质点、位移、速度

合集下载

大学物理简程 张三慧主编第1章 质点运动学

大学物理简程  张三慧主编第1章 质点运动学
2 2
at
a

R
an
o
a rc ta n
an at
14
1.7
y
相对运动
y
E
V
S:小球
V:马车
B
rS E A0 rV E
A
E:地面
rS V
o
o
x
rS E rS V rV E v S E v S V vV E
a lim
v t
t 0
lim
vn t
t 0
lim
vt t
t 0
an at
12
切向加速度:
vt v (t t ) v (t ) v
a t lim v t dv dt d ( R ) dt R d dt
v B A y v B y v A y v B sin 30 v A 600 km / h
v BA v B A x v B A y 9 1 7 km / h
2 2
v AB v A v B
23
0
16
dv dt

dv dt

du dt
若两个参考系相对做匀速直线运动,即 a r 则
a a
矢量合成的平行四边形法则:
A
A
B
C
B
C
矢量合成的三角形法则:
A A
C
B
C
B
17
矢量的分解:
A B B
y
A
第1章 质点运动学

中国矿业大学(北京)《大学物理》课件 第1章 质点运动学

中国矿业大学(北京)《大学物理》课件 第1章 质点运动学

y 0.22 152 9.115 30 57m
r 66i 57 j
r
的大小
r的方向
r 662 (57)2 87m
arctan y arctan 57 41
x
66
(2) 速度沿坐标轴 x、y 的投影为
vx
dx dt
d dt
(0.31t 2
7.2t
28)
0.62t 7.2
物体平动时可视为质点。 物体上任一点的运动都可以代表物体的运动。
➢ 研究汽车突然刹车“前倾”或转弯 涉及转动问题,汽车各部分运动情况不同,各
车轮受力差异很大,不能把汽车作质点处理。
质点是从客观实际中抽象出的理想模型,研 究质点运动可以使问题简化而又不失客观真实性。
二、确定质点位置的方法
静止和运动是相对的 地心学说被日心说取代,让人们明白,判断物体
求 船的运动方程。
解 取坐标系
v
依题意有
l0
l(t) l0 v t
h l(t)
坐标表示为
O
x
x(t) (l0 v t)2 h2
x(t)
说明
质点运动学的基本问题之一 , 是确定质点运动 学方程。 为正确写出质点运动学方程, 先要选定参 考系、坐标系, 明确起始条件等, 找出质点坐标随时 间变化的函数关系。
x 0.31t2 7.2t 28 y 0.22t 2 9.1t 30
试求 t =15s时小田鼠的 (1)位矢;(2)速度; (3)加速度。
解 (1)根据已知条件,小田鼠的位矢可写成
r
(0.31t
2
7.2t
28)i
(0.22t 2 9.1t 30) j
t = 15s 时

高一物理【质点、位移和速度】练习题(解析版)

高一物理【质点、位移和速度】练习题(解析版)

高一物理【质点、位移和速度】练习题一、素养核心聚焦考点一物理观念-质点模型的建立例题10.下列有关质点的说法中正确的是()A.只有质量和体积都极小的物体才能视为质点B.研究一列火车过铁路桥经历的时间时,可以把火车视为质点C.研究自行车的运动时,因为车轮在不停地转动,所以在任何情况下都不能把自行车作为质点D.虽然地球很大,还在不停地自转,但是在研究地球的公转时,仍然可以把它视为质点【答案】D【解析】物体能否看成质点,不是看物体的质量和体积大小,是看形状和大小在所研究的问题中能否忽略.故A错误.研究火车过桥,火车的长度不能忽略,火车不能看成质点.故B错误.研究车轮的转动,车轮的形状不能忽略,自行车不能看成质点.但在研究自行车的运动速度时,就可以忽略自行车的自身大小,则可把自行车作为质点.故C错误.地球很大,在研究地球公转时,地球的大小与日地距离比较,可以忽略,可以看出质点.故D正确.故选D.考点二科学思维-考查运动的相对性例题11.两辆汽车在平直公路上行驶,甲车内的人看见树木向东移动,乙车内的人发现甲车没有运动,如果以大地为参考系,上述事实说明()A.甲车向西运动,乙车不动B.乙车向西运动,甲车不动C.甲车向西运动,乙车向东运动D.甲、乙两车以相同速度向西运动【答案】D【解析】因为乙车内的人看到甲车没有动,则甲和乙的运动情况一致,而甲车的人看到路旁的树木向东运动,说明甲车相对路旁的树木向西运动,则如果以大地为参考系则甲向西运动,因为甲车和乙车运动状态一致,故甲、乙两车以相同的速度向西运动.故D正确,ACD错误考点三科学探究-实际运动中位移和路程的求解例题12、一个小球从2 m高处落下,被地面弹回,在1 m高处被接住,则小球在这一过程中()A.位移大小是3 mB.位移大小是1 mC.位移大小是2 mD.路程是2 m【答案】B【解析】小球从2 m高处落下,被地面弹回,在1 m高处被接住,首末位置的距离为1 m,位移的方向由初位置指向末位置,所以位移的大小为1 m,方向竖直向下.路程表示运动轨迹的长度,s=3 m,没有方向.故B正确,A、C、D错误.考点四科学探究-平均速度与瞬时速度的理解及计算例题13.关于速度的定义式v=,以下叙述正确的是()A.物体做匀速直线运动时,速度v与运动的位移Δx成正比,与运动时间Δt成反比B.速度v的大小与运动的位移Δx和时间Δt都无关C.速度大小不变的运动是匀速直线运动D.v1=2 m/s、v2=-3 m/s,因为2>-3,所以v1>v2【答案】B【解析】v=是计算速度的定义式,只说明速度可用位移Δx除以时间Δt来获得,并不是说v与Δx成正比,与Δt成反比,A错,B对;匀速直线运动是速度大小和方向都不变的运动,C错误;速度是矢量,正、负号表示方向,绝对值表示大小,D错.二、学业质量测评基础练:1.下列所研究的物体,可看做质点的是()A.天文学家研究地球的自转B.用GPS确定远洋海轮在大海中的位置C.教练员对百米运动员的起跑动作进行指导D.在伦敦奥运会比赛中,乒乓球冠军张继科准备接对手发出的旋转球【答案】B【解析】研究地球的自转时,地球的大小和形状不能忽略,不能看作质点,故A错误;当研究海轮的位置时,海轮的大小和形状可以忽略,故能看做质点,故B正确;研究运动员的起跑动作,运动员的形状不能忽略,故不能看做质点,故C错误;研究乒乓球的旋转,需要看球的转动方向,而一个点无法研究转动方向,所以不能看做质点,故D错误.2.(多选)下列说法中与人们的日常习惯相吻合的是()A.测量三楼楼道内日光灯的高度,选择三楼地板为参考系B.测量井的深度,以井底为参考系,井“深”为0米C.分析卡车的运动时,以卡车司机为参考系,卡车总是静止的D.以路边的房屋为参考系判断自己是否运动【答案】AD【解析】在解本题时,很多同学受生活习惯的影响,往往错误地认为参考系只能选地面,其实不然,如A 选项,可以选择与地面相对静止的三楼地板为参考系.参考系的选择没有对错之分,只有合理与不合理的区别,只要有利于问题的研究,选择哪个物体为参考系都可以.B、C与日常习惯不吻合,AD与日常的习惯吻合3.甲、乙、丙三人各乘一个热气球,甲看到楼房匀速上升,乙看到甲匀速上升,甲看到丙匀速上升,丙看到乙匀速下降.那么,从地面上看,甲、乙、丙的运动情况可能是()A.甲、乙匀速下降,乙>甲,丙停在空中B.甲、乙匀速下降,乙<甲,丙匀速上升C.甲、乙匀速下降,丙也匀速下降,乙>丙,且丙>甲D.甲、乙匀速下降,丙也匀速下降,乙>丙,且丙<甲【答案】ABC【解析】甲看到楼房匀速上升,说明甲相对于地匀速下降.乙看到甲匀速上升,说明乙匀速下降,而且乙>甲.甲看到丙匀速上升,丙看到乙匀速下降,丙可能停在空中.也可能向上匀速运动,或者是物体丙也匀速下降,只不过速度小于甲的速度;故ABC正确,D错误4.(多选)如图所示是为了定量研究物体的位置变化作出的坐标轴(轴).在画该坐标轴时规定原点在某长直公路上某广场的中心,公路为南北走向,规定向北为正方向.坐标上有两点A和B,A的位置坐标为=5 m,B的位置坐标为=﹣3 m.下面说法中正确的是()A.A点位于广场中心南边5 m处B.A点位于广场中心北边5 m处C.B点位于广场中心南边3 m处D.B点位于广场中心北边3 m处.【答案】BC【解析】由位置坐标的意义可知,A点在原点的正方向5 m处,即在广场中心北方5 m处,故A错误,B正确;同理,B点在原点的负方向3 m处,即在广场中心南方3 m处,故C 正确,D错误.5.下列关于路程和位移的说法正确的是()A.路程是矢量,位移是标量B.给定初末位置,路程有无数种可能,位移只有两种可能C.若物体作单一方向的直线运动,位移的大小就等于路程D.在任何情况下,路程都是大于位移的大小的【答案】C【解析】路程是标量,位移是矢量.故A错误.给定初末位置,路程有无数种可能,位移只有一种.故B 错误.当物体做单向直线运动时,位移的大小等于路程.故C正确,D错误.6.下列描述时间的是()A.百米赛的运动员11秒末达到终点B.第8个1秒末物体速度为零C.百米赛运动员的成绩是11秒D.3秒初物体开始运动【答案】C【解析】运动员11秒末达到终点,11秒末是指一个时间点,所以是时刻,所以A错误;第8个1秒末物体速度为零,第8个1秒末是指一个时间点,所以是时刻,所以B错误;运动员的成绩是11秒,其中11秒是时间的长度,所以是时间,所以C正确;3秒初物体开始运动,其中3秒初是指一个时间点,所以是时刻,所以D错误.7.物体沿直线运动,下列说法中正确的是()A.若物体某1秒内的平均速度是5 m/s,则物体在这1 s内的位移一定是5 mB.若物体在第1 s末的速度是5 m/s,则物体在第1 s内的位移一定是5 mC.若物体在10 s内的平均速度是5 m/s,则物体在其中1 s内的位移一定是5 mD.物体通过某位移的平均速度是5 m/s,则物体在通过这段位移一半时的速度一定是2.5 m/s【答案】A【解析】物体某1秒内的平均速度是5 m/s,根据知,物体在这1 s内的位移一定是5 m.故A正确.物体在第1 s末的速度是5 m/s,这段时间内的平均速度不一定等于5 m/s,则在这1 s内的位移不一定是5m.故B错误.物体在10s内的平均速度是5 m/s,在其中1s内的平均速度不一定等于5 m/s,则位移不一定等于5 m.故C 错误.物体通过某位移的平均速度是5 m/s,则物体在通过这段位移一半时的速度不一定是2.5 m/s.故D错误.综合练8.(多选)下列问题中,加下划线的物体能被视为质点的是()A.研究“嫦娥三号”发射时离地面的高度B.研究从广州开往青岛的和谐一号列车的运行时间C.研究跳板比赛中运动员的动作D.研究地球上昼夜的形成【答案】AB【解析】运行中的“嫦娥三号”其自身大小与离地面高度相比,可以忽略而能视为质点;列车长度远小于广州到青岛的距离,可以忽略列车长度将其看做质点;要研究运动员的动作,不能视为质点;地球上昼夜的形成是由于地球自转,所以不能将地球看做质点.9.(多选)甲、乙、丙三辆汽车同时在一条南北方向的大街上行驶,甲车上的人看到丙车相对于甲车向北运动,乙车上的人看到甲、丙两辆汽车都相对乙车向南运动,丙车上的人看到路边树木向北运动.关于这三辆车行驶的方向,正确的说法是()A.甲车必定向南行驶B.乙车必定向北行驶C.丙车可能向北行驶D.三辆车行驶方向可能相同【答案】AD【解析】丙车上的人看到路边上的树木向北运动,说明丙车向南运动;甲车上的人看到丙车相对于甲车向北运动,说明甲车也向南运动,并且甲车的速度比丙车大;乙车上的人看到甲、丙两辆车都相对乙车向南运动,此时有两种可能:一是乙车向南运动,但比甲车和丙车的速度都小;二是乙车向北运动.综上,甲车、丙车必定向南运动,乙车可能向南运动,也可能向北运动10.如图所示,甲、乙、丙3人乘不同的热气球,甲看到楼房匀速上升,乙看到甲匀速上升,甲看到丙匀速上升,丙看到乙匀速下降,那么,从地面上看甲、乙、丙的运动可能是()A.甲、乙匀速下降,且v乙>v甲,丙停在空中B.甲、乙匀速下降,且v乙>v甲,丙匀速上升C.甲、乙匀速下降,且v乙>v甲,丙匀速下降且v丙>v甲D.甲、乙匀速下降,且v乙>v甲,丙匀速下降且v丙<v甲【答案】ABD【解析】甲看到楼房匀速上升,说明甲相对于地匀速下降.乙看到甲匀速上升,说明乙匀速下降,而且v乙>v,甲看到丙匀速上升,丙看到乙匀速下降,丙可能停在空中,也可能匀速上升,故A、B正确;甲看到丙甲匀速上升,丙看到乙匀速下降,丙可能匀速下降,且v丙<v甲,故C错误,D正确11.(多选)下列关于时刻和时间说法正确的是()A.某人在百米赛跑中用了15 s,15 s指的是时刻B.第3 s内指的是第2 s末到第3 s末这1 s的时间内C.第3 s指的是3 s的时间D.2 s末就是3 s初,指的是时刻【答案】BD【解析】在时间轴上,15秒对应一条线段,是时间间隔,A错误;第3 s内是一段时间间隔,即2 s末到3 s 末这段时间,B正确;第3 s和第3 s内一样,都是指1 s的时间间隔,C错误;2 s末和3 s初在时间轴上对应于同一个点,所以是同一时刻,D正确.12.(多选)某学校田径运动场跑道示意图如下图所示,其中A点是所有跑步项目的终点,也是400 m、800 m 赛跑的起点,B点是100 m赛跑的起跑点.在校运动会中,甲、乙、丙三个同学分别参加了100 m、400 m 和800 m比赛,则()A.甲的位移最大B.丙的位移最大C.乙、丙的路程相等D.丙的路程最大【答案】AD【解析】甲同学的初、末位置直线距离为100 m,位移大小为100 m,路程也是100 m,乙同学路程为400 m,但初、末位置重合,位移大小为零,丙同学路程为800 m,初、末位置重合,位移大小也为零,所以甲的位移最大,丙的路程最大,A、D项正确.13.(多选)某一运动质点沿一直线做往返运动,如图所示,OA=AB=OC=CD=1 m,O点为x轴上的原点,且质点由A点出发向x轴的正方向运动至B点再返回沿x轴的负方向运动,以下说法正确的是()A.质点在A→B→C的时间内发生的位移为2 m,路程为4 mB.质点在B→D的时间内发生的位移为-4 m,路程为4 mC.当质点到达D点时,其位置可用D点的坐标-2 m表示D.当质点到达D点时,相对于A点的位移为-3 m【答案】BCD【解析】质点在A→B→C的时间内,AC距离为2 m,位移方向为A到C,所以位移为-2 m,路程为4 m,A 错误;在B→D的时间内,经过的路程为4 m,位移方向由B指向D,与正方向相反,所以位移为-4 m,B 正确;质点到达D点时,位置在原点的左侧,坐标为-2 m,C正确;质点到达D点时,在A点左侧3 m处,规定向右为正方向,所以相对于A点的位移为-3 m.故D正确14.(多选)某部队进行野战训练,训练过程中的运行路线可以在指挥中心的屏幕上显示出来,屏幕的小正方形边长代表1 m.如图所示为某个班战士的行动轨迹,沿箭头方向运动.AB、ABC、ABCD、ABCDE四段曲线轨迹运动所用的时间分别是:1 s、2 s、3 s、4 s.下列说法正确的是()A.战士在AB段的平均速度为1 m/sB.战士在ABC段的平均速度为1.5 m/sC.AB段的平均速度比ABC段的平均速度更能反映战士处于A点时的瞬时速度D.战士在B点的速度等于ABC段的平均速度【答案】AC【解析】根据平均速度的定义式:=xt ,可以计算得到AB 段的平均速度为 1 m/s, ABC 段的平均速度为52 m/s ,A 正确,B 错误;包含A 点在内的运动时间越短,平均速度越接近A 点的瞬时速度,C 正确.只有在匀变速直线运动中中间时刻的速度才等于这段时间的平均速度,D 错误.15.(多选)如图甲所示是一种交警测速的工作示意图, B 为能发射超声波的固定小盒子,工作时小盒子B 向被测物体发出短暂的超声波脉冲,脉冲被运动的物体反射后又被B 盒接收,从B 盒发射超声波开始计时,经时间Δt 0再次发射超声波脉冲,图乙是连续两次发射的超声波的位移―时间图象,则下列说法正确的是( )A .超声波的速度为v 声=222x t B .超声波的速度为v 声=112x t C .物体的平均速度为=()212102x x t t t --+∆ D .物体的平均速度为=()2121022x x t t t --+∆【答案】BC 【解析】由题图乙可知,超声波在12t 和202t t -∆时间内发生的位移分别为x 1和x 2,所以超声波的速度为: v 声=112x t =112x t 或v 声=2202x t t -∆=2202x t t -∆,故A 错误,B 正确;由题图甲和题图乙可知,被测物体通过的位移为x 2-x 1时,所需的时间为t =202t t -∆-12t +Δt 0=12(t 2-t 1+Δt 0),所以物体的平均速度为=21x x t-=()212102x x t t t --+∆,故C 正确,D 错误. 16.(多选)在伦敦奥运会上,牙买加选手博尔特以9秒63的成绩获得100米决赛金牌,又以19秒32的成绩,夺得男子200米决赛的金牌.美国选手梅里特以12秒92的成绩夺得110米栏决赛冠军.关于这三次比赛中的运动员的运动情况,下列说法正确的是( )A.200 m比赛的位移是100 m比赛位移的两倍B.200 m比赛的平均速率约为10.35 m/sC.110 m栏比赛的平均速度约为8.51 m/sD.100 m比赛的最大速度约为20.70 m/s【答案】BC【解析】由于200 m跑道有弯道,所以位移不是100 m比赛位移的两倍,故A错误.平均速率等于路程与时间的比值,则200m比赛的平均速率v=11019.32st= m/s=10.35 m/s,故B正确.平均速度等于位移与时间的比值,则110 m栏的平均速度v=11012.92xt= m/s=8. 51 m/s,故C正确.根据题目的条件无法求出100 m比赛的最大速度,故D错误17.(多选)一质点沿一边长为2 m的正方形轨道运动,每秒钟匀速移动1 m,初始位置在bc边的中点A,逆时针方向运动,如图所示,A、B、C、D分别是bc、cd、da、ab边的中点,则下列说法正确的是()A.第2 s末的瞬时速度是1 m/sB.前2 s内的平均速度为 m/sC.前4 s内的平均速率为0.5 m/sD.前2 s内的平均速度为2 m/s【答案】AB【解析】第2 s末在B点,瞬时速度是1 m/s,选项A正确;前2 s内,质点从A经过c到B,位移为 m,故平均速度v== m/s,选项B正确,D错误;前4 s内,质点运动到C点,路程为4 m,故平均速率v′==1 m/s,选项C错误.。

大学物理教程1.2 质点的位矢、位移和速度

大学物理教程1.2 质点的位矢、位移和速度
第11章 静电场 第1章 质点运动学
1.2 质点的位矢、位移和速度 11-1 电荷
说明 运动方程之所以可以在具体坐标系写成分量形 式,实际上是建立在运动的可叠加性基础上的。 例如:平抛物体时,物体的运动可以分解为在 水平方向上的匀速直线运动和竖直方向上的匀加速 直线运动。
第11章 静电场 第1章 质点运动学
位置矢量在直角坐标系中可用单位矢量表示为:
r xi yj zk
大小 r
方向 可由 三个 方向 余弦 表示
z
k

x2 y2 z2

r

P(x,y,z)
x cos r y cos r z cos r
j
y
O i
x
方向余 cos2 cos2 cos2 1 弦满足
1.2 质点的位矢、位移和速度 11-1 电荷
注意 速度为矢量! (1) 方向
t 0 时,
B A , r
沿A点处轨道的切线方向
第11章 静电场 第1章 质点运动学
1.2 质点的位矢、位移和速度 11-1 电荷
(2) 大小
dr v v dt
s
lim
t 0
r t
同信息。
也就是说,平均速率和瞬时速率有不同的物理
意义,它们强调质点运动过程中关于运动快慢的不同 方面。 (1)平均速率更强调在一有限时间段内的总体 运动效果;
(2)瞬时速率更强调运动过程中的细节。
第11章 静电场 第1章 质点运动学
1.2 质点的位矢、位移和速度 11-1 电荷
某些典型速度大小的量级 单位:(m·-1) s 光 已知类星体最快的退行 电子绕核的运动 太阳绕银河中心的运动 地球绕太阳的运动 第二宇宙速度 第一宇宙速度 子弹出口速度 地球的自转(赤道) 空气分子热运动的平均速度(室温) 3.0×108 2.7×108 2.2×108 2.0×105 3.0×104 1.1×104 7.8×103 ~7×102 4.6×102 4.5×102

利用质点的位移和速度来分析机械振动

利用质点的位移和速度来分析机械振动

利用质点的位移和速度来分析机械振动机械振动是指物体在受到外力作用时出现的来回移动或摆动的现象。

在工程和物理学中,研究机械振动是非常重要的,因为许多工程结构和设备在运行过程中都会受到振动的影响。

为了更好地理解和分析机械振动,我们可以利用质点的位移和速度来进行研究。

在机械振动的分析中,质点是一个理想化的物体,它具有一定的质量和惯性特性,但没有具体的形状和大小。

通过对质点的位移和速度进行分析,我们可以得出有关振动系统的重要信息,如振动的频率、振幅和相位等。

在实际工程中,我们经常利用质点的位移和速度来建立振动系统的数学模型,从而预测和控制振动的行为。

在机械振动的研究中,我们常常需要考虑振动系统的自由度。

自由度是指系统中可以独立运动的数量,它决定了系统的振动行为。

通过对系统的自由度进行分析,我们可以确定系统的振动模态和频率响应特性。

时,我们需要考虑系统的自由度,并建立相应的数学模型来描述系统的振动特性。

在机械振动的分析中,我们常常需要利用质点的位移和速度来建立系统的动力学方程。

动力学方程描述了系统中所有质点的运动规律,可以帮助我们预测系统的振动行为。

通过对系统的动力学方程进行求解,我们可以得出系统的振动频率、振幅和相位等重要参数,从而更好地理解和控制系统的振动行为。

除了利用质点的位移和速度来分析机械振动,我们还可以考虑系统的能量转换和能量耗散。

在振动系统中,能量的转换和耗散是振动过程中不可避免的现象,它们直接影响着系统的振动特性。

通过分析系统的能量转换和耗散过程,我们可以更好地理解系统的振动行为,从而优化系统的设计和控制方案。

在实际工程中,机械振动的分析和控制是非常重要的。

许多工程结构和设备在运行过程中都会受到振动的影响,如果振动过大或频率不稳定,可能会导致系统的损坏和故障。

因此,通过利用质点的位移和速度来分析机械振动,我们可以更好地理解系统的振动特性,预测和控制系统的振动行为,从而提高系统的稳定性和可靠性。

质点的运动学基础位移速度和加速度

质点的运动学基础位移速度和加速度

质点的运动学基础位移速度和加速度质点的运动学基础:位移、速度和加速度质点是物理学中的一个基本概念,指代一个质量可以忽略不计、大小无穷小的物体。

在运动学中,质点的运动可以用位移、速度和加速度来描述。

一、位移位移是指物体从起始位置到终止位置的位置变化量。

一般用矢量表示,在直角坐标系中可以分别表示为x、y和z方向上的位移分量。

符号:位移用Δr表示,其中Δ为希腊字母delta,表示变化量;r表示位移矢量。

单位:国际单位制中,位移的单位是米(m)。

计算方法:如果一个质点的初始位置为r₁,终止位置为r₂,则位移Δr为Δr = r₂ - r₁。

二、速度速度是指物体在单位时间内所运动的距离。

在运动学中,速度是位移对时间的导数。

符号:速度用v表示。

单位:国际单位制中,速度的单位是米每秒(m/s)。

计算方法:如果一个质点在时间t₁时刻的位置为r₁,在时间t₂时刻的位置为r₂,则速度v可以表示为v = Δr / Δt,其中Δt = t₂ - t₁。

三、加速度加速度是指单位时间内速度的变化率。

在运动学中,加速度是速度对时间的导数。

符号:加速度用a表示。

单位:国际单位制中,加速度的单位是米每秒平方(m/s²)。

计算方法:如果一个质点在时间t₁时刻的速度为v₁,在时间t₂时刻的速度为v₂,则加速度a可以表示为a = Δv / Δt,其中Δv = v₂ -v₁。

总结:在质点的运动学基础中,位移描述了物体位置的变化,速度描述了物体移动的快慢和方向,加速度描述了速度的变化情况。

通过位移、速度和加速度这三个基础概念,可以更全面地了解和描述质点的运动状态。

以上是关于质点的运动学基础——位移、速度和加速度的概述。

这些概念在物理学和工程学等领域中具有重要的应用价值,帮助我们更好地理解和分析物体的运动行为。

通过学习和应用运动学基础知识,我们可以深入研究各种运动现象,为实际问题提供科学的解决方案。

高中理综物理知识点总结:质点的运动

高中理综物理知识点总结:质点的运动高中理综物理知识点总结:质点的运动质点的运动(1)------直线运动1)匀变速直线运动1.平均速度V平=s/t(定义式)2.有用推论Vt2-Vo2=2as3.中间时刻速度Vt/2=V平=(Vt+Vo)/24.末速度Vt=Vo+at5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/26.位移s=V平t=Vot+at2/2=Vt/2t7.加速度a=(Vt-Vo)/t {以Vo 为正方向,a与Vo同向(加速)a>0;反向则a<0}8.实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差}9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。

注:(1)平均速度是矢量;(2)物体速度大,加速度不一定大;(3)a=(Vt-Vo)/t只是量度式,不是决定式;(4)其它相关内容:质点、位移和路程、参考系、时间与时刻〔见第一册P19〕/s--t图、v--t图/速度与速率、瞬时速度〔见第一册P24〕。

2)自由落体运动1.初速度Vo=02.末速度Vt=gt3.下落高度h=gt2/2(从Vo位置向下计算)4.推论Vt2=2gh注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律;(2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。

(3)竖直上抛运动1.位移s=Vot-gt2/22.末速度Vt=Vo-gt(g=9.8m/s2≈10m/s2)3.有用推论Vt2-Vo2=-2gs4.上升最大高度Hm=Vo2/2g(抛出点算起)5.往返时间t=2Vo/g (从抛出落回原位置的时间)注:(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值;(2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性;(3)上升与下落过程具有对称性,如在同点速度等值反向等。

位移、速度、加速度


1-1-2
2、速度 Velocity 瞬时速度、简称速度: v = lim t→0 r/ t = dr/dt 速度方向为所在点轨迹的切线方向,并 指向质点前进的一方 在直角坐标系中 v = dx/dt i + dy/dt j + dz/dt k 速度分量 vx = dx/dt , vy = dy/dt , vz = dz/dt 速度的大小: | v | = ( vx2 + vy2 + vz2 )1/2
1-1-2
v(t) P Q ρ no dθ
v(t+dt)
O vdθ v(t) v(t+dt) dv dv
1-1-2
dv = dv to + vd no 所以 vdt =ρd 故 d /dt = v /ρ 将上式两边除以dt可得质点在P点的加速度 a = dv/dt = dv/dt to + vd /dt no = dv/dt to + v2/ρ no dv/dt 为沿切向分量,故称为质点的切 向加速度 at ,其值等于速率的变化率,它 表示速度变化的快慢。
例1-2 有一质点沿x轴作直线运动为 x(t) = 4.5t2 - 2t3 (SI),试求: (1)第2秒内的平均速度 v, (2)第2秒末的速度 v, (3)第2秒内经过的路程s 及平均速率 v, (4)第2秒末的加速度 a 。 解:(1) vx = x/ t = [ x(2)- x(1)]/( 2 - 1 ) = (4.5×22-2×23 )-(4.5-2) = - 0.5 m /s v = - 0.5 i m /s
1-1-2
1-1-2
vx = 9t - 6t2 (4) 加速度 ax = dvx/dt = 9 - 12t |t=2 = 9 - 12×2 = - 15 ( m/s2 ) 因为加速度与速度方向相同, 所以质点在2秒末作加速运动。

01绪论,质点,参考系,位移,速度,加速度


Fan
3)多边形法则
有限个矢量 a1 , a 2 , L a n 相加可由矢量的三角形 求和 法则推广
开始, 自任意点 O 开始,依次引 OA1 = a1 , A1 A2 = a 2 , L , An − 1 An = a n , 由此得一折线 OA1 A2 L An , 于是矢量 OA n = a就是 n 个矢量 a1 , a 2 , L , a n的和,即 的和, OA = OA1 + A1 A2 + L + An − 1 An .
Fan
二、质点(mass point) 质点( ) 具有物体的质量,没有形状和大小的几何点。 具有物体的质量,没有形状和大小的几何点。 说明 如果我们研究某一物体的运动, 如果我们研究某一物体的运动,而可以忽略其大小和 形状对物体运动的影响,若不涉及物体的转动和形变, 形状对物体运动的影响,若不涉及物体的转动和形变, 我们就可以把物体当作是一个具有质量的点( 质点) 我们就可以把物体当作是一个具有质量的点(即质点) 来处理 . 相对性;理想模型; 相对性;理想模型;质点运动是研究物质运动的基础 一个物体能否看作质点,要根据问题的性质来决定。 一个物体能否看作质点,要根据问题的性质来决定。
Fan
1)矢量的表示: 矢量的表示:
常用黑体母或带箭头的字母表示。 常用黑体母或带箭头的字母表示。 矢量的几何表示: 矢量的几何表示:一个矢量可用一条有方向的线段来表示 v v v v A 矢量的代数表示: v 矢量的代数表示: = eA A = eA A
A
r A 矢量的大小或模: 矢量的大小或模: = A v A v eA = 矢量的单位矢量: 矢量的单位矢量: A
x cos α = , r y cos β = , r z cos γ = r

第一章 质点运动学


六. 单位 本课程采用国际单位制( ), ),其中 本课程采用国际单位制(SI),其中 长度单位 时间单位 速度单位 加速度单位 米(符号 m) ) 秒(符号 s) ) 米每秒( 米每秒(符号 m/s ) 米每二次方秒( 米每二次方秒(符号 m/s2 )
例题1-4 已知质点作匀加速直线运动,加速度 已知质点作匀加速直线运动, 例题 求这质点的运动方程。 为 a ,求这质点的运动方程。 dv = a 常量),积分得 ),积分得 解 由定义 (常量), dt
∆r = r1 − r
即等于质点位矢在∆t O 即等于质点位矢在∆ 时间内的增量。 时间内的增量。且有
r
r ∆t 时间内位移 1
t +∆t 时刻位矢 ∆
x
∆r = x1i + y1 j − xi − yj = ( x1 − x )i + ( y1 − y ) j
时间内质点通过的路程 为标量 路程∆ 为标量, ∆t 时间内质点通过的路程∆s为标量,仅当 ∆t→0时,位移的大小 时 lim ∆r = ∆s
d 2 x dv x ax = 2 = = −ω 2 R cos ω t dt dt d 2 y dv y ay = 2 = = −ω 2 R sin ω t dt dt
由此得加速度的大小
v a = ω R cos ωt + sin ωt = ω R = R
2 2 2 2
2
如果把加速度写成矢量式, 如果把加速度写成矢量式,则有
本课程中只讨论平面内的运动问题, 本课程中只讨论平面内的运动问题,常用坐标 系有平面直角坐标系 极坐标系和自然坐标系。 平面直角坐标系、 系有平面直角坐标系、极坐标系和自然坐标系。
二. 质点 一般情况下, 一般情况下,运动物体的形状和大小都可能变化
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

质点、坐标系和参考系1.运动是一切物体的固有属性,宇宙中的一切,大到天体,小到分子都处在永恒的运动中.2. 运动:物体相对于其他物体的位置变化叫机械运动,简称运动.一、质点:用来代替物体的有质量的点。

1、特点:A、它没有大小和形状。

B、它具有物体的全部的质量。

C、它是一种理想化的模型。

2、物体被看作质点的条件:当物体的大小和形状对我们研究问题的影响不大可以忽略时,可以把物体看作质点。

【注意】物体本身的尺寸大小不是能否看作质点的标准.3、质点和几何中的点是一回事吗?相同点:都是没有形状和大小的点。

不同点:质点是实际物体的抽象,它具有一定的物理内涵,不仅具有物体的全部质量,而且是一相对的物理概念;几何中的点没有质量,仅表示位置,而且应该绝对的小。

经典题型1、下列情形中,物体可以简化为质点的是B、CA.欣赏杨丽萍优美的舞姿B.测量旋转的铁饼飞出的距离C.测量飞驰汽车的行驶距离D.教练员分析速滑运动员的动作技术E.研究奥运会乒乓球单打冠军张怡宁打出的乒乓球的旋转情况2、下列关于质点的说法,正确的是(ACD)A.顺水漂流的小船可以视为质点B.研究火车通过路旁一根电线杆时,火车可以看做质点C.研究奥运会乒乓球运动员打出的弧圈球时不能把乒乓球看做质点D.研究奥运会跳水运动员跳水动作时,不能将运动员看做质点运动是绝对的,静止是相对的。

二、参考系1.描述一个物体位置是否变动(运动),必须先拿一个物体来作参考,这个作为参考的物体叫参考系(参照物)。

2.运动具有相对性:选择不同的参考系,观察结果会有不同.3.参考系可任意选取,但实际问题中,注意两点:(1)使观测方便(2)使对物体运动的描述尽可能简单经典题型1 、以下说法正确的是(CD )A.参考系就是不动的物体B.任何情况下,只有地球才是最理想的参考系C.不选定参考系,就无法研究某一个物体是怎么运动的D.同一物体的运动,对不同的参考系可能有不同的观察结果2、下列说法中与人们的日常习惯相吻合的是A、C、DA.测量三楼内日光灯的高度,选择三楼地板为参考系B.测量井的深度,以井底为参考系,井“深”为0米C.以卡车司机为参考系,卡车总是静止的D.以路边的房屋为参考系判断自己是否运动3、甲、乙、丙三架观光电梯,甲中乘客看一高楼在向下运动;乙中乘客看甲在向下运动;丙中乘客看甲、乙都在向上运动.这三架电梯相对地面的运动情况可能是(CD )A. 甲向下、乙向下、丙向下B. 甲向下、乙向下、丙向上C. 甲向上、乙向上、丙向上D. 甲向上、乙向上、丙向下4、甲、乙、丙三个观察者,同时观察一个物体的运动。

甲说:“它在做匀速运动。

”乙说:“它是静止的。

”丙说:“它在做加速运动。

”这三个人的说法( D )A、在任何情况下都不对B、三个中总有一人或两人是讲错的C、如果选择同一参照系,那么三人的说法就都对了D、如果各自选择自己的参照系,那么三人的说法就都对了5、从水平匀速飞行的直升机上向外自由释放一个物体,不计空气阻力,在物体下落过程中,下列说法不正确的是(C)A.从飞机上看,物体静止C,B.从飞机上看,物体始终在飞机的后方C.从地面上看,物体做平抛运动D.从地面上看,物体做自由落体运动6、太阳从东边升起、西边落下,是地球上的自然现象。

但在某些条件下,在纬度较高地区上空飞行的飞机上,旅客可以看到太阳从西边升起的奇妙现象。

这些条件是:(C)A.时间必须是清晨,飞机正在由东向西飞行,飞机的速度必须较大B.时间必须是清晨,飞机正在由西向东飞行,飞机的速度必须较大C.时间必须是傍晚,飞机正在由东向西飞行,飞机的速度必须较大D.时间必须.是傍晚,飞机正在由西向东飞行,飞机的速度不能太大三、坐标系为了定量地描述物体的位置及位置的变化,需要在参考系上建立适当的坐标系。

坐标系:直线坐标系(一维)、平面直角坐标系(二维)、空间三维坐标系1、从高出地面3m的位置竖直向上抛出一个小球,它上升5m后回落,最后到达地面,如图所示,分别以地面和抛出点为原点建立坐标系,方向均以向上为正,填写2、桌面离地面的高度是0.9 m,坐标系的原点定在桌面上,向上方向为坐标轴的正方向,有A、B两点离地面的距离分别为1.9 m和0.4 m。

那么A、B的坐标分别是 ( C )A.1 m, 0.5 m B.1.9 m,0.4 m C.1 m,-0.5 m D.0.9 m ,-0.5 m时间和位移一、时刻和时间间隔1.时刻:是指某一瞬时,在表示时间的数轴上,用点来表示2.时间间隔:是指两时刻的间隔,在表示时间的数轴上用线段来表示.时间间隔简称时间。

二、路程和位移路程(path):是物体运动轨迹的长度位移(displacement):表示物体(质点)的位置变化1、路程描述的是物体的实际运动轨迹,位移描述的是位置的变化。

2、路程的大小是实际轨迹的长度,位移的大小是由初位置指向末位置的有向线段的长度。

3、路程大小与实际路径有关,位移大小只与初末位置有关,与运动路径无关4、路程无方向,位移有方向,求解位移时明确大小的同时要明确其方向。

5、只有物体做单向直线运动时,物体的位移大小才等于路程。

一般情况下位移的大小总小于路程。

三、矢量和标量矢量:在物理学中,既有大小又有方向的物理量叫矢量,如位移、速度标量:在物理学中,只有大小而没有方向的物理量叫标量,如质量、温度经典题型1、下列关于位移和路程的说法中,正确的是…………(C)A、位移大小和路程不一定相等,所以位移才不等于路程B、位移的大小等于路程,方向由起点指向终点C、位移描述物体相对位置的变化,路程描述路径的长短D、位移描述直线运动,路程描述曲线运动2、关于时刻和时间,下列说法中正确是(BC)A. 时刻表示时间较短,时间表示时间较长B.时刻对应位置,时间对应位移C. 作息时间表上的数字表示时刻D.1 min内有60个时刻3、关于位移和路程,下列说法正确的是·······(A )A、路程是指物体轨迹的长度,位移表示物体位置变化B、位移是矢量,位移的方向就是物体运动的方向C、路程是标量,位移的大小就是路程D、两物体通过的路程相等,则它们的位移也一定相同4、说法中正确的是( B.)A.两个物体通过的路程相同,则它们的位移的大小也一定相同B.两个物体通过的路程不相同,但位移的大小和方向可能相同C.一个物体在某一运动中,位移大小可能大于所通过的路程D.若物体做直线运动,位移的大小就等于路程5、关于质点运动的位移和路程,下列说法正确的是(AB)A.质点的位移是从初位置指向末位置的有向线段,是矢量B.路程就是质点运动时实际轨迹的长度,是标量C.任何质点只要做直线运动,其位移的大小就和路程相等D.位移是矢量,而路程是标量,因而位移的大小不可能和路程相等6、下列关于路程和位移的说法,正确的是(C)A.位移就是路程B.位移的大小永远不等于路程C.若物体作单一方向的直线运动,位移的大小就等于路程D .位移是矢量,有大小而无方向,路程是标量,既有大小,也有方向6、关于质点的位移和路程,下列说法正确的是(D )A .位移是矢量,位移的方向就是质点运动的方向B .路程是标量,也是位移的大小C .质点做直线运动时,路程等于其位移的大小D .位移的数值一定不会比路程大7、下列关于位移和路程的说法,正确的是(C )A .位移和路程的大小总相等,但位移是矢量,路程是标量B .位移描述的是直线运动,路程描述的是曲线运动C .位移取决于始、末位置,路程取决于实际运动路径D .运动物体的路程总大于位移8、关于质点作匀速直线运动的位移-时间图象以下说法正确的是( D )A .图线代表质点运动的轨迹B .图线的长度代表质点的路程C .图象是一条直线,其长度表示质点的位移大小,每一点代表质点的位置D .利用s -t 图象可知质点任意时间内的位移,发生任意位移所用的时间9、如图所示,是A 、B 两质点沿同一条直线运动的位移图象,由图可知(AD )A .质点A 前2s 内的位移是1mB .质点B 第1s 内的位移是2mC .质点A 、B 在8s 内的位移大小相等D .质点A 、B 在4s 末相遇10、 物体沿半径分别为r 和R 的半圆弧由A 点经B 点到达C 点,如图1-10所示,则它的位移和路程分别是(D ) A. 2 (R + r ) , π(R + r ) B. 2 (R + r ) 向东,2πR 向东C. 2π(R + r ) 向东,2π(R + r )D. 2 (R + r ) 向东,π(R + r )11、小球从距地面5m 高处落下,碰到地面反弹后,在距地面2m 高处被接住,则小球从高处落下到被接住这一过程中通过的路程和位移的大小分别是( DA 、7m 、7mB 、5m 、2mC 、5m 、3mD 、7m 、3m12、如图,一个质点沿两个半径为R 的半圆弧由A 运动到C ,规定向右方向为正方向。

在此过程中,它的位移和路程分别为······················(C )A.4R ,2πRB.4R , 2πRC.-4R ,2πRD.-4R ,-2πR13、如图甲,一根细长的弹簧系着一个小球,放在光滑的桌面上,手握小球把弹簧拉长,放手后小球便左右来回运动,B 为小球向右到达的最远位置,小球向右经过中间位置O 时开始计时,其经过各点的时刻如图乙所示。

若测得OA=OC=7cm ,AB=3cm ,则自0时刻开始:( ABCD )A .0.2s 内小球发生的位移大小是7cm ,方向向右,经过的路程是7cmB .0.6s 内小球发生的位移大小是7cm ,方向向右,经过的路程是13cmC .0.8s 内小球发生的位移是0,经过的路程是20cmD .1.0s 内小球发生的位移大小是7cm ,方向向左,经过的路程是27cm西东图1-1014、质点向东运动了30m ,然后又向北运动了40m ,质点发生的位移是······(C )A.70m ,方向是向东偏北53oB.70m ,方向是向北偏东53oC.50m ,方向是向北偏东37oD.50m ,方向是向东偏北37o15、一支长150m 的队伍匀速前进,通讯员从队尾前进300m 后赶至队首,传达命令后立即返回,当通讯员回到队尾时,队伍已前进了200m,则过程中通讯员的位移大小是多少?走过的路程是多少? 200m, 450m(1)几秒内位移最大? (2)几秒内路程最大? 答案:4s ;5s .17、关于位移和路程,下列说法正确的是(BCD )A. 物体沿直线向某一方向运动时,通过的路程就是位移B. 物体沿直线向某一方向运动时,通过的路程就等于位移的大小C. 物体通过的路程不等,但位移可能相同D. 物体通过一段路程,但位移可能为零18、一个质点做半径为R 的圆周运动。

相关文档
最新文档