《自动控制原理》电子教案(共8章)38页word文档

合集下载

《自动控制原理》胡寿松习题答案附带例题课件

《自动控制原理》胡寿松习题答案附带例题课件
二、本课程实验的基本理论与实验技术知识
采用 MATLAB 软件上机进行实验,就是利用现代计算机硬件和计算机软件技术,以数字仿真技术为核 心,实现对自动控制系统基本理论和分析方法的验证以及控制系统设计。
通过上机实验,使学生在 MATLAB 软件的基本使用、编程调试、仿真实验数据的获取、整理、分析以 及实验报告的撰写等基本技能得到训练。
二、教学基本要求
本课程采用时域法、根轨迹法和频率特性法对自动控制系统的性能进行分析和设计,学完本课程应达
到以下基本要求。
1.掌握负反馈控制原理 掌握负反馈控制原理,能够分析负反馈控制系统的调节过程并画出相应的控制系统方框图。了解控制
系统的基本构成和分类。
2.熟悉建立控制系统数学模型的方法 熟悉用拉氏变换法求解线性系统微分方程的基本方法。掌握控制系统传递函数、动态结构图建立和简
2.绘制1800 根轨迹的基本法则 3.绘制 00 根轨迹的基本法则
4.广义根轨迹 5.非最小相位系统的根轨迹 6.用根轨迹法分析系统性能 (五)频率法 了解频率特性的基本概念,频率特性的几何表示方法,熟悉典型环节的对数频率特性曲线(Bode 图) 绘制和极坐标曲线(Nyquist 曲线),掌握系统开环对数频率特性曲线的绘制,了解系统开环极坐标曲线绘 制的一般方法,熟悉开环对数频率特性低频段、中频段、高频段的特征,学会运用奈奎斯特稳定判据判断 闭环系统的稳定性,掌握系统稳定裕度的基本概念和计算方法,了解系统性能和开环频率特性的关系。 1.频率特性的基本概念和几何表示 2.典型环节的频率特性 3.控制系统开环对数频率特性和极坐标曲线的绘制 4.最小相位系统传递函数的确定 5.奈奎斯特稳定判据和 Bode 图上的稳定判据 6.稳定裕度的基本概念和计算方法 7.频率特性与系统性能的基本关系 (六)控制系统性能的校正 了解校正装置和校正方法,熟悉串联超前校正、串联滞后校正的基本原理和方法。了解频率法反馈校 正的基本原理和方法(选讲)。 1.控制系统校正的基本概念和一般方法 2.频率法串联超前校正的基本原理和方法 3.频率法串联滞后校正的基本概念和方法

自动控制原理教案

自动控制原理教案

自动控制原理教案一、教案概述本教案旨在介绍自动控制原理的基本概念、原理和应用。

通过本教案的学习,学生将能够理解自动控制的基本原理,掌握自动控制系统的设计和分析方法,并能够应用所学知识解决实际问题。

二、教学目标1. 理解自动控制原理的基本概念和术语;2. 掌握自动控制系统的基本原理和组成部分;3. 熟悉自动控制系统的数学模型和传递函数表示方法;4. 能够应用PID控制器进行系统设计和调节;5. 能够利用MATLAB等工具进行自动控制系统的仿真和分析。

三、教学内容和进度安排本教案按照以下内容进行教学,共分为10个单元。

单元一:自动控制原理概述- 自动控制的定义和分类- 自动控制系统的基本组成部分单元二:数学模型与传递函数- 控制系统的数学建模方法- 传递函数的定义和性质单元三:时域分析方法- 系统的单位脉冲响应和单位阶跃响应- 系统的稳态误差和稳定性分析单元四:频域分析方法- 系统的频率响应和频率特性- Bode图和Nyquist图的绘制和分析单元五:闭环控制系统- 闭环控制系统的基本概念和特性- 闭环控制系统的稳定性分析单元六:PID控制器- PID控制器的原理和调节方法- Ziegler-Nichols调参法和Chien-Hrones-Reswick调参法单元七:校正与补偿- 系统的校正和补偿方法- 前馈控制和后馈控制的比较单元八:系统的稳定性分析- 系统的稳定性判据和稳定裕度- 极点配置法和根轨迹法的应用单元九:多变量控制系统- 多变量控制系统的基本概念和结构- 多变量控制系统的设计方法单元十:自动控制系统的仿真与实验- 利用MATLAB进行自动控制系统的仿真- 实际系统的控制实验设计和实施四、教学方法和手段1. 理论讲授:通过讲解和示意图的展示,向学生介绍自动控制原理的基本概念和原理。

2. 实例分析:通过具体的案例分析,帮助学生理解自动控制原理的应用和实际意义。

3. 计算机仿真:利用MATLAB等工具进行自动控制系统的仿真,加深学生对理论知识的理解和应用能力。

(整理)自动控制原理(电子)

(整理)自动控制原理(电子)

一、课程计划:1、课程概要本课程介绍自动控制系统的基本原理、工程分析以及设计方法,使学生建立反馈控制系统的基本概念,学会利用经典控制理论的方法来分析、设计自动控制系统。

主要研究自动控制系统的基本概念、控制系统的时域和复频域数学模型及其结构图;全面细致地研究线性控制系统的时域分析法、根轨迹法、频域分析法以及校正和设计方法。

2、学习目标建立经典控制理论部分的基本概念,掌握和了解其基本理论和方法以及对系统的改善。

3、基本要求1、掌握自动控制原理的基本概念、理论和主要研究方法;2、能够建立线性定常系统的数学模型、传递函数、结构图;3、掌握时域分析法、根轨迹法和频域分析法;4、能够按要求校正系统。

4、老师介绍林红,副教授、硕士生导师,工学博士,现任职于苏州大学电子信息学院。

主要研究方向:信息处理、非线性控制及机电一体化。

主编教材1部,发表学术论文10余篇,获苏州大学课堂教学竞赛二等奖、AMD教书育人奖。

二、视频序号及知识点名称正确性审核1、审核提供的视频内容是否为完整的课程内容;完整2、知识点序号及知识点名称是否正确,如有错误予以修改;请将知识点标题做如下修改:“10控制系统的传递函数”更改为“10控制系统的传递函数(一)”“11控制系统的传递函数”更改为“11控制系统的传递函数(二)”“12控制系统的结构图”更改为“12控制系统的结构图(一)”“13控制系统的结构图”更改为“13控制系统的结构图(二)”“16二阶系统的时域分析”更改为“16二阶系统的时域分析(一)”“17二阶系统的时域分析”更改为“17二阶系统的时域分析(二)”“19线性系统的稳定性分析”更改为“19线性系统的稳定性分析(一)”“20线性系统的稳定性分析”更改为“20线性系统的稳定性分析(二)”“25根轨迹绘制的基本法制”更改为“25根轨迹绘制的基本法则(一)”“26根轨迹绘制的基本法则”更改为“26根轨迹绘制的基本法则(二)”“27根轨迹绘制的基本法则”更改为“27根轨迹绘制的基本法则(三)”“30利用根轨迹分析系统性能”更改为“30利用根轨迹分析系统性能(一)”“31利用根轨迹分析系统性能”更改为“31利用根轨迹分析系统性能(二)”“34典型环节的频率特性”更改为“34典型环节的频率特性(一)”“35典型环节的频率特性”更改为“35典型环节的频率特性(二)”“45串联校正”更改为“45串联校正(一)”“46串联校正”更改为“46串联校正(二)”三、每个知识点的内容概要,在线、离线作业:1.自动控制的基本概念本知识点介绍了自动控制的概念、自动控制系统的基本组成和控制系统的方框图。

电科电信西电版自动控制原理教案

电科电信西电版自动控制原理教案

电科-电信-西电版自动控制原理教案第一章:绪论1.1 自动控制的概念和发展1.2 自动控制系统的分类1.3 自动控制原理的应用领域1.4 本章小结第二章:自动控制系统的数学模型2.1 常用数学模型及其建立方法2.2 线性微分方程及其求解方法2.3 非线性系统的数学模型2.4 本章小结第三章:线性系统的时域分析法3.1 系统的稳定性分析3.2 系统的稳态性能分析3.3 系统的动态性能分析3.4 本章小结第四章:线性系统的频域分析法4.1 拉普拉斯变换及其性质4.2 线性系统的频域特性分析4.3 系统的频率响应分析4.4 本章小结第五章:线性系统的状态空间分析法5.1 状态空间的基本概念5.2 状态空间方程的求解5.3 系统的状态反馈控制5.4 本章小结第六章:非线性系统的分析6.1 非线性系统的数学模型6.2 非线性系统的稳定性分析6.3 非线性系统的控制策略6.4 本章小结第七章:模糊控制原理7.1 模糊控制的基本概念7.2 模糊控制器的设计方法7.3 模糊控制系统的仿真与实现7.4 本章小结第八章:自适应控制原理8.1 自适应控制的基本概念8.2 自适应控制器的设计方法8.3 自适应控制系统的应用实例8.4 本章小结第九章:自动控制系统的设计与实现9.1 系统设计的基本原则和方法9.2 控制器的设计与实现9.3 系统调试与优化9.4 本章小结第十章:自动控制技术的应用10.1 工业自动化控制系统10.2 控制系统10.3 生物医学控制系统10.4 本章小结重点和难点解析重点一:自动控制系统的概念和发展解析:本部分需要重点关注自动控制系统的定义、分类以及其发展历程。

学生需要理解自动控制系统的基本原理,掌握不同类型自动控制系统的特点和应用场景。

重点二:自动控制系统的数学模型解析:本部分重点关注数学模型的建立方法,包括线性微分方程和非线性系统的数学模型。

学生需要掌握数学模型的建立过程,了解不同模型的适用条件。

自动控制原理

自动控制原理

山东理工大学教案第34 次课教学课型:理论课√实验课□习题课□实践课□技能课□其它□主要教学内容(注明:* 重点# 难点):①§8-5 相平面法(下)(*)(#)D、奇点与奇线E、由相轨迹求取时间间隔②§8-6 非线性系统的相平面分析③第8章小结教学目的要求:①正确理解奇点的概念与类型,并能作出判断;②正确理解极限环的概念与类型;③掌握相轨迹求取时间间隔的方法;④正确理解非线性系统的相平面分析方法。

教学方法和教学手段:教学方法:讲授教学手段:板书与多媒体结合讨论、思考题、作业:课后习题:P343 8-16、8-20。

参考资料:①《自动控制原理》高国燊主编华南理工大学出版社②《自动控制理论》文锋主编中国电力出版社③《自动控制理论》夏德钤主编机械工业出版社④《自动控制理论》邹伯敏主编机械工业出版社注:教师讲稿附后§8-5 相平面法四、奇点与奇线绘制相轨迹的目的是为了分析系统的运动特性。

由于系统平衡点有无穷多条相轨迹离开或到达,所以平衡点附近的相轨迹最能反映系统的运动特性。

因此平衡点是非常重要的特征点,很有必要加以讨论和研究。

另外,系统的自激振荡状态也是人们非常关心的问题。

前者叫奇点,后者为极限环(奇线最常见的形式) 1、奇点:①定义:以微方),(x x f x &&&=表示的二阶系统,其相轨迹上每一点切线的斜率为x x x f dx x d &&&),(=,若在某点处x xx f &&和),(同时为0,的不定形式即有00=dx xd &,则称该点为相平面的奇点。

②性质:⑴相轨迹在奇点处的切线斜率不定,表明系统在奇点处可以按任意方向趋近或离开奇点。

因此在奇点处多条相轨迹相交。

⑵在相轨迹的非奇点(称为普通点)处,不同时满足0),(0==x x f x &&和,相轨迹的切线斜率是一个确定的值,故经过普通点的相轨迹只有一条。

自动控制原理电子教案新a

自动控制原理电子教案新a

自动控制原理电子教案新a一、前言1. 课程简介:自动控制原理是研究自动控制系统的基本理论、方法和应用的学科。

本课程旨在使学生掌握自动控制的基本概念、原理和设计方法,为后续专业课程和实际工程应用打下基础。

2. 教学目标:通过本课程的学习,学生应能理解自动控制系统的组成、工作原理和性能评价,掌握常见控制器的设计方法和应用,具备分析解决自动控制问题的能力。

3. 教材及参考书:(1)教材:《自动控制原理》,作者:何贵林,出版社:清华大学出版社。

(2)参考书:《现代自动控制原理》,作者:陈玉祥,出版社:机械工业出版社。

二、课程内容1. 自动控制基本概念1.1 自动控制系统的定义1.2 自动控制系统的分类1.3 自动控制系统的性能指标2. 经典控制理论2.1 传递函数2.2 动态响应2.3 稳定性分析2.4 控制器设计方法3. 现代控制理论3.1 状态空间描述3.2 状态空间分析3.3 控制器设计三、教学方法与手段1. 讲授:通过课堂讲授,使学生掌握自动控制原理的基本概念、理论和方法。

2. 实验:安排实验课程,让学生亲手操作,加深对自动控制原理的理解。

3. 案例分析:分析实际工程案例,提高学生解决实际问题的能力。

4. 习题讨论:组织学生进行习题讨论,巩固所学知识。

四、课程考核1. 期末考试:包括选择题、填空题、计算题和简答题,考察学生对自动控制原理的基本知识和应用能力的掌握。

2. 实验报告:评估学生在实验过程中的操作能力和分析问题能力。

3. 课程设计:培养学生解决实际自动控制问题的能力。

五、课程安排1. 课时:共计32课时,其中理论课时24课时,实验课时8课时。

2. 授课安排:每课时45分钟,共8周完成。

3. 实验安排:第9周开始,共2个实验。

六、自动控制系统的数学模型6.1 系统的微分方程系统的输入输出关系系统的状态变量微分方程的建立6.2 系统的传递函数传递函数的定义传递函数的性质典型环节的传递函数6.3 状态空间描述状态空间的概念状态空间的建立状态空间的性质七、系统的稳定性分析7.1 稳定性概念系统稳定的定义稳定性的判定方法稳定性的性质7.2 劳斯-赫尔维茨定理定理的表述定理的应用定理的推广7.3 李雅普诺夫方法李雅普诺夫函数的定义李雅普诺夫第一定理李雅普诺夫第二定理八、系统的控制器设计8.1 概述控制器的作用控制器设计的目标控制器设计的步骤8.2 比例积分微分(PID)控制器PID控制器的原理PID控制器的参数调整PID控制器的应用8.3 模糊控制器模糊控制器的原理模糊控制器的结构模糊控制器的应用九、系统的准确度分析与校正9.1 系统准确度的概念系统准确度的定义系统准确度的评价指标系统准确度的改善方法9.2 系统校正的方法系统校正的目的系统校正的原理系统校正的方法9.3 系统校正的实例分析实例一:线性系统的校正实例二:非线性系统的校正实例三:时变系统的校正十、自动控制系统的应用10.1 工业控制系统工业控制系统的类型工业控制系统的应用工业控制系统的案例分析10.2 航空航天控制系统航空航天控制系统的特点航空航天控制系统的应用航空航天控制系统的案例分析10.3 生物医学控制系统生物医学控制系统的类型生物医学控制系统的应用生物医学控制系统的案例分析十一、非线性控制系统11.1 非线性系统的特点非线性系统的定义非线性系统的常见类型非线性系统分析的挑战11.2 非线性控制理论非线性系统的数学模型非线性系统的稳定性分析非线性控制策略11.3 非线性控制应用实例实例一:倒立摆控制系统实例二:控制系统实例三:电子电路控制系统十二、现代控制理论12.1 状态空间法的优势状态空间法的概念状态空间法的应用状态空间法与传统控制理论的比较12.2 李雅普诺夫理论李雅普诺夫理论的基本概念李雅普诺夫稳定性分析李雅普诺夫理论的应用12.3 鲁棒控制理论鲁棒控制的概念鲁棒控制的设计方法鲁棒控制在实际系统中的应用十三、自适应控制系统13.1 自适应控制的需求自适应控制的概念自适应控制的目标自适应控制的重要性13.2 自适应控制算法自适应控制算法的基本原理自适应控制算法的类型自适应控制算法的实现13.3 自适应控制的应用实例实例一:自适应PID控制实例二:自适应模糊控制实例三:自适应神经网络控制十四、自动控制系统的仿真14.1 仿真在自动控制系统中的应用仿真技术的概念仿真软件的选择与使用仿真在系统设计与分析中的重要性14.2 系统仿真的方法离散时间系统的仿真连续时间系统的仿真非线性系统的仿真14.3 仿真案例分析案例一:飞行器控制系统仿真案例二:工业过程控制系统仿真案例三:生物医学控制系统仿真十五、课程总结与展望15.1 自动控制原理课程总结课程主要内容的回顾重点和难点的梳理学生学习情况的评估15.2 自动控制技术的未来发展趋势新型控制理论的发展智能化控制的应用跨学科融合的创新15.3 课程实践与研究建议学生如何进行课程实践教师如何进行教学研究课程改进的方向和建议重点和难点解析:一、前言重点:自动控制原理的概念、意义和应用领域。

自动控制原理教案-自控学习与解题指导

<<自动控制理论>> 课程学习指导与解题指导理工学院自动化系二零零三年七月第一章 自控理论基本概念本章作为绪论,已较全面地展示了控制理论课程的全貌,叙述了今后在课程的学习中要进行研究的各个环节内容和要点,为了今后的深入学习和理解,要特别注意本章给出的一些专业术语及定义。

1、基本要求(1)明确什么叫自动控制,正确理解被控对象、被控量、控制装置和自控系统等概念。

(2)正确理解三种控制方式,特别是闭环控制。

(3)初步掌握由系统工作原理图画方框图的方法,并能正确判别系统的控制方式。

(4)明确系统常用的分类方式,掌握各类别的含义和信息特征,特别是按数学模型分类的方式。

(5)明确对自控系统的基本要求,正确理解三大性能指标的含义。

2.内容提要及小结(1) 几个重要概念自动控制 在没有人直接参与的情况下,利用控制器使被控对象的被控量自动地按预先给定的规律去运行。

自动控制系统 指被控对象和控制装置的总体。

这里控制装置是一个广义的名词,主要是指以控制器为核心的一系列附加装置的总和。

共同构成控制系统,对被控对象的状态实行自动控制,有时又泛称为控制器或调节器。

自动控制系统⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧校正元件执行元件放大元件比较元件测量元件给定元件控制装置(控制器)被控对象 负反馈原理 把被控量反送到系统的输入端与给定量进行比较,利用偏差引起控制器产生控制量,以减小或消除偏差。

(2) 三种基本控制方式实现自动控制的基本途径有二:开环和闭环。

实现自动控制的主要原则有三:主反馈原则——按被控量偏差实行控制。

补偿原则——按给定或扰动实行硬调或补偿控制。

复合控制原则——闭环为主开环为辅的组合控制。

(3)系统分类的重点重点掌握线性与非线性系统的分类,特别对线性系统的定义、性质、判别方法要准确理解。

线性系统−−→−描述⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎩⎨⎧−−→−⎩⎨⎧⎪⎪⎩⎪⎪⎨⎧−−→−⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧状态空间法时域法状态方程变系数微分方程时变状态方程频率法根轨迹法时域法状态方程频率特性传递函数常系数微分方程定常分析法分析法非线性系统⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧−−→−−−→−−−→−⎩⎨⎧−−→−状态空间法相平面法描述函数法本质线性化法非本质状态方程非线性微分方程分析法分析法分类描述(4)正确绘制系统方框图绘制系统方框图一般遵循以下步骤:①搞清系统的工作原理,正确判别系统的控制方式。

自动控制原理电子教本ch4资料文档


4.2 根轨迹的绘制法则
如果实轴上相邻开环极点之间存在根轨迹, 则在此区间上必有分离点。
如果实轴上相邻开环零点之间存在根轨迹, 则在此区间上必有会合点。
4.2 根轨迹的绘制法则
6. 根轨迹的渐近线 ——研究根轨迹是按什么走向趋向无穷远。
当 n>m 时,则有(n-m) 条根轨迹分支终止于 无限零点。这些趋向无穷远的根轨迹分支的渐近 线,由与实轴的夹角和交点来确定。
180o (1 2) 180o (1 2) 60o , 60o , 180o
nm
30
4.2 根轨迹的绘制法则
(2)计算渐近线交点。
因为 p0 0, p1 1, p2 4; n=3, m=0; 所以渐近线交点为
n
m
k

p j zi
j 1
1)
R(s) -
闭环传递函数:
(s)

s2

2K 2s
2K
特征方程为: s2 2s 2K 0 特征根为: s1,2 1 1 2K
K
C(s)
s(0.5s 1)
特征根为: s1,2 1 1 2K
[讨论]: ① 当K=0时,s1=0,s2=-2,
是开环传递函数的极点 ② 当K=0.32时,s1=-0.4,s2=-1.6 ③ 当K=0.5时,s1=-1,s2=-1
例4-5 设有开环传递函数为
WK
(s)

s(s
KK 1)(0.5s
1)

s(s
2KK 1)( s

2)
试确定根轨迹与虚轴的交点,并计算临界放大系数。 解
方法(1) 根据给定的开环传递函数,可得特征方程式为

自动控制原理课程教案

自动控制原理课程教案第一章自动控制系统导论本章教学目标:1使学生掌握自动控制系统的相关概念2使学生理解和掌握自动控制的基本原理3使学生了解自动控制系统的分类和基本要求本章基本要求:1正确理解和掌握负反馈控制的原理2了解控制系统的组成与分类3能确定被控系统的被控对象,被控量和给定量,掌握根据原理图绘制系统方框图的方法。

本章各节的教学内容:1自动控制系统的基本原理2自动控制系统分类3对控制系统的基本要求4自动控制的发展简史5控制系统设计概论本章教学重点:1要求学生了解自动控制系统基本概念、基本变量、基本组成及工作原理2理解信息反馈的含义和作用,区别开环控制和闭环控制3绘制控制系统方框图本章教学内容的深化和拓宽:使学生了解更多工程实际中所用的控制系统,并深入了解它们的工作原理。

本章教学方式:采用工程实例和设疑方法引导学生用系统论,信息论观点分析广义系统的动态特征、信息流,理解信息反馈的作用。

绘制控制系统方框图。

在讲述控制理论发展史引入我国古代指南车和“二弹一星”特殊贡献科学家——钱学森在自动控制理论方面的成就,进行爱国主义和专业教育。

在讲述控制系统系统设计概论,引用转台转速控制和磁盘驱动读取系统的设计实例,强化设计训练。

本章教学过程中应注意的问题:本章概念较多,多举事例说明,以吸引学生的兴趣。

本章主要参考书目:《自动控制原理》吴秀华主编,中国水利水电出版社,2006年《自动控制原理》修订版,孙亮,北京工业大学出版社,2006 年《自动控制原理》胡寿松,北京航空航天大学,2006 年。

《自动控制原理》黄家英主编,东南大学出版社,1991年《自动控制原理》李友善主编,国防工业出版社,1989年《控制理论基础》王显正、陈正航主编,科学出版社,2000年第二章控制系统的数学模型本章教学目标:通过本章学习,使学生掌握不同域对应的不同种类的数学模型,学会系统微分方程和传递函数的求法,能绘制系统结构图和信号流图,会用结构图等效变换和梅森公式求系统的传递函数。

自动控制原理(经典部分)课程教案

xx科技大学《自动控制原理》(经典部分)课程教案授课时间:适用专业、班级:编写人:编写时间:)())()m n s z s p --221)(1)21)(1)i j s s T s T s ζττζ++++++ 极点形成系统的模态,授课学时:2学时章节名称第二章第三节控制系统的结构图与信号流图(1)备注教学目的和要求1、会绘制结构图。

2、会由结构图等效变换求传递函数。

重点难点重点:结构图的绘制;由结构图等效变换求传递函数。

难点:复杂结构图的等效变换。

教学方法教学手段1、教学方法:课堂讲授法为主;用精讲多练的方法突出重点,用分析举例的方法突破难点。

2、教学手段:以传统的口述、粉笔加黑板的手段为主。

教学进程设计(含教学内容、教学设计、时间分配等)一、引入(约3min)从“用数学图形描述系统的优点”引入新课。

二、教学进程设计(一)结构图的组成(约7min)1、信号线:表示信号的传递方向。

2、方框:表示输入和输出的运算关系,即C(S)=R(S)*G(S)。

3、比较点:表示两个以上信号进行代数运算。

4、引出点:一个信号引出两个或以上分支。

(二)结构图的绘制(约40min)绘制:列写微分方程组,并列写拉氏变换后的子方程;绘制各子方程的结构图,然后根据变量关系将各子结构图依次连接起来,得到系统的结构图。

例题讲解。

(二)结构图的简化(约46min)任何复杂的系统结构图,各方框之间的基本连接方式只有串联、并联和反馈连接三种。

方框结构图的简化是通过移动引出点、比较点、交换比较点,进行方框运算后,将串联、并联和反馈连接的方框合并,求出系统传递函数。

1、串联的简化:12()()()G s G s G s=2、并联的简化:12()()()G s G s G s=±3、反馈连接方框的简化:11()()1()()G ssG s H sΦ=4、比较点的移动:移动前后保持信号的等效性。

比较点前移比较点后移5、引出点的移动:移动前后保持信号的等效性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 自动控制的一般概念 第一节 控制理论的发展 自动控制的萌芽:自动化技术学科萌芽于18世纪,由于工业革命的发展,如何进一步降低人的劳动强度和提高设备的可靠性被提到了议程。 特点:简单的单一对象控制。 1. 经典控制理论分类 线性控制理论,非线性控制理论,采样控制理论 2. 现代控制理论 3. 大系统理论 4. 智能控制理论 发展历程: 1. 经典控制理论时期(1940-1960) 研究单变量的系统,如:调节电压改变电机的速度;调整方向盘改变汽车的运动轨迹等。  1945年美国人Bode出版了《网络分析与放大器的设计》,奠定了控制理论的基础;  1942年哈里斯引入传递函数;  1948年伊万恩提出了根轨迹法;  1949年维纳关于经典控制的专著。 特点:以传递函数为数学工具,采用频率域法,研究“单输入—单输出”线性定常控制系统的分析和设计,而对复杂多变量系统、时变和非线性系统无能为力。 2. 现代控制理论时期(20世纪50年代末-60年代初) 研究多变量的系统,如,汽车看成是一个具有两个输入(驾驶盘和加速踏板)和两个输出(方向和速度)的控制系统。空间技术的发展提出了许多复杂的控制问题,用于导弹、人造卫星和宇宙飞船上,对自动控制的精密性和经济性指标提出了极严格的要求。并推动了控制理论的发展。  Kalman的能控性观测性和最优滤波理论;  庞特里亚金的极大值原理;  贝尔曼的动态规划。 特点:采用状态空间法(时域法),研究“对输入-多输出”、时变、非线性系统等高精度和高复杂度的控制问题。 3. 大系统控制时期(1970s-) 各学科相互渗透,要分析的系统越来越大,越来越复杂。 大系统控制理论是一种过程控制与信息处理相结合的动态系统工程理论,研究的对象具有规模庞大、结构复杂、功能综合、目标多样、因素众多等特点。它是一个多输入、多输出、多干扰、多变量的系统。 如:人体,我们就可以看作为一个大系统,其中有体温的控制、情感的第 2 页

控制、人体血液中各种成分的控制等等。 4. 智能控制时期 这是近年来新发展起来的一种控制技术,是人工智能在控制上的应用。它的指导思想是依据人的思维方式和处理问题的技巧,解决那些目前需要人的智能才能解决的复杂的控制问题。 特点:人工智能、神经网络等的普遍研究和应用到自动控制之中。 第二节 自动控制及自动控制系统 控制:使对象达到预期的状态或性能的动作。 基本概念 自动化(Automation 或 Automatization) 1. 自动控制——就是指在脱离人的直接干预,利用控制装置(简称控制器)使被控对象(或生产过程等)的某一物理量(如温度、压力、PH值等)准确地按照预期的规律运行。 2. 自动控制系统——能自动对被控对象的被控量(或工作状态)进行控制的系统。 3. 被控对象(又称受控对象)——指工作状态需要加以控制的机械、装置或过程。 4. 被控量——表征被控对象工作状态且需要加以控制的物理量,也是自动控制系统的输出量。 5. 给定值(又称为参考输入)——希望被控量趋近的数值。又称为规定值。 6. 扰动量(又分为内扰和外扰)——引起被控量发生不期望的变化的各种内部或外部的变量。 7. 控制器(又称调节器)——组成控制系统的两大要素之一(另一大要素即为被控对象),是起控制作用的设备或装置。 8. 调节机构——接受调节作用而去改变调节量的具体设备。 9. 负反馈控制原理——将系统的输出信号反馈至输入端,与给定的输入信号相减,所产生的偏差信号通过控制器变成控制变量去调节被控对象,达到减小偏差或消除偏差的目的。 控制装置 自动控制系统由被控对象和控制装置两部分组成。 控制装置包含的主要单元: 测量单元——用来测量被调量,并将被调量转换为与之成比例(或其它函数关系)的某种便于传送和综合的信号。由检测元件和变送器组成。 给定单元——用来设定被调量的给定值,发生与测量信号同一类型的给定值信号。 调节单元——接受被调量和给定值信号,比较后的偏差信号发出一定规律的第 3 页

调节执行给执行器。由控制器或计算机装置组成。 执行器——根据调节单元送来的调节指令去推动调节机构,改变调节量。 控制——就是根据被调量偏离给定值的情况,适当地动作调节机构,改变调节量,最后抵消扰动的影响,使被调量回复到给定值。 第三节 自动控制系统的方框图 在研究自动控制系统时,为了便于分析并直观地表示系统中各个组成部分(环节)间的相互影响和信号的传递关系,一般习惯采用方框图(也称方块图)来表示。

一. 几个基本概念 ① 环节——方框图中,系统的每一个具有一定功能的组成部分称为环节。图形为方框,环节间信号的传递用带箭头的作用线来表示,箭头方向为作用方向。 ② 输入信号——箭头进入方框的信号。输入信号就是使系统这个元件发生变化的原因。 ③ 输出信号——箭头离开方框的信号。在输入信号作用下,引起元件变化的结果。对于整个系统而言,系统的输出量即为被控量,而系统的输入量则有两个:一个是给定值的变化,另一个是干扰的输入。不同的干扰起作用也不同。 例如:对于汽包而言,输出量为水位,而引起液位变化的因素有两个,即给水流量的变化和蒸汽负荷的变化。而实际系统中,蒸汽是从汽包中流出。 二. 广义对象 方框图的应用可繁可简,其基本原则就是能清楚地表达所需研究的信号的传递关系和所研究环节的性能。 在工程实际中,所测量的对象的特性,往往还包含检测元件、变送器和执行机构的特性,这时,对象的特性则称为“广义对象特性”。 第四节 自动控制系统的分类 一、按信号的传递路径来分类 1、开环控制系统 系统的输出端与输入端不存在反馈回路,输出量对系统的控制作用不发生影响的系统。 特点: 系统的被控量对系统的控制作用没有影响; 系统结构简单,控制精度取决于系统各组成环节元部件的精度; 对于干扰无法自动补偿,控制精度难以保证;

控制器 执行机构 受控对象 测量、变送器 给定值 测量信— 偏干扰 n c 第 4 页 仅适用于输入/输出关系已知,且系统几乎不存在干扰的场合。 前馈控制:对于开环控制,如果存在可测的干扰信号,则可利用干扰信号产生控制作用,以补偿干扰对被控量的影响。 例如:自动报警器、自动售货机、自动流水线等。 这种按照开环补偿原理建立起来的系统称为开环补偿系统,该控制称为前馈控制。 特点: 是一种主动控制方式; 单纯的前馈控制一般难以满足控制要求; 控制精度受到原理的限制。

2. 闭环控制系统(反馈控制系统) 特点:系统输出信号与测量元件之间存在反馈回路。 “闭环”这个术语的含义,就是将输出信号通过测量元件反馈到系统的输入端,通过比较、控制来减小系统误差。 特点: 统的输出量(被控量)对控制作用有直接影响; 都是负反馈控制系统,按照偏差进行控制; 不管由于干扰或由于系统结构参数的变化所引起的被控量偏离给定值,都会产生控制作用去消除该偏差。该系统从原理上提供了实现高质量控制的可能性。 常见的控制系统绝大多数均属于闭环控制系统。 3. 复合控制系统 由于反馈控制只是在偏差出现以后才产生控制作用,因此,系统在强干扰作用下,被控量有可能产生较大波动的控制过程。对于这种工作环境适宜采用按偏差调节和按干扰补偿相结合的复合控制系统。

二、按系统的控制作用来分类 控制的任务:使被控对象的被控量等于给定值。即: 1、恒值控制系统(或称自动调节系统、自动镇定系统、定植控制系统) 特点:输入信号是一个恒定的数值,r(t)=const。 工业生产中的恒温、恒压等自动控制系统都属于这一类型,如汽包水位控制、过热汽温控制等。 2、过程控制系统(或称程序控制系统) 特点:输入信号是一个已知的函数,r(t)=f(t)。 系统的控制过程 按预定的程序进行,要求被控量能迅速准确地复现输

控制器 执行机构 受控对象 测量、变送器 给定值 测量信— 干扰 n 被控

补偿器

补偿调节执行机构 受控对象 给定值 干扰 n 被控测量装置 第 5 页

入,如化工中的压力、温度、流量控制,电站汽轮机启动过程中希望转速随时间成一定函数关系。 恒值控制系统可看成输入等于常值的过程控制系统。 3、随动系统(或称伺服系统) 特点:输入信号是一个未知函数。要求控制系统的输出量跟随输入信号变化。 如:负荷控制、锅炉燃烧过程中的风量的控制等。 三、按系统传输信号的性质来分类 1、连续系统 特点:系统各部分的信号都是时间的连续函数。目前工业中普遍采用的常规仪表PID调节器控制的系统。 2、离散系统 特点:系统中存在一个或几个时间上离散的信号。系统中用脉冲开关或采样开关,将连续信号转变为离散信号。其中离散信号以脉冲形式传递的系统又叫脉冲控制系统,离散信号以数码形式传递的系统又叫数字控制系统。 四、按描述系统的数学模型不同来分类 1、线性系统 特点:系统由线性元件构成,描述运动规律的数学模型为线性微分方程。运动方程一般形式: 式中:r(t)—系统输入量; c(t)—系统输出量 主要特点是具有叠加性和齐次性。 1、线性系统 主要特点是具有叠加性和齐次性。 线性定常系统——描述系统运动状态的微分方程(差分方程)的系数是不随时间变化的常数。 线性时变系统——描述系统运动状态的微分方程(差分方程)的系数是时间的函数。 2、非线性系统 特点:在构成系统的环节中有一个或一个以上的非线性环节。 非线性的理论研究远不如线性系统那么完整,目前尚无通用的方法可以解决各类非线性系统。非线性系统不具备叠加性和均匀性。 线性系统和非线性系统的比较: r(t)和c(t)分别表示系统的输入和输出,判断各方程所描述的系统的类型(线性/非线性、定常/时变、动态/静态)。 线性系统的要领: (1)线性系统的一般形式:

相关文档
最新文档