河海大学文天学院运筹学考试试题

合集下载

运筹学试题库

运筹学试题库

运筹学试题库一、多项选择题1、下面命题正确的是().A、线性规划的标准型右端项非零;B、线性规划的标准型目标求最大;C、线性规划的标准型有等式或不等式约束;D、线性规划的标准型变量均非负。

2、下面命题不正确的是().A、线性规划的最优解是基本解;B、基本可行解一定是基本解;C、线性规划有可行解则有最优解;D、线性规划的最优值至多有一个。

3、设线性规划问题(P),它的对偶问题(D),那么().A、若(P)求最大则(D)求最小;B、(P)、(D)均有可行解则都有最优解;C、若(P)的约束均为等式,则(D)的所有变量均无非负限制;D、(P)和(D)互为对偶。

4、课程中讨论的运输问题有基本特点()。

A、产销平衡;B、一定是物品运输的问题;C、是整数规划问题;D、总是求目标极小.5、线性规划的标准型有特点()。

A、右端项非零;B、目标求最大;C、有等式或不等式约束;D、变量均非负。

6、下面命题不正确的是().A、线性规划的最优解是基本可行解;B、基本可行解一定是基本解;C、线性规划一定有可行解;D、线性规划的最优值至多有一个。

7、线性规划模型有特点()。

A、所有函数都是线性函数;B、目标求最大;C、有等式或不等式约束;D、变量非负.8、下面命题正确的是().A、线性规划的最优解是基本可行解;B、基本可行解一定是最优;C、线性规划一定有可行解;D、线性规划的最优值至多有一个。

9、一个线性规划问题(P)与它的对偶问题(D)有关系()。

A、(P)有可行解则(D)有最优解;B、(P)、(D)均有可行解则都有最优解;C、(P)可行(D)无解,则(P)无有限最优解;D、(P)(D)互为对偶。

10、运输问题的基本可行解有特点()。

A、有m+n-1个基变量;B、有m+n个位势;C、产销平衡;D、不含闭回路。

二、简答题(1)微分学求极值的方法为什么不适用于线性规划的求解?(2)线性规划的标准形有哪些限制?如何把一般的线性规划化为标准形式? (3)图解法主要步骤是什么?从中可以看出线性规划最优解有那些特点?(4)什么是线性规划的可行解,基本解,基可行解?引入基本解和基可行解有什么作用?(5)对于任意基可行解,为什么必须把目标函数用非基变量表示出来?什么是检验数?它有什么作用?如何计算检验数?(6)确定换出变量的法则是什么?违背这一法则,会发生什么问题? (7)如何进行换基迭代运算?(8)大M 法与两阶段法的要点是什么?两者有什么共同点?有什么区别? (9)松弛变量与人工变量有什么区别?试从定义和处理方式两方面分析。

运筹学考试试题

运筹学考试试题

运筹学考试试题一、选择题(每题2分,共10分)1. 线性规划的标准形式中,目标函数的系数应为:A. 正数B. 负数C. 任意非零数D. 零2. 在单纯形法中,如果某个非基变量的检验数大于零,则:A. 该变量不能进入基B. 该变量必须进入基C. 该变量的值可以增加D. 该变量的值可以减少3. 下列哪项不是运输问题的特殊矩阵?A. 平衡矩阵B. V型矩阵C. U型矩阵D. 散布矩阵4. 对于一个确定的线性规划问题,下列哪项是正确的?A. 只有一个最优解B. 有多个最优解C. 可能没有可行解D. 所有选项都是正确的5. 在动态规划中,状态转移方程的作用是:A. 确定初始状态B. 确定最终状态C. 确定中间状态D. 确定最优解二、简答题(每题5分,共20分)1. 简述单纯形法的基本步骤。

2. 解释什么是灵敏度分析,并说明其在运筹学中的应用。

3. 什么是网络流问题?请举例说明其在实际中的应用。

4. 描述动态规划的基本原理及其与分阶段决策过程的关系。

三、计算题(每题10分,共30分)1. 给定如下线性规划问题,请找出其最优解,并计算目标函数的最小值。

Maximize Z = 3x1 + 2x2Subject tox1 + 2x2 ≤ 103x1 + x2 ≤ 15x1, x2 ≥ 02. 考虑一个有三个仓库(A、B、C)和三个市场(D、E、F)的运输问题。

运输成本矩阵如下:| D E F ||--|--|--|A | 2 3 4 || B | 1 2 3 || C | 5 6 7 |每个仓库的供应量和每个市场的需求量如下:Supply/Demand: A: 10, B: 8, C: 5, D: 8, E: 10, F: 7使用北街角规则找出初始可行解。

3. 一个公司想要在三个城市(城市1、城市2、城市3)之间运输货物。

运输成本和需求量如下表所示:| 城市1 城市2 城市3 ||--|--|--|| 2 3 5 || 1 2 4 || 3 4 6 |需求量:城市1: 4, 城市2: 3, 城市3: 2请使用匈牙利算法解决此问题。

运筹学试卷与参考答案

运筹学试卷与参考答案

运筹学 试卷B 及参考答案(本题20分)一、考虑下面的线性规划问题:Min z=6X 1+4X 2约束条件: 2X 1+X 2 ≥1 3X 1+4X 2≥3 X 1 , X 2 ≥ 0(1) 用图解法求解,并指出此线型规划问题是具有惟一最优解、无穷多最优解、无界解或无可行解;(2) 写出此线性规划问题的标准形式; (3) 求出此线性规划问题的两个剩余变量的值; (4) 写出此问题的对偶问题。

解:(1)阴影部分所示ABC 即为此线性规划问题的可行域。

其中,A (0,1),B (1,3/4),C (1/5,3/5)。

显然,C (1/5,3/5)为该线性规划问题的最优解。

因此,该线性规划问题有唯一最优解,最优解为:121/5,3/5,*18/5x x z ===。

——8分。

说明:画图正确3分;求解正确3分;指出解的情况并写出最优解2分。

(2)标准形式为:121231241234min 6421343,,,0z x x x x x x x x x x x x =++-=⎧⎪+-=⎨⎪≥⎩ X 1 X 2 AB——4分 (3)两个剩余变量的值为:340x x =⎧⎨=⎩——3分(4)直接写出对偶问题如下:12121212max '323644,0z y y y y y y y y =++≤⎧⎪+≤⎨⎪≥⎩——5分(本题10分)二、前进电器厂生产A 、B 、C 三种产品,有关资料下表所示:学模型,不求解)解:设生产A 、B 、C 三种产品的数量分别为x 1,x 2和x 3,则有:——1分123123123123123max 810122.0 1.5 5.030002.0 1.5 1.21000200250100,,0z x x x x x x x x x x x x x x x =++++≤⎧⎪++≤⎪⎪≤⎪⎨≤⎪⎪≤⎪≥⎪⎩ ——14分,目标函数和每个约束条件2分(本题10分)三、某电子设备厂对一种元件的年需求为2000件,订货提前期为零,每次订货费为25元。

《运筹学》期末考试试卷A答案

《运筹学》期末考试试卷A答案

《运筹学》试题样卷(一)一、判断题(共计10分,每小题1分,对的打√,错的打X )1. 无孤立点的图一定是连通图。

2. 对于线性规划的原问题和其对偶问题,若其中一个有最优解, 另一个也一定有最优解。

3. 如果一个线性规划问题有可行解,那么它必有最优解。

4.对偶问题的对偶问题一定是原问题。

5.用单纯形法求解标准形式(求最小值)的线性规划问题时,与0>j σ对应的变量都可以被选作换入变量。

6.若线性规划的原问题有无穷多个最优解时,其对偶问题也有无穷 多个最优解。

7. 度为0的点称为悬挂点。

8. 表上作业法实质上就是求解运输问题的单纯形法。

9. 一个图G 是树的充分必要条件是边数最少的无孤立点的图。

二、建立下面问题的线性规划模型(8分)某农场有100公顷土地及15000元资金可用于发展生产。

农场劳动力情况为秋冬季3500人日;春夏季4000人日。

如劳动力本身用不了时可外出打工,春秋季收入为25元 / 人日,秋冬季收入为20元 / 人日。

该农场种植三种作物:大豆、玉米、小麦,并饲养奶牛和鸡。

种作物时不需要专门投资,而饲养每头奶牛需投资800元,每只鸡投资3元。

养奶牛时每头需拨出1.5公顷土地种饲料,并占用人工秋冬季为100人日,春夏季为50人日,年净收入900元 / 每头奶牛。

养鸡时不占用土地,需人工为每只鸡秋冬季0.6人日,春夏季为0.3人日,年净收入2元 / 每只鸡。

农场现有鸡舍允许最多养1500只鸡,牛栏允许最多养200头。

三种作物每年需要的人工及收入情况如下表所示:试决定该农场的经营方案,使年净收入为最大。

三、已知下表为求解某目标函数为极大化线性规划问题的最终单纯形表,表中54,x x 为(1)写出原线性规划问题;(4分) (2)写出原问题的对偶问题;(3分)(3)直接由上表写出对偶问题的最优解。

(1分) 四、用单纯形法解下列线性规划问题(16分)3212max x x x Z +-=s. t. 3 x 1 + x 2 + x 3 ≤ 60 x 1- x 2 +2 x 3 ≤ 10 x 1+ x 2- x 3 ≤ 20 x 1, x 2 , x 3 ≥0五、求解下面运输问题。

《运筹学》试题及答案大全

《运筹学》试题及答案大全

《运筹学》试题及参考答案一、填空题(每空2分,共10分)1、在线性规划问题中,称满足所有约束条件方程和非负限制的解为可行解。

2、在线性规划问题中,图解法适合用于处理变量为两个的线性规划问题。

3、求解不平衡的运输问题的基本思想是设立虚供地或虚需求点,化为供求平衡的标准形式。

4、在图论中,称无圈的连通图为树。

5、运输问题中求初始基本可行解的方法通常有最小费用法、西北角法两种方法。

二、(每小题5分,共10分)用图解法求解下列线性规划问题:1)max z =6x 1+4x 2⎪⎪⎩⎪⎪⎨⎧≥≤≤+≤+0781022122121x x x x x x x ,解:此题在“《运筹学》复习参考资料.doc ”中已有,不再重复。

2)min z =-3x 1+2x 2⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≤-≤-≤+-≤+0,137210422422121212121x x x x x x x x x x 解:可行解域为abcda ,最优解为b 点。

⑴⑵⑶⑷⑸⑹、⑺由方程组⎩⎨⎧==+02242221x x x 解出x 1=11,x 2=0∴X *=⎪⎪⎭⎫⎝⎛21x x =(11,0)T∴min z =-3×11+2×0=-33三、(15分)某厂生产甲、乙两种产品,这两种产品均需要A 、B 、C 三种资源,每种产品的资源消耗量及单位产品销售后所能获得的利润值以及这三种资源的储备如下表所示:AB C 甲94370乙46101203602003001)建立使得该厂能获得最大利润的生产计划的线性规划模型;(5分)2)用单纯形法求该问题的最优解。

(10分)解:1)建立线性规划数学模型:设甲、乙产品的生产数量应为x 1、x 2,则x 1、x 2≥0,设z 是产品售后的总利润,则max z =70x 1+120x 2s.t.⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤+0300103200643604921212121x x x x x x x x ,2)用单纯形法求最优解:加入松弛变量x 3,x 4,x 5,得到等效的标准模型:max z =70x 1+120x 2+0x 3+0x 4+0x 5s.t.⎪⎪⎩⎪⎪⎨⎧=≥=++=++=++5,...,2,1,03001032006436049521421321j x x x x x x x x x x j 列表计算如下:四、(10分)用大M 法或对偶单纯形法求解如下线性规划模型:min z =5x 1+2x 2+4x 3⎪⎩⎪⎨⎧≥≥++≥++0,,10536423321321321x x x x x x x x x 解:用大M 法,先化为等效的标准模型:max z /=-5x 1-2x 2-4x 3s.t.⎪⎩⎪⎨⎧=≥=-++=-++5,...,2,1,010********214321j y x x x x x x x x j增加人工变量x 6、x 7,得到:max z /=-5x 1-2x 2-4x 3-M x 6-M x 7s.t⎪⎩⎪⎨⎧=≥=+-++=+-++7,...,2,1,010*********2164321j x x x x x x x x x x x j大M 法单纯形表求解过程如下:五、(15分)给定下列运输问题:(表中数据为产地A i 到销地B j 的单位运费)B 1B 2B 3B 4s iA 1A 2A 312348765910119108015d j82212181)用最小费用法求初始运输方案,并写出相应的总运费;(5分)2)用1)得到的基本可行解,继续迭代求该问题的最优解。

运筹学考试试卷1

运筹学考试试卷1

《运筹学》试卷专业班级________________姓名________________学号________________开课系室管理科学工程考试日期题号一二三四五六七总分得分阅卷人运筹学试卷A一、名词解释(3×5=15分)1.运筹学2.凸集3.基可行解4.偏差变量5.无后效性二、判断题(1×10=10分)1. 若线性规划模型的可行域非空有界,则其顶点中必存在最优解。

2. 线性规划问题的任一可行解都可以用全部基可行解的线性组合表示。

3. 当线性规划的原问题存在可行解时,则其对偶问题也一定存在可行解。

4. 一旦一个人工变量在迭代中变为非基变量后,该变量及相应列的数字可以从单纯形表中删除,而不影响计算结果。

5. 用单纯形法求线性规划问题,若最终表上非基变量的检验数均非正,则该模型一定有惟一最优解。

6. 原问题与对偶问题是一一对应的。

7. 用单纯形法求解标准形式的线性规划问题时,与检验数大于零对应的变量都可以被选作换入变量。

8. 目标规划中正偏差变量取正值,负偏差应取负值。

9. 在目标规划问题中,目标函数可以是求min,也可以求max。

10. 动态规划中的策略表示过程处于某阶段的某个确定状态时,可以做出的选择或决定。

三、线性规划问题 (10分)表1中给出某线性规划问题计算过程中的一个单纯形表,目标函数为,约束条件为,表中,,为松弛变量,表中解的目标函数值为。

表1x1 x2 x3 x4 x5 x6 x6 a 3 0 -14/3 0 1 1x2 5 6 d 2 0 5/2 0x4 0 0 e f 1 0 0cj―zj b c0 0 -1 g四、对偶问题与灵敏度分析(20分)已知线性规划问题的最终单纯形表为表2所示(1)写出其对偶问题;(2)解出对偶问题最优解;(3)写出矩阵及其逆矩阵;(4)若右端项变为,分析最优基的变化。

表2Cb 基b x1 x2 x3 x4 x52 x2 5 0 1 0 1/2 1/21 x1 3 1 0 0 0 10 x3 3 0 0 1 -1/2 3/2cj―zj 0 0 0 -1 -2 五、运输问题(15分)已知运输问题的供需关系表与单位运价表如表3所示,试用表上作业法求解下面的运输问题。

《运筹学》试题及答案(三)

《运筹学》试题及答案(A卷)一、单项选择题(从下列各题四个备选答案中选出一个正确答案,答案选错或未选者,该题不得分。

每小题1分,共10分)1.线性规划具有唯一最优解是指A.最优表中存在常数项为零B.最优表中非基变量检验数全部非零C.最优表中存在非基变量的检验数为零D.可行解集合有界2.设线性规划的约束条件为则基本可行解为A.(0, 0, 4, 3)B.(3, 4, 0, 0)C.(2, 0, 1, 0)D.(3, 0, 4, 0)3.则A.无可行解B.有唯一最优解mednC.有多重最优解D.有无界解4.互为对偶的两个线性规划, 对任意可行解X 和Y,存在关系A.Z > W B.Z = WC.Z≥W D.Z≤W5.有6 个产地4个销地的平衡运输问题模型具有特征A.有10个变量24个约束B.有24个变量10个约束C.有24个变量9个约束D.有9个基变量10个非基变量6.下例错误的说法是A.标准型的目标函数是求最大值B.标准型的目标函数是求最小值C.标准型的常数项非正D.标准型的变量一定要非负7. m+n-1个变量构成一组基变量的充要条件是A.m+n-1个变量恰好构成一个闭回路B.m+n-1个变量不包含任何闭回路C.m+n-1个变量中部分变量构成一个闭回路D.m+n-1个变量对应的系数列向量线性相关8.互为对偶的两个线性规划问题的解存在关系A.原问题无可行解,对偶问题也无可行解B.对偶问题有可行解,原问题可能无可行解C.若最优解存在,则最优解相同D.一个问题无可行解,则另一个问题具有无界解9.有m个产地n个销地的平衡运输问题模型具有特征A.有mn个变量m+n个约束…m+n-1个基变量B.有m+n个变量mn个约束C.有mn个变量m+n-1约束D.有m+n-1个基变量,mn-m-n-1个非基变量10.要求不超过第一目标值、恰好完成第二目标值,目标函数是A.)(m in22211+-+++=ddpdpZB.)(m in22211+-+-+=ddpdpZC.)(m in22211+---+=ddpdpZD.)(m in22211+--++=ddpdpZ二、判断题(你认为下列命题是否正确,对正确的打“√”;错误的打“×”。

运筹学-试题

运筹学试题一、填空题1.线性规划闯题中,如果在约束条件中出现等式约束,我们通常用增加_人工变量__的方法来产生初始可行基。

2.在图论方法中,树具有_____的特点,树中的连线数必定等于__ ___。

3.线性规划数学模型三要素:、、4.在多目标决策问题中,当目标中规定了x=b为达到了目标,则必须同时满足才算达到了目标。

7.动态规划是解决决策过程最优化问题的一种方法。

1、在线性规划问题中,称满足所有约束条件方程和非负限制的解为可行解。

2、在线性规划问题中,图解法适合用于处理变量为两个的线性规划问题。

3、求解不平衡的运输问题的基本思想是设立虚供地或虚需求点,化为供求平衡的标准形式。

4、在图论中,称无圈的连通图为树。

5、运输问题中求初始基本可行解的方法通常有最小费用法、西北角法两种方法。

3.原问题的第1个约束方程是“=”型,则对偶问题相应的变量是_无约束__变量。

4.求最小生成树问题,常用的方法有:避圈法和_破圈法__。

二、单项选择题1.设P是线性规划问题,D是其对偶问题,则( )不正确。

A.P有最优解,D不一定有最优解B.若P和D都有最优解,则二者最优值肯定相等C.若P无可行解,则D无有界最优解的对偶问题为P2.在求minz的线性规划问题中,则( )不正确。

A.最优解只能在可行基解中才有B.最优解只能在基解中才有C.基变量的检验数只能为零D.有可行解必有最优解3.用图解法求解下列问题:max S=2x-3yx+2y<=6x-y<=3x+3y>=3x,y>=0其最优解为()A.(2,2) B.(4,1) C.(3,0) D.(2,5)4.若运输问题在总供应量大于总需要量时,( )。

A.必须用线性规划单纯形法求最优解B.不存在可行解C.虚设一个需求点D.虚设一个供应点3、对于线性规划问题,下列说法正确的是(D)A 线性规划问题可能没有可行解B 在图解法上,线性规划问题的可行解区域都是“凸”区域C 线性规划问题如果有最优解,则最优解可以在可行解区域的顶点上到达D 上述说法都正确4、下面哪些不是线性规划问题的标准形式所具备的(C)A所有的变量必须是非负的B 所有的约束条件(变量的非负约束除外)必须是等式C 添加新变量时,可以不考虑变量的正负性D 求目标函数的最小值6、在用单纯形法求解线性规划问题时,下列说法错误的是(D)A 如果在单纯形表中,所有检验数都非正,则对应的基本可行解就是最优解B 如果在单纯形表中,某一检验数大于零,而且对应变量所在列中没有正数,则线性规划问题没有最优解C 利用单纯形表进行迭代,我们一定可以求出线性规划问题的最优解或是判断线性规划问题无最优解D 如果在单纯形表中,某一检验数大于零,则线性规划问题没有最优解1.使用人工变量法求解极大化线性规划问题时,当所有的检验数在基变量中仍含有非零的人工变量,表明该线性规划问题【】A.有唯一的最优解B.有无穷多最优解C.为无界解D.无可行解2.对偶单纯形法解最大化线性规划问题时,每次迭代要求单纯形表中【】A.b列元素不小于零B.检验数都大于零C.检验数都不小于零D.检验数都不大于零3.已知某个含10个结点的树图,其中9个结点的次为1,1,3,1,1,1,3,1,3,则另一个结点的次为【】A.3 B.2C.1 D.以上三种情况均有可能4.如果要使目标规划实际实现值不超过目标值。

《运筹学》试题及答案01

《运筹学》试题及答案(代码:8054)一、填空题(本大题共8小题,每空2分,共20分)1.线性规划闯题中,如果在约束条件中出现等式约束,我们通常用增加_人工变量__的方法来产生初始可行基。

2.线性规划模型有三种参数,其名称分别为价值系数、_技术系数__和_限定系数__。

3.原问题的第1个约束方程是“=”型,则对偶问题相应的变量是_无非负约束(或无约束、或自由__变量。

4.求最小生成树问题,常用的方法有:避圈法和_破圈法__。

5.排队模型M/M/2中的M,M,2分别表示到达时间为__负指数_分布,服务时间服从负指数分布和服务台数为2。

6.如果有两个以上的决策自然条件,但决策人无法估计各自然状态出现的概率,那么这种决策类型称为__不确定__型决策。

7.在风险型决策问题中,我们一般采用__效用曲线_来反映每个人对待风险的态度。

8.目标规划总是求目标函数的_最小__信,且目标函数中没有线性规划中的价值系数,而是在各偏差变量前加上级别不同的_优先因子(或权重)___。

二、单项选择题(本大题共l0小题,每小题3分,共30分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

多选无分。

9.使用人工变量法求解极大化线性规划问题时,当所有的检验数在基变量中仍含有非零的人工变量,表明该线性规划问题【D】A.有唯一的最优解B.有无穷多最优解C.为无界解D.无可行解10.对偶单纯形法解最大化线性规划问题时,每次迭代要求单纯形表中【D】A.b列元素不小于零B.检验数都大于零C.检验数都不小于零D.检验数都不大于零11.已知某个含10个结点的树图,其中9个结点的次为1,1,3,1,1,1,3,1,3,则另一个结点的次为【A】A.3B.2C.1D.以上三种情况均有可能12.如果要使目标规划实际实现值不超过目标值。

则相应的偏离变量应满足【B】13.在运输方案中出现退化现象,是指数字格的数目【C】A.等于m+n B.等于m+n-1C.小于m+n-1D.大于m+n-114.关于矩阵对策,下列说法错误的是【D】A.矩阵对策的解可以不是唯一的C.矩阵对策中,当局势达到均衡时,任何一方单方面改变自己的策略,都将意味着自己更少的赢得和更大的损失D.矩阵对策的对策值,相当于进行若干次对策后,局中人I的平均赢得或局中人Ⅱ的平均损失值【A】A.28.—l C.—3D.116.关于线性规划的原问题和对偶问题,下列说法正确的是【B】A.若原问题为元界解,则对偶问题也为无界解B.若原问题无可行解,其对偶问题具有无界解或无可行解c.若原问题存在可行解,其对偶问题必存在可行解D.若原问题存在可行解,其对偶问题无可行解17.下列叙述不属于解决风险决策问题的基本原则的是【C】A.最大可能原则B.渴望水平原则C.最大最小原则D.期望值最大原则18.下列说法正确的是【D】A.线性规划问题的基本解对应可行域的顶点也必是该问题的可行解D.单纯形法解标准的线性规划问题时,按最小比值原则确定换出基变量是为了保证迭代计算后的解仍为基本可行解三、多项选择题(本大题共5小题,每小题2分,共l0分)在每小题列出的四个备选项中至少有两个是符合题目要求的,请将其代码填写在题后的括号内。

运筹学试题及答案

运筹学试题及答案大家不妨来看看小编推送的运筹学试题及答案,希望给大家带来帮助!《运筹学》复习试题及答案(一)一、填空题1、线性规划问题是求一个线性目标函数_在一组线性约束条件下的极值问题。

2、图解法适用于含有两个变量的线性规划问题。

3、线性规划问题的可行解是指满足所有约束条件的解。

4、在线性规划问题的基本解中,所有的非基变量等于零。

5、在线性规划问题中,基可行解的非零分量所对应的列向量线性无关6、若线性规划问题有最优解,则最优解一定可以在可行域的顶点(极点)达到。

7、线性规划问题有可行解,则必有基可行解。

8、如果线性规划问题存在目标函数为有限值的最优解,求解时只需在其基可行解_的集合中进行搜索即可得到最优解。

9、满足非负条件的基本解称为基本可行解。

10、在将线性规划问题的一般形式转化为标准形式时,引入的松驰数量在目标函数中的系数为零。

11、将线性规划模型化成标准形式时,“≤”的约束条件要在不等式左_端加入松弛变量。

12、线性规划模型包括决策(可控)变量,约束条件,目标函数三个要素。

13、线性规划问题可分为目标函数求极大值和极小_值两类。

14、线性规划问题的标准形式中,约束条件取等式,目标函数求极大值,而所有变量必须非负。

15、线性规划问题的基可行解与可行域顶点的关系是顶点多于基可行解16、在用图解法求解线性规划问题时,如果取得极值的等值线与可行域的一段边界重合,则这段边界上的一切点都是最优解。

17、求解线性规划问题可能的结果有无解,有唯一最优解,有无穷多个最优解。

18、19、如果某个变量Xj为自由变量,则应引进两个非负变量Xj , Xj,同时令Xj=Xj- Xj。

20、表达线性规划的简式中目标函数为ijij21、、(2、1 P5))线性规划一般表达式中,aij表示该元素位置在二、单选题1、如果一个线性规划问题有n个变量,m个约束方程(m<n),系数矩阵的数为m,则基可行解的个数最为_C_。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

河海大学文天学院2009—2010
第二学期运筹学期末试卷
(国贸、工管专业)

专业 班级 学号 姓名
I. 判断(每小题2分,共20分)
(1) 线性规划问题中,若约束条件是“≤” 型且右端项非负,则必须使用人工变量。
(2) 若某资源的影子价格是正的,则此资源已经用尽。
(3) 目标函数上加一常数不影响线性规划问题的最优解。
(4) 若线性规划问题的可行域非空,则至少有一个顶点是最优解。
(5) 线性规划原问题有多重解,则其对偶问题也有多重解。
(6) 下列的调拨方案作为初始方案是正确的(表中数字为调拨量)
D1 D2 D3 D4
供应

S1 15 15
S2 15 10 25
S3 5 0 5
需求
5 15 15 10

(7) X*和Y*分别是原问题和对偶问题的最优解,则X* = Y*。
(8) 平衡运输问题有相同数目的供应地和需求地。
(9) 线性规划无界的含义是:
(a) 可行域无界;
(b) 有入基变量但没有出基变量;
(c) 最优表中,有非基本变量的检验数是零;

(d) 选取出基变量时,对应的最小比值是零。

(10) 若两个线性规划问题的最优目标值相同,则
(a) 这两个问题的对偶最优目标值相同;
(b) 这两个问题的最优解相同;
(c) 这两个问题的可行域相同;
(d) 上述都不对。
II. 求解(第一题15,第二题10分。共25分)
(1) Max. Z = X1 + X2
s.t. -X1 + X2 ≤ 0
3X1 - X2 ≤ -3
X1, X2 ≥ 0
a) 求解该问题;
b) 写出其对偶问题并求解。

(2) Max Z = 2X1 –2 X2 + 4X3 -3X4
s.t. 2X1 + X2 +X3 + X4 = 5
2X1 -2X2 +X4 ≥2
X1 +X3 - 2X4 ≤3
X1 , X2 ,X3 , X4 ≥ 0
写出初始单纯形表。

III. 找出A到E的最短路线及其路程(M是你学号的最后一位数)。(10分)
5
B1 C1 2
8 5 2
9 D1 5
7 3
A 6 B2 7 C2 E
8 4
M+1 4 D2 6
5 5
B3 6 C3 5

IV.求解下面的运输问题(M 是你学号的最后一位,表中数字为单位运价):(15分)
D1 D2 D3
供应

S1 5 8 9 70
S2 3 6 4 45
S3 10 12 9 M+1
需求
M+1 65 50
V. 一工厂用原材料A, B 生产产品I和II 。资料如下:(每小题6分,共30分)
原材料 I II 原材料限制
A B 3 5 6 2 15 (kg)
24 (kg)
利润 ($)
2 1

a) 制定生产计划使总利润最大。
b) 若原材料B增加1公斤,总利润将增加多少?
c) 原材料A的市场价格是$1.0。工厂该买入或是卖出原材料B? 为什么?
d) 原材料A和B的允许变化范围分别是多少?
e) 现原材料A增加到27kg,该如何制定生产计划?总利润将是多少?

相关文档
最新文档