7新课标人教版七年级数学下学期全册教案

7新课标人教版七年级数学下学期全册教案
7新课标人教版七年级数学下学期全册教案

7新课标人教版七年级数学下学期全册教案

篇一:新人教版初中7七年级数学下册全册完整(最新) 新人教版七年级数学下册全册教案(新教材)特别说明:本教案为最新人教版教材(改版后)配套教案,各单元教学内容如下:第五章相交线与平行线第八章二元一次方程组5.1 相交线 8.1 二元一次方程组 5.2 平行线及其判定8.2 消元——解二元一次方程组5.3 平行线的性质 8.3 实际问题与二元一次方程组5.4 平移 8.4 三元一次方程组的解法第六章实数第九章不等式与不等式组 6.1 平方根 9.1 不等式6.2 立方根 9.2 一元一次不等式 6.3 实数 9.3 一元一次不等式组第七章平面直角坐标系第十章数据的收集、整理与描述7.1 平面直角坐标系10.1 统计调查7.2 坐标方法的简单应用 10.2 直方图 10.3 课题学习从数据谈节水1 课题:5.1.1 相交线【学习目标】 1.了解两条直线相交所构成的角,理解并掌握对顶角、邻补角的概念和性质。 2.理解对顶角性质的推导过程,并会用这个性质进行简单的计算。 3.通过辨别对顶角与邻补角,培养识图的能力。【学习重点】邻补角和对顶角的概念及对顶角相等的性质。【学习难点】在较复杂的图形中准确辨认对顶角和邻补角。【自主学习】 1.阅读课本P1图片及文字,了解本章要学习哪些知识?应学会哪些数学方法?培养哪些良好习惯? , 2.准备一张纸片和一把剪刀,用剪刀将纸片剪开,观察剪纸过程,握紧把手时, 随着两个把手之间的角逐渐变小,剪刀两刀刃之间的角引发了什么变化?. 如果改变用力方向,将两个把手之间的角逐渐变大,剪刀两刀刃之间的角又发生什么了变化?. 3.如果把剪刀的构造看作是两条相交的直线, 剪纸过程就关系到两条相交直线所【合作探究】 1.画直线AB、CD相交于点O,并说出图中4个角,两两相配共能组成几对角? 各对角的位置关系如何?根据不同的位置怎么将它们分类? _ C _ B_ D 成的角的问题, 阅读课本P2内容,探讨两条相交线所成的角有哪些?各有什么特征? _ A例如: (1)∠AOC和∠BOC有一条公共边.....OC,它们的另一边互为,称这两个角互为。用量角器量一量这两个角的度数,会发现它们的数量关系是(2)∠AOC和∠BOD (有或没有)公共边,但∠AOC的两边分别是∠BOD两边的,称这两个角互为。用量角器量一量这两个角的度数,会发现它们的数量关系是。

3.用语言概括邻补角、对顶角概念. 的两个角叫邻补 2角。的两个角叫对顶角。

4.探究对顶角性质. 在图1中,∠AOC的邻补角有两个,是和,根据“同角的补角

相等”,可以得出 =,而这两个角又是对顶角,由此得到对顶角性质:对顶角相....等. .注意:对顶角概念与对顶角性质不能混淆,对顶角的概念是确定两角的位置关系,对顶角性质是确定为对顶角的两角的数量关系. 你能利用“对顶角相等”这条性质解释剪刀剪纸过程中所看到的现象吗?【巩固运用】 1.例题:如图,直线a,b相交,∠1=40°,求∠2,∠3,∠4的度数. 提示:未知角与已知角有什么关系?通过什么途径去求这些未知角的度数?,规范地写出求解过程.

2.练习:完成课本P3练习. 【反思总结】本节课你学到了什么?有什么收获和体会?还有什么困惑?(小组交流,互助解决)【达标测评】 1.如图所示,∠1和∠2是对顶角的图形有() 24 ab A.1个 B.2个 C.3个 D.4个 2.如图(1),三条直线AB,CD,EF相交于一点O, ∠AOD的对顶角是_____,∠AOC的邻补角是_______,若∠AOC=50°,则∠BOD=______,∠COB=_______,∠AOE+∠DOB+∠COF=_____。 EAC FDB

3.如图,直线AB,CD相交于O,OE平分∠AOC,若∠AOD-∠DOB=50°,?求∠EOB的度数. 3AEC DB

4.如图,直线a,b,c两两相交,∠1=2∠3,∠2=68°,求∠4的度数 b c a

5.若4条不同的直线相交于一点,图中共有几对对顶角?若n条不同的直线相交于一点呢? 课题:5.1.2 垂线(1)【学习目标】 1.理解垂线、垂线段的概念,会用三角尺或量角器过一点画已知直线的垂线。 2.掌握点到直线的距离的概念,并会度量点到直线的距离。 3.掌握垂线的性质,并会利用所学知识进行简单的推理。【学习重点】垂线的定义及性质。【学习难点】垂线的画法【学具准备】相交线模型,三角尺,量角器【自主学习】 1.如图,若∠1=60°,那么∠2=_______、∠3=_______、∠4=_______ 2.改变上图中∠1的大小,若∠1=90°,请画出这种图形,并求出此时∠2、∠3、∠4的大小。【合作探究】 1.阅读课本P3的内容,回答上面所画图形中两条直线的关系是__________,知道两条直线互相________是两条直线相交的特殊情况。 2. 用语言概括垂直定义两条直线相交,所成四个角中有一个角是_____时,我们称这两条直线__________其中一条直线是另一条的_____,他们的交点叫做_____。 3.垂直的表示方法:垂直用符号“⊥”来表示,若“直线AB垂直于直线CD,垂足为O”,则记为__________________,并在图中任意一个角处作上直角记号,如下图。 4.垂直的推理应用: 4(1)∵∠AOD=90° ()∴AB⊥CD ()(2)∵ AB⊥CD ()∴ ∠AOD=90°() 5.垂直的生活应

用 DA C B 观察教室里的课桌面、黑板面相邻的两条边,方格纸的横线和竖线思考这些给大家什么印象?找一找:在你身边,还能发现哪些“垂直”的实例?【画图实践】 1.用三角尺或量角器画已知直线L的垂线. (1)已知直线L,画出直线L的垂线,能画几条? 小组内交流,明确直线L的垂线有_________条,即存在,但位置有不______性。 (2)怎样才能确定直线L的垂线位置呢? 在直线L上取一点A,过点A画L的垂线, 能画几条?再经过直线L外一点B画直线L的垂线,这样的垂线能画出几条? B .LL 从中你能得出什么结论? ____________________________________________ 2.变式训练,请完成课本P5练习第2题的画图。画完图后,归纳总结:画一条射线或线段的垂线, 就是画它们所在______的垂线. 【反思总结】本节课你你有那些收获?还有什么疑难需老师或同学帮助解决?【达标测评】(有困难同学可以选做)(一)判断题. 1.两条直线互相垂直,则所有的邻补角都相等.() 2.一条直线不可能与两条相交直线都垂直.() 3.两条直线相交所成的四个角中,如果有三个角相等,那么这两条直线互相垂直.() 4.两条直线相交有一组对顶角互补,那么这两条直线互相垂直.(). (二)填空题. 1.如图1,OA⊥OB,OD⊥OC,O为垂足,若∠AOC=35°,则∠BOD=________. 2.如图2,AO⊥BO,O为垂足,直线CD过点O,且∠BOD=2∠AOC,则∠BOD=________. 3.如图3,直线AB、CD相交于点O,若∠EOD=40°,∠BOC=130°,那么射线OE 与直线AB 的位置关系是_________. 5 C DB AC O(3) B O C(1) D E DB (2)篇二:7新课标人教版七年级数学下学期全册教案 5.1相交线 [教学目标] 1.通过动手、操作、推断、交流等活动,进一步发展空间观念,培养识图能力,推理能力和有条理表达能力 2.在具体情境中了解邻补角、对顶角,能找出图形中的一个角的邻补角和对顶角,理解对顶角相等,并能运用它解决一些简单问题 [教学重点与难点] 重点:邻补角与对顶角的概念.对顶角性质与应用难点:理解对顶角相等的性质的探索 [教学] 一.创设情境激发好奇观察剪刀剪布的过程,引入两条相交直线所成的角在我们的生活的世界中,蕴涵着大量的相交线和平行线,本章要研究相交线所成的角和它的特征。观察剪刀剪布的过程,引入两条相交直线所成的角。学生观察、思考、回答问题教师出示一块布和一把剪刀,表演剪布过程,提出问题:剪布时,用力握紧把手,两个把手之间的的角发生了什么变化?剪刀张开的口又怎么变化?教师

点评:如果把剪刀的构造看作是两条相交的直线,以上就关系到两条直线相交所成的角的问题,二.认识邻补角和对顶角,探索对顶角性质共能组成几对角?根据不同的位置怎么将它们分类?学生思考并在小组内交流,全班交流。当学生直观地感知角有“相邻”、“对顶”关系时,教师引导学生用几何语言准确表达;有公共的顶点o,而且的两边分别是两边的反向延长线 2.学生用量角器分别量一量各角的度数,发现各类角的度数有什么关系?(学生得出结论:相邻关系的两个角互补,对顶的两个角相等) 3学生根据观察和度量完成下表:两条直线相交所形成的角分类位置关系数量关系教师提问:如果改变的大小,会改变它与其它角的位置关系和数量关系吗? 4.概括形成邻补角、对顶角概念和对顶角的性质三.初步应用练习:下列说法对不对(1)邻补角可以看成是平角被过它顶点的一条射线分成的两个角(2)邻补角是互补的两个角,互补的两个角是邻补角(3)对顶角相等,相等的两个角是对顶角学生利用对顶角相等的性质解释剪刀剪布过程中所看到的现象四.巩固运用例题:如图,直线a,b相交,,求的度数。[巩固练习](教科书5页练习)已知,如图,,求:的度数 [小结] 邻补角、对顶角. [作业]课本p9-1,2p10-7,8 [备选题] 一判断题:如果两个角有公共顶点和一条公共过,而且这两个角互为补角,那么它们互为邻补角()两条直线相交,如果它们所成的邻补角相等,那么一对对顶角就互补()二填空题若: =2:3,,则 = 则 5.1.2 垂线 [教学目标] 1.理解垂线、垂线段的概念,会用三角尺或量角器过一点画已知直线的垂线。 2.掌握点到直线的距离的概念,并会度量点到直线的距离。 3.掌握垂线的性质,并会利用所学知识进行简单的推理。 [教学重点与难点] 1.教学重点:垂线的定义及性质。 2.教学难点:垂线的画法。 [教学过程设计] 一. 复习提问: 1、叙述邻补角及对顶角的定义。 2、对顶角有怎样的性质。二.新课:引言:前面我们复习了两条相交直线所成的角,如果两条直线相交成特殊角直角时,这两条直线有怎样特殊的位置关系呢?日常生活中有没有这方面的实例呢?下面我们就来研究这个问题。(一)垂线的定义当两条直线相交的四个角中,有一个角是直角时,就说这两条直线是互相垂直的,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。请同学举出日常生活中,两条直线互相垂直的实例。注意: 1、如遇到线段与线段、线段与射线、射线与射线、线段或射线与直线

最新人教版七年级数学试卷

精品好文档,推荐学习交流 仅供学习与交流,如有侵权请联系网站删除 谢谢 1 华亭三中2010-2011学年度第一学期七年级第一次月考数学试题(卷) 一、填空题(每小题2分,共24分) 1. 在数-8、+4.3、-︱-2︱、0、50、- 2 1 、3中 是负数; 是正整数. 2. 如果上升3米记作+3,那么下降3米记作 ,不升不降记作 。 3. -2的相反数是 . 4. 比较大小:-31 -4 3 .(填“>”或“<”) 5.计算:(1) (+2)-(-2)= (2) (-5)+3= (3) -(+9)= 。 6. 在数轴上,与表示-2的点距离为3的点所表示的数是 . 7. 如果节约10千瓦·时电记作+10千瓦·时,那么浪费10千瓦·时电记作 . 8. 若家中鱼缸里的温度是30℃,室内的温度比鱼缸里的温度低8℃,则室内的温度是 9. 若a <0,b <0,则a+b 0(填“>”或“<”) 10. 在月球表面,白天阳光垂直照射的地方温度高达1270C ,夜晚温度可降到 —1830 C ,则月球表面昼夜温差为 。 11. 写出二个有理数,使它们满足:①是负数;②是整数;③能被2、3、5整除. 答:_________ ___ . 12.一个点从数轴上的原点出发,向左移动3个单再向右移动2个单位到达点P ,点 P 表示的数是 。 二、选择题(每小题3分,总计24分) 13.当a b a b =-=+23,时,||||等于( ) A. -1 B. 5 C. 1 D. -5 14.已知013=-++b a ,则b a +的值是( ) A.-4 B.4 C.2 D.-2 15.下面说法正确的是( ) A. 有理数是正数和负数的统称 B. 有理数是整数 C. 整数一定是正数 D. 有理数包括整数和分数 16.下列说法正确的是( ) A. 绝对值较大的数较大 B. 绝对值较大的数较小 C. 绝对值相等的两数相等 D. 相等两数的绝对值相等 17.某潜水艇停在海面下500米处,先下降200米,又上升130米,这时潜水艇停 在海面下多少米处( ) A. 430 B. 530 C. 570 D. 470 18.有理数a,b 在数轴上的对应点的位置如图所示: 则 ( ) A. a+b >0 B. a+b <0 C. a-b <0 D. a-b=0 19.两个有理数的和比其中任何一个加数都大,那么这两个有理数 ( ) A. 都是正数 B. 都是负数 C. 一正数,一负数 D.以上答案都不对 20.如果a 表示一个有理数,那么下面说法正确的是 ( ) A. -a 是负数 B. ||a 一定是正数 C. ||a 一定不是负数 D. ||-a 一定是负数

人教版七年级数学下册学案全册

七下数学全册导学案 课题:5.1.1 相交线 【学习目标】 1.了解两条直线相交所构成的角,理解并掌握对顶角、邻补角的概念和性质。 2.理解对顶角性质的推导过程,并会用这个性质进行简单的计算。 3.通过辨别对顶角与邻补角,培养识图的能力。 【学习重点】邻补角和对顶角的概念及对顶角相等的性质。 【学习难点】在较复杂的图形中准确辨认对顶角和邻补角。 【自主学习】 1.阅读课本P 1图片及文字,了解本章要学习哪些知识?应学会哪些数学方法?培养哪些良好习惯? , 2.准备一张纸片和一把剪刀,用剪刀将纸片剪开,观察剪纸过程,握紧把手时, 随着两个把手之间的角逐渐变小,剪刀两刀刃之间的角引发了什么变化? . 如果改变用力方向,将两个把手之间的角逐渐变大,剪刀两刀刃之间的角又发生什么了变化? . 3.如果把剪刀的构造看作是两条相交的直线, 剪纸过程就关系到两条相交直线所成的角 的问题, 阅读课本P 2内容,探讨两条相交线所成的角有哪些?各有什么特征? 【合作探究】 1.画直线AB 、CD 相交于点O,并说出图中4个角,两两相配共能组成几对角? 各对角的位 置关系如何?根据不同的位置怎么将它们分类? 例如: (1)∠AOC 和∠BOC 有一条公共边.....OC ,它们的另一边互为 ,称这两个角互为 。用量角器量一量这两个角的度数,会发现它们的数量关系是 (2)∠AOC 和∠BOD (有或没有)公共边,但∠AOC 的两边分别是∠BOD 两边的 ,称这两个角互为 。用量角器量一量这两个角的度数,会发现它们的数量关系是 。 2.根据观察和度量完成下表: 两直线相交 所形成的角 分类 位置关系 数量关系 43 21O D C B A 3.用语言概括邻补角、对顶角概念. 的两个角叫邻补角。 的两个角叫对顶角。 4.探究对顶角性质. 在图1中,∠AOC 的邻补角有两个,是 和 ,根据“同角的补角相等”,可以得出 = ,而这两个角又是对顶角,由此得到对顶角性质:对顶角相等..... . 注意:对顶角概念与对顶角性质不能混淆,对顶角的概念是确定两角的位置关系,对顶角 _O _D _C _B _A

七年级数学(下册) 学期教学计划

七年级下学期数学教学计划 学期教学计划 一、本期教材分析: 本学期的教学内容共计六章,本学期的教学内容共计六章,第5章:相交线与平行线;第6章:实数;第7章:平面直角坐标系;第8章:二元一次方程组;第9章:不等式与不等式组;,第10章:数据的收集、整理与描述。 第五章、相交线与平行线 本章主要在第四章“图形认识初步”的基础上,探索在同一平面内两条直线的位置关系:①、相交②、平行及其有关概念、性质和它们的应用。 本章重点:垂线的概念和平行线的判定与性质。 本章难点:证明的思路、步骤、格式,以及平行线性质与判定的应用。 第六章、实数 本章主要包括算术平方根、平方根、立方根,及实数的概念、运算和实数在数轴上的表示等内容。 本章重点是算术平方根、平方根的概念和求法及实数概念。 本章难点平方根和实数的概念。 第七章、平面直角坐标系 本章主要内容是平面直角坐标系有关概念和点与坐标的对应关系,及其用坐标表示地理位置和表示平移的内容。 本章重点:平面直角坐标系的理解与建立及点的坐标的确定;表示地理位置及平移。 本章难点:平面直角坐标系中坐标及点的位置的确定和应用。 第八章、二元一次方程组 本章主要内容是二元一次方程(组)及其解的概念和解法与应用。 本章重点:二元一次方程组的解法及实际应用。 本章难点:列二元一次方程组解决实际问题。 第九章、不等式与不等式组 本章主要内容是不等式及其解集,不等式性质,一元一次不等式(组)的解法及简单应用。 本章重点:不等式的基本性质与一元一次不等式(组)的解法与简单应用。 本章难点:不等式基本性质的理解与应用、列一元一次不等式(组)解决简单的实际问题。 第十章、数据的收集、整理与描述 本章主要学习收集、整理、描述和分析数据等处理数据的基本方法,并根据数据对调查对象作出正确的描述。 本章重点:调查的意义、特点及分类,利用扇形图、频数分布直方图和频数拆线图描述数据。本章难点:绘制数据统计图及如何利用各种统计图对调查对象作出正确的描述。 二、本期学情分析:

最新人教版七年级数学下册全册教案

5.1.1相交线 教学目标:1.理解对顶角和邻补角的概念,能在图形中辨认. 2.掌握对顶角相等的性质和它的推证过程. 3.通过在图形中辨认对顶角和邻补角,培养学生的识图能力. 重点:在较复杂的图形中准确辨认对顶角和邻补角. 难点:在较复杂的图形中准确辨认对顶角和邻补角. 教学过程 一、创设情境,引入课题 先请同学观察本章的章前图,然后引导学生观察,并回答问题. 学生活动:口答哪些道路是交错的,哪些道路是平行的. 教师导入:图中的道路是有宽度的,是有限长的,而且也不是完全直的,当我们把它们看成直线时,这些直线有些是相交线,有些是平行线.相交线、平行线都有许多重要性质,并且在生产和生活中有广泛应用.所以研究这些问题对今后的工作和学习都是有用的,也将为后面的学习做些准备.我们先研究直线相交的问题,引入本节课题. 二、探究新知,讲授新课

1.对顶角和邻补角的概念 学生活动:观察上图,同桌讨论,教师统一学生观点并板书. 【板书】∠1与∠3是直线AB、CD相交得到的,它们有一个公共顶点O,没有公共边,像这样的两个角叫做对顶角. 学生活动:让学生找一找上图中还有没有对顶角,如果有,是哪两个角? 学生口答:∠2和∠4再也是对顶角. 紧扣对顶角定义强调以下两点: (1)辨认对顶角的要领:一看是不是两条直线相交所成的角,对顶角与相交线是唇齿相依,哪里有相交直线,哪里就有对顶角,反过来,哪里有对顶角,哪里就有相交线;二看是不是有公共顶点;三看是不是没有公共边.符合这三个条件时,才能确定这两个角是对顶角,只具备一个或两个条件都不行. (2)对顶角是成对存在的,它们互为对顶角,如∠1是∠3的对顶角,同时,∠3是∠1的对顶角,也常说∠1和∠3是对顶角. 2.对顶角的性质 提出问题:我们在图形中能准确地辨认对顶角,那么对顶角有什么性质呢? 学生活动:学生以小组为单位展开讨论,选代表发言,井口答为什么. 【板书】∵∠1与∠2互补,∠3与∠2互补(邻补角定义), ∴∠l=∠3(同角的补角相等). 注意:∠l与∠2互补不是给出的已知条件,而是分析图形得到的;所以括号内不填已知,而填邻补角定义. 或写成:∵∠1=180°-∠2,∠3=180°-∠2(邻补角定义), ∴∠1=∠3(等量代换).

最新人教版七年级数学上册单元测试题及答案全册

最新人教版七年级数学上册单元测试题及答案全册 第一章有理数章末综合检测 (时间:90分钟满分:120分) 一、选择题(每小题3分,共30分) 1.有理数-4的相反数是() A.4 B.-4 C.1 4D1 4 - 2.比较-3,1,-2的大小,下列排序正确的是() A.-3<-2<1 B.-2<-3<1 C.1<-2<-3 D.1<-3<-2 3.为了市民出行更加方便,某市政府大力发展交通,2016年某市公共交通客运 量约为1 608 000 000人次,将1 608 000 000用科学记数法表示为() A.160.8×107 B.16.08×108 C.1.608×109 D.0.160 8×1010 4.某市一天上午的气温是10 ℃,下午上升了2 ℃,半夜(24时)下降了15 ℃, 则半夜的气温是() A.3 ℃ B.-3 ℃ C.4 ℃ D.-2 ℃ 5.杨梅开始采摘啦!每筐杨梅以5 kg为基准,超过的千克数记为正数,不足的千 克数记为负数,记录如图1-1,则4筐杨梅的总质量是() 图1-1 A.19.7 kg B.19.9 kg C.20.1 kg D.20.3 kg 6.- 2 3 -的倒数是() A. 3 2B.3 2 - C.2 3 D. 2 3 - 7.下列运算错误的是()

A.-8×2×6=-96 B.(-1)2 014+(-1)2 015=0 C.-(-3)2=-9 D.2÷ 4 3× 3 4 =2 8.如图1-2,A,B两点在数轴上表示的数分别为a,b,下列式子成立的是() A.ab>0 B.a+b<0 C.(b-a)(a+1)>0 D.(b-1)(a-1)>0 9.若|a-1|+(b+3)2=0,则ba=() A.1 B.-1 C.3 D.-3 10.规定一种新的运算“*”:对于任意有理数x,y满足x*y=x-y+xy.例如,3*2=3-2+3×2=7,则2*1=() A.4 B.3 C.2 D.1 二、填空题(每小题4分,共32分) 11.一个点从数轴上表示-1的点开始,先向右平移6个单位长度,再向左平移8个单位长度,则此时这个点表示的数是_____. 12.已知有理数a,b,c在数轴上的位置如图1-3,且|a|=1,|b|=2,|c|=4,则a-b+c=_____. 图1-3 13.在数-5,1,-3,5,-2中任取三个数相乘,其中最大的积是____,最小的积是_____. 14.已知a,b互为相反数,且|a-b|=6,则b-1=____. 15.已知|x|=4,|y|=1 2,且xy<0,则x y 的值等于_____. 16.将640 000精确到十万位为_______,4.10×105精确到了_____位. 17.定义一种新的运算“@”的法则为:x@y=xy-1,则(2@3)@4=______. 18.计算:

最新人教版七年级数学下册全册教案39930

2017-2018学年下学期七年级数学教案 学校:团陂中学

教学时间 2、25 课题 5.1.1 相交线 课时 1 教学媒体 多媒体、黑板 教 学 目 标 知识 技能 1、在具体情境中了解邻补角、对顶角,能找出图形中的一个角的邻补角和对顶角. 2、理解对顶角相等,并能运用它解决一些问题 过程 方法 经历对顶角、邻补角的概念及性质的探索过程,体会分类思想, 在探究过程中发展学生的抽象概括能力,进一步培养说理能力 情感 态度 激发学生求知欲,感受数学与生活的联系,培养学生独立思考与合作交流的能力, 让学生享受成功的喜悦,感悟数学学习是一种美的享受. 教学重点 邻补角、对顶角的概念,对顶角的性质与应用 教学难点 理解对顶角相等的性质的探索. 教学过程设计 教学程序及教学内容 一、复习导入 引导语: 我们生活的世界中,蕴涵着大量的相交线和平行线. 本章要研究相交线所成的角和它的特征,相交线的一种特殊形式即垂直,垂线的性质,研究平行线的性质和平行线的判定以及图形的平移问题 二、自主学习 教师出示一块布片和一把剪刀,表演剪刀剪布的过程. 教师提出问题:剪布时,用力握紧把手,发生了什么变化?进而使什么也发生了变化? 学生观察、思考、回答,得出: 握紧把手时,随着两个把手之间的角逐渐变小,剪刀刀刃之间的角相应变小.如果改变用力方向,随着两个把手之间的角逐渐变大,剪刀刀刃之间的角也相应变大. 三、合作探究 画直线AB 、CD 相交于点O 问题: (1)两条直线相交组成四个角,12∠∠和有怎样的位置关系?13∠∠和呢?

(2)12∠∠和的度数有什么关系?13∠∠和呢? (3)两条直线形成的角在变化的过程中,这个关系还保持吗?为什么? 四、成果展示 ∠1和∠2有一条公共边.....OC ,它们的另一边互为 ,称这两个角互为 。 在上图中,你还能写出互为邻补角的两个角吗? _________________________________________ ∠1和∠3有一个公共顶点, (有或没有)公共边,但∠1的两边分别是∠2两边的 ,称这两个角互为 。 ∠2的对顶角是__________ 五、巩固练习 例1:如图,直线a 、b 相交,(1)∠ 1=o 40, 求∠2,∠3,∠4的度数。 (2) ∠1:∠2=2:7 ,求各角的度数。 六、课堂总结 教师引导学生进行本节课的小结并强调对顶角的概念与对顶角的性质不能混淆:对顶角的概念是确定两角的位置关系,对顶角的性质是确定互为对顶角的两角的数量关系. 七、布置作业 教材练习册 八、板书设计 九、反思与回顾

最新人教版初中七年级数学上册全册教案

人教版七年级数学上册全册教案 第一章有理数 单元教学内容 1.本单元结合学生的生活经验,列举了学生熟悉的用正、负数表示的实例,?从扩充运算的角度引入负数,然后再指出可以用正、负数表示现实生活中具有相反意义的量,使学生感受到负数的引入是来自实际生活的需要,体会数学知识与现实世界的联系.引入正、负数概念之后,接着给出正整数、负整数、正分数、负分数集合及整数、分数和有理数的概念. 2.通过怎样用数简明地表示一条东西走向的马路旁的树、?电线杆与汽车站的相对位置关系引入数轴.数轴是非常重要的数学工具,它可以把所有的有理数用数轴上的点形象地表示出来,使数与形结合为一体,揭示了数形之间的内在联系,从而体现出以下4个方面的作用: (1)数轴能反映出数形之间的对应关系. (2)数轴能反映数的性质. (3)数轴能解释数的某些概念,如相反数、绝对值、近似数. (4)数轴可使有理数大小的比较形象化. 3.对于相反数的概念,?从“数轴上表示互为相反数的两点分别在原点的两旁,且离开原点的距离相等”来说明相反数的几何意义,同时补充“零的相反数是零”作为相反数意义的一部分. 4.正确理解绝对值的概念是难点. 根据有理数的绝对值的两种意义,可以归纳出有理数的绝对值有如下性质: (1)任何有理数都有唯一的绝对值. (2)有理数的绝对值是一个非负数,即最小的绝对值是零. (3)两个互为相反数的绝对值相等,即│a│=│-a│. (4)任何有理数都不大于它的绝对值,即│a│≥a,│a│≥-a. (5)若│a│=│b│,则a=b,或a=-b或a=b=0. 三维目标 1.知识与技能 (1)了解正数、负数的实际意义,会判断一个数是正数还是负数. (2)掌握数轴的画法,能将已知数在数轴上表示出来,?能说出数轴上已知点所表示

最新人教版七年级数学上册知识点归纳总结

人教版初一数学上册知识点归纳总结 第一章有理数 1.有理数: (1)凡能写成)0p q ,p (p q ≠为整数且形式的数,都是有理数,整数和分数统称有理数. 注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数; (2)有理数的分类: ① ??? ??????????负分数负整数负有理数零正分数正整数正有理数有理数 ② ???????????????负分数正分数分数负整数零正整数整数有理数 (3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性; (4)自然数? 0和正整数; a >0 ? a 是正数; a <0 ? a 是负数; a ≥0 ? a 是正数或0 ? a 是非负数; a ≤ 0 ? a 是负数或0 ? a 是非正数. 2.数轴:数轴是规定了原点、正方向、单位长度(数轴的三要素)的一条直线. 3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)注意: a-b+c 的相反数是-(a-b+c)= -a+b-c ;a-b 的相反数是b-a ;a+b 的相反数是-a-b ; (3)相反数的和为0 ? a+b=0 ? a 、b 互为相反数. (4)相反数的商为-1. (5)相反数的绝对值相等 4.绝对值: (1)正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数; 注意:绝对值的意义是数轴上表示某数的点离开原点的距离; (2) 绝对值可表示为:?????<-=>=) 0a (a )0a (0)0a (a a 或 ???≤-≥=)0()0(a a a a a ; (3) 0a 1a a >?= ; 0a 1a a

最新人教版七年级数学下册全册教案

5.1.1 相交线 教学目标:1.理解对顶角和邻补角的概念,能在图形中辨认. 2.掌握对顶角相等的性质和它的推证过程. 3.通过在图形中辨认对顶角和邻补角,培养学生的识图能力.重点:在较复杂的 图形中准确辨认对顶角和邻补角. 难点:在较复杂的图形中准确辨认对顶角和邻补角.教学反思 教学过程 一、创设情境,引入课题 先请同学观察本章的章前图,然后引导学生观察,并回答问题. 学生活动:口答哪些道路是交错的,哪些道路是平行的. 教师导入:图中的道路是有宽度的,是有限长的,而且也不是完全直的,当我们把它们看成直线时,这些直线有些是相交线,有些是平行线.相交线、平行线都有许多重要性质,并且在生产和生活中有广泛应用.所以研究这些问题对今后的工作和学习都是有用的,也将为后面的学习做些准备.我们先研究直线相交的问题,引入本节课题. 二、探究新知,讲授新课 第1页共149页

1.对顶角和邻补角的概念 学生活动:观察上图,同桌讨论,教师统一学生观点并板书. 【板书】∠1与∠3是直线AB、CD相交得到的,它们有一个公共顶点O,没有公共边,像这样的两个角叫做对顶角. 学生活动:让学生找一找上图中还有没有对顶角,如果有,是哪两个角?学生口答:∠2和∠4 再也是对顶角.紧扣对顶角定义强调以下两点: (1)辨认对顶角的要领:一看是不是两条直线相交所成的角,对顶角与相交线是唇齿相依,哪里有相 交直线,哪里就有对顶角,反过来,哪里有对顶角,哪里就有相交线;二看是不是有公共顶点;三看是不是没 有公共边.符合这三个条件时, 才能确定这两个角是对顶角,只具备一个或两个条件都不行. (2)对顶角是成对存在的,它们互为对顶角,如∠1是∠3的对顶角,同时,∠3是∠1的对顶角,也常说 ∠1和∠3是对顶角. 2.对顶角的性质 提出问题:我们在图形中能准确地辨认对顶角,那么对顶角有什么性质呢? 学生活动:学生以小组为单位展开讨论,选代表发言,井口答为什么. 【板书】∵∠1与∠2互补,∠3与∠2互补(邻补角定义), 第2页共149页

最新人教版七年级下册数学全册教案

第五章相交线和平行线 教材分析 本章包含相交线、平行线及其判定、平行线的性质、平移等4节内容,前三节主要讨论平面内两条直线的位置关系,重点是垂直和平行关系,第4节是有关平移的内容. 平面内两条直线的位置关系是“图形与几何”所要研究的基本问题,本章在学生已有知识和经验的基础上,继续研究平面内两条直线的位置关系,首先研究了相交的情形,探究了两直线相交所成的角的位置和大小关系,给出了邻补角和对顶角概念,得出了“对顶角相等”的结论;垂直作为两条直线相交的特殊情形,与它有关的概念和结论是学习“平面直角坐标系”的直接基础,本章对垂直的情形进行了专门的研究,探索得出了“过一点有且只有一条直线与已知直线垂直”“垂线段最短”等结论,并给出点到直线的距离的概念,为学习在平面直角坐标系中确定点的坐标打下基础. 对于平面内两条直线平行的位置关系,教科书首先引入一个基本事实(平行公理),即过直线外一点有且只有一条直线与已知直线平行,以此为出发点探讨了平行线的判定和平行线的性质,教科书接下来对命题、命题的构成、真假命题、定理作了简单介绍,使学生初步接触有关形式逻辑概念和术语. 本章在最后一节安排了有关平移的内容.从《课程标准(2011版)》看,图形的变化是“图形几何”领域中一块重要的内容,通过将图形的平移、旋转、折叠等活动,使图形动起来,有助于在运动变化的过程中发现图形不变的几何性质,因此图形的变换是研究几何问题、发现几何结论的有效工具. 教学重点 1.垂线的概念. 2.平行线的判定和性质. 教学难点 逐步深入地让学生学会说理,培养学生的推理能力. 课时安排 5.1相交线约4课时 5.2平行线及其判定约2课时 5.3平行线的性质约3课时 5.4平移约1课时 小结约2课时 机动约2课时

最新人教版七年级数学上册目录及知识点汇总

人教版新课标七年级上册数学教材目录 第一章有理数 1.1 正数和负数 1.2 有理数 1.3 有理数的加减法 1.4 有理数的乘除法 1.5 有理数的乘方 第二章整式的加减 2.1 整式 2.2 整式的加减 第三章一元一次方程 3.1 从算式到方程 3.2 解一元一次方程(一) ——合并同类项与移项 3.3 解一元一次方程(二) ——去括号与去分母 3.4 实际问题与一元一次方程 第四章几何图形初步 4.1 几何图形 4.2 直线、射线、线段 4.3 角 4.4 课题学习设计制作长方体形状的包装纸盒

第一章有理数 1.1 正数与负数 ①正数:大于0的数叫正数。(根据需要,有时在正数前面也加上“+”) ②负数:在以前学过的0以外的数前面加上负号“—”的数叫负数。与正数具有相反意义。 ③0既不是正数也不是负数。0是正数和负数的分界,是唯一的中性数。 注意:搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等 1.2 有理数 1、有理数(1)整数:正整数、0、负整数统称整数;(2)分数;正分数和负分数统称分数; (3)有理数:整数和分数统称有理数。 2、数轴(1)定义:通常用一条直线上的点表示数,这条直线叫数轴; (2)数轴三要素:原点、正方向、单位长度; (3)原点:在直线上任取一个点表示数0,这个点叫做原点; (4)数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不都是表示有理数。 3、相反数:只有符号不同的两个数叫做互为相反数。(例:2的相反数是-2;0的相反数是0) 4、绝对值:(1)数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。从几何意义上讲, 数的绝对值是两点间的距离。 (2)一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。 两个负数,绝对值大的反而小。 1.3 有理数的加减法 ①有理数加法法则: 1、同号两数相加,取相同的符号,并把绝对值相加。 2、绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。 3、一个数同0相加,仍得这个数。 加法的交换律和结合律 ②有理数减法法则:减去一个数,等于加这个数的相反数。 1.4 有理数的乘除法 ①有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘; 任何数同0相乘,都得0; 乘积是1的两个数互为倒数。 乘法交换律/结合律/分配律 ②有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数; 两数相除,同号得正,异号得负,并把绝对值相除; 0除以任何一个不等于0的数,都得0。 1.5 有理数的乘方 1、求n个相同因数的积的运算,叫乘方,乘方的结果叫幂。在a的n次方中,a叫做底数,n叫做指数。负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0。 2、有理数的混合运算法则:先乘方,再乘除,最后加减;同级运算,从左到右进行;如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

初中数学教学论文 -第二学期七年级下册数学教学计划

新人教版七年级下册数学教学计划 一、学情分析: 这批学生整体基础较差,小学没有养成良好的学习习惯,通过上学期的努力,任务还很艰巨。在学生所学知识的掌握程度上,对优生来说,能够透彻理解知识,知识间的内在联系也较为清楚,但对待大多数学困生来说,简单的基础知识还不能有效掌握,成绩较差.学生的逻辑推理、逻辑思维能力,计算能力要得到加强,还要提升整体成绩,适时补充课外知识,拓展学生的知识面,抽出一定的时间给强化几何训练,提升学生素质;在学习态度上,绝大部分学生上课能全神贯注,积极投入到学习中去,少数学生学习上有困难,对学习处于一种放弃的心态,课堂作业,大部分学生能认真完成,少数学生需要教师督促,这一少数学生也成为老师的重点牵挂对象,家庭作业,学生完成的质量要打折扣,学生的学习习惯养成还不理想,预习的习惯,进行总结的习惯,自习课专心致至学习的习惯,主动纠正错误的习惯,还需要加强,需要教师的督促才能做好.陶行知说:教育就是培养习惯。面向全体学生,整体提高水平,全面培养能力,养成良好的学习习惯。这是本期教学中重点予以关注的。 义务教育阶段的数学课程,其基本出发点是促进学生全面、持续、和谐地发展。它不仅要考虑数学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。义务教育阶段的数学课程应突出体现基础性、普及性和发展性,使数学教育面向全体学生,实现:人人学有价值的数学;人人都能获得必需的数学;不同的人在数学上得到不同的发展。 二、教材分析 本学期的教学内容共计六章,第5章:相交线和平行线;第6章:平面直角坐标系;第7章:三角形;第8章:二元一次方程组;第9章:不等式和不等式组;,第10章:数据的收集、整理与描述 教材每章开始时,都设置了章前图与引言语,激发了学生的学习兴趣与求知欲望。在教学中,适当安排如“观察与猜想、试验与探究、阅读与思考、信息技术应用”等以及栏目,让我们给学生适当的思考空间,使学生能更好地自主学习。在教材各块内容间,又穿插安排了综合性、实践性、开放性等等的数学活动,不但扩大了学生知识面,而且增强了学生对数学文化价值的体验与数学的应用意识。习题设计分为;复习巩固、综合运用、拓广探索三类,体现了满足不同层次学生发展的需要。 整个教材体现了如下特点: 1.现代性——更新知识载体,渗透现代数学思想方法,引入信息技术。 2.实践性——联系社会实际,贴近生活实际。

2018最新人教版七年级数学上册知识大全

人教版七年级数学上册知识大全 第一章:有理数 一、有理数的基础知识 1、三个重要的定义 (1)正数:像1、2.5、这样大于0的数叫做正数; (2)负数:在正数前面加上“-”号,表示比0小的数叫做负数; (3)0即不是正数也不是负数,0是一个具有特殊意义的数字,0是正数和负数的分界,不是表示不存在或无实际意义。 概念剖析:①判断一个数是否是正数或负数,不能用数的前面加不加“+”“-”去判断,要 严格按照“大于0的数叫做正数;小于0的数叫做负数”去识别。 ②正数和负数的应用:正数和负数通常表示具有相反意义的量。 ③所有正整数组成正整数集合;所有负整数组成负整数集合;正整数、0、负整数统称为整数,正整数、0、负整数组成整数集合; ④常常有温差、时差、高度差(海拔差)等等差之说,其算法为高温减低温等等; 例1 下列说法正确的是( ) A 、一个数前面有“-”号,这个数就是负数; B 、非负数就是正数; C 、一个数前面没有“-”号,这个数就是正数; D 、0既不是正数也不是负数; 例2 把下列各数填在相应的大括号中 8,43,0.125,0,3 1 -,6-,25.0-, 正整数集合{ } 整数集合{ } 负整数集合 { } 正分数集合{ } 例3 如果向南走50米记为是50-米,那么向北走782米记为是 ____________, 0米的意义是______________。 例4 对某种盒装牛奶进行质量检测,一盒装牛奶超出标准质量2克,记作+2克,那么5-克表示_________________________ 知识窗口:正数和负数通常表示具有相反意义的量,一个记为正数,另一个就记为负数,我 们习惯上把向东、向北、上升、盈利、运进、增加、收入、高于海平面等等规定为正,把相反意义的量规定为负。 例5 若0>a ,则a 是 ;若0,则b a -是 ; (填正数、负数或0) 2、有理数的概念及分类 整数和分数统称为有理数。 有理数的分类如下: (1)按定义分类: (2)按性质符号分类: ?????????????????负分数正分数分数负整数正整数整数有理数0 ???? ???????????负分数负整数负有理数正分数正整数 正有理数有理数0 概念剖析:①整数和分数统称为有理数,也就是说如果一个数是有理数,则它就一定可以化 成整数或分数; ②正有理数和0又称为非负有理数,负有理数和0又称为非正有理数; ③整数和分数都可以化成小数部分为0或小数部分不为0的小数,但并不是所有小数都是有理数,只有有限小数和无限循环小数是有理数; 例6 若a 为无限不循环小数且0>a ,b 是a 的小数部分,则b a -是( ) A 、无理数 B 、整数 C 、有理数 D 、不能确定 例7 若a 为有理数,则a 不可能是( ) A 、整数 B 、整数和分数 C 、 )0(≠p p q D 、π 3、数轴 标有原点、正方向和单位长度的直线叫作数轴。 数轴有三要素:原点、正方向、单位长度。 画一条水平直线,在直线上取一点表示0(叫做原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。 在数轴上所表示的数,右边的数总比左边的数大,即从数轴的左边到右边所对应的数逐渐变大,所以正数都大于0,负数都小于0,正数大于负数。 概念剖析:①画数轴时数轴的三要素原点、正方向、单位长度缺一不可; ②数轴的方向不一定都是水平向右的,数轴的方向可以是任意的方向;

人教版七年级下学期数学全册教案

人教版七年级下学期 数学全册教案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

人教版七年级下学期全册教案 5.1相交线 [教学目标] 1. 通过动手、操作、推断、交流等活动,进一步发展空间观念,培养识图能力,推理能力和有条理表达能力 2. 在具体情境中了解邻补角、对顶角,能找出图形中的一个角的邻补角和对顶角,理解对顶角相等,并能运用它解决一些简单问题 [教学重点与难点] 重点:邻补角与对顶角的概念.对顶角性质与应用 难点:理解对顶角相等的性质的探索 [教学设计] 一.创设情境 激发好奇 观察剪刀剪布的过程,引入两条相交直线所成的角 在我们的生活的世界中,蕴涵着大量的相交线和平行线,本章要研究相交线所成的角和它的特征。 观察剪刀剪布的过程,引入两条相交直线所成的角。 学生观察、思考、回答问题 教师出示一块布和一把剪刀,表演剪布过程,提出问题:剪布时,用力握紧把手,两个把手之间的的角发生了什么变化剪刀张开的口又怎么变化 教师点评:如果把剪刀的构造看作是两条相交的直线,以上就关系到两条直线相交所成的角的问题, 二.认识邻补角和对顶角,探索对顶角性质 1.学生画直线AB 、CD 相交于点O ,并说出图中4个角,两两相配 共能组成几对角根据不同的位置怎么将它们分类 学生思考并在小组内交流,全班交流。 当学生直观地感知角有“相邻”、“对顶”关系时,教师引导学生用 几何语言准确表达 延长线它们的另一边互为反向有一条公共边与OA ,AOD AOC ∠∠; BOD AOC ∠∠与有公共的顶点O ,而且AOC ∠的两边分别是BOD ∠两边的反向延长线 2.学生用量角器分别量一量各角的度数,发现各类角的度数有什么关系? (学生得出结论:相邻关系的两个角互补,对顶的两个角相等) 两条直线相交 所形成的角 分类 位置关系 数量关系 4.概括形成邻补角、对顶角概念和对顶角的性质 三.初步应用

最新人教版初一数学上册全册教案

课题: 1.1 正数和负数(1)授课时间:____________ 学习目标 1、整理前两个学段学过的整数、分数(包括小数)的知识,掌握正数和负数的概念; 2、能区分两种不同意义的量,会用符号表示正数和负数; 3、体验数学发展的一个重要原因是生活实际的需要,激发学生学习数学的兴趣。 教学难点正确区分两种不同意义的量。 知识重点两种相反意义的量 教学过程(师生活动) 引入课题 上课开始时,教师应通过具体的例子,简要说明在前两个学段我们已经学过的数,并由此请学生思考:生活中仅有这些“以前学过的数”够用了吗?下面的例子仅供参考. 师:今天我们已经是七年级的学生了,我是你们的数学老师.下面我先向你们做一下自我介绍,我的名字是XXX,身高1.69米,体重74.5千克,今年43岁.我们的班级是七(2)班,有50个同学,其中男同学有27个,占全班总人数的54%… 问题1:老师刚才的介绍中出现了几个数?分别是什么?你能将这些数按以前学过的数的分类方法进行分类吗? 学生活动:思考,交流 师:以前学过的数,实际上主要有两大类,分别是整数和分数(包括小数). 问题2:在生活中,仅有整数和分数够用了吗? 请同学们看书(观察本节前面的几幅图中用到了什么数,让学生感受引入负数的必要性)并思考讨论,然后进行交流。 (也可以出示气象预报中的气温图,地图中表示地形高低地形图,工资卡中存取钱的记录页面等) 学生交流后,教师归纳:以前学过的数已经不够用了,有时候需要一种前面带有“-”的新数。 先回顾小学里学过的数的类型,归纳出我们已经学了整数和分数,然后,举一些实际生活中共有相反意义的量,说明为了表示相反意义的量,我们需要引入负数,这样做强调了数学的严密性,但对于学生来说,更多地感到了数学的枯燥乏味为了既复习小学里学过的数,又能激发学生的学习兴趣,所以创设如下的问题情境,以尽量贴近学生的实际. 这个问题能激发学生探究的欲望,学生自己看书学习是培养学生自主学习的重要途径,都应予以重视。 以上的情境和实例使学生体会生活中处处有数学,通过实例,使学生获取大量的感性材料,为正确建立相反意义的量奠定基础。 探究新知 问题3:前面带有“一”号的新数我们应怎样命名它呢?为什么要引人负数呢?通常在日常生活中我们用正数和负数分别表示怎样的量呢? 这些问题都必须要求学生理解. 教师可以用多媒体出示这些问题,让学生带着这些问题看书自学,然后师生交流. 这阶段主要是让学生学会正数和负数的表示. 强调:用正,负数表示实际问题中具有相反意义的量,而相反意义的量包含两个要素:一是它们的意义相反,如向东与向西,收人与支出;二是它们都是数量,而且是同类的量.这些问题是这节课的主要知识,教师要清楚地向学生说明,并且要注意语言的准确与规范,要舍得花时间让学充分发表想法。

2017年人教版七年级数学下册知识点总结

2014年最新版人教版七年级数学下册知识点 第五章 相交线与平行线 一、知识网络结构 二、知识要点 1、在同一平面内,两条直线的位置关系有 两 种: 相交 和 平行 , 垂直 是相交的一种特殊情况。 2、在同一平面内,不相交的两条直线叫 平行线 。如果两条直线只有 一个 公共点,称这两条直线相交;如果两条直线 没有 公共点,称这两条直线平行。 3、两条直线相交所构成的四个角中,有 公共顶点 且有 一条公共边 的两个角是 邻补角。邻补角的性质: 邻补角互补 。如图1所示,∠1与∠2互为邻补角,∠2 与 ∠3互为邻补角,∠3 与 ∠4互为邻补角,∠4与∠1互为邻补角。∠1+∠2= 180°;∠2+ ∠3= 180°;∠3+∠4 = 180°;∠4+∠1 = 180°。 4、两条直线相交所构成的四个角中,一个角的两边分别是另一个角的两边的 反向延长线 ,这样的两个角互为 对顶角 。对顶角的性质:对顶角相等。如图1所示,∠1与 ???????????????????????????????????????????????????????????平移 命题、定理 的两直线平行:平行于同一条直线性质角互补:两直线平行,同旁内性质相等:两直线平行,内错角性质相等:两直线平行,同位角性质平行线的性质的两直线平行 :平行于同一条直线判定直线平行 :同旁内角互补,两判定线平行 :内错角相等,两直判定线平行 :同位角相等,两直判定定义平行线的判定平行线,不相交的两条直线叫平行线:在同一平面内平行线及其判定内角同位角、内错角、同旁垂线相交线相交线相交线与平行线 4321 4321____________________________:图1 1 3 4 2 a

新人教版七年级下学期数学教学计划

新人教版数学七年级下学期教学工作计划 一、学生情况分析: 学生进行了一个学期的学习,虽然期末考试成绩可以,但是发现学生尖子生少,中等生较多,差生较多,上课很多学生不认真,学习态度、学习习惯不是很好,学生整体基础参差不齐,没有养成良好的学习习惯,对多数学生来说,简单的基础知识还不能有效掌握,成绩稍差。学生的逻辑推理、逻辑思维能力,计算能力要有待加强,还要提升整体成绩,适时补充课外知识,拓展学生的知识面,抽出一定的时间强化几何训练,培养学生良好的学习习惯。全面提升学生的数学素质。 二、教学目标和要求 (一)知识与技能 1、获得数学中的基本理论、概念、原理和规律等方面的知识,了解并关注这些知识在生产、生活和社会发展中的应用。 2、学会将实践生活中遇到的实际问题转化为数学问题,从而通过数学问题解决实际问题。体验几何定理的探究及其推理过程并学会在实际问题进行应用。 3、初步具有数学研究操作的基本技能,一定的科学探究和实践能力,养成良好的科学思维习惯。 (二)过程与方法 1、采用思考、类比、探究、归纳、得出结论的方法进行教学; 2、发挥学生的主体作用,作好探究性活动; 3、密切联系实际,激发学生的学习的积极性,培养学生的类比、归纳的能

力. (三)情感态度与价值观 1、理解人与自然、社会的密切关系,和谐发展的主义,提高环境保护意识。 2、逐步形成数学的基本观点和科学态度,为确立辩证唯物主义世界观奠定必在的基础。 三、教材分析: 第五章、相交线与平行线:本章主要在第四章“图形认识初步”的基础上,探索在同一平面内两条直线的位置关系:①、相交②、平行。本章重点:垂线的概念和平行线的判定与性质。本章难点:证明的思路、步骤、格式,以及平行线性质与判定的应用。 第六章、实数:了解算术平方根、平方根、立方根的概念,会用根号表示平方根与立方根.会求一个数的平方根与立方根. 2.了解无理数、实数的概念,实数与数轴一一对应的关系,能估计无理数的大小,能进行实数的计算.本章重点:平方根、立方根的概念,会用根号表示平方根与立方根.会求一个数的平方根与立方根.本章难点:实数的概念,实数与数轴一一对应的关系 第七章、平面直角坐标系:本章主要内容是平面直角坐标系及其简单的应用。有序实数对与平面直角坐标系的点一一对应的关系。本章重点:平面直角坐标系的理解与建立及点的坐标的确定。本章难点:平面直角坐标系中坐标及点的位置的确定。 第八章、二元一次方程组:本章主要学习二元一次议程(组)及其解的概念和解法与应用。本章重点:二元一次方程组的解法及实际应用。本章难点:列二元一次方程组解决实际问题。

最新初中七年级数学上全册教案精编版

2020年初中七年级数学上全册教案精编版

七年级数学(上)全册教案 第一章 有理数 1.1 正数和负数(1) 【教学目标】 1、整理前两个学段学过的整数、分数(包括小数)的知识,掌握正数和负数的概念; 2、能区分两种不同意义的量,会用符号表示正数和负数; 3、体验数学发展的一个重要原因是生活实际的需要,激发学生学习数学的兴趣。 【教学难点】 正确区分两种不同意义的量。 【知识重点】 两种相反意义的量 【探索1】 上课开始时,教师应通过具体的例子,简要说明在以前我们已经学过的数,并由此请学生思考:生活中仅有这些“以前学过的数”够用了吗? 仅供学习与交流,如有侵权请联系网站删除谢谢74

请同学们看书(观察本节前面的几幅图中用到了什么数,让学生感受引入负数的必要性)并思考讨论,然后进行交流。(也可以出示气象预报中的气温图,地图中表示地形高低地形图,工资卡中存取钱的记录页面等) 学生交流后,教师归纳:以前学过的数已经不够用了,有时候需要一种前面带有“-”的新数。 【探索2】 前面带有“一”号的新数我们应怎样命名它呢?为什么要引人负数呢?通常在日常生活中我们用正数和负数分别表示怎样的量呢? 这些问题都必须要求学生理解,教师可以用多媒体出示这些问题,让学生带着这些问题看书自学,然后师生交流。然后总结:大于0的数叫做正数,而在正数前面加上负号“-”的数叫做负数。 这阶段主要是让学生学会正数和负数的表示。 强调:用正,负数表示实际问题中具有相反意义的量,而相反意义的量包含两个要素:一是它们的意义相反,如向东与向西,收人与支出;二是它们都是数量,而且是同类的量。 【探索3】 经过上面的讨论交流,学生对为什么要引人负数,对怎样用正数和负数表示两种相反意义的量有了初步的理解,教师可以要求学生举出实际生活中类似的例子,以加深对正数和负数概念的理解,并开拓思维. 仅供学习与交流,如有侵权请联系网站删除谢谢74

相关文档
最新文档