6.计量资料的统计推断—t检验

合集下载

实习3 计量资料的统计推断.

实习3 计量资料的统计推断.

分析
• 计算差值d d • 计算 d n
s
d

d d n
2
2
n 1
s
• 计算t值
d
Sd n
d 0 t Sd
4.已知某地120名正常成人脉搏均数为 73.2/min,标准差为8.1/min,试估计该地正常 成年人脉搏总体均数的95%可信区间。
分析 1.大样本 2.代入公式,计算t值
5.某地区1999年测定了30岁以上正常人与冠心病人 的血清总胆固醇含量(mmol/L),资料见实习表3-1。 试检验正常人与冠心病人血清总胆固醇含量的差异有 无显著性。
实习表3-1 某地区30岁以上正常人与冠心病人的血清总胆固醇含量(mmol/L)
组别 测定人数 56 正常人 142 冠心病人
均数 4.67 5.78
• • • •
利用公式估计医学正常值 估计总体均数的可信区间 两样本均数比较的u检验 样本均数与总体均数的比较
2.某校在体检中随机抽取了同年级男生12 人,女生15人,测定其体重指数(BMI), 结果如下,试分析男女生体重指数有无差异?
男生(12人): 20.7 22.4 19.6 20.1 20.8 23.1 18.2 19.6 19.9 21.7 22.5 22.0 女生(15人): 18.5 17.6 19.5 18.7 21.3 20.5 17.5 21.9 22.1 20.8 19.7 19.0 19.8 20.5 20.7
分析
• • • • 计算男生体重指数的样本均数,标准差 计算女生体重指数的样本均数,标准差 进行两样本均数比较的t检验 利用计算器统计功能键进行简化计算
3.某新药治疗贫血患者12名,治 疗前和治疗后的血红蛋白(g/L)含 量如下: 患者号 1 2 3 4 5 6 7 8 9 10 11 12 治疗前 123 110 130 142 133 129 100 110 125 128 117 107 治疗后 128 135 128 147 150 140 125 127 130 150 127 110

T检验-郑金来

T检验-郑金来

18
t 值表规律:
(1) 自由度(υ)一定时,p 与 t 成反比;
(2) 概率(p) 一定时, υ 与 t 成反比;
zhengjinlai@
19
小样本思想

戈塞特:t分布与小样本
由于“有些实验不能多次地进行”,从而“必须 根据少数的事例(小样本)来判断实验结果的正 确性”


与正态分布的关系
Lower Bound Upper Bound
.241 .478
zhengjinlai@
36
Statistics 身 高 N Mean Std. Error of Mean Std. Deviation Percentiles Valid Missing
2.5 97.5
100 0 163.7430 .37998 3.79985 155.9675 170.8850
标; 样本均数的标准差。
SPSS结果中用std. error of mean 表示
zhengjinlai@
10
标准误示意图
X1 S1
μσ
X2 S2 XI Si Xn Sn
σx
X服从什么分布?
zhengjinlai@
二、(均数)标准误
sx
s n
意义:反映抽样误差的大小。标准误越小,
zhengjinlai@
15
zhengjinlai@
16
t 分布(与u 分布 比较的特点)
zhengjinlai@
17
t 值表
横坐标:自由度, υ 纵坐标:概率, p, 即曲线下阴影部分的面积; 表中的数字:相应的 |t | 界值。
zhengjinlai@
zhengjinlai@

医学统计学-第六章t检验

医学统计学-第六章t检验

t
X1 X2
S
2 C
1 n1
1 n2
n1 n2 2
S
2 C
n1
1S
2 1
n 2
1S
2 2
n1 n2 2
两本均数比较的t检验亦称为成组t检验,又称为独立样本t检验
(independent samples t-test)。 适用于比较按完全随机设计而得到的两组资料,比较的目的是推断它们
各自所代表的总体均数和是否相等。
➢ 假设检验的基本思想
➢ 假设检验的基本思想是小概率反证法思想。
➢ 小概率事件(P≤0.05)是指在一次试验中基本上不大会发生的
事件。 ➢ 小概率事件原理:一个事件如果发生的概率很小,那么它在一次
试验中是实际不会发生的。在数学上,我们称这个原理为小概率 事件原理。 ➢ 反证法思想是先提出假设,再用适当的统计方法确定假设成立的 可能性大小,如可能性小,则认为假设不成立,若可能性大,则还 不能认为假设不成立。
α =0.05
SC2=699.725,t=-3.764
3.确定P值 ,作出推断结论
υ =20+20-2=38 , 查 t 界 值 表 , 得 t0.05/2,38=2.024, 现 |t|=3.764>t0.05/2,23=2.069,故P<0.05。按α=0.05水准,拒绝 H0,,接受H1,差异有统计学意义。
F
S12 (较大) S( 22 较小)
υ1为分子自由度,υ2为分母自由度
F统计量服从F分布,可以查F界值表,附表3-3。F值越大, 对应的P值越小。
1.建立假设,确定检验水准
2.计算统计量
F
S12 (较大)=26.82/26.12 =1.051 S( 22 较小)

统计学t检验简介(六)

统计学t检验简介(六)

检验的步骤:
(1)提出假设 H : 38, H1 : 38
(2)计算统计量的值
t
X X

42 38 5.7
3.365
n 1 24 1
(3)确定检验的形式(右尾检验)
(4)统计决断 t 3.365** t230.01 2.500
所以在0.01显著性水平上,拒绝初始假设,接 受备择假设.即:这一届初一学生的自学能力极 其显著地高于上一届.
(4)统计决断
df=20-1=19 t=2.266*> t190.05 2.093
所以在0.05水平上拒绝初始假设,接受备择假设,即该校 初三英语平均分数与全区平均分数有本质区别,或者说, 它不属于平均数为65的总体.
某校上一届初一学生自学能力平均分数 为38,这一届初一24个学生自学能力平均 分数为42,标准差为5.7,假定这一届初一 学生的学习条件与上一届相同,试问这一 届初一学生的自学能力是否高于上一届?
Z

X



63 68 8.6

3.94
确定检验的形式(采用左尾检验) n
46
统计决断
所以在0.01水平上拒
绝 ,接受
,即该校入学考试数学的平均分极其显著地低于全
市的[自平己均总分结数单。侧Z检验的H统3 .计94决** 断 规2H.31则3。 Z] 0.01
Z0.05 1.65
对12名来自城市的学生与14名来自农村的学生进 行心理素质测验,试分析城市学生与农村学生心 理素质有无显著差异。
对12名学生进行培训之后,其培训前后某项心理 测试得分如表5.1所示,试分析该培训是否引起 学生心理变化。
均值比较的概念

统计学常用概念:T检验、F检验、卡方检验、P值、自由度

统计学常用概念:T检验、F检验、卡方检验、P值、自由度

统计学常⽤概念:T检验、F检验、卡⽅检验、P值、⾃由度1,T检验和F检验的由来⼀般⽽⾔,为了确定从样本(sample)统计结果推论⾄总体时所犯错的概率,我们会利⽤统计学家所开发的⼀些统计⽅法,进⾏统计检定。

通过把所得到的统计检定值,与统计学家建⽴了⼀些随机变量的概率分布(probability distribution)进⾏⽐较,我们可以知道在多少%的机会下会得到⽬前的结果。

倘若经⽐较后发现,出现这结果的机率很少,亦即是说,是在机会很少、很罕有的情况下才出现;那我们便可以有信⼼的说,这不是巧合,是具有统计学上的意义的(⽤统计学的话讲,就是能够拒绝虚⽆假设null hypothesis,Ho)。

相反,若⽐较后发现,出现的机率很⾼,并不罕见;那我们便不能很有信⼼的直指这不是巧合,也许是巧合,也许不是,但我们没能确定。

F值和t值就是这些统计检定值,与它们相对应的概率分布,就是F分布和t分布。

统计显著性(sig)就是出现⽬前样本这结果的机率。

2,统计学意义(P值或sig值)结果的统计学意义是结果真实程度(能够代表总体)的⼀种估计⽅法。

专业上,p值为结果可信程度的⼀个递减指标,p值越⼤,我们越不能认为样本中变量的关联是总体中各变量关联的可靠指标。

p值是将观察结果认为有效即具有总体代表性的犯错概率。

如p=0.05提⽰样本中变量关联有5%的可能是由于偶然性造成的。

即假设总体中任意变量间均⽆关联,我们重复类似实验,会发现约20个实验中有⼀个实验,我们所研究的变量关联将等于或强于我们的实验结果。

(这并不是说如果变量间存在关联,我们可得到5%或95%次数的相同结果,当总体中的变量存在关联,重复研究和发现关联的可能性与设计的统计学效⼒有关。

)在许多研究领域,0.05的p值通常被认为是可接受错误的边界⽔平。

3,T检验和F检验⾄於具体要检定的内容,须看你是在做哪⼀个统计程序。

举⼀个例⼦,⽐如,你要检验两独⽴样本均数差异是否能推论⾄总体,⽽⾏的t检验。

数值变量的统计推断-t检验

数值变量的统计推断-t检验

例3 25例糖尿病患者随机分成两组,
甲组单纯用药物治疗,乙组采用药物
治疗合并饮食疗法,2个月后测空腹
血糖,如表所示,问二组患者血糖值
是否相同?
表 25 名糖尿病患者两种疗法治疗后 2 个月血糖值(mmol/L) 编 号 1 2 3 4 5 6 7 8 9 10 11 12 甲组血糖值 (X1) 8.4 10.5 12.0 12.0 13.9 15.3 16.7 18.0 18.7 20.7 21.1 15.2 编 号 1 2 3 4 5 6 7 8 9 10 11 12 13 乙组血糖值 (X2) 5.4 6.4 6.4 7.5 7.6 8.1 11.6 12.0 13.4 13.5 14.8 15.6 18.7
表 5-3
编号
两种饲料喂养小白鼠 4 周后体重增重(g)情况
高蛋白组体重增加 量(X1) 编号 低蛋白组体重增加 量(X2) 1 2 3 4 5 6 7 8 9 10 11 12 13 36 38 37 38 36 39 37 35 33 37 39 34 36
1 2 3 4 5 6 7 8 9 10 11 12
S 6.5次 / 分 , n 30
µ0=72次/分
µ=?
已知总体
n=30,
未知总体
x 74 .2 次/分 S 6.0 次/分
假设检验的基本步骤
Ⅰ 建立检验假设,确定检验水准 Ⅱ 选择统计方法,计算检验统计量 Ⅲ 确定P值,作出推断结论
Ⅰ、建立检验假设,确定检验水准
假设有两种:
(1)用H0表示 : 即检验假设,常称为无效假设。
样本对总体有较好代表性,对比组间有较好组间均衡性—随 机抽样和随机分组; 样本来自正态分布总体,配对t检验要求差值服从正态分布, 实际应用时单峰对称分布也可以;大样本时,用u 检验,且

《计量资料的统计推断》的复习思考题

《计量资料的统计推断》的复习思考题

《计量资料的统计推断》的复习思考题1.什么是统计推断?统计推断包括哪两方面内容?2.什么样的分布是t分布?对称分布、正态分布、t分布和标准正态分布有何区别和联系?3.什么是标准误?标准差和标准误有什么区别和联系?4.什么是总体均数的可信区间?某指标的95%正常值范围和95%可信区间有何区别何联系?5.显著性检验的目的意义是什么?基本原理是什么?前提条件有哪些?6.什么情况下可认为具有可比性?举例说明日常生活中常犯的没有可比性时进行比较的错误。

7.显著性检验的一般步骤有哪些?8.显著性检验时,假设有几种?哪几种?如何假设?9.假设检验时,如何选择进行单侧或双侧检验?10.什么是检验水准/显著性水平?一般是多少?如何根据实际情况来确定检验水准?11.假设检验时的“P值”是什么?举例说明。

12.统计学结论和实际意义有何异同?13.什么情况下应该作u/z检验?什么情况下应该作t检验?14.举例说明成组设计和配对设计有何区别。

15.有人说,“只要是比较两个均数,都可以作t检验。

”你认为这种说法对吗?为什么?16.什么是I类错误?什么是II类错误?为什么显著性检验时会犯这两类错误?这两类错误各有什么特点?相互之间有什么关系?17.什么是把握度?科学研究时如何才能使把握度达到一定的水平?18.为什么说统计学结论是概率性的,既不绝对肯定,也不绝对否定?19.随机抽取某品种2月龄苗猪25头,测得其平均体重为20kg,标准差为3kg。

试估计该品种2月龄苗猪的体重。

20.随机测得100听某批某种罐头净重量平均为344.0g,标准差为4.43g。

试估计该批该种罐头的净重量和正常值范围。

21.某鱼场按常规方法所育鲢鱼苗一月龄的平均体长为7.25cm,标准差为1.58cm。

为提高鱼苗质量,现采用一新方法进行育苗,一月龄时随机抽取100尾进行测量,测得其平均体长为7.65cm。

试问新方法能否使一月龄鲢鱼苗体长更长?22.某名优绿茶含水量标准为不超过5.5%。

计量资料的统计推断-t检验

计量资料的统计推断-t检验

t分布 特征
f(t)
ν─>∞(标准正态曲线) ν =5 ν =1
-5
-4
-3
-2
-1
0
1
不同自由度下的t 分布图
2
3
4
5
• 自由度ν 不同,曲线形态不同,t分布是一簇曲线。 • 自由度ν 越大,t分布越接近于正态分布;当自由度 ν 逼近∞时,t分布趋向于标准正态分布。
t
概率、自由度与t值关系 ——t界值
140 138 140 135 135 120 147 114 138 120
治疗矽肺患者血红蛋白量(克%)
编号
1
治疗前
113
治疗后
140
治疗前后差数d
27
2
3 4 5 6
150
150 135 128 100
138
140 135 135 120
-12
-10 0 7 20
7
8 9 10
110
120 130 123
配对样本均数t检验——实例分析
• 例: 有12名接种卡介苗的儿童,8周后用 两批不同的结核菌素,一批是标准结核菌 素,一批是新制结核菌素,分别注射在儿 童的前臂,两种结核菌素的皮肤浸润反应 平均直径(mm)如表5-1所示,问两种结核菌 素的反应性有无差别?
表 5-1
12 名儿童分别用两种结核菌素的皮肤浸润反应结果(mm) 编号 1 2 3 4 5 6 7 8 9 10 11 12 合计 标准品 12.0 14.5 15.5 12.0 13.0 12.0 10.5 7.5 9.0 15.0 13.0 10.5 新制品 10.0 10.0 12.5 13.0 10.0 5.5 8.5 6.5 5.5 8.0 6.5 9.5 差值 d 2.0 4.5 3.0 -1.0 3.0 6.5 2.0 1.0 3.5 7.0 6.5 1.0 39(d) d2 4.00 20.25 9.00 1.00 9.00 42.25 4.00 1.00 12.25 49.20 42.25 1.00 195(d2)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6 计量资料的统计推断-t检验t检验是以t分布为理论依据的假设检验方法,常用于正态总体小样本资料的均数比较,t检验统计量有三个不同的形式,适用于单因素设计的三种不同类型:①单个样本的均数与已知总体均数比较的检验,适用于单组设计,给出一组服从正态分布的定量观测数据和一个标准值(总体均值)的资料。

②配对t检验,适用于配对设计。

③成组t检验,适用于完全随机设计的两均数比较。

SPSS中使用菜单Analyze →Compore Means作t检验,Compore Means的下拉菜单如表6-1所示。

表6-1 Compore Means下拉菜单Means…分层计算…One-Sample T Test…单样本t检验…Independent-Samples T Test…独立样本t检验…Paired-Sample T Test…配对t检验…One-Way ANOV A…单因素方差分析…6.1 计量资料的分层计算Means过程可以对计量资料分层计算均数、标准差等统计量,同时可对第一层分组进行方差分析和线性趋势检验。

例6-1某学校测得不同年级、不同性别的12名学生的身高(cm),数据见表6-2。

试用SPSS的Means过程分别计算不同年级、不同性别学生身高的均数和标准差。

表6-2 12名学生的身高(cm)解年级:1=“初一”、2=“高一”,性别:1=“男”、2=“女”。

选择Analyze→Compare Means→Means命令,弹出Means对话框,如图6-2。

在变量列表中选中身高,送入Dependent(因变量)框中;选中年级,送入Independent(自变量),确定第一层依年级分组,单击Next按钮,选中性别,送入Independent,确定第二层依性别分组;单击OK。

输出结果如图6-3所示。

在Means对话框单击Options(选项)按钮,弹出Means:Options对话框,可以选择要计算的统计量,默认Mean、Number of cases、Standard Deviation;在Statisti cs for First Layer中,可对第一层分组作方差分析(Anova table and eta)和线性趋势检验(Test for linearity)。

图6-1 数据文件L6-1.sav 图6-2 Means对话框图6-3 例6-1计算结果图6-4 例6-2正态性检验结果6.2 单样本t检验单样本t检验是样本均数与已知总体均数比较的t检验,要求原始数据是一组服从正态分布的定量观测数据,原假设为H0:μ=μ0,μ0一般为理论值、标准值或经过大量观察所得的稳定值。

例6-2某中药厂用旧设备生产的六味地黄丸,丸重的均数是8.9克,更新设备后,从所生产的产品中随机抽取9丸,其重量为:9.2,10.0,9.6,9.8,8.6,10.3,9.9,9.1,8.9。

问:设备更新后生产的丸药的平均重量有无变化?解这是单组计量资料分析,H0:μ=8.9,H1:μ≠8.9。

以丸重为变量名,将原始数据建立为9行1列的数据文件。

1.用Explore过程进行正态性检验选择菜单Analyze →Descriptive Statistics→Explore,在弹出的Explore对话框中,将丸重送入Dependent框中;单击Plots按钮,在弹出的Plots对话框中选中Nomality plots with tests,单击Continue;单击OK。

主要输出结果见图6-4,可知,P=0.832>0.05,可认为丸重x服从正态分布。

2.用One-Sample T T est过程进行单样本t检验选择菜单Analyze →Compare Means→One-Sample T Test,在弹出的One-Sample T Test对话框中,选中丸重,将丸重送入上面的Test(检验变量)框中;在下面的Test(检验值)对话框中改系统默认值0为8.9,如图6-5所示;单击OK。

图6-5 One-Sample T Test对话框图6-6 单样本t检验计算结果主要输出结果如图6-6,t=3.118,双侧P=0.014<0.05,按α=0.05水准拒绝H0,差异有统计学意义,可以认为设备更新后生产的丸药的平均重量有变化。

样本均值=9.489>8.9,可以认为,设备更新后生产的丸药的平均重量大于设备更新前。

也可用置信区间推断,由95%Confidence Interval of the Difference(差值的95%CI)为(0.153,1.024),不含0(如果H0:μ=μ0成立,则差值的均数应为0),所以,按α=0.05水准,可以认为设备更新后生产的丸药的平均重量有变化。

6.3 两组配对样本t检验配对t检验是将配对的两组相关资料转化为单组差值资料,适用于配对设计,要求成对数据的差值d服从正态分布。

差值d不服从正态分布,应该选择非参数检验。

例6-3对12份血清分别用原方法(检测时间20分钟)和新方法(检测时间10分钟)测谷-丙转氨酶(nmol·S-1/L),结果见表6-3。

问两法所得结果有无差别?表6-3 12份血清的谷-丙转氨酶编号 1 2 3 4 5 6 7 8 9 10 11 12原法60 142 195 80 242 220 190 25 212 38 236 95新法80 152 243 82 240 220 205 38 243 44 200 100 解这是配对比较,H0:μd=0,H1:μd≠0。

以编号、原法和新法为变量名,将原始数据建立为12行3列的数据文件。

1.计算差值d选择菜单Transform→Compute V ariable,在Target V ariable框中输入d;选中原法,将其送入Numeric expression框中,单击运算键中的“-”,选中新法,将其送入Numeric expression框中;单击OK。

数据文件中增加新变量d。

2.对差值d进行正态性检验步骤见例6-2。

计算出的Shapiro-Wilk统计量,P=0.392>0.05,可认为配对差d服从正态分布。

3.进行配对t检验选择菜单Analyze → Compare Means→ Paired-Sample T Test,弹出的Paired-Sample T Test 对话框(见图6-7),选中原法和新法,将其送入Paired V ariables(配对变量)框中,单击OK。

主要输出结果如图6-8,t=-1.602,双侧P=0.137>0.05,按α=0.05水准不拒绝H0,差异无统计学意义,还不能认为两法测谷-丙转氨酶结果有差别。

图6-7 Paired-Sample T Test 对话框图6-8 两组配对样本t检验计算结果6.4 两组独立样本t检验完全随机设计两组试验资料的分析,一般用成组t检验,推断两总体均数是否相等。

要求两样本相互独立,总体均服从正态分布并且方差齐性。

在两组均正态的条件下,满足方差齐性,用成组t检验(参数检验);不满足方差齐性,可用t′检验,也可用非参数检验。

在正态性不满足的条件下,应该选择非参数检验,也可利用适当的变量变换,使达到正态性和方差齐性,再用t检验。

例6-4测定功能性子宫出血症中实热组与虚寒组的免疫功能,其淋巴细胞转化率如表6-4所示。

比较实热组与虚寒组的淋巴细胞转化率均数是否不同。

表6-4 实热组与虚寒组的免疫功能淋巴细胞转化率实热组0.709 0.755 0.655 0.705 0.723虚寒组0.617 0.608 0.623 0.635 0.593 0.684 0.695 0.718 0.606 0.618解这是成组比较。

H0:μ1=μ2,H1:μ1≠μ2。

以g表示分组(标签值:1=“实热组”、2=“虚寒组”),以x表示淋巴细胞转化率,将原始数据建立成2列15行的数据文件,如图6-9。

1.用Explore过程进行正态性检验选择菜单Analyze →Descriptive Statistics→Explore,在弹出的对话框中,将x送入Dependent框中,将g送入Factor List框中;单击Plots按钮,在弹出的Plots对话框中选中Normality plots with tests,单击Continue;单击OK。

运行后,两组的Shapiro-Wilk统计量分别为0.956、0.855,两组的P值分别为0.782、0.066,均>0.05,均服从正态分布。

2.做成组t 检验选择菜单Analyze → Compare Means→ Independent-Samples T Test,在弹出Independent-Samples T Test 对话框(见图6-10)中,将x选入Test(检验变量)框中,将g选入Grouping(分组变量)框中;单击Define Groups(定义组),在两个Group框中分别键入1和2,单击Continue;单击OK。

图6-9 例6-4数据文件图6-10 Independent-Samples T Test 对话框主要输出结果如图6-11。

先看Levene’s Test for Equality of V ariances(方差齐性Levene检验),若P>0.05,则选择Equal variances assumed(方差齐)的t检验结果;若P≤0.05,则选择Equal variances not assumed(方差不齐)的校正t 检验结果。

t检验或校正t检验的P≤0.05时,认为两总体均数差异有统计学意义;P>0.05时,不能认为两总体均数差异有统计学意义。

本例,Levene’s Test for Equality of V ariances的统计量F=0.938,P =0.350>0.05,不能认为两组的总体方差不齐;t=3.093,双侧P=0.009<0.01,以α=0.01水准的双侧检验拒绝H0,两组的差异有统计意义。

由1组(实热组)均数0.70940>2组(虚寒组)均数0.63970,可以认为实热组的淋巴细胞转化率均数高于虚寒组。

图6-11独立样本t检验计算结果本章小结本章首先介绍了用Meeans过程对计量资料分层计算的方法,然后,分别介绍了SPSS实现计量资料的单样本t检验、配对样本t检验和两组独立样本t检验的方法,在学习过程中,应熟悉各种方法需要的数据文件格式,掌握三种t检验的前提条件,熟练实现SPSS相应功能的操作步骤以及结果的解读与分析,达到灵活运用。

习题6习题6-1表6-5中测得不同医院、不同组的12名患者的年龄(岁)。

分别计算不同医院、不同组别患者年龄的均数和标准差。

相关文档
最新文档