斑岩铜矿矿床研究综述

合集下载

斑岩铜矿矿床研究综述

斑岩铜矿矿床研究综述
温热 液 阶段 、细 脉浸染 状硫 化物铜 矿 。
1 时 空 分 布
1 1 时代 分布 . .
斑岩铜矿形成时代集 中在 中、新生代 ,其次是古生代 ,前寒武纪斑岩铜矿床 目前发现较少。据芮宗瑶 (04 20 )统计 , 世界上超过 50 t 0 万 的斑岩铜矿集中分布于新生代 ,大约 占 5. %,中生代约 占 3%…。 95 5 斑岩铜矿形成时代极不均一 ,有随时代变新、矿床数 目增多、矿化强度加大等特征。形成原 因有两种观 点 :一是认为斑岩铜矿主要形成于板块汇聚区,而在前寒武纪全球板块活动机制尚未完善 ,大规模板块活 动尚未形成 ,斑岩铜矿化 自然很少 。而中新生代是板块活动最强烈时期 ,也是斑岩铜矿形成的高峰期 ;另 种观点则认为,由于斑岩铜矿形成于板块俯 冲、碰撞带 ,这些带的后期发育往往形成造山带 ,成为主要
造 山带 的断裂系统 和基底 线性 断裂 构造 控制 。 总结 以上研究 成果 ,会 聚板块 边缘是 斑 岩铜矿形 成最 重要 的成矿 地质 背景 ,无论 是 岩浆 弧环境 还是 大 陆环境 。 同时 ,某些 大陆 环境 中的斑 岩铜 矿 ( :西 藏 冈底 斯斑 岩 铜矿 带 ) 如 ,成 矿作 用 是在 洋 陆俯 冲基 础
上实现的陆陆碰撞条件下形成的,二种作用之间的相关性和继承性如何?应加以分析和研究 。
: 导 篙 絮专 蒌 焉 到
妻位比变也小且较稳定 铅 素值化较 同

元 窖 素

( 黄崇轲等 ,
等2),矿质来源比_ ,匀 石 ‘ ,0 0 主 1 牧 间早
5) 0%0
。 。 上儿糸
lt 等 (9 4 ie sr 17 )首次开展碰撞造山环境斑岩铜矿 的研究 ,拓展 了经典斑岩铜矿成矿模 型 。近年来 ,中 ] 国矿床学家的研究也发现 :斑岩铜矿不仅可产于成矿模型所记录的岛弧及陆缘弧环境中,还可以产于碰撞 造 山带中 ( 如青藏高原) 甚至形成于陆内环境中 ( , 如德兴) 。形成于碰撞造山带及陆内环境 的斑岩铜矿 ,

斑岩铜矿成矿机制及找矿预测技术研究

斑岩铜矿成矿机制及找矿预测技术研究

斑岩铜矿成矿机制及找矿预测技术研究近年来,随着矿产资源的逐渐枯竭,勘探人员开始将目光投向释放储量更为丰富的地下深处。

而斑岩铜矿则成为了勘探人员首选的目标之一。

斑岩铜矿的形成机制极其复杂,研究其成矿机制及找矿预测技术迫在眉睫。

斑岩铜矿是指在火山喷发过程中形成的均一质地、矽酸盐类石英斑岩中富含铜矿物的矿床。

其成因机制主要涉及到与火山活动有关的矿床形成过程。

早期研究主要集中在机械矿物学、化学成分、地球化学等方面,但这些研究方法无法全面揭示斑岩铜矿的成矿机制。

随着科技的进步,研究人员开始将目光投向更加先进的技术手段,如地球物理勘探、岩石地球化学、卫星遥感等技术。

这些技术的应用为我们研究斑岩铜矿的成矿机制提供了新的思路和方法。

地球物理勘探是一种应用物理学原理进行矿产资源勘探的手段。

通过测量地球重力场、地磁场、地电场、地震波等物理特征,可以了解地下结构和物质分布情况。

而斑岩铜矿具有一定的地球物理特征,如高比重、强磁性、高电导率等,可以借助地球物理勘探技术进行快速初步识别。

岩石地球化学则是通过对岩石中元素和同位素的分析,揭示地质作用过程和成矿因素。

通过对斑岩铜矿中各种元素的含量及同位素组成的研究,可以了解成矿流体的起源和运移路径等信息。

岩石地球化学技术的应用为我们深入研究斑岩铜矿的成矿机制提供有效的工具。

卫星遥感技术则是通过高分辨率卫星图像获取地球表面的信息。

斑岩铜矿形成过程中,会给地表带来一定的变化,如火山喷发导致的地表升降等。

通过卫星遥感技术,我们可以对地表进行细致观察与分析,进一步了解斑岩铜矿的富集规律及成矿预测。

除了上述技术,地质勘探方法和数学模型的应用也起到了积极的作用。

地质勘探方法通过对地质构造及矿产构造的综合研究,为斑岩铜矿的成矿机制提供了重要线索。

数学模型则是通过对大量的样本和数据进行处理和分析,建立成矿规律的数学模型,为勘探工作提供科学依据。

总结起来,斑岩铜矿的成矿机制及找矿预测技术的研究已经取得了长足的进步。

斑岩型铜矿研究进展及找矿

斑岩型铜矿研究进展及找矿
在岩浆分异演化过程中,金属元素的富集与分散除了取 决于元素自身地球化学行为外,也同岩浆结晶分异时的 物化条件有关。
就铜来讲,由于其在岩浆活动中很难参予硅酸盐矿物的 结晶,那么它将滞留在残余熔体中,并且发生初步富集 作 用 。 有 人 推 测 , 若 熔 体 中 初 始 水 含 量 大 于 2.5% 和 Cl/H2O比值为0.03,那么30立方公里的岩浆房将有可能 形成金属量大于100万吨的铜。
在斑岩铜矿床集中区,不同期次和各种规模岩 浆岩分布广泛,极为发育,铜金矿化往往同最年 轻一期的侵入岩相有关。另外,铜金矿床的形成 时间滞后于侵入岩体。
热液蚀变 (1)
一般来讲,斑岩铜金矿床热液蚀变的类型 和强度主要取决于热液体系中金属/氢离子 的比值,其它影响因素包括有压力、温度、 水/岩比值,流体与围岩的组份。
斑岩型金属矿床的特征 (1)
斑岩型金属矿床是“与侵入岩有关金属矿 床”家族的重要成员之一,其形成作用与 岩浆活动具密切时空分布关系。鉴于地壳 演化与金属成矿作用的复杂性,在一些矿 集区(或带)很难将斑岩型和其它侵入岩 类金属矿床划分开来。到目前为止,尽管 尚未找到一种较为简单的分类判别准则, 但是矿床地质学家趋同认为,斑岩型金属 矿床应具下述地质特征。
斑岩型铜矿是一种储量大、品位低、可大规模机械化开 采的矿床。世界铜金属量超过5Mt和58个超大型以上规 模铜矿(包括我国的玉龙和德兴)中有36个为斑岩铜矿。 该类型储量占世界铜储量比例,由60年代的三分之一增 长到目前的一半以上,世界铜产量的一半来自斑岩型铜 矿。据世界103个大型矿床统计,单个矿床矿石储量平 均可达550Mt,Cu平均品位0.4%,高可达0.8%,并能综 合回收多种金属,如Mo、Re、Au、Ag、Pt、Pd等,具有 巨大经济价值。在我国,斑岩型铜矿储量占全国铜矿总 储量比例,由60年代的34%增长到目前的45%。我国4 个特大型铜矿中有3个为斑岩型,2个超大型铜矿均为斑 岩型。

斑岩型铜矿的特征及研究进展

斑岩型铜矿的特征及研究进展

斑岩型铜矿的特征及研究进展摘要本文简要介绍了斑岩型铜矿的基本地质特征以及近年来对斑岩型铜矿研究的一些进展。

主要包括斑岩型铜矿产出的大地构造环境;成矿物质和成矿流体的来源;与成矿有关的岩浆及岩浆岩在成矿过程中的演化以及过渡岩浆的作用;最后介绍了多数人比较认可的一般成矿模式。

关键词斑岩型铜矿成矿物质成矿流体成矿模式岩浆演化斑岩型铜矿是世界上最重要的矿床类型之一,约占世界铜总储量的50%以上。

这类矿床存在4个特点:一大二贫三易选四露天。

尽管其品味低,但其规模巨大,全岩均匀矿化,埋藏浅,适于露采,选矿回收率高,并且常伴有Mo、Au、Ag等有益元素可综合利用等特点,成为世界上最重要的铜矿类型。

一、斑岩型铜矿的地质特征1.基本地质特征斑岩型铜矿是与陆相次火山热液作用有关的矿床。

在时间上、空间上、成因上斑岩型铜矿均与斑状结构的中酸性浅成或超浅成的小侵入体有关。

斑岩铜矿形成的时代主要集中在中、新生代,其次是古生代,前寒武纪斑岩铜矿床目前发现较少。

斑岩铜矿矿床具有明显的线性分布特征,绝大多数超大型斑岩铜矿床分布都不是独立的,在一定区域范围内常与同一类型的几个矿床共生。

2.围岩蚀变特征斑岩铜矿在热液蚀变类型、强度和规模等方面变化很大,但是代表性的蚀变带普遍存在,并具明显的分带性。

斑岩铜矿有其特征的蚀变组合及其分带模式,俗称“大白菜模式”,由内到外依次为: 石英内核→钾化带( 黑云母—钾长石带) →似千枚岩化带( 绢云母—石英带) →泥化带→青磐岩化带。

石英内核是早期岩浆结晶的产物;黑云母—钾长石的交代现象是一种阳离子交换反应;石英—绢云母带围绕和部分叠加在钾化带上,由于它与泥化带往往赋存在内部钾化带和外部青磐岩带之间,故也称之为中间带,其特点是钾长石和斜长石均绢云母化,角闪石和部分黑云母也变成了绢云母、黄铁矿、金红石等;泥化带(高岭石—蒙脱石化)的斜长石变化最为明显,靠近矿体的斜长石多蚀变成为高岭石。

二、全球分布特征及大地构造环境从世界已知斑岩铜矿分布情况看,大致分为环太平洋、特提斯-喜马拉雅、古亚洲(中亚成矿带)3个全球性成矿域。

斑岩型铜矿床研究现状与进展

斑岩型铜矿床研究现状与进展
2.2在岩浆侵位和热液演化过程中导致金属铜富集的关键因素是岩浆的结晶分异作用还是岩浆(长英质岩浆和铁镁质岩浆)的混合作用?金属铜是如何从岩浆中进入流体,从而发生大规模沉淀?其过程与岛弧环境斑岩铜矿金属铜的沉淀机制有何差异?
2.3在大陆内部的演化过程中,岩石圈的持续性阶段伸展或者伸展-挤压-伸展交替的背景对陆内斑岩铜矿的形成有何制约因素?大陆内部不同的构造-岩浆演化方式和不同演化阶段,斑岩型矿床的成矿元素组合类型有何差异?阶段性的隆升和剥蚀能否是陆内伸展环境斑岩铜矿形成的重要因素?
2.6 Houetal.(2015源自)对华北中生代伸展背景下木吉村斑岩铜矿角闪岩的结果表明角闪石中Cu的含量为Cu含量17×10-6~60×10-6,与原始弧岩浆中Cu的含量基本一致,从而得出木吉村斑岩铜矿形成于正常的岩浆-热液演化过程;Piqueretal.(2017)认为伸展环境下斑岩铜矿的规模可能较小,但是可以形成大型的浅成低温热液型Cu-Au矿床,但是,从华南地区德兴斑岩矿床的规模和品位来看,陆内伸展背景形成大型斑岩铜矿的可能性还是存在的。因此,从已有的研究成果来看,陆内伸展型斑岩铜矿具有形成大矿、高品位矿床的潜力,那么什么条件下可以形成高品位的大型矿床?陆内伸展背景高品位大型斑岩铜矿的形成与岩浆源区是否富含金属物质的关系如何?
2我国斑岩铜矿研究的关键科学问题
本文以我国华南陆内伸展型斑岩铜矿为例,作者认为,陆内伸展型斑岩铜矿的研究可能有以下一些关键的科学问题值得进一步深入研究。
2.1与俯冲以及后俯冲伸展型斑岩铜矿相比,陆内伸展型斑岩铜矿岩浆起源的诱导机制是什么?金属铜的来源是哪里?大规模铜矿的形成是受控于富铜的岩浆源区还是受控于岩浆-热液过程?在岩浆上升过程中,地壳物质的混染(包括早期侵位的岩浆岩及其上升通道中围岩)对形成大型斑岩铜矿有何影响?何种作用导致了陆内伸展环境形成不同金属组合的矿床?新生地壳?古老地壳?还是古老的岩石圈地幔和新生的岩石圈地幔?

斑岩铜矿床的形成条件与分布规律

斑岩铜矿床的形成条件与分布规律

斑岩铜矿床的形成条件与分布规律1. 引言斑岩铜矿床是一种重要的铜矿床类型,具有广泛的分布和巨大的经济价值。

本文将讨论斑岩铜矿床的形成条件以及它们的分布规律。

2. 形成条件斑岩铜矿床形成的条件主要包括以下几个方面:2.1 地壳构造背景斑岩铜矿床常常形成在地壳构造活动较为明显的区域。

地壳构造活动可以导致岩浆活动和地壳的破碎断裂,从而为铜矿床形成提供了物质和能量的来源。

2.2 富含铜的岩浆来源斑岩铜矿床的形成与富含铜的岩浆有着密切的关系。

这些岩浆通常富含铜、硫等矿物质,并且具有较高的流动性,能够在地壳中形成较大规模的矿床。

2.3 适宜的成矿环境斑岩铜矿床的形成还需要一定的成矿环境。

一般来说,这些矿床往往形成在具有较高的温度、较低的压力和适宜的pH值的环境中。

此外,也需要存在适合矿物沉淀和成矿反应的条件。

2.4 适当的流体运移条件斑岩铜矿床的形成还需要适当的流体运移条件。

流体运移可以将矿物质从岩浆中运输到地壳中,并在特定环境下沉淀形成矿床。

流体运移的条件包括流体的温度、压力、流速以及适宜的岩石孔隙结构等。

3. 分布规律斑岩铜矿床的分布具有一定的规律性,主要表现在以下几个方面:3.1 大范围的地质条件斑岩铜矿床往往集中分布在富含铜的岩浆活动区域,如火山弧带、造山带等,这些区域通常具有复杂的地质构造背景和丰富的岩石类型。

3.2 区域性的控矿因素斑岩铜矿床的分布还受到一系列区域性的控矿因素的影响,如断裂、褶皱、岩浆活动强度等。

这些控矿因素可以改变地壳的物理化学性质,从而影响铜矿床的形成和分布。

3.3 空间上的聚集分布斑岩铜矿床常常表现出一定的空间上的聚集分布特征。

这些矿床往往以矿体簇群或成矿带的形式出现,集中分布在一定的地区或特定的构造单元中。

3.4 随深度的分布变化斑岩铜矿床的分布还受到地壳深度的影响。

一般来说,随着地壳深度的增加,斑岩铜矿床的分布会逐渐减少,并且矿体规模和品位也会逐渐降低。

4. 结论斑岩铜矿床的形成条件与分布规律是一个复杂的系统工程,需要考虑地壳构造、岩浆来源、成矿环境和流体运移条件等多个因素的综合作用。

浅谈斑岩铜矿床的研究进展

浅谈斑岩铜矿床的研究进展

铜 是 一 种 重 要 的 战 略 金 属,其 具 有 导 热、导 电、耐 磨 损、易铸造、延展性及机械性能良好等诸多特征,已被广泛 应用于军工、能源、建筑、电子信息、电器及化工等多个与 国家安全和经济命脉息息相关的工业领域,在用量上仅次 于铁和铝 [1]。在世界上,铜矿类型主要有斑岩型、砂页岩型、 火山成因块状硫化物型、岩浆铜镍硫化物型及铁氧化物铜 金型等 [1]。其中,斑岩型铜矿提供了世界上近 75% 的 Cu、 50% 的 Mo、20% 的 Au 及大部分的 Re[2],是矿床研究和找 矿勘查的重点之一。
近 20 年来,随着人们对青藏高原地区研究的深入,一 大批大型、超大型斑岩铜矿已被发现,构成了特提斯 ~ 喜马 拉雅成矿带,该带中斑岩铜矿主要形成于中 ~ 新生代,产出 有 Sar Cheshmeh、玉龙等世界级斑岩铜矿。不同的是,环 太平洋成矿带、中亚成矿带中的斑岩铜矿主要为俯冲型 ; 而在特提斯 ~ 喜马拉雅成矿带中,中生代的斑岩铜矿主要
1 斑岩铜矿的提出及早期发展 斑 岩 铜 矿 的 研 究 始 于 20 世 纪 初,Ransome 对 美 国
Bisbee 矿床进行野外研究时,首次提出了“浸染状铜矿”与 斑岩体间可能存在的成因关系,而斑岩铜矿的概念则是由 Emmons 在 1918 年首次提出。
在此后的半个世纪中,斑岩铜矿的发展主要以观察和描 述为主,在斑岩铜矿蚀变和矿化特征、斑岩与成矿的关系等 方面有了突破性进展,极大的促进了斑岩矿床的找矿勘查, 并发现了一大批大 ~ 中型斑岩铜矿。其中,最著名的例子是 学者们通过对美国西南部 San Manuel 矿床进行热液填图 及构造恢复,从而成功的发现了 Kalamazoo 矿床,Lowell and Guibert 通过总结以后的研究结果,提出了斑岩铜矿蚀 变和矿化的经验模式。在该模式中,蚀变以岩体为中心向外 依次为钾化蚀变带、绢英岩化蚀变带、泥化蚀变带和青磐岩 化蚀变带 ;矿化同样由岩体为中心,向外依次可以划分为黄

江西德兴铜厂斑岩铜矿床

江西德兴铜厂斑岩铜矿床

矿床学第六次实习江西铜厂斑岩铜矿床姓名:班级:学号:目录一.区域地质背景 3二.矿区地质 4§2.1地层 4§2.2构造 4§2.3岩浆岩 4三.矿床地质特征 5§3.1矿体特征 5§3.2矿石特征 5§3.3成矿期和成矿阶段 7四.成矿条件和成因分析 8一.区域地质背景本区地层主要是前震旦纪九岭群浅变质岩系,分布在德兴矿区及其北西部的江南古陆之内,构成沿北东、北东东向展布的复式背斜。

矿区南东部属钱塘坳陷区,分布着古生代和中生代地层。

早元古代古陆中部由于地壳下降形成地槽,并沉积了巨厚的类复理石建造岩层。

本区燕山期岩浆活动特别强烈。

德兴铜矿花岗闪长斑岩小侵人体,正是在燕山中晚期的岩浆活动中,沿复式背斜轴部与北西向张裂构造带交汇部位,侵人到元古代地层的上部,定位于江南古陆南东边缘与钱塘坳陷过渡地带(如下图) 。

二.矿区地质§2.1地层江西德兴铜厂矿区出露地层属震旦亚界,系由双桥山群上部第三、四岩性段泥质、粉砂质及火山凝灰质沉积经区域变质而成的浅变质岩系,由千枚岩和变质沉凝灰岩的互层所组成。

§2.2构造矿区内断裂发育。

NNE向断裂(向西倾)与E——W向挤压带(向北倾)的交会部位形成破碎带,构成岩株入侵的通道。

岩株的接触带控制了矿体的展布。

多组裂隙与节理控制了不同规模的矿脉,其中以走向3300-3450, S W倾的一组最为重要,它们控制了矿区内的大多数矿脉。

§2.3岩浆岩矿区内岩浆活动频繁,与德兴铜厂斑岩铜矿床有成因联系者属燕山运动早期(经长春地院K-Ar法测定,绝对年龄为170百万年,属中侏罗世),形成了中酸性深源浅成小型侵入体,其主体为花岗闪长斑岩,其余均为成矿作用中、后期的脉岩。

花岗闪长斑岩体呈似筒状的岩株,向北西方向的深部下插(倾角450至500),在地表略呈三角形,NW向长1300米,NE向宽300-800米,面积0.7平方公里。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2011年第30卷第4期387 393页云南地质CN53-1041/P ISSN1004-1885斑岩铜矿矿床研究综述邹国富1,2,坚润堂1(1.中国有色金属工业昆明勘察设计研究院,云南昆明650051; 2.昆明理工大学,云南昆明650093)摘要:斑岩铜矿是重要的铜矿床类型,认识其成矿作用对找矿实践具有重要的指导意义。

通过搜集和整理文献资料,介绍成矿动力学背景及构造环境、成矿斑岩岩浆及其侵位、岩浆-热液转换过程、蚀变与矿化、成因模式等斑岩型铜矿研究中的重要进展,指出今后的研究方向。

关键词:斑岩铜矿;时空分布;构造背景;岩浆活动;研究进展;研究综述中图分类号:P618.41文献标识码:A文章编号:1004-1885(2011)04-387-07目前已知的主要铜矿类型:硫化物型铜镍矿、沉积型铜矿、火山岩型铜矿、矽卡岩型铜矿、斑岩型铜矿中,斑岩铜矿以其分布广、规模大、埋藏浅、易采选等特点成为最重要矿床类型。

斑岩铜矿,最早是二十世纪初,美国西南部亚利桑那州和新墨西哥州开采石英二长斑岩和花岗闪长斑岩中巨大铜矿时,矿山工人叫出来的。

1918年,Emmons正式把这种常与斑岩体有关的“浸染状铜矿”定名为斑岩铜矿。

我国王之田将斑岩铜矿床定义为:与钙碱性、碱性、中—酸性火成岩的浅成—超浅成侵位斑岩有关,斑岩和围岩破裂裂隙强烈,并具K+、Si+、OH-蚀变矿物晕和Cu、Au、Ag、Pb、Zn、S等地球化学晕、岩浆晚期中温热液阶段、细脉浸染状硫化物铜矿。

1时空分布1.1时代分布斑岩铜矿形成时代集中在中、新生代,其次是古生代,前寒武纪斑岩铜矿床目前发现较少。

据芮宗瑶(2004)统计,世界上超过500万t的斑岩铜矿集中分布于新生代,大约占59.5%,中生代约占35%[1]。

斑岩铜矿形成时代极不均一,有随时代变新、矿床数目增多、矿化强度加大等特征。

形成原因有两种观点:一是认为斑岩铜矿主要形成于板块汇聚区,而在前寒武纪全球板块活动机制尚未完善,大规模板块活动尚未形成,斑岩铜矿化自然很少。

而中新生代是板块活动最强烈时期,也是斑岩铜矿形成的高峰期;另一种观点则认为,由于斑岩铜矿形成于板块俯冲、碰撞带,这些带的后期发育往往形成造山带,成为主要剥蚀区,加上斑岩铜矿多形成于浅成—超浅成侵入岩中,岩体及围岩节理、裂隙发育,有利于剥蚀作用形成,随着时间的推移古老的斑岩铜矿很难保存。

1.2空间分布全球斑岩铜矿主要集中在三条大成矿带上:一是环太平洋成矿带。

分东西两带:东带包括阿拉斯加、北美西部、墨西哥、玻利维亚、秘鲁、智利等。

西带分内带和外带:内带包括俄罗斯鄂霍茨克北缘,我国东北东部、长江中下游及华南地区;外带包括日本列岛、我国台湾、菲律宾、亚所罗门群岛等。

二是特提斯—喜马拉雅成矿带。

分布于罗马尼亚、南斯拉夫、伊朗、巴基斯坦和我国西藏等。

三是古亚洲成矿带(中亚成矿带),分布于乌兹别克斯坦、哈萨克斯坦及中国新疆、内蒙古一带。

此外,还有少量斑岩铜矿床形成于各地块边缘活动带。

值得注意的是,我国中、新生代斑岩铜矿床有相当数量形成于大陆内部。

2成矿动力学及构造背景全球斑岩铜矿研究证明:会聚板块边缘无疑是斑岩铜矿最重要的成矿地质背景。

包括两种观点:一是收稿日期:2011-06-25作者简介:邹国富(1970 ),男,黑龙江林甸县人,高级地质工程师,从事矿产资源开发研究。

883云南地质30卷认为由大洋板片俯冲产生的陆缘弧和岛弧环境斑岩铜矿;二是与大洋板片俯冲作用无关的大陆环境斑岩铜矿。

前者占斑岩铜矿90%以上,但后者也不容忽视。

Sillitoe(1972)建立了经典斑岩铜矿板块构造模型,提出斑岩铜矿主要在板块俯冲背景下的主动陆缘钙碱性火成岩带中形成,金属来源与板块俯冲作用导致的岩浆活动有关,并在后来环太平洋成矿带斑岩型矿床的勘查中取得重大突破,成为科学理论指导矿床勘查的典范。

Sillitoe(1998)最早提出汇聚板块边缘的挤压构造背景对形成斑岩铜矿床的重要作用,并识别出挤压环境有利于斑岩型矿床形成的一些关键因素,认为:①挤压环境可有效地阻止岩浆直接穿过上地壳形成火山岩,从而形成比伸展环境更大的浅部岩浆房;②挤压环境浅部岩浆房很难喷发,从而促进岩浆房的结晶分异,进而导致挥发分饱和以及大规模岩浆热液形成;③挤压环境下很难发育陡立张性断裂,从而有效地限制了在岩浆房顶部形成岩株(枝)的数量,有利于岩浆热液的聚集[2-3]。

Richards等(2001)总结了有利于斑岩铜矿形成的地质因素,其中,构造背景因素包括:①上地壳处于较长时期挤压状态后的应力松驰期;②成矿区域存在早期深大断裂,而且这些断裂在应力松驰期活化张开。

Cooke等(2005)通过对世界主要斑岩铜矿带成矿背景的综合研究,发现大洋板片的低角度俯冲非常有利于挤压背景的形成。

大陆环境斑岩铜矿研究起步较晚。

近年来随大陆环境斑岩铜矿大量发现,对其研究才逐渐深入。

Hol-lister等(1974)首次开展碰撞造山环境斑岩铜矿的研究,拓展了经典斑岩铜矿成矿模型[4]。

近年来,中国矿床学家的研究也发现:斑岩铜矿不仅可产于成矿模型所记录的岛弧及陆缘弧环境中,还可以产于碰撞造山带中(如青藏高原),甚至形成于陆内环境中(如德兴)。

形成于碰撞造山带及陆内环境的斑岩铜矿,不能用西方学者基于板块构造理论建立的经典斑岩铜矿成矿模型来解释,因此经典的斑岩铜矿成矿模型遇到了挑战。

芮宗瑶(2002)研究表明:有些斑岩铜矿与板块的消减作用没有直接的成因联系,可能是由板内构造岩浆活化作用或走滑断裂带作用导致深源花岗质岩浆上侵形成。

侯增谦等(2007)认为:中国大陆内部斑岩铜矿产出的背景与大洋板块俯冲无关。

至少有4类环境:晚碰撞走滑环境,后碰撞伸展环境,后造山伸展环境和非造山崩塌环境。

大陆环境含矿斑岩的浅成侵位主要受大规模走滑断裂系统、切割造山带的断裂系统和基底线性断裂构造控制。

总结以上研究成果,会聚板块边缘是斑岩铜矿形成最重要的成矿地质背景,无论是岩浆弧环境还是大陆环境。

同时,某些大陆环境中的斑岩铜矿(如:西藏冈底斯斑岩铜矿带),成矿作用是在洋陆俯冲基础上实现的陆陆碰撞条件下形成的,二种作用之间的相关性和继承性如何?应加以分析和研究。

3含矿岩浆性质、起源与侵位斑岩铜矿床成矿过程,其实就是成矿元素分配过程,主要受扩散作用、溶解度和氧化还原性质、矿物与熔体之间的分配所决定。

因此,岩浆源区性质、岩浆侵位机制和岩浆混合作用是制约岩浆能否携带金属元素、进入成矿流体、最终沉淀成矿的主要因素[5]。

早在上世纪20年代,矿床学家就已经意识到,一定特征的斑岩体是形成斑岩铜矿最重要的条件之一。

Sillitoe(1972)在总结斑岩铜矿分布规律和岩浆岩地球化学特征后认为,斑岩铜矿主要与俯冲背景下产出的钙碱质中酸性火成岩有关。

Misra(2000)认为与Cu矿化有关的斑岩主要为中酸性钙碱性岩浆,岩性变化于石英闪长岩—花岗岩之间,其中陆缘弧环境含矿斑岩主要为钙碱性系列,少量为高钾钙碱性系列,岩性以花岗闪长岩和石英二长岩为主;而岛弧环境的含矿斑岩通常为典型钙碱性系列,岩性以石英闪长岩为主,少数为花岗闪长岩、石英二长岩。

芮宗瑶等(1984)岩石学、地球化学研究表明:碰撞造山环境斑岩铜矿,尽管因矿化类型不同,其含矿斑岩岩性略有差异外,主要为中酸性岩浆,为高钾钙碱性系列-钾玄武岩系列,岩性以花岗闪长岩—二长花岗岩—花岗岩为主,与陆缘弧环境含矿斑岩较为类似。

总体上,岛弧环境的成矿斑岩成分偏中性,而陆缘弧和大陆环境成矿斑岩偏酸性,反映穿过厚陆壳的长英质岩浆经历更充分的结晶分异作用。

除中酸性的钙碱性岩浆外,一些富金的斑岩铜矿床,其形成还常与碱性岩有关,如正长岩等[6]。

含矿斑岩地球化学特征总体上具I型花岗岩的特征,锶同位素初始值较小,一般为0.703 0.706,少数可到0.709(芮宗瑶等,2004),并富铂族元素(唐仁理等,1995),一般来源于上地幔或壳幔过渡带[7]。

矿石硫化物δ34S值变化范围极窄(-0.5ωɢ 5.5ωɢ),平均δ34S值近于0(芮宗瑶等,1984);铅同位素比值变化也较小,且较稳定(黄崇轲等,2001),矿质来源比较简单,与斑岩体同源。

稀土元素总量多数较高,轻稀土富集,铕异常不明显,富含大离子亲石元素(芮宗瑶等,1984)。

对含矿斑岩的起源研究较早,俯冲洋壳或残留洋壳的部分熔融、加厚下地壳或新生下地壳的部分熔融,以及板片熔体交代上地幔的部分熔融等模式,均被用来解释含矿斑岩的成因,但众多研究成果都强调下地壳或者上地幔对岩浆成因的贡献。

起初因含矿斑岩的产生常与板片俯冲带具有密切的时空关系,钙碱性岩浆常被认为是俯冲大洋板片直接熔融的产物(如Sillitoe ,1972);最近的研究表明,除少数具有埃达克质亲和性钙碱性岩浆为年轻大洋板片直接熔融的产物外(Defant et a1.,1990),绝大多数的钙碱性岩浆都是板片释放流体交代楔形地幔部分熔融的产物(图1)[8]。

侯增谦等(2007)认为:斑岩铜矿含矿斑岩的岩浆源区为加厚的新生镁铁质下地壳、或拆沉的古老下地壳,石榴石角闪岩和角闪岩是斑岩铜矿成矿斑岩的源岩[9]。

Richards (2005)认为:岩浆通过MASH (熔融、同化、存储、均一)过程,由楔形地幔部分熔融产生的玄武质岩浆将会发生不断演化,当演化的岩浆具有比下地壳物质更小的密度时(如安山质岩浆),则会在浮力作用下穿过地壳而上侵。

针对岩浆在地壳中运移方式的争议持续了近两个世纪,并一直延续至今,不过今天多数研究者认为,在热的韧性下地壳范围内,岩浆多以底辟方式侵位;而在相对较冷的中上地壳,岩浆则常以裂隙控制的岩墙扩展方式上升为主。

岩浆浮力本身足以促使岩墙侵位,先存的地壳尺度的断裂系统常可为岩浆上升提供更为有利的路径。

所以,含矿斑岩常沿大规模的裂隙/断裂带或线理带发育,特别是在走滑断裂系统产状变化部位(Riehards et a1.,2001)。

侯增谦等(2007)认为:与走滑断裂系统相伴发育的走滑拉分盆地,切割造山带的张性断裂系统,平行造山带的逆冲断裂带交汇部位以及不同方向线性断裂构成的棋盘格子构造,控制着斑岩岩浆一热液系统的空间定位。

图1俯冲带及陆缘弧环境下含矿斑岩形成的深部过程(据Richards ,2003,2005)Fig.1Deep Formation Process of Ore -Bearing Porphyry in Subduction Zone and Epicontinental Arc Environment 4成矿物质来源与金属富集矿质来源是斑岩铜矿成矿作用的关键。

尽管部分斑岩铜矿中存在铜来源于地层的证据,但岩浆来源的观点则长期占据统治地位。

早期,金属来源于岩浆的观点主要基于斑岩铜矿与钙碱性火成岩的紧密时空关系、成矿作用早期流体的氢氧同位素特征和金属在岩浆活动过程中的化学特性三方面的证据。

相关文档
最新文档