梯上去修路灯时,梯子下滑到了B′处,下滑后,两次梯脚间的距离为2米,则梯顶离路灯米.15.如图,将一根长24cm的筷子,置于底面直径为5cm,高为12cm的圆柱形茶杯中,设筷子露在杯子外面的长为acm(茶杯装满水),则a的取值范围是.16.如图,四边形ABCD中,AD=3,CD=4,∠ABC=∠ACB=∠ADC=45°,则BD的长为.17.如果矩形的周长是14cm,相邻两边长之比为3:4,那么对角线长为cm.三.解答题(共5小题)18.一架梯子长25米,斜靠在一面墙上,梯子底端离墙7米,(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4米到A′,那么梯子的底端在水平方向滑动了几米?19.在△ABC中,CD是AB边上的高,AC=4,BC=3,DB=求:(1)求AD的长;(2)△ABC是直角三角形吗?为什么?20.如图,AB=BC=CD=DE=1,且BC⊥AB,CD⊥AC,DE⊥AD,求线段AE的长.21.如图,在Rt△ABC中,∠A=90°,边BC的垂直平分线DE交AB于点E,连接CE.求证:BE2=AC2+AE2.22.(1)如图(1),分别以Rt△ABC三边为直径向外作三个正方形,其面积分别用S1,S2,S3表示,写出S1,S2,S3之间关系.(不必证明)(2)如图(2),分别以Rt△ABC三边为边向外作三个半圆,其面积分别用S1,S2,S3表示,确定它们的关系证明;(3)如图(3),分别以Rt△ABC三边为边向外作正三角形,其面积分别用S1,S2,S3表示,确定它们的关系并证明.参考答案一.选择题(共12小题)1.如图,四边形ABCD的对角线AC与BD互相垂直,若AB=3,BC=4,CD=5,则AD的长为()A.3B.4 C.2D.4【解答】解:在Rt△AOB中,AO2=AB2﹣BO2;Rt△DOC中可得:DO2=DC2﹣CO2;∴可得AD2=AO2+DO2=AB2﹣BO2+DC2﹣CO2=18,即可得AD==3.故选A.2.△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,由下列条件不能判定△ABC为直角三角形的是()A.∠A+∠B=∠C B.∠A:∠B:∠C=1:2:3C.a2=c2﹣b2D.a:b:c=3:4:6【解答】解:A、∠A+∠B=∠C,又∠A+∠B+∠C=180°,则∠C=90°,是直角三角形;B、∠A:∠B:∠C=1:2:3,又∠A+∠B+∠C=180°,则∠C=90°,是直角三角形;C、由a2=c2﹣b2,得a2+b2=c2,符合勾股定理的逆定理,是直角三角形;D、32+42≠62,不符合勾股定理的逆定理,不是直角三角形.故选D.3.三角形的三边长a,b,c满足2ab=(a+b)2﹣c2,则此三角形是()A.钝角三角形B.锐角三角形C.直角三角形D.等边三角形【解答】解:∵原式可化为a2+b2=c2,∴此三角形是直角三角形.故选:C.http://www、czsx、com、cn4.如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=,则BC 的长为()A.﹣1 B.+1 C.﹣1 D.+1【解答】解:∵∠ADC=2∠B,∠ADC=∠B+∠BAD,∴∠B=∠DAB,∴DB=DA=5,在Rt△ADC中,DC===1,∴BC=+1.故选D.5.如图所示,△ABC的顶点A、B、C在边长为1的正方形网格的格点上,BD⊥AC于点D,则BD的长为()A.B.C. D.【解答】解:△ABC的面积=×BC×AE=2,由勾股定理得,AC==,则××BD=2,解得BD=,故选:A.6.以下列各组线段为边长,能构成直角三角形的是()A.1,1,B.3,4,5 C.5,10,13 D.2,3,4【解答】解:A、12+12≠()2,不能构成直角三角形,故此选项错误;B、32+42=52,能构成直角三角形,故此选项正确;C、52+102≠132,不能构成直角三角形,故此选项错误;D、22+32≠42,不能构成直角三角形,故此选项错误.故选B.7.如图,一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口2小时后,则两船相距()A.25海里B.30海里C.40海里D.50海里【解答】解:连接BC,由题意得:AC=16×2=32(海里),AB=12×2=24(海里),CB==40(海里),故选:C.8.△ABC中,边AB=15,AC=13,高AD=12,则△ABC的周长是()A.42 B.32 C.42或32 D.不能确定【解答】解:此题应分两种情况说明:(1)当△ABC为锐角三角形时,在Rt△ABD中,BD===9,在Rt△ACD中,CD===5∴BC=5+9=14∴△ABC的周长为:15+13+14=42;(2)当△ABC为钝角三角形时,在Rt△ABD中,BD===9,在Rt△ACD中,CD===5,∴BC=9﹣5=4.∴△ABC的周长为:15+13+4=32∴当△ABC为锐角三角形时,△ABC的周长为42;当△ABC为钝角三角形时,△ABC的周长为32.综上所述,△ABC的周长是42或32.故选:C.9.如图,在Rt△ABC中,∠ACB=90°,AB=,BC=2,则这个直角三角形的面积为()A.3 B.6 C.D.【解答】解:∵在Rt△ABC中,∠ACB=90°,AB=,BC=2,∴AC==3,∴这个直角三角形的面积=AC•BC=3,故选A.10.如图,有4个相同的直角三角形与中间的小正方形拼成一个大正方形,若大正方形面积是17,小正方形面积是5,直角三角形较长直角边为a,较短直角边为b,则ab的值是()A.4 B.6 C.8 D.10【解答】解:根据勾股定理可得a2+b2=17,四个直角三角形的面积是:ab×4=17﹣5=12,即:ab=6.故选:B.11.如图①所示,有一个由传感器A控制的灯,要装在门上方离地高4、5m的墙上,任何东西只要移至该灯5m及5m以内时,灯就会自动发光.请问一个身高1、5m的学生要走到离墙多远的地方灯刚好发光?()A.4米B.3米C.5米D.7米【解答】解:由题意可知.BE=CD=1、5m,AE=AB﹣BE=4、5﹣1、5=3m,BD=5m由勾股定理得CE==4m故离门4米远的地方,灯刚好打开,故选A.12.如图表示的是一个十字路口,O是两条公路的交点,点A、B、C、D表示的是公路上的四辆车,若OC=8cm,AC=17cm,AB=5cm,BD=10m,则C,D两辆车之间的距离为()A.5m B.4m C.3m D.2m【解答】解:在RT△AOC中,∵OA2+OC2=AC2,∴OA===15(m),∴OB=0A+AB=20m,在RT△BOD中,∵BD2=OB2+OD2,∴OD===10(m),∴CD=OD﹣OC=2m,故选:D.二.填空题(共5小题)13.如图,在△ABC中,AB=AC=4,AO=BO,P是射线CO上的一个动点,∠AOC=120°,则当△P AB为直角三角形时,AP的长为2或2.【解答】解:当∠APB=90°时,分两种情况讨论,情况一:如图1,∵AO=BO,∴PO=BO,∵∠AOC=120°,∴∠AOP=60°,∴△AOP为等边三角形,∴∠OAP=60°,∴∠∠PBA=30°,∴AP=AB=2;情况二:如图2,∵AO=BO,∠APB=90°,∴PO=BO,∵∠AOC=120°,∴∠BOP=60°,∴△BOP为等边三角形,∴∠OBP=60°,∴AP=AB•sin60°=4×=2;当∠BAP=90°时,如图3,∵∠AOC=120°,∴∠AOP=60°,∴AP=OA•tan∠AOP=2×=2.故答案为:2或2.14.如图,一架10米长的梯子斜靠在墙上,刚好梯顶抵达8米高的路灯.当电工师傅沿梯上去修路灯时,梯子下滑到了B′处,下滑后,两次梯脚间的距离为2米,则梯顶离路灯2米.【解答】解:在直角三角形AOB中,根据勾股定理,得:OB=6m,根据题意,得:OB′=6+2=8m.又∵梯子的长度不变,在Rt△A′OB′中,根据勾股定理,得:OA′=6m.则AA′=8﹣6=2m.15.如图,将一根长24cm的筷子,置于底面直径为5cm,高为12cm的圆柱形茶杯中,设筷子露在杯子外面的长为acm(茶杯装满水),则a的取值范围是11cm≤a≤12cm.【解答】解:当筷子与杯底垂直时h最大,h最大=24﹣12=12cm.当筷子与杯底及杯高构成直角三角形时a最小,如图所示:此时,AB===13cm,故a=24﹣13=11cm.所以a的取值范围是:11cm≤a≤12cm.故答案是:11cm≤a≤12cm.16.如图,四边形ABCD中,AD=3,CD=4,∠ABC=∠ACB=∠ADC=45°,则BD的长为.【解答】解:作AD′⊥AD,AD′=AD,连接CD′,DD′,如图:∵∠BAC+∠CAD=∠DAD′+∠CAD,即∠BAD=∠CAD′,在△BAD与△CAD′中,,∴△BAD≌△CAD′(SAS),∴BD=CD′.∠DAD′=90°由勾股定理得DD′==3,∠D′DA+∠ADC=90°由勾股定理得CD′==,∴BD=CD′=,故答案为:.17.如果矩形的周长是14cm,相邻两边长之比为3:4,那么对角线长为5cm.【解答】解:设矩形的相邻两边的长度分别为3acm,4acm,由题意3a+4a=7,a=1,所以矩形的相邻两边分别为3cm,4cm,所以对角线长==5cm,故答案为5.三.解答题(共5小题)18.一架梯子长25米,斜靠在一面墙上,梯子底端离墙7米,(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4米到A′,那么梯子的底端在水平方向滑动了几米?【解答】解:(1)由题意得:AC=25米,BC=7米,AB==24(米),答:这个梯子的顶端距地面有24米;(2)由题意得:BA′=20米,BC′==15(米),则:CC′=15﹣7=8(米),答:梯子的底端在水平方向滑动了8米.19.在△ABC中,CD是AB边上的高,AC=4,BC=3,DB=求:(1)求AD的长;(2)△ABC是直角三角形吗?为什么?【解答】解:(1)∵CD⊥AB,∴∠CDB=∠CDA=90°,在Rt△BCD中,BC=3,DB=,根据勾股定理得:CD==,在Rt△ACD中,AC=4,CD=,根据勾股定理得:AD==;(2)△ABC为直角三角形,理由为:∵AB=BD+AD=+=5,∴AC2+BC2=AB2,∴△ABC为直角三角形.20.如图,AB=BC=CD=DE=1,且BC⊥AB,CD⊥AC,DE⊥AD,求线段AE的长.【解答】解:∵BC⊥AB,CD⊥AC,AC⊥DE,∴∠B=∠ACD=∠ADE=90°,∵AB=BC=CD=DE=1,∴在Rt△ACB中,AC═==,∴在Rt△ACD中,AD===,在Rt△ADE中,AE===2.21.如图,在Rt△ABC中,∠A=90°,边BC的垂直平分线DE交AB于点E,连接CE.求证:BE2=AC2+AE2.【解答】证明:∵如图,边BC的垂直平分线DE交AB于点E,∴CE=BE.∵在Rt△ABC中,∠A=90°,∴由勾股定理得到:CE2=AC2+AE2∴BE2=AC2+AE2.22.(1)如图(1),分别以Rt△ABC三边为直径向外作三个正方形,其面积分别用S1,S2,S3表示,写出S1,S2,S3之间关系.(不必证明)(2)如图(2),分别以Rt△ABC三边为边向外作三个半圆,其面积分别用S1,S2,S3表示,确定它们的关系证明;(3)如图(3),分别以Rt△ABC三边为边向外作正三角形,其面积分别用S1,S2,S3表示,确定它们的关系并证明.【解答】解:(1)S2+S3=S1,由三个四边形都是正方形则:∵S3=AC2,S2=BC2,S1=AB2,∵三角形ABC是直角三角形,∴AC2+BC2=AB2,∴S2+S3=S1.(2)∵S3=AC2,S2=BC2,S1=AB2,∵三角形ABC是直角三角形,∴AC2+BC2=AB2,∴S2+S3=S1.(3)∵S1=AB2,S2=BC2,S3=AC2,∵三角形ABC是直角三角形,∴AC2+BC2=AB2,∴S2+S3=S1.。

第一章 勾股定理数学八年级上册-单元测试卷-北师大版(含答案)

第一章 勾股定理数学八年级上册-单元测试卷-北师大版(含答案)

第一章勾股定理数学八年级上册-单元测试卷-北师大版(含答案)一、单选题(共15题,共计45分)1、如图,在边长为1的正方形ABCD中,将射线AC绕点A按顺时针方向旋转度(< ≤)得到射线AE,点M是点D关于射线AE的对称点,则线段CM长度的最小值为()A. B.0.5 C.1 D.2、勾股定理是几何中的一个重要定理,在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,已知∠BAC=90°,AB=6,AC=8,点D、E、F、G、H、I都在矩形KLMJ的边上,则矩形KLMJ的周长为()A.40B.44C.84D.883、“用长分别为5cm、12cm、13cm的三条线段可以围成直角三角形”这一事件是( )A.必然事件B.不可能事件C.随机事件D.以上都不是4、菱形的两条对角线的分别为60cm和80cm,那么边长是()A.100cmB.80cmC.60cmD.50cm5、三角形三边长分别是3,4,5,则它的最短边上的高为()A.3B.2.4C.4D.4.86、一根竹子高9尺,折断后竹子顶端落在离竹子底端3尺处,折断处离地面高度是()A.3尺B.4尺C.5尺D.6尺7、如图,正方形ABCD的对角线交于点O ,以AD为边向外作Rt△ADE ,∠AED=90°,连接OE , DE=6,OE=,则另一直角边AE的长为().A. B.2 C.8 D.108、如图①所示,有一个由传感器A控制的灯,要装在门上方离地高4.5m的墙上,任何东西只要移至该灯5m及5m以内时,灯就会自动发光.请问一个身高1.5m的学生要走到离墙多远的地方灯刚好发光?()A.4米B.3米C.5米D.7米9、如图,由四个全等的直角三角形和一个小正方形拼成一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b,若(a+b)2=21,大正方形的面积为13.则小正方形的面积为()A.3B.4C.5D.610、如图,AB为⊙O的直径,弦CD⊥AB于E,已知CD=12,BE=2,则⊙O的半径为()A.8B.10C.16D.2011、下列命题不成立的是A.三个角的度数之比为1:3:4的三角形是直角三角形B.三个角的度数比为1::2的三角形是直角三角形C.三边长度比为1::的三角形是直角三角形D.三边长度之比为::2的三角形是直角三角形12、三角形的三边为a、b、c,由下列条件不能判断它是直角三角形的是()A.a:b:c =13∶5∶12B.a 2-b 2=c 2C.a 2=(b+c)(b-c) D.a:b:c=8∶16∶1713、如图,已知Rt△ABC中,∠C=90°,BC=3, AC=4,则sinA的值为()..A. B. C. D.14、如图,∠ACB=90°,CD是斜边上的高,AC=3,BC=4,则CD的长为()A.1.6B.2.4C.2D.2.115、下列长度的三条线段能组成直角三角形的是( )A.2,3,4B.4,6,8C.6,8,10D.5,11,12二、填空题(共10题,共计30分)16、将等腰直角△ABC按如图方法放置在数轴上,点A和C分别对应的数是﹣2和1.以点A为圆心,AB长为半径画弧,交数轴的正半轴于点D,则点D对应的实数为________.17、一根高9m的旗杆在离地4m高处折断,折断处仍相连,此时在3.9m远处耍的身高为1m的小明________危险.(填有或无)18、如图,正方形ABCD的顶点C,A分别在x轴,y轴上,BC是菱形BDCE的对角线.若BC=6,BD=5,则点D的坐标是________.19、我国古代数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的三角形,如图所示,已知,则的长度是________.20、菱形的面积为24,其中的一条对角线长为6,则此菱形的周长为________.21、已知菱形的周长为,两条对角线的和为6,则菱形的面积为________22、如图所示的一块地,已知AD=4米,CD=3米,∠ADC=90°,AB=13米,BC=12米,这块地的面积为________m223、已知a、b、c是△ABC三边的长,且满足关系式,则△ABC的形状为________24、如图,在高3米,坡面线段AB长为5米的楼梯表面铺地毯,已知楼梯宽1.5米,地毯售价为40元/平方米,若将楼梯表面铺满地毯,则至少需________元.25、如图,已知以点A(0,1)、C(1,0)为顶点的△ABC中,∠BAC=60°,∠ACB=90°,在坐标系内有一动点P(不与A重合),以P、B、C为顶点的三角形和△ABC全等,则P点坐标为________.三、解答题(共5题,共计25分)26、在 Rt△ABC 中,∠C=90°,∠A、∠B、∠C 的对边分别为a、b、c.若a∶c=15∶17,b=24,求a.27、有一块直角三角形的绿地,量得两直角边长分别为6m和8m,现在要将绿地扩充成等腰三角形,且扩充部分是以8m为直角边的直角三角形,求扩充后等腰三角形绿地的周长.28、小锤和豆花要测量校园里的一块四边形场地ABCD(如图所示)的周长,其中边BC上有水池及建筑遮挡,没有办法直接测量其长度。

第一章勾股定理 单元测试 2024-2025学年北师大版八年级数学上册

第一章勾股定理 单元测试   2024-2025学年北师大版八年级数学上册

第一章勾股定理单元测试一、单选题1.平面直角坐标系中,点P (2,0)平移后对应的点为Q (5,4),则平移的距离为()A .3B .4C .5D .72.如图,在网格中的小正方形边长为1,ABC 和BCD 的顶点都在网格格点上,则ABC 和BCD 的面积之比为()A .1:2B .2:3C .3:2D .3:43.将一根橡皮筋两端固定在点A ,B 处,拉展成线段AB ,拉动橡皮筋上的一点P ,当△APB 是顶角为120°的等腰三角形时,已知AB =6cm ,则橡皮筋被拉长了()A .2cmB .4cmC .()6cmD .(4cm -4.如图,在边长为1的正方形方格中,A ,B ,C ,D 均为格点,构成图中三条线段AB ,BC ,CD .现在取出这三条线段AB ,BC ,CD 首尾相连拼三角形.下列判断正确的是()A .能拼成一个锐角三角形B .能拼成一个直角三角形C .能拼成一个钝角三角形D .不能拼成三角形5.如图,如果△ABC 与△DEF 都是正方形网格中的格点三角形(顶点在格点上),那么△DEF 与△ABC 的周长比为()A .4:1B .3:1C .2:1D 2:16.下列各组数不能组成直角三角形的一组数是()A .5,12,13B .2223,4,5C .7,24,25D .8,15,177.如图,矩形ABCD 中,AC 和BD 相交于点O ,3AD =,4AB =,点E 是CD 边上一点,过点E 作EH BD ⊥于点H ,EG AC ⊥于点G ,则EH EG +的值是()A .2.4B .2.5C .3D .48.如图,在7×7的正方形网格中,每个小正方形的边长为1,画一条线段50A ,B 在小正方形的顶点上,设AB 与网格线相交所成的锐角为α,则不同角度的α有()A .1种B .2种C .3种D .4种9.如图,在正方形ABCD 中,点E ,F 分别在BC ,CD 上,AE AF =,AC 与EF 相交于点G .下列结论:①AC 垂直平分EF ;②当AEB AEF ∠=∠时,45EAF ∠=︒;③当15DAF ∠=︒时,AEF 为等边三角形:④当C =2−2B 时,BE DF EF +=.其中正确的结论有()个A .1B .2C .3D .410.在数学拓展课《折叠矩形纸片》上,小林发现折叠矩形纸片ABCD 可以进行如下操作:①把△ABF 翻折,点B 落在C 边上的点E 处,折痕为AF ,点F 在BC 边上;②把△ADH 翻折,点D 落在AE 边上的点G 处,折痕为AH ,点H 在CD 边上,若AD =6,CD =10,则EH EF =()A .32B .53C .43D .54二、填空题11.如图,一高层住宅发生火灾,消防车立即赶到距大厦8米处(车尾AE 到大厦墙面CD ),升起云梯到火灾窗口B .已知云梯AB 长17米,云梯底部距地面的高 1.5AE =米,则发生火灾的住户窗口距离地面多高度BD 是.12.在Rt △ABC 中,90C ∠=︒,10AB =,则2222AB AC BC ++=.13.如图所示,等腰三角形ABC 的底边为8cm ,腰长为5cm ,一动点P (与B 、C 不重合)在底边上从B 向C 以1cm/s 的速度移动,当P 运动秒时,△ACP 是直角三角形14.已知△ABC 为等边三角形,BD 为中线,延长BC 至E ,使CE =CD =1,连接DE ,则DE 等于.15.在矩形ABCD 中,AB =4,AD =9,点E 在BC 上,CE =4,点F 是AD 上的一个动点,连接BF ,若将四边形ABEF 沿EF 折叠,点A 、B 分别落在点A ′、B '处,则当点B 恰好落在矩形ABCD 的一边上时,AF 的长为.三、解答题16.如图,在四边形ABCD 中,90B ∠=︒,AC 为对角线,8AB =,6BC =,215CD =,10AD =.(1)求AC 的长;(2)求ACD 的面积.17.某人欲横渡一条河,由于水流的影响,实际上岸地点C 偏离了欲到达点B ,结果离欲到达点B 240米,已知他在水中游了510米,求该河的宽度(两岸可近似看做平行).18.如图,在四边形ABCD 中,CD =AD =2,∠D =90°,AB =5.BC =3.(1)求∠C 的度数;(2)求四边形ABCD 的面积.19.如图所示,有一张长方形纸片ABCD ,8AB =,6AD =.现折叠该纸片使得AD 边与对角线DB 重合,折痕为DG ,点A 落在F 处,(1)DF =____________,BF =____________;(2)求AG 的长.20.如图,射线AM AN ⊥于点A 、点C 、B 在AM 、AN 上,D 为线段AC 的中点,且DE BC ⊥于点E .(1)若10BC =,直接写出22AC AB +的值;(2)若8AC =,ABC 的周长为24,求ABC 的面积;(3)若6AB =,C 点在射线AM 上移动,问此过程中,22BE CE -的值是否为定值?若是,请求出这个定值;若不是,请求出它的取值范围.21.如图,在平面直角坐标系中,O 为坐标原点,ABC 的边BC 在x 轴上,A C 、两点的坐标分别为0,、s 0,−5,0,且−32+3−12=0,点P 从B 出发以每秒2个单位的速度沿射线BO 匀速运动,设点P 运动时间为t 秒.(1)求A C 、两点的坐标;(2)连接PA ,当POA 的面积是2,求t 的值?(3)当P 在线段BO 上运动时,是否存在一点P ,使PAC 是等腰三角形?若存在,请直接写出满足条件的所有P 点的坐标.。

北师大版八年级上册数学《勾股定理》单元测试卷含答案

第一章《勾股定理》单元测试卷班别:姓名:__________一、选择题(本题共10小题,每小题3分,满分30分)1.一直角三角形的斜边长比一直角边长大2,另一直角边长为6,则斜边长为()A.4 B.8 C.10 D.122.已知a=3,b=4,若a,b,c能组成直角三角形,则c=()A.5B.7C.5或7D.5或63.如图中字母A所代表的正方形的面积为()A.4 B.8 C.16 D.644.将直角三角形的三条边长同时扩大同一倍数,得到的三角形是()A.钝角三角形B.锐角三角形C.直角三角形D.等腰三角形5.直角三角形的一直角边长是7cm,另一直角边与斜边长的和是49cm,则斜边的长()A.18cm B.20cm C.24cm D.25cm6.适合下列条件的△ABC中,直角三角形的个数为()①a=,b=,c=②a=6,∠A=45°;③∠A=32°,∠B=58°;④a=7,b=24,c=25 ⑤a=2,b=2,c=4A.2个B.3个C.4个D.5个7.在△ABC中,若a=n2﹣1,b=2n,c=n2+1,则△ABC是()A.锐角三角形B.钝角三角形C.等腰三角形D.直角三角形8.直角三角形斜边的平方等于两条直角边乘积的2倍,这个三角形有一个锐角是()A.15°B.30°C.45°D.60°9.已知,如图长方形ABCD 中,AB=3cm ,AD=9cm ,将此长方形折叠,使点B 与点D 重合,折痕为EF ,则△ABE 的面积为( )A .3cm 2B .4cm 2C .6cm 2 D.12cm 210.已知,如图,一轮船以16海里/时的速度从港口A 出发向东北方向航行,另一轮船以12海里/时的速度同时从港 口A 出发向东南方向航行,离开港口2小时后,则两船相距( )A .25海里B .30海里C .35海里D . 40海里二、填空题(本题共8小题,每小题3分,满分24分)11.一个三角形三边长度之比为1∶2∶3 ,则这个三角形的最大角为_______度.12.如图,等腰△ABC 的底边BC 为16,底边上的高AD 为6,则腰长AB 的长为 .13.如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C 偏离欲到达点B200m ,结果他在水中实际游了520m ,求该河流的宽度为 m .14.小华和小红都从同一点O 出发,小华向北走了9米到A 点,小红向东走到B 点时,当两人相距为15米,则小红向东走了 米.15.一个三角形三边满足22()2a b c ab +-=,则这个三角形是 三角形.16.木工做一个长方形桌面,量得桌面的长为60cm ,宽为32cm ,对角线为68cm ,这个桌面 (填”合格”或”不合格”).17.直角三角形一直角边为12cm,斜边长为13cm,则它的面积为cm2.18.如图,一个三级台阶,它的每一级的长宽和高分别为20、3、2,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点最短路程是.三、解答题(共46分)19.在RtΔABC中,∠A CB=90°,AB=5,AC=3,CD⊥AB于D,求CD的长.21.(7分)如图,在△ABC中,AD⊥BC于D,AB=3,BD=2,DC=1,求AC 的值.22.(8分)如图,一个牧童在小河的南4km的A处牧马,而他正位于他的小屋B的西8km北7km处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?小河23.如图,A城气象台测得台风中心在A城正西方向320km的B处,以每小时40km的速度向北偏东60°的BF方向移动,距离台风中心200km的范围内是受台风影响的区域.(1)A城是否受到这次台风的影响?为什么?(2)若A城受到这次台风影响,那么A城遭受这次台风影响有多长时间?《勾股定理》单元测试卷答案一、选择题(共10小题,每小题3分,满分30分)1. C .2. C .3. D .4. C .5. D .6. A .7. D .8. C .9. C .10. D .二、填空题(共8小题,每小题3分,满分24分)11. 900 . 12. 10 . 13. 480 m . 14. 12 米.15. 直角 . 16. 合格 . 17. 30 cm 2. 18. 25 .三、解答题(共46分)19.略20.解:∵∠ACB=90°,AB=5,AC=3,∴BC 2 = AB 2 -AC 2 =42,∴BC=4,∵CD ⊥AB ,∴21AB·CD=21AC·BC,∴5CD=12,∴CD=512. .21.解:∵AD ⊥BC 于D ,∴∠ADB=∠ADC=90°∵AB=3,BD=2∴AD 2=AB 2﹣BD 2=5∵DC=1,∴AC 2=AD 2+DC 2=5+1=6.∴AC= 22.解:设矩形的长是a ,宽是b ,根据题意,得:, (2)+(1)×2,得(a+b )2=196,即a+b=14,所以矩形的周长是14×2=28m .23. 如图,作出A点关于MN的对称点A′,则A′A=8 km,连接A′B交MN 于点P,则A′B就是最短路线.在Rt△A′DB中,A′D=15 km,BD=8 km由勾股定理得A′B2= A′D 2+BD2=289∴A′D =17km24.解:(1)由A点向BF作垂线,垂足为C,在Rt△ABC中,∠ABC=30°,AB=320km,则AC=160km,因为160<200,所以A城要受台风影响;(2)设BF上点D,DA=200千米,则还有一点G,。

北师大版八年级数学上《第一章勾股定理》单元测试含答案试卷分析详解

第一章勾股定理单元测试一、单选题(共10题;共30分)1、以下列长度线段为边,不能构成直角三角形的是( )A、7,24,25B、8,15,17C、9,40,41D、10,24,282、如图,∠ABC=90°,AB=6,BC=8,AD=CD=7,若点P到AC的距离为5,则点P在四边形ABCD边上的个数为()A、0B、2C、3D、43、如果梯子的底端离建筑物5米,13米长的梯子可以达到建筑物的高度是()A、12米B、13米C、14米D、15米4、适合下列条件的△ABC中,直角三角形的个数为()①a=3,b=4,c=5;②a=6,∠A=45°;③a=2,b=2,c=2;④∠A=38°,∠B=52°.A、1个B、2个C、3个D、4个5、下列三条线段不能构成直角三角形的是()A、1、、2B、、、C、5、12、13D、9、40、416、下列各组线段中,能够组成直角三角形的一组是()A、1,2,3B、2,3,4C、4,5,6D、1,,7、如图,是台阶的示意图.已知每个台阶的宽度都是20cm,每个台阶的高度都是10cm,连接AB,则AB等于()A、120cmB、130cmC、140cmD、150cm8、如图,四边形ABCD中,AB=4cm,BC=3cm,CD=12cm,DA=13cm,且∠ABC=90°,则四边形ABCD的面积为()A、6cm2B、30cm2C、24cm2D、36cm29、如图,学校有一块长方形花铺,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”.他们仅仅少走了()步路(假设2步为1米),却踩伤了花草.A、1B、2C、3D、410、在△ABC中,已知AB=12cm,AC=9cm,BC=15cm,则△ABC的面积等于()A、108cm2B、90cm2C、180cm2D、54cm2二、填空题(共8题;共24分)11、8月在北京召开的国际数学大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图),如果大正方形的面积是25,小正方形的面积是1,直角三角形较短的直角边为a,较长的直角边为b,那么(a+b)2的值为________12、学校有一块长方形的花圃如右图所示,有少数的同学为了避开拐角走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了________步(假设1米=2步),却踩伤了花草,所谓“花草无辜,踩之何忍”!13、已知在△ABC中,AB=13cm,AC=15cm,高AD=12cm.则△ABC的周长为________.14、一直角三角形两条边长分别是12和5,则第三边长为________.15、将一根长为12cm的筷子置于底面直径为6cm,高为8cm的圆柱形水杯中,设筷子露在杯子外面的长为hcm,则h的取值范围是________.16、如图,一根树在离地面9米处断裂,树的顶部落在离底部12米处.树折断之前有________米.17、在如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,若最大正方形的边长为7cm,则正方形a,b,c,d的面积之和是________ cm2 .18、图中阴影部分是一个正方形,如果正方形的面积为64,则x的长为________ cm.三、解答题(共5题;共35分)19、如图,甲、乙两艘轮船同时从港口O出发,甲轮船以20海里/时的速度向南偏东45°方向航行,乙轮船向南偏西45°方向航行.已知它们离开港口O两小时后,两艘轮船相距50海里,求乙轮船平均每小时航行多少海里?20、省道S226在我县境内某路段实行限速,机动车辆行驶速度不得超过60km/h,如图,一辆小汽车在这段路上直道行驶,某一时刻刚好行驶到路对面车速检测仪A处的正前方36m 的C处,过了3s后,测得小汽车与车速检测仪间距离为60m,这辆小汽车超速了吗?21、如图,甲、乙两船从港口A同时出发,甲船以每小时30海里的速度向北偏东35°方向航行,乙船以每小时40海里的速度向另一方向航行,1小时后,甲船到达C岛,乙船达到B岛,若C、B两岛相距50海里,请你求出乙船的航行方向.22、如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触地面,然后将绳子末端拉到距离旗杆8m处,发现此时绳子末端距离地面2m,请你求出旗杆的高度(滑轮上方的部分忽略不计)23、如图是一块地的平面图,AD=4m,CD=3m,AB=13m,BC=12m,∠ADC=90°,求这块地的面积.四、综合题(共1题;共11分)24、如图,在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路,完成解答过程.(1)作AD⊥BC于D,设BD=x,用含x的代数式表示CD,则CD=________;(2)请根据勾股定理,利用AD作为“桥梁”建立方程,并求出x的值;(3)利用勾股定理求出AD的长,再计算三角形的面积.答案解析一、单选题1、【答案】D【考点】勾股定理的逆定理【解析】【分析】根据勾股定理的逆定理对各选项进行逐一判断即可;【解答】A、由于72+242=625=252 ,故本选项不符合题意;B、由于(8)2+(15)2=(17)2 ,故本选项不符合题意;C、由于92+402=412 ,故本选项错误;D、由于102+242≠282 ,故本选项正确.故选D.【点评】本题考查的是勾股定理的逆定理,即如果三角形的三边长a,b,c满足a2+b2=c2 ,那么这个三角形就是直角三角形.2、【答案】A【考点】勾股定理【解析】【解答】解:作DE⊥AC,垂足为E;BF⊥AC,垂足为F.在△ACD中,AE=CE=5,DE=,5;在△ABC中,BF==4.8<5,点P到AC的距离为5,则点P在四边形ABCD边上的个数为0.故选A.【分析】作DE⊥AC,垂足为E;BF⊥AC,垂足为F.求出DE、BF的长,与5比较大小即可作出判断.3、【答案】A【考点】勾股定理的应用【解析】【解答】解:如图所示,AB=13米,BC=5米,根据勾股定理米.故选A.【分析】根据梯子、地面、墙正好构成直角三角形,再根据勾股定理解答即可.4、【答案】C【考点】勾股定理的逆定理【解析】【解答】解:①a=3,b=4,c=5,∵32+42=25=52 ,∴满足①的三角形为直角三角形;②a=6,∠A=45°,只此两个条件不能断定三角形为直角三角形;③a=2,b=2,c=2,∵22+22=8=(2)2∴满足③的三角形为直角三角形;④∵∠A=38°,∠B=52°,∴∠C=180°﹣∠A﹣∠B=90°,∴满足④的三角形为直角三角形.综上可知:满足①③④的三角形均为直角三角形.故选C.【分析】根据勾股定理的逆定理以及直角三角形的定义,验证四组条件中数据是否满足“较小两边平方的和等于最大边的平方”或“有一个角是直角”,由此即可得出结论.5、【答案】B【考点】勾股定理的逆定理【解析】【解答】解:A、因为12+()2=22 ,故是直角三角形,不符合题意;B、因为()2+()2≠()2 ,故不是直角三角形,符合题意;C、因为52+122=132 ,故是直角三角形,不符合题意;D、因为92+402=412 ,故是直角三角形,不符合题意;故选B.【分析】由勾股定理的逆定理,只要验证两小边的平方和是否等于最长边的平方即可.6、【答案】D【考点】勾股定理的逆定理【解析】【解答】解:A、12+22≠32 ,不能组成直角三角形,故错误;B、22+32≠42 ,不能组成直角三角形,故错误;C、42+52≠62 ,不能组成直角三角形,故错误;D、12+()2=()2 ,能够组成直角三角形,故正确.故选D.【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形判定则可.7、【答案】B【考点】勾股定理的应用【解析】【解答】解:如图,由题意得:AC=10×5=50cm,BC=20×6=120cm,故AB= = =130(cm).故选B.【分析】作出直角三角形后分别求得直角三角形的两直角边的长后即可利用勾股定理求得斜边AB的长.8、【答案】C【考点】勾股定理,勾股定理的逆定理【解析】【解答】解:连接AC,∵∠ABC=90°,AB=4cm,BC=3cm,∴AC=5cm,∵CD=12cm,DA=13cm,AC2+CD2=52+122=169=132=DA2 ,∴△ADC为直角三角形,∴S四边形ABCD=S△ACD﹣S△ABC= AC×CD﹣AB×BC= ×5×12﹣×4×3=30﹣6=24(cm2).故四边形ABCD的面积为24cm2 .故选:C.【分析】连接AC,在Rt△ADC中,已知AB,BC的长,运用勾股定理可求出AC的长,在△ADC中,已知三边长,运用勾股定理逆定理,可得此三角形为直角三角形,故四边形ABCD 的面积为Rt△ACD与Rt△ABC的面积之差.9、【答案】D【考点】勾股定理的应用【解析】【解答】解:由勾股定理,路程长度= =5,少走(3+4﹣5)×2=4步,故选:D.【分析】根据勾股定理,可得答案.10、【答案】D【考点】勾股定理的逆定理【解析】【解答】解:∵92+122=152 ,∴根据勾股定理的逆定理,三角形是直角三角形,两直角边为9和12,所以△ABC的面积= ×9×12=54(cm2).故选D.【分析】根据勾股定理的逆定理判定直角三角形及直角三角形的面积公式即可求解.二、填空题11、【答案】49【考点】勾股定理【解析】【解答】解:∵大正方形的面积是25,∴c2=25,∴a2+b2=c2=25,∵直角三角形的面积是=6,又∵直角三角形的面积是ab=6,∴ab=12,∴(a+b)2=a2+b2+2ab=c2+2ab=25+2×12=49.故答案是:49.【分析】根据大正方形的面积即可求得c2 ,利用勾股定理可以得到a2+b2=c2 ,然后求得直角三角形的面积即可求得ab的值,根据(a+b)2=a2+b2+2ab=c2+2ab即可求解.12、【答案】4【考点】勾股定理的应用【解析】【解答】解:在Rt△ABC中,AB2=BC2+AC2 ,则AB= =5(m),少走了2×(3+4﹣5)=4(步).故答案为:4.【分析】根据勾股定理求得AB的长,再进一步求得少走的路的米数,即(AC+BC)﹣AB.13、【答案】42cm或32cm【考点】勾股定理【解析】【解答】32cm或42cm解:分两种情况说明:(1)当△ABC为锐角三角形时,在Rt△ABD中,BD= = =5,在Rt△ACD中,CD= = =9,∴BC=5+9=14,∴△ABC的周长为:15+13+14=42(cm);(2)当△ABC为钝角三角形时,BC=BD﹣CD=9﹣5=4.∴△ABC的周长为:15+13+4=32(cm);故答案为:42cm或32cm.【分析】分两种情况进行讨论:(1)当△ABC为锐角三角形时,在Rt△ABD和Rt△ACD中,运用勾股定理可将BD和CD的长求出,两者相加即为BC的长,从而可将△ABC的周长求出;(2)当△ABC为钝角三角形时,求出BC的长,从而可将△ABC的周长求出.14、【答案】13或【考点】勾股定理【解析】【解答】解:①12和5均为直角边,则第三边为=13.②12为斜边,5为直角边,则第三边为= .故答案为:13或.【分析】只给出了两条边而没有指明是直角边还是斜边,所以应该分两种情况进行分析.一种是两边均为直角边;另一种是较长的边是斜边,根据勾股定理可求得第三边.15、【答案】2cm≤h≤4cm【考点】勾股定理的应用【解析】【解答】解:如图,当筷子的底端在D点时,筷子露在杯子外面的长度最长,∴h=12﹣8=4cm;当筷子的底端在A点时,筷子露在杯子外面的长度最短,在Rt△ABD中,AD=6cm,BD=8cm,∴AB= = =10cm,∴此时h=12﹣10=2cm,所以h的取值范围是2cm≤h≤4cm.故答案为2cm≤h≤4cm【分析】如图,当筷子的底端在A点时,筷子露在杯子外面的长度最短;当筷子的底端在D 点时,筷子露在杯子外面的长度最长.然后分别利用已知条件根据勾股定理即可求出h的取值范围.16、【答案】24【考点】勾股定理的应用【解析】【解答】解:因为AB=9米,AC=12米,根据勾股定理得BC= =15米,于是折断前树的高度是15+9=24米.故答案为:24.【分析】根据勾股定理,计算树的折断部分是15米,则折断前树的高度是15+9=24米.17、【答案】147【考点】勾股定理【解析】【解答】解:∵所有的三角形都是直角三角形,所有的四边形都是正方形,∴正方形A的面积=a2 ,正方形B的面积=b2 ,正方形C的面积=c2 ,正方形D的面积=d2 ,又∵a2+b2=x2 ,c2+d2=y2 ,∴正方形A、B、C、D的面积和=(a2+b2)+(c2+d2)=x2+y2=72=49(cm2),则所有正方形的面积的和是:49×3=147(cm2).故答案为:147.【分析】根据正方形的面积公式,连续运用勾股定理,利用四个小正方形的面积和等于最大正方形的面积进而求出即可.18、【答案】17【考点】勾股定理【解析】【解答】解:∵正方形的面积为64,∴正方形的边长为:8,则x的长为:=17.故答案为:17.【分析】直接求出正方形的边长,进而利用勾股定理得出x的值.三、解答题19、【答案】解:∵甲轮船以20海里/时的速度向南偏东45°方向航行,乙轮船向南偏西45°方向航行,∴AO⊥BO,∵甲以20海里/时的速度向南偏东45°方向航行,∴OB=20×2=40(海里),∵AB=50海里,在Rt△AOB中,AO===30,∴乙轮船平均每小时航行30÷2=15海里.【考点】勾股定理的应用【解析】【分析】根据方位角可知两船所走的方向正好构成了直角.然后根据路程=速度×时间,根据勾股定理解答即可.20、【答案】解:在Rt△ABC中,AC=36m,AB=60m;据勾股定理可得:BC===48(m)∴小汽车的速度为v==16(m/s)=16×3.6(km/h)=57.6(km/h);∵60(km/h)>57.6(km/h);∴这辆小汽车没有超速行驶.答:这辆小汽车没有超速、.【考点】勾股定理的应用【解析】【分析】本题求小汽车是否超速,其实就是求BC的距离,直角三角形ABC中,有斜边AB的长,有直角边AC的长,那么BC的长就很容易求得,根据小汽车用2s行驶的路程为BC,那么可求出小汽车的速度,然后再判断是否超速了.21、【答案】解:根据题意得;AC=30海里,AB=40海里,BC=50海里;∵302+402=502 ,∴△ABC是直角三角形,∠BAC=90°,∴180°﹣90°﹣35°=55°,∴乙船的航行方向为南偏东55°【考点】勾股定理的应用【解析】【分析】根据题意得出AC=30海里,AB=40海里,BC=50海里;由勾股定理的逆定理证出△ABC是直角三角形,∠BAC=90°,即可求出乙船的航行方向.22、【答案】解:设旗杆高度为x,则AC=AD=x,AB=(x﹣2)m,BC=8m,在Rt△ABC 中,AB2+BC2=AC2 ,即(x﹣2)2+82=x2 ,解得:x=17,即旗杆的高度为17米.【考点】勾股定理的应用【解析】【分析】根据题意画出示意图,设旗杆高度为x,可得AC=AD=x,AB=(x﹣2)m,BC=8m,在Rt△ABC中利用勾股定理可求出x.23、【答案】解:如图,连接AC,∵AD=4,CD=3,∠ADC=90°,∴AC= =5,∴S△ACD=6,在△ABC中,∵AC=5,BC=12,AB=13,∴AC2+BC2=AB2 ,∴△ABC为直角三角形,且∠ACB=90°,∴Rt△ABC的面积=30,∴四边形ABCD的面积=30﹣6=24.【考点】勾股定理,勾股定理的逆定理【解析】【分析】连接AC,根据解直角△ADC求AC,求证△ACB为直角三角形,根据四边形ABCD的面积=△ABC面积﹣△ACD面积即可计算.四、综合题24、【答案】(1)14﹣x(2)解:∵AD⊥BC,∴AD2=AC2﹣CD2 ,AD2=AB2﹣BD2 ,∴132﹣(14﹣x)2=152﹣x2 ,解得:x=9(3)解:由(2)得:AD= = =12,∴S△ABC= •BC•AD=×14×12=84【考点】勾股定理【解析】【解答】解:(1)∵BC=14,BD=x,∴DC=14﹣x,故答案为:14﹣x;【分析】(1)直接利用BC的长表示出DC的长;(2)直接利用勾股定理进而得出x的值;(3)利用三角形面积求法得出答案.。

第一章 勾股定理 单元测试卷(解析版)

初中数学北师大版八年级上学期第一章测试卷一、单选题1.长度分别如下的四组线段中,可以构成直角三角形的是()A. 1.5,2,2.5B. 4,5,6C. 1,,3D. 2,3,42.由下列条件不能判定△ABC为直角三角形的是( )A. ∠A+∠B=∠CB. ∠A:∠B:∠C=1:3:2C. (b+c)(b-c)=a2D. a=3+k,b=4+k,c=5+k(k>0)3.如图,正方形A,B,C的边长分别为直角三角形的三边长,若正方形A,B的边长分别为3和5,则正方形C的面积为( )A. 4B. 15C. 16D. 184.直角三角形纸片的两直角边长分别为6,8,现将△ABC如图折叠,使点A与点B重合,则折痕DE的长是()A. B.C. D.5.如图,一只蚂蚁沿棱长为的正方体表面从顶点爬到顶点,则它走过的最短路程为().A. B.C. D.6.如图,在Rt△ABC中,∠ACB=90°,AB=16,则正方形ADEC和正方形BCFG的面积和为()A. 16B. 32C. 160D. 256二、填空题7.在△ABC中,∠C=90°,若b=7;c=9,则a=________,8.在Rt△ABC中,∠ACB=90°,AD平分∠BAC与BC相交于点D,若BD=2,CD=1,则AC的长是________。

9.无盖圆柱形杯子的展开图如图所示.将一根长为20cm的细木筷斜放在该杯子内,木筷露在杯子外面的部分至少有________cm.10.如图,在矩形ABCD中,AB=5,AD=3,动点P满足S△PAB=S矩形ABCD,则点P到A、B 两点距离之和PA+PB的最小值为________.11.如图,长为8 cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3 cm到点D,则橡皮筋被拉长了________ cm.12.如图,正方形ABCD的边长为2,其面积标记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,……按照此规律继续下去,则S2019的值为________.三、解答题13.如图,∠ABC=90°,AB=6 cm,AD=24 cm,BC+CD=34 cm,C是直线L上一动点,请你探索当C离B 多远时,△ACD是一个以CD为斜边的直角三角形?14.如图,某校组织学生到地开展社会实践活动,乘车到达地后,发现地恰好在地的正北方向,导航显示车辆应沿北偏东方向行驶10公里到达地,再沿北偏西方向行驶一段距离才能到达地.求、两地间的距离,15.由于大风,山坡上的一棵树甲被从点A处拦腰折断,如图,其树恰好落在另一棵树乙的根部C处,已知AB=1米,BC=5米,已知两棵树的水平距离为3米,请计算出这棵树原来的高度(结果保留根号)答案解析部分一、单选题1. A解析:A、∵1.52+22=2.25+4=6.25=2.52,可以构成直角三角形,符合题意;B、42+52=41>36=62, 可以构成锐角三角形,不符合题意;C、12+2=3<32=9, 可以构成钝角三角形,不符合题意;D、22+32=13<42=16,可以构成钝角三角形,不符合题意;故答案为:A.【分析】根据勾股定理判断,如果最大边的平方等于较小两边的平方和就是直角三角形。

初中数学北师大版八年级上册 第一章 勾股定理单元测试(含答案)

第一章勾股定理一、选择题1. 若a,b,c为△ABC的三边长,则下列条件中不能判定△ABC是直角三角形的是( )A.a=1.5,b=2,c=2.5B.a:b:c=3:4:5C.∠A+∠B=∠C D.∠A:∠B:∠C=3:4:52. 在Rt△ABC中,若∠C=90∘,AC=3,BC=4,则点C到直线AB的距离为( )A.3B.4C.5D.2.43. 如图,四边形ABCD中,∠B=90∘,且AB=BC=2,CD=3,DA=1,则∠DAB的度数为( )A.90∘B.120∘C.135∘D.150∘4. 如图,在高为5 m,坡面长为13 m的楼梯表面铺地毯,地毯的长度至少需要( )A.17 m B.18 m C.25 m D.26 m5. 如图是一株美丽的勾股树,其中所有四边形都是正方形,所有的三角形都是直角三角形.若正方形A,B,C,D的面积分别为3,5,2,3,则最大正方形E的面积是( )A.47B.13C.11D.86. 如图,将一根长度为8 cm,自然伸直的弹性皮筋AB两端固定在水平的桌面上,然后把皮筋中点C竖直向上拉升3 cm到点D,则此时该弹性皮筋被拉长了( )A.6 cm B.5 cm C.4 cm D.2 cm7. 如图,为了测得湖两岸A点和B点之间的距离,一个观测者在C点设桩,使∠ABC=90∘,并测得BC长为16 m,若已知AC比AB长8 m,则A点和B点之间的距离为( )A.25 m B.12 m C.13 m D.43 m8. 如图,在三角形纸片ABC中,∠ACB=90∘,AC=4,BC=3,点D,E分别在AB,AC上,连接DE,将△ADE沿DE翻折,使点A的对应点F落在BC的延长线上.若FD平分∠EFB,则AD的长为( )A.259B.258C.157D.207二、填空题9. 在△ABC中,∠C=90∘.(1)已知a=10,b=24,那么c=.(2)已知b:c=4:5,a=9,那么b=,c=.10. 如图是“赵爽弦图”,△ABH,△BCG,△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果AH=6,EF=2,那么AB等于.11. 《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺.问折高者几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部6尺远,问折断处离地面的高度是多少?设折断处离地面的高度为x尺,则可列方程为.12. 如图,一个长方体长4 cm,宽3 cm,高12 cm,则它上下两底面的对角线MN的长为cm.13. 已知a,b,c为△ABC的三边,且满足a2+b2+c2+338=10a+24b+26c,则可以判断△ABC的形状为.14. 如图所示的网格是正方形网格,则∠PAB+∠PBA=∘(点A,B,P是网格线的交点).15. 对角线互相垂直的四边形叫做“垂美”四边形,现有如图所示的“垂美”四边形ABCD,对角线AC,BD交于点O.若AD=2,BC=4,则AB2+CD2=.三、解答题16. 在Rt△ABC中,∠C=90∘.(1) 已知a=8,c=17,求b.(2) 已知b=40,c=41,求a.17. 如图,在四边形ABCD中,∠DBC=90∘,AB=9,AD=12,BC=8,DC=17,求四边形ABCD的面积.18. 如图,滑竿在机械槽内运动,∠C=90∘,AB=2.5 m,BC=1.5 m,当底端B向右移动0.5 m时,顶端A下滑了多少米?19. 假期中,王强和同学到某海岛上去旅游.他们按照如图所示路线.在点A登陆后租借了自行车,骑车往东走8千米,又往北走2千米;遇到障碍后往西走3千米,再折向北走到6千米处往东拐,走了1千米到达景点B.登陆点A到景点B的直线距离是多少千米?20. 若正整数a,b,c(a<b<c)满足a2+b2=c2,则称(a,b,c)为一组“勾股数”.观察下列两类“勾股数”:第一类(a是奇数):(3,4,5),(5,12,13),(7,24,25),⋯⋯第二类(a是偶数):(6,8,10),(8,15,17),(10,24,26),⋯⋯(1) 请再写出两组勾股数,每类各写一组;(2) 分别就a为奇数、偶数两种情形,用a表示b和c,并选择其中一种情形证明(a,b,c)是“勾股数”.答案一、选择题1. D2. D3. C4. A5. B6. D7. B8. D二、填空题9. 26;12;1510. 1011. x2+62=(10−x)212. 1313. 直角三角形14. 4515. 20三、解答题16.(1) 15.(2) 9.17. ∵∠DBC=90∘,DC=17,BC=8,∴BD2=CD2−BC2=172−82=225=152,∴BD=15.∵AD2+AB2=122+92=144+81=225,BD 2=225, ∴AD 2+AB 2=BD 2,∴△ABD 是直角三角形,且 ∠A =90∘,∴ 四边形 ABCD 的面积 =△ABD 的面积 +∠CBD 的面积 =12×9×12+12×15×8=54+60=114.18. 依题意得 AB =DE =2.5 m ,BC =1.5 m ,∠C =90∘,∴AC 2+BC 2=AB 2,即 AC 2+1.52=2.52,解得 AC =2 m . ∵BD =0.5 m , ∴CD =2 m .在 Rt △ECD 中,CE 2+CD 2=DE 2, ∴CE =1.5 m , ∴AE =0.5 m .答:顶端 A 下滑了 0.5 m .19. 10 千米.20.(1) 第一组(a 是奇数):9,40,41(答案不唯一);第二组(a 是偶数):12,35,37(答案不唯一).(2) 当 a 为奇数时,b =a 2−12,c =a 2+12;当 a 为偶数时,b =a 24−1,c =a 24+1.证明:当 a 为奇数时,a 2+b 2=a 2+(a 2−12)2=(a 2+12)2=c 2,∴(a,b,c ) 是“勾股数”.当 a 为偶数时,a 2+b 2=a 2+(a 24−1)2=(a 24+1)2=c 2,∴(a,b,c ) 是“勾股数”.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学 勾股定理单元测试
(时间:100分钟 总分:120分)
班级 学号 姓名 得分
一、相信你一定能选对!(每小题4分,共32分)
1. 三角形的三边长分别为6,8,10,它的最短边上的高为( )
A . 6
B . 4.5
C . 2.4
D . 8
2. 下面几组数:①7,8,9;②12,9,15;③m 2 + n 2, m 2–n 2
, 2mn (m ,n 均为正整数,m >n );
④2a ,12+a ,22
+a .其中能组成直角三角形的三边长的是( ) A . ①② B . ②③ C . ①③ D . ③④
3. 三角形的三边为a 、b 、c ,由下列条件不能判断它是直角三角形的是( )
A .a :b :c=8∶16∶17
B . a 2-b 2=c 2
C .a 2=(b+c)(b-c)
D . a :b :c =13∶5∶12 4. 三角形的三边长为ab c b a 2)(22+=+,则这个三角形是( )
A . 等边三角形
B . 钝角三角形
C . 直角三角形
D . 锐角三角形. 5.已知一个直角三角形的两边长分别为3和4,则第三边长是( ) A .5 B .25 C .7 D .5或7
6.已知Rt △ABC 中,∠C =90°,若a +b =14cm ,c =10cm ,则Rt △ABC 的面积是( )
A. 24cm 2
B. 36cm 2
C. 48cm 2
D. 60cm
2
7.直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为( )
A .121
B .120
C .90
D .不能确定
8. 放学以后,小红和小颖从学校分手,分别沿东南方向和西南方向回家,若小红和小颖行走的速度都是40米/分,小红用15分钟到家,小颖20分钟到家,小红和小颖家的直线距离为( )
A .600米
B . 800米
C . 1000米 D. 不能确定 二、你能填得又快又对吗?(每小题4分,共32分)
9. 在△ABC 中,∠C=90°, AB =5,则2
AB +2AC +2
BC =_______. 10. 如图,是2002年8月北京第24届国际数学家大会会标,由4个全等的直角三角形拼合而
成.如果图中大、小正方形的面积分别为52和4,那么一个直角三角形的两直角边的和等于

11.直角三角形两直角边长分别为5和12,则它斜边上的高为_______. 12.直角三角形的三边长为连续偶数,则这三个数分别为__________.
13. 如图,一根树在离地面9
米处断裂,树的顶部落在离底部12米处.树折断之前有
______
第10题图 第13题图 第14题图 第15题图
米.
14.如图所示,是一个外轮廓为矩形的机器零件平面示意图,根据图中标出尺寸(单位:mm)计算两圆孔中心A和B的距离为.
15.如图,梯子AB靠在墙上,梯子的底端A到墙根O的距离为2米,梯子的顶端B到地面的距离为7米.现将梯子的底端A向外移动到A’,使梯子的底端A’到墙根O的距离等于3米,同时梯子的顶端B下降至B’,那么BB’的值:①等于1米;②大于1米5;
③小于1米.其中正确结论的序号是.
16.小刚准备测量河水的深度,他把一根竹竿插到离岸边1.5m远的水底,竹竿高出水面0.5m,
把竹竿的顶端拉向岸边,竿顶和岸边的水面刚好相齐,河水的深度为 .
三、认真解答,一定要细心哟!(共72分)
17.(5分)右图是由16个边长为1的小正方形拼成的,任意连结这些小正方形的若干个顶点,可得到一些线段,试分别画出一条长度是有理数的线段和一条长度是无理数的线段.
18.(6分)已知a、b、c是三角形的三边长,a=2n2+2n,b=2n+1,c=2n2+2n+1(n为大于1的自然数),试说明△ABC为直角三角形.
19.(6分)小东拿着一根长竹竿进一个宽为3米的城门,他先横着拿不进去,又竖起来拿,结果竿比城门高1米,当他把竿斜着时,两端刚好顶着城门的对角,问竿长多少米?
20.(6分)如图所示,某人到岛上去探宝,从A处登陆后先往东走4km,又往北走1.5km,遇
到障碍后又往西走2km ,再折回向北走到4.5km 处往东一拐,仅走0.5km 就找到宝藏。

问登陆点A 与宝藏埋藏点
B 之间的距离是多少?
21.(7分)如图,将一根25㎝长的细木棒放入长、宽、高分别为8㎝、6㎝和㎝的长方体无盖盒子中,求细木棒露在盒外面的最短长度是多少?
22.(8分)印度数学家什迦逻(1141年-1225年)曾提出过“荷花问题”:
“平平湖水清可鉴,面上半尺生红莲; 出泥不染亭亭立,忽被强风吹一边, 渔人观看忙向前,花离原位二尺远; 能算诸君请解题,湖水如何知深浅?” 请用学过的数学知识回答这个问题.
23.(8分)如图,甲乙两船从港口A 同时出发,甲船以16海里/时速度向北偏东40°航行,乙船向南偏东50°航行,3小时后,甲船到达C 岛,乙船到达B 岛.若C 、B 两岛相距60海里,问乙船的航速是多少?
24.(10分)如图,有一个直角三角形纸片,两直角边AC =6cm ,BC =8cm ,现将直角边AC 沿 ∠CAB 的角平分线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗?
25.(10分)如图,铁路上A 、B 两点相距25km , C 、D 为两村庄,若DA =10km ,CB =15km ,
DA ⊥AB 于A ,CB ⊥AB 于B ,现要在AB 上建一个中转站E ,使得C 、D 两村到E 站的距离相等.求E
应建在距A 多远处?
A
B
26.(10分)如图,一个牧童在小河的南4km 的A 处牧马,而他正位于他的小屋B 的西8km
北7km 处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少? 答案:
1.D
2.B
3.A
4.C
5.D
6.A
7.C
8.C
9.50 10.10 11.
13
60
12.6,8,10 13.24 14.100mm 15.③ 16.2m 17.略
18.证2
2
2
c b a =+,用勾股定理逆定理得∠C=90° 19. 设城门高为x 米,则竿长为)1(+x 米,
依题意,得222)1(3+++x x ,解得4=x ,故竿长为5米 20. 如图,过点B 作BC ⊥AD 于C ,则AC =2.5,BC =6, 由勾股定理求得AB =6.5(km)
21.5cm 22. 3.75尺 23.12海里/时 24.先由勾股定理求得AB =10cm ,设DC =x cm ,
则DE =x cm ,BD=(8-x )cm ,BE =4cm ,(8-x )2=x 2+42,解得x=3(cm )
小河
25.15km
26. 如图,作出A 点关于MN 的对称点A ′,连接A ′B 交MN 于点P , 则A ′B 就是最短路线. 在Rt △A ′DB 中,由勾股定理求得A ′B =17km
第25题 第26题。

相关文档
最新文档