机械能守恒定律

合集下载

机械能的守恒定律

机械能的守恒定律

机械能的守恒定律机械能的守恒定律是物理学中一个重要的定律,它描述了在没有外力做功的情况下,机械能的总量在一个封闭系统中保持不变。

机械能由动能和势能两部分组成,动能与物体的质量和速度有关,势能则与物体所处的位置有关。

一、机械能的定义机械能是指物体的动能和势能之和。

动能是物体由于运动而具有的能量,它与物体的质量和速度有关;势能是物体由于位置而具有的能量,它与物体所处的位置和重力加速度有关。

机械能的定义公式如下:E = K + U其中,E表示机械能,K表示动能,U表示势能。

二、当一个系统中没有外力做功时,机械能守恒。

即系统的初机械能等于系统的末机械能。

数学表达式为:E初 = E末说明了在一个封闭系统中,机械能的总量保持不变。

三、应用例子1. 自由落体运动自由落体运动是一个经典的应用例子。

在自由落体过程中,物体只受到重力作用,没有其他外力做功。

因此,根据机械能守恒定律,物体的机械能在自由落体过程中保持不变。

在物体从高空自由落下时,它的势能逐渐减小,同时动能逐渐增大,但机械能总量不变。

当物体着地时,势能减为零,动能最大,而机械能的总量保持不变。

2. 弹簧振子弹簧振子是另一个常见的应用例子。

当弹簧振子受到外力推动,弹簧被拉伸或压缩,势能发生变化,而动能几乎为零。

当弹簧恢复原状时,势能减小至零,而动能增加至最大值。

在整个振动过程中,机械能保持不变。

四、实验验证为了验证机械能守恒定律,可以进行一系列实验。

例如,可以将一个小球从一定高度释放,使其在竖直方向上自由下落,然后观察小球落地前后的机械能变化。

通过测量小球的质量、高度和速度等参数,可以计算出初机械能和末机械能,验证机械能的守恒定律。

另外,还可以进行弹簧振子的实验,测量弹簧振子在不同位置的势能和动能值,并对比初机械能和末机械能是否相等,从而验证机械能守恒定律。

五、结论机械能的守恒定律是物理学中的基本定律之一,它描述了没有外力做功的封闭系统中,机械能的总量保持不变。

机械能守恒定律

机械能守恒定律

系统的动能与势能之和A非保内 = E(Q) E(P)
此式表明,在系统从一个状态变化到另一个状态
的过程中,其机械能的增量等于外力所作功和系统 的非保守内力所作功的代数和。此规律称为系统的 功能原理。
三、机械能守恒定律 ( law of conservation of mechanical energy)
例 1:求使物体脱离地球引力作用的最小速度。
解:根据机械能守恒定律有
mM 1 2 mv 2 G 0 2 R
v2 2GM R 2 gR 11 .2 10 m s
3 -1
例 2:求使物体不仅摆脱地球引力作用, 而且脱离 太阳引力作用的最小速度。 解:根据机械能守恒定律有
1 2
α

Q
P
1 2 f d l mgs sin mv 0 2
f
α
N
v0 0
而摩擦力的大小为
f N mgcos
mg
所以 即有

Q
P
Q f d l mg cos dl mgs cos
P
1 2 mg s cos mg s sin mv 0 2
1 2 mv 2
相对地球的动能
Ek
脱离地球引力所需动能
Ek 2
1 2 mv2 2
所以从地面发射时所需最小动能为
Ek3 Ek Ek2
由此可得第三宇宙速度
v 3 v v 2 (12 .4 10 ) (11 .2 10 ) m s 16 .7 10 m s
C
解得
v 2( g ssin g scos ) 1 3 -1 -1 2 (9.8 2.0 0.48 2.0 ) m s 1.8m s 2 2

机械能及其守恒定律

机械能及其守恒定律

工具
必修2 第五章 机械能及其守恒定律
栏目导引
4.发动机旳功率 (1)发动机铭牌上旳功率是__额__定__功__率___,是发
动机长时间正常工作时旳最大输出功率. (2)实际功率:发动机实际工作时旳输出_功__率___ ,要求不大于或等于额_定__功__率_____.
工具
必修2 第五章 机械能及其守恒定律
试验五:探究动能定理
合牛顿运动定律、平抛运动和圆周运动知
试验六:验证机械能守恒定律
识、电磁学等有关内容处理综合性旳问题.
工具
必修2 第五章 机械能及其守恒定律
栏目导引
第一讲 功和功率
工具
必修2 第五章 机械能及其守恒定律
栏目导引
一、功 1.做功旳两个不可缺乏旳原因:力和物体在 __力__旳__方__向___上发生旳位移. 2.功旳大小 (1)公式:W=Flcos α(α为力和位移旳夹角且l对地
所示,运动过程中物体与斜面之间保持相对静 止,下列说法正确旳是( )
A.斜面体对物体m旳支持力一定做正功 B.斜面体对物体m旳摩擦力一定做正功 C.斜面体对物体m旳摩擦力可能不做功 D.斜面体对物体m旳摩擦力可能做负功
答案: ACD
工具
必修2 第五章 机械能及其守恒定律
栏目导引
5.自由下落旳物体,在第1 s内、第2 s内、第3
工具
必修2 第五章 机械能及其守恒定律
栏目导引
A.FN和Ff对物块都不做功 B.FN对物块做功为2 J,Ff对物块不做功 C.FN对物块不做功,Ff对物块做功为2 J D.FN和Ff对物块所做功旳代数和为0
答案: B
工具
必修2 第五章 机械能及其守恒定律
栏目导引

机械能守恒定律:机械能=动能 重力势能 弹性势能(条件系统只有内部的重力或弹力做功)

机械能守恒定律:机械能=动能 重力势能 弹性势能(条件系统只有内部的重力或弹力做功)

机械能守恒定律:机械能=动能+重力势能+弹性势能(条件:系统只有内部的重力或弹力做功). 守恒条件:(功角度)只有重力,弹力做功;(能转化角度)只发生动能与势能之间的相互转化。

“只有重力做功”不等于“只受重力作用”。

在该过程中,物体可以受其它力的作用,只要这些力不做功,或所做功的代数和为零,就可以认为是“只有重力做功”。

列式形式:E 1=E 2(先要确定零势面) P 减(或增)=E 增(或减) E A 减(或增)=E B 增(或减)mgh 1 +121212222mV mgh mV =+ 或者 ∆E p 减 = ∆E k 增5. 如图所示在一根细棒的中点C 和端点B ,分别固定两个质量、体积完全相同的小球,棒可以绕另一端A 在竖直平面内无摩擦地转动. 若从水平位置由静止释放,求两球到达最低位置时线速度的大小. 小球的质量为m ,棒的质量不计. 某同学对此题的解法是:设AB=L ,AC=L2,到最低位置时B 球和C 球的速度大小分别为v 1、v 2.运动过程中只有重力对小球做功,所以每个球的机械能都守恒.:C 球有21122Lmv mg =,1v (m/s) B 球有 2212m v m g L =,2v =(m/s) 你同意上述解法吗?若不同意,请简述理由并求出你认为正确的结果. 5. (10分)解: 不同意,因为在此过程中,细棒分别对小球做功,所以每个小球的机械能不守恒. 说出“不同意”得3分,说出理由得2分 但对棒、小球组成的系统,机械能守恒:mgL+mg L 2=12m 2C v +12m 2B v (2分) 又v B =2vC , (1分)可解得: v C =15gL 5, v B =215gL5(2分) 17.质量不计的直角形支架两端分别连接质量为m 和2m 的小球A 和B 。

支架的两直角边长度分别为2l 和l ,支架可绕固定轴O 在竖直平面内无摩擦转动,如图所示。

开始时OA 边处于水平位置,由静止释放,则 ( ) A .A 球的最大速度为gl )12(632- B .A 球的速度最大时,两小球的总重力势能为零C .A 球的速度最大时,两直角边与竖直方向的夹角为45°D .A 、B 两球的最大速度之比v 1∶v 2=2∶116.质量不计的轻质弹性杆P 插在桌面上,杆端套有一个质量为m 的小球,今使小球沿水平方向做半径为R 的匀速圆周运动,角速度为ω,如图所示,则杆的上端受到的作用力大小为(C )A. R m 2ωB. 24222R m g m ω-C.24222R m g m ω+D .不能确定22.如图所示,轻杆长为3L ,在杆的A 、B 两端分别固定质量均为m 的球A 和球B ,杆上距球A 为L 处的点O 装在光滑的水平转动轴上,杆和球在竖直面内转动,已知球B 运动到最高点时,球B 对杆恰好无作用力.求:(1)球B 在最高点时,杆对水平轴的作用力大小.(2)球B 转到最低点时,球A 和球B 对杆的作用力分别是多大?方向如何? 解:(1)球B 在最高点时速度为v 0,有Lvm mg 220=,得gL v 20=.此时球A 的速度为gL v 221210=,设此时杆对球A 的作用力为F A ,则 ,5.1,)2/(20mg F Lv mmg F A A ==-, A 球对杆的作用力为,5.1mg F A ='.水平轴对杆的作用力与A 球对杆的作用力平衡,再据牛顿第三定律知,杆对水平轴的作用力大小为F 0=1. 5 mg.(2)设球B 在最低点时的速度为B v ,取O 点为参考平面,据机械能守恒定律有222020)2(21212)2(21212B B v m m g L m v L m g v m m gL m v L m g +++⋅-=+-+⋅解得gL v B 526=。

机械能守恒定律及其应用

机械能守恒定律及其应用

机械能守恒定律的意义
揭示了能量守恒的实质
机械能守恒定律是能量守恒定律在力 学系统中的具体表现,它表明在满足 一定条件下,系统中的机械能可以自 发的相互转化,但总能量保持不变。
提供了解决问题的方法
在解决力学问题时,如果满足机械能 守恒定律的条件,可以将问题简化为 求解初末状态的机械能,从而大大简 化计算过程。
VS
详细描述
火箭升空过程中,燃料燃烧产生大量气体 ,向下喷射产生推力,使火箭加速上升。 在这个过程中,火箭的重力势能和动能之 间相互转化,机械能总量保持不变,也是 机械能守恒定律的应用。
水利发电站工作过程中的机械能守恒
ቤተ መጻሕፍቲ ባይዱ总结词
水轮机在水的冲力作用下旋转,将水的重力 势能转化为水轮机的动能,再通过发电机转 化为电能,整个过程中机械能总量保持不变 。
之间的关系。
数学表达式的理解
机械能守恒
机械能守恒定律表明,在没有外 力做功的情况下,质点的机械能 (动能和势能之和)保持不变。
适用范围
机械能守恒定律适用于没有外力 做功的系统,如自由落体运动、 弹性碰撞等。
守恒原因
机械能守恒的原因是重力做功与 路径无关,只与初末位置的高度 差有关。
数学表达式的应用
单摆在摆角小于5°的理想情况下,只受重力和摆线的拉力,不涉及其他外力。因此,其 机械能守恒。
详细描述
单摆是一种简单的机械系统,由一根悬挂的细线和下面的小球组成。当单摆在垂直平面 内摆动时,其动能和势能之间相互转换。在摆角小于5°的理想情况下,由于空气阻力和 摩擦力可以忽略不计,因此只有重力和摆线的拉力作用在单摆上。根据机械能守恒定律
,单摆的动能和势能之和保持不变,即机械能守恒。
弹簧振子的机械能守恒

机械能量守恒定律公式

机械能量守恒定律公式

机械能量守恒定律公式
1. 机械能量守恒定律内容。

- 在只有重力或弹力做功的物体系统内,动能与势能可以相互转化,而总的机械能保持不变。

2. 公式表达。

- 设物体的动能为E_k,重力势能为E_p,弹性势能为E_弹。

- 初始状态的机械能E_1=E_k1 + E_p1+E_弹1,末状态的机械能
E_2=E_k2+E_p2+E_弹2。

- 根据机械能守恒定律E_1 = E_2,即
E_k1+E_p1+E_弹1=E_k2+E_p2+E_弹2。

- 在只有重力做功的情况下(不涉及弹性势能),公式可简化为
E_k1+E_p1=E_k2+E_p2,进一步展开:(1)/(2)mv_1^2+mgh_1=(1)/(2)mv_2^2+mgh_2(其中m为物体质量,v为速度,h为物体相对参考平面的高度)。

- 在只有弹簧弹力做功的系统中(不考虑重力势能变化),设弹簧的劲度系数为k,弹簧形变量为x,初始弹性势能E_弹1=(1)/(2)kx_1^2,末态弹性势能
E_弹2=(1)/(2)kx_2^2,如果系统动能分别为E_k1和E_k2,根据机械能守恒定律
E_k1+(1)/(2)kx_1^2=E_k2+(1)/(2)kx_2^2。

机械能守恒定律

机械能守恒定律机械能守恒是物理学中的一个基本定律,它描述了在没有外力做功和没有能量损失的封闭系统中,机械能守恒的原理和应用。

本文将介绍机械能守恒定律的基本概念、公式和应用。

一、机械能守恒定律的概念机械能守恒定律是指在一个封闭系统中,如果只有重力做功或者没有外力做功的情况下,系统的机械能保持不变。

机械能是由物体的动能和势能组成的,动能是由物体的运动速度决定的,而势能则与物体的位置和形状有关。

在一个封闭系统中,无论是动能还是势能,它们的总和都会保持不变。

二、机械能守恒定律的公式机械能守恒定律可以用以下公式表示:K1 + U1 = K2 + U2其中,K1和K2分别表示系统在两个不同时刻的动能,U1和U2则表示系统在两个不同时刻的势能。

根据这个公式,我们可以计算出系统在不同时刻的机械能,从而验证机械能守恒定律是否成立。

三、机械能守恒定律的应用机械能守恒定律在实际应用中有着广泛的应用。

以下是几个常见的应用场景:1. 弹簧振子弹簧振子是机械能守恒定律的一个典型应用。

当一个质点通过弹簧与支架相连,并在弹簧的作用下来回振动时,由于没有外力做功和能量损失,系统的机械能将保持不变。

2. 坡道滑块当一个块从斜坡上滑下时,由于没有外力做功,只有重力做功,系统的机械能守恒。

初始时,滑块具有一定高度的势能,随着滑块下滑,势能转化为动能,滑块的速度逐渐增加。

3. 自由落体自由落体是机械能守恒定律的典型应用之一。

在忽略空气阻力的情况下,自由落体物体只受到重力做功,而没有其他外力做功,因此系统的机械能保持不变。

4. 弹性碰撞在弹性碰撞中,系统的动能会发生变化,但总的机械能仍然保持不变。

一部分动能会转化为变形能,而另一部分则会转化为其他物体的动能,通过计算机械能的损失,可以判断碰撞是否为弹性碰撞。

总结:机械能守恒定律是物理学中一个重要的定律,它描述了在没有外力做功和能量损失的封闭系统中,机械能的总和保持不变。

我们可以通过公式和应用来验证机械能守恒定律的正确性。

机械能守恒定律知识点总结

机械能守恒定律知识点总结一、机械能守恒定律的定义在只有重力或弹力做功的物体系统内,动能与势能可以相互转化,而总的机械能保持不变,这就是机械能守恒定律。

二、机械能守恒的条件机械能守恒的条件是“只有重力或弹力做功”。

这包含以下三种情况:1、只受重力作用,比如自由落体运动。

2、受其他力,但其他力不做功。

3、除重力和弹力外,其他力做功的代数和为零。

需要注意的是,“只有重力或弹力做功”并不等同于“只受重力或弹力作用”。

比如,物体在光滑斜面上下滑时,受到重力、支持力和摩擦力,但支持力不做功,摩擦力做功为零,只有重力做功,机械能守恒。

三、机械能的组成机械能包括动能、重力势能和弹性势能。

1、动能:物体由于运动而具有的能,表达式为$E_{k}=\frac{1}{2}mv^2$,其中$m$是物体的质量,$v$是物体的速度。

动能与物体的质量和速度的平方成正比。

2、重力势能:物体由于被举高而具有的能,表达式为$E_{p}=mgh$,其中$m$是物体的质量,$g$是重力加速度,$h$是物体相对参考平面的高度。

重力势能与物体的质量、重力加速度以及相对高度有关。

3、弹性势能:物体由于发生弹性形变而具有的能,其大小与形变程度和劲度系数有关。

四、机械能守恒定律的表达式1、守恒观点:初态机械能等于末态机械能,即$E_{k1}+E_{p1}=E_{k2}+E_{p2}$。

2、转化观点:动能的增加量等于势能的减少量,即$\Delta E_{k}=\Delta E_{p}$。

3、转移观点:系统内 A 部分机械能的增加量等于 B 部分机械能的减少量。

五、机械能守恒定律的应用步骤1、确定研究对象和研究过程。

2、分析研究对象在研究过程中的受力情况,判断机械能是否守恒。

3、选取合适的零势能面,确定初、末状态的机械能。

4、列方程求解。

六、常见的机械能守恒模型1、自由落体运动:物体只在重力作用下从静止开始下落,机械能守恒。

2、平抛运动:物体在水平方向做匀速直线运动,竖直方向做自由落体运动,只有重力做功,机械能守恒。

机械能守恒定律

而单个物体机械能不守恒
常见形式:轻绳连接、轻杆连接、弹簧连接(物体+弹
簧或物体+弹簧+物体)、叠加。
4、机械能是否守恒的判断方法
(1)用做功来判断:只有重力或系统内弹力做功
(2)用能量转化来判断:对单个物体或者物体系:
只有动能和势能的相互转化而无其他形式能的转化,
则物体系机械能守恒。
5、机械能不守恒的情况:
(1)、除重力和弹力之外的力对物体做功,(如滑动摩
擦力、空气阻力做功做功)物体的机械能不守恒。除重力
和弹力之外的那些力做正功,机械能要增加;除重力和弹
力之外的那些力做负功,机械能要减少,而且增加或减少
的数值,等于除重力和弹力之外的那些力做功的数值,
(2)、绳子在被绷紧的瞬间,物体的机械能不守恒。
物体沿绳子方向的速度突变为零。
机械能守恒定律



动能
+
= 重力势能
+
弹性势能
机械能守恒定律
1、内容:在只有重力或弹力做功的物体系统内,动能与
势能可以互相转化,而总的机械能保持不变.
2、机械能守恒定律的三种表达形式:
(1)守恒的观点: Ek 初 EP初 Ek 末 EP末
即初状态的动能与势能之和等于末状态的动能与势能之

(2)转化的观点:
Ek EP
即动能(势能)的增加量等于势能(动能)的减少量
(3)转移的观点:
E A增 EB减
即A物体机械能的增加量等于B物体机械能的减少量
3、机械能守恒的条件
(1)、单个物体:若
时机械能守恒
(2)、对于物体系:若
系统内弹力

则物体和轻绳(轻杆、弹簧)组成的系统机械能守恒,

机械能守恒定律

机械能守恒定律机械能守恒定律是力学中的一个基本原理,它描述了在没有外力做功和没有摩擦损失的情况下,系统的机械能保持不变。

机械能包括了物体的动能和势能,它们之间可以相互转化但总和保持恒定。

一、机械能的定义机械能是指物体的动能和势能的总和,即:E = K + U其中,E表示机械能,K表示动能,U表示势能。

动能是物体由于运动而具有的能量,由物体的质量和速度决定;势能则是物体由于位置而具有的能量,它与物体的质量、位置和外力有关。

二、机械能守恒定律的表达形式机械能守恒定律可以通过以下公式表示:E₁ = E₂即在某一过程中,物体的机械能在始末状态保持不变。

这意味着在没有外界做功和能量损失的情况下,物体的机械能始终保持恒定。

三、机械能守恒定律的应用机械能守恒定律可以应用于各种力学问题的求解中,例如弹簧振子、自由落体等。

下面以一个滑块运动的例子来说明机械能守恒定律的应用。

假设有一个质量为m的滑块,沿着光滑的水平面上有一个长度为l的弹簧。

当滑块位于弹簧的伸长端时,弹簧势能为0,机械能仅由滑块的动能组成;当滑块位于弹簧的压缩端时,机械能由滑块的动能和弹簧的势能组成。

根据机械能守恒定律,可以得到以下关系:(1/2)mv₁² = (1/2)kx²其中,v₁表示滑块在伸长端的速度,k表示弹簧的弹性系数,x表示滑块相对平衡位置的位移。

通过这个关系式,我们可以求解出滑块在不同位置的速度和位移。

四、机械能守恒定律的局限性尽管机械能守恒定律在许多力学问题中都适用,但在实际问题中,往往存在着一些能量损失,如摩擦阻力等。

这些能量损失将导致系统的机械能不再保持恒定。

因此,在考虑具体的实际情况时,我们需要考虑这些能量损失,并将其纳入计算中。

五、总结机械能守恒定律是力学中的一个重要原理,它描述了在没有外力做功和没有能量损失的情况下,系统的机械能保持不变。

通过机械能守恒定律,我们可以解决许多力学问题,并得到物体在不同位置和状态下的速度和位移等信息。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

机械能守恒定律考点一机械能守恒的理解与判断(多选)如图所示,下列关于机械能是否守恒的判断正确的是()A.甲图中,物体A将弹簧压缩的过程中,A机械能守恒B.乙图中,A置于光滑水平面,物体B沿光滑斜面下滑,物体B机械能守恒C.丙图中,不计任何阻力时A加速下落,B加速上升过程中,A、B系统机械能守恒D.丁图中,小球沿水平面做匀速圆锥摆运动时,小球的机械能守恒如图所示,将一个内外侧均光滑的半圆形槽置于光滑的水平面上,槽的左侧有一固定的竖直墙壁.现让一小球自左端槽口A点的正上方由静止开始下落,从A点与半圆形槽相切进入槽内,则下列说法正确的是()A.小球在半圆形槽内运动的全过程中,只有重力对它做功B.小球从最低点向右侧最高点运动的过程中,小球的机械能守恒C.小球从最低点向右侧最高点运动的过程中,小球与槽组成的系统机械能守恒D.小球从下落到从右侧离开槽的过程中,机械能守恒考点二单个物体的机械能守恒问题(多选)如图所示,光滑圆弧槽在竖直平面内,半径为0.5 m,小球质量为0.10 kg,从B点正上方0.95 m高处的A点自由下落,落点B与圆心O等高,小球由B点进入圆弧轨道,飞出后落在水平面上的Q点,DQ间的距离为2.4 m,球从D点飞出后的运动过程中相对于DQ水平面上升的最大高度为0.80 m,取g=10 m/s2.,不计空气阻力,下列说法正确的是()A.小球经过C点时轨道对它的支持力大小为6.8 NB.小球经过P点的速度大小为3.0 m/sC.小球经过D点的速度大小为4.0 m/sD.D点与圆心O的高度差为0.30 m(2018·河南质检)(多选)如图甲所示,在竖直平面内固定一光滑的半圆形轨道ABC,小球以一定的初速度从最低点A冲上轨道,图乙是小球在半圆形轨道上从A运动到C的过程中,其速度的二次方与其对应高度的关系图像.已知小球在最高点C受到轨道的作用力为1.25 N,空气阻力不计,g取10 m/s2,B点为AC轨道的中点,下列说法正确的是()A.小球质量为0.5 kgB.小球在B点受到轨道作用力为4.25 NC.图乙中x=25 m2/s2D.小球在A点时重力的功率为5 W(2018·广州一模)如图,长为L的无弹性细线一端系住质量为m的小球(可视为质点),另一端固定在O点,现将小球拉至A点,细线处于伸直状态,静止释放小球,不计空气阻力,重力加速度为g,下列说法中正确的是()A.由机械能守恒可知,小球可以运动到等高的C点B.小球经过最低点B时的速率为3gLC.小球经过最低点B时加速度大小为2.5gD.小球经过最低点B时绳子拉力大小为3mg考点三多个物体的机械能守恒问题(改编)长为2L的轻杆上端及正中央固定两个质量均为m的小球,杆竖直立在光滑的水平面上,杆原来静止,现让其自由倒下,设杆在倒下过程中下端始终不离开地面,求A球着地时速度和杆对A球做的功.(2018·银川模拟)(多选)如图所示的实验装置,其左侧为一光滑斜面AB ,右侧为一所对圆心角θ=60°的光滑圆弧轨道BC ,其中光滑圆弧轨道BC 的圆心为O 、半径为R ,O 、B 、A 三点共线,OC 竖直.质量分别为M 、m 的两小球用不可伸缩的轻绳相连挂在B 点两侧(B 点处有一小段圆弧),开始时小球M 位于B 处,小球m 位于斜面底端A 处,现由静止释放小球M ,小球M 沿圆弧轨道下滑,已知M =6m ,整个装置固定不动,重力加速度为g ,则在小球M 由B 点下滑到C 点的过程中( )A .小球M 的机械能守恒B .重力对小球M 做功的功率先增大后减小C .小球M 的机械能减小79mgR D .轻绳对小球m 做的功为79MgR(2018·乐山模拟)(多选)如图所示,滑块A 、B 的质量均m ,A 套在固定倾斜直杆上,倾斜杆与水平面成45°,B 套在固定水平的直杆上,两杆分离不接触,两直杆间的距离忽略不计且足够长,A 、B 通过铰链用长度为L的刚性轻杆(初始时轻杆与平面成30°)连接.A 、B 从静止释放,B 开始沿水平面向右运动,不计一切摩擦,滑块A 、B 视为质点,在运动的过程中,下列说法中正确的是( )A .A 、B 组成的系统机械能守恒B .当A 到达与B 同一水平面时,A 的速度为gLC .B 滑块到达最右端时,A 的速度为2gLD .B 滑块最大速度为3gL考点四 非质点类的机械能守恒问题(2018·衡阳模拟)木板固定在墙角处,与水平面夹角为θ=37°,木板上表面光滑,木板上开有一个孔洞,一根长为l 、质量为m 的软绳置于木板上,其上端刚好进入孔洞,用细线将质量为m 的物块与软绳连接,如图所示.物块由静止释放后向下运动,带动软绳向下运动,当软绳刚好全部离开木板(此时物块未到达地面)时,物块的速度为(已知重力加速度为g ,sin37°=0.6)( ) A.gl B. 1.1gl C. 1.2gl D.2gl两个底面积都是S 的圆筒,放在同一水平面上,桶内装水,水面高度分别为h 1和h 2,如图所示,已知水的密度为ρ,不计水与管壁的摩擦阻力,现把连接两桶的阀门打开,当两桶水面高度相等时,则这过程中( )A .水柱的重力做正功B .大气压力对水柱做负功C .水柱的机械能守恒D .当两桶水面高度相等时,水柱的动能是14ρgS(h 1-h 2)2 弹簧系统的机械能守恒问题例1 如图所示,A 、B 两小球由绕过轻质定滑轮的细线相连,A 放在固定的光滑斜面上,B 、C 两小球在竖直方向上通过劲度系数为k 的轻质弹簧相连,C 球放在水平地面上.现用手控制住A ,并使细线刚刚拉直但无拉力作用,并保证滑轮左侧细线竖直、右侧细线与斜面平行.已知A 的质量为4m ,B 、C 的质量均为m ,重力加速度为g ,细线与滑轮之间的摩擦不计,开始时整个系统处于静止状态.释放A 后,A 沿斜面下滑至速度最大时C 恰好离开地面.下列说法正确的是( )A .斜面倾角α=60°B .A 获得的最大速度为2g m 5kC .C 刚离开地面时,B 的加速度最大D .从释放A 到C 刚离开地面的过程中,A 、B 两小球组成的系统机械能守恒例2如图,质量为m1的物体A经一轻质弹簧与下方地面上的质量为m2的物体B相连,弹簧的劲度系数为k,A、B都处于静止状态.一条不可伸长的轻绳绕过轻滑轮,一端连物体A,另一端连一轻挂钩.开始时各段绳都处于伸直状态,A上方的一段绳沿竖直方向.现在挂钩上挂一质量为m3的物体C并从静止状态释放,已知它恰好能使B离开地面但不继续上升.若将C换成另一个质量为(m1+m3)的物体D,仍从上述初始位置由静止状态释放,则这次B刚离地时D的速度的大小是多少?已知重力加速度为g.1.(2018·江苏一模)(多选)如图所示,一轻质弹簧一端固定在水平面上通过O点的转轴上,另一端与一质量为m的小环相连.环可以沿与水平方向成30°的光滑固定杆下滑,已知弹簧原长为L.现让环从O点的正上方距O点为L的A点由静止开始下滑,环刚好滑到与O点处于同一水平面上的B点时速度变为零.则小环在从A点下滑到B点的过程中() A.小环的机械能守恒B.弹簧的弹性势能一直变大C.弹簧的最大弹性势能为mgLD.除A、B两点外,弹簧弹力做功的瞬时功率为零还有两处2.(2018·绍兴模拟)“反向蹦极”是蹦极运动中的一种类型,将弹性绳拉长后固定在运动员上,并通过外力作用使运动员停留在地面上,当撤去外力后,运动员被“发射”出去冲向高空,为了研究“反向蹦极”的运动过程,在运动员身上装好了传感器.若运动员始终沿竖直方向运动并视为质点,忽略弹性绳质量与空气阻力.已知运动员及所携带的设备的总质量m=50 kg,上升过程中传感器显示的5个时刻的数据如下表所示,下列说法正确的是()B.运动员在最高点时合力为零C.撤去外力瞬间,运动员的加速度大小为60 m/s2D.运动员速度最大的位置离出发点的距离约为5.5 m3.(2018·河南一模)(多选) 如图所示,一根轻质弹簧一端固定于光滑竖直杆上,另一端与质量为m的滑块P连接,P穿在杆上,一根轻绳跨过定滑轮将滑块P 和重物Q 连接起来,重物Q 的质量M =6m ,把滑块从图中A 点由静止释放后沿竖直杆上下运动,当它经过A 、B 两点时弹簧对滑块的弹力大小相等,已知OA 与水平面的夹角θ=53°,OB 长为L ,与AB 垂直,不计滑轮的摩擦力,重力加速度为g ,滑块P 从A 到B 的过程中,说法正确的是( )A .对于滑块Q ,其重力功率先增大后减小B .滑块P 运动到位置B 处速度达到最大,且大小为43gL 3 C .轻绳对滑块P 做功4mgLD .P 与Q 的机械能之和先减小后增加4.(2017·江苏)(多选)如图所示,三个小球A 、B 、C 的质量均为m ,A 与B 、C 间通过铰链用轻杆连接,杆长为L ,B 、C 置于水平地面上,用一轻质弹簧连接,弹簧处于原长.现A 由静止释放下降到最低点,两轻杆间夹角α由60°变为120°,A 、B 、C 在同一竖直平面内运动,弹簧在弹性限度内,忽略一切摩擦,重力加速度为g.则此下降过程中( )A .A 的动能达到最大前,B 受到地面的支持力小于32mg B .A 的动能最大时,B 受到地面的支持力等于32mg C .弹簧的弹性势能最大时,A 的加速度方向竖直向下 D .弹簧的弹性势能最大值为32mgL。

相关文档
最新文档