数学建模论文Microsoft Word 文档
数学建模word排版

然后对编号进行修改:
一定要选中如下图所示的“多级符号”。
对选中的该样式进行自定义。弹出下图,但下图中
第一个框中的格式是不对的。怎么办呢?
选中“正规形式编号”,这时你会看见下图显示出标题2为
“1.1 标题2”,且编号格式从“一.1”变为“和格式”中 的变化,上面的两个是 改过的。
参考格式:
一、页面设置:
• 要求: • 用 白 色 A4 纸 单 面 打印; • 上下左右各留出 至 少 2.5 厘 米 的 页 边距; • 从左侧装订。
第一页为: 论文题目 摘要
关键词。
• 提请大家注意: 摘要应该是一份简明扼要的详细摘要(包 括关键词),在整篇论文评阅中占有重要 权重,请认真书写(注意篇幅不能超过一 页,且无需译成英文)。 • 全国评阅时将首先根据摘要和论文整体结 构及概貌对论文优劣进行初步筛选。
• 下面修改“编号”: • 弹出如下对话框,选择“多级符号”选项卡。
然后点“自定义”,弹出下面所示的对话框。
点“确定”即可得到:
1
问题重述
若想改为: 一 问题重述 只需勾掉“正规形 式编号”,选择“一,二,三,四”样式。确定。
4.设置二级标题的格式: • 然后选择“一.1 标 题2”进行修改。 • 黑体小四号, • 左对齐。 • 段落同一级标题一 样。
• 一定要使用样式,除了Word原先所提供的 标题、正文等样式外,还可以自定义样式。 • 如果你发现自己是用选中文字然后用格式 栏来设定格式的,一定要注意,想想其他 地方是否需要相同的格式,如果是的话, 最好就定义一个样式。 • 对于相同排版表现的内容一定要坚持使用 统一的样式。这样做能大大减少工作量和 出错机会,如果要对排版格式(文档表现) 做调整,只需一次性修改相关样式即可。
数学建模文章格式模版word版(共5篇)

数学建模文章格式模版word版(共5篇)第一篇:数学建模文章格式模版word版数学建模文章格式模版题目:明确题目意思一、摘要:500个字左右,包括模型的主要特点、建模方法和主要结果二、关键字:3-5个三.问题重述。
略四.模型假设根据全国组委会确定的评阅原则,基本假设的合理性很重要。
(1)根据题目中条件作出假设(2)根据题目中要求作出假设关键性假设不能缺;假设要切合题意五.模型的建立(1)基本模型:1)首先要有数学模型:数学公式、方案等2)基本模型,要求完整,正确,简明(2)简化模型1)要明确说明:简化思想,依据2)简化后模型,尽可能完整给出(3)模型要实用,有效,以解决问题有效为原则。
数学建模面临的、要解决的是实际问题,不追求数学上:高(级)、深(刻)、难(度大)。
u 能用初等方法解决的、就不用高级方法,u 能用简单方法解决的,就不用复杂方法,u 能用被更多人看懂、理解的方法,就不用只能少数人看懂、理解的方法。
(4)鼓励创新,但要切实,不要离题搞标新立异数模创新可出现在▲建模中,模型本身,简化的好方法、好策略等,▲模型求解中▲结果表示、分析、检验,模型检验▲推广部分(5)在问题分析推导过程中,需要注意的问题:u 分析:中肯、确切u 术语:专业、内行;;u 原理、依据:正确、明确,u 表述:简明,关键步骤要列出u 忌:外行话,专业术语不明确,表述混乱,冗长。
六.模型求解(1)需要建立数学命题时:命题叙述要符合数学命题的表述规范,尽可能论证严密。
(2)需要说明计算方法或算法的原理、思想、依据、步骤。
若采用现有软件,说明采用此软件的理由,软件名称(3)计算过程,中间结果可要可不要的,不要列出。
(4)设法算出合理的数值结果。
七、结果分析、检验;模型检验及模型修正;结果表示(1)最终数值结果的正确性或合理性是第一位的;(2)对数值结果或模拟结果进行必要的检验。
结果不正确、不合理、或误差大时,分析原因,对算法、计算方法、或模型进行修正、改进;(3)题目中要求回答的问题,数值结果,结论,须一一列出;(4)列数据问题:考虑是否需要列出多组数据,或额外数据对数据进行比较、分析,为各种方案的提出提供依据;(5)结果表示:要集中,一目了然,直观,便于比较分析▲数值结果表示:精心设计表格;可能的话,用图形图表形式▲求解方案,用图示更好(6)必要时对问题解答,作定性或规律性的讨论。
数学建模美赛论文格式中文版Word版

你的论文需要从此开始请居中使用Arial14字体第一作者,第二作者和其他(使用Arial14字体)1.第一作者的详细地址,包括国籍和email(使用Arial11)2.第二作者的详细地址,包括国籍和email(使用Arial11)3.将所有的详细信息标记为相同格式关键词列出文章的关键词。
这些关键词会被出版方用作关键词索引(使用Arial11字体)论文正文使用Times New Roman12字体摘要这一部分阐述说明了如何为TransTechPublications.准备手稿。
最好阅读这些用法说明并且整篇论文都是遵照这个提纲。
手稿的正文部分应该是17cm*25cm(宽*高)的格式(或者是6.7*9.8英尺)。
请不要在这个区域以外书写。
请使用21*29厘米或8*11英尺的质量较好的白纸。
你的手稿可能会被出版商缩减20%。
在制图和绘表格时候请特别注意这些准则。
引言所有的语言都应该是英语。
请备份你的手稿(以防在邮寄过程中丢失)我们收到手稿即默认为原作者允许我们在期刊和书报出版。
如果作者在论文中使用了其他刊物中的图表,他们需要联系原作者,获取使用权。
将单词或词组倾斜以示强调。
除了每一部分的标题(标记部分的标题),不要加粗正文或大写首字母。
使用激光打印机,而不是点阵打印机正文的组织:小标题小标题应该加粗并注意字母的大小写。
第二等级的小标题被视为后面段落的一部分(就像这一大段的一小部分的开头)页码不要打印页码。
请用淡蓝色铅笔在每一张纸的左下角(在打印区域以外)标注数字。
脚注脚注应该单独放置并且和正文分开理想地情况下,脚注应该出现在参考文献页,并且放在文章的末尾,和正文用分割线分开。
表格表格(如表一,表二,...)应该放在正文当中,是正文的一部分,但是,要避免文本混乱。
一个描述性的表格标题要放在图表的下方。
标题应该独立的放在表格的下方或旁边。
表中的单位应放在中括号中[兆伏]如果中括号不可用,需使用大括号{兆}或小括号(兆)。
数学建模竞赛优秀大学生论文.doc

数学建模竞赛优秀大学生论文医学论文》1数学建模的过程1.1模型准备首先要了解实际背景,寻找内在规律,形成一个比较清晰的轮廓,提出问题。
1.2模型假设在明确目的、掌握资料的基础上,抓住问题的本质,舍弃次要因素,对实际问题做出合理的简化假设。
1.3模型建立在所作的假设条件下,用适当的数学方法去刻画变量之间的关系,得出一个数学结构,即数学模型。
原则上,在能够达到预期效果的基础上,选择的数学方法应越简单越好。
1.4模型求解建模后要对模型进行分析、求解,求解会涉及图解、定理证明及解方程等不同数学方法,有时还需用计算机求数值解。
1.5模型分析、检验、应用模型的结果应当能解释已存的现象,处理方法应该是最优的决策和控制方案,所以,对模型的解需要进行分析检验。
把求得的数学结果返回到实际问题中去,检验其合理性。
如果理论结果符合实际情况,那么就可以用它来指导实践,否则需再重新提出假设、建模、求解,直到模型结果与实际相符,才能进行实际应用。
总之,数学建模是一项富有创造性的工作,不可能用一些条条框框的规则规定的十分死板,只要是能够做到全面兼顾、能抓住问题的本质、最终检验结果合理,都是一个好的数学模型。
2数学建模在生物医学中的应用2.1DNA序列分类模型DNA分子是遗传信息存储的基本单位,许多生命科学中的重大问题都依赖于对这种特殊分子的深入了解。
因此,关于DNA分子结构与功能的问题,成为二十一世纪最重大的课题之一。
DNA序列分类问题是研究DNA分子结构的基础,它常用的方法是聚类分析法。
聚类分析是使用数据建模简化数据的一种方法,它将数据分成不同的类或者簇,同一个簇中的数据有很大的同质性,而不同的簇中的数据有很大的相异性。
在对DNA序列进行分类时,需首先引入样品变量,比如说单个碱基的丰度、两碱基丰度之比等;然后计算出每条DNA序列的样品变量值,存入到向量中;最后根据相似度度量原理,计算出所有序列两两之间的Lance与Williams距离,依据距离的远近进行分类。
数学建模论文格式规范及Word模板

∙论文用白色A4纸单面打印;上下左右各留出至少2.5厘米的页边距;从左侧装订。
∙论文第一页的内容是:论文题目、组员姓名、学号、所属专业、联系电话、电子邮箱。
∙论文题目和摘要写在第二页上, 从第三页开始是论文正文。
∙论文从第二页开始编写页码,页码必须位于每页页脚中部,用阿拉伯数字从“1”开始连续编号。
∙论文不能有页眉,论文中不能有任何可能显示答题人身份的标志。
∙论文题目用三号黑体字、一级标题用四号黑体字,并居中;二级、三级标题用小四号黑体字,左端对齐(不居中)。
论文中其他汉字一律采用小四号宋体字,行距用单倍行距,打印时应尽量避免彩色打印。
∙提请大家注意:摘要应该是一份简明扼要的详细摘要(包括关键词),在整篇论文评阅中占有重要权重,请认真书写(注意篇幅不能超过一页,且无需译成英文)。
评阅时将首先根据摘要和论文整体结构及概貌对论文优劣进行初步筛选。
∙引用别人的成果或其他公开的资料(包括网上查到的资料) 必须按照规定的参考文献的表述方式在正文引用处和参考文献中均明确列出。
正文引用处用方括号标示参考文献的编号,如[1][3]等;引用书籍还必须指出页码。
参考文献按正文中的引用次序列出,其中书籍的表述方式为:[编号] 作者,书名,出版地:出版社,出版年。
参考文献中期刊杂志论文的表述方式为:[编号] 作者,论文名,杂志名,卷期号:起止页码,出版年。
参考文献中网上资源的表述方式为:[编号] 作者,资源标题,网址,访问时间(年月日)。
摘要:此处写摘要。
摘要在整篇论文评阅中占有重要权重,请认真书写摘要(注意篇幅不能超过一页)。
组委会评阅时将首先根据摘要和论文整体结构及概貌对论文优劣进行初步筛选。
简要论述本文所要解决的问题及意义,解决问题的思路与方法、主要结果(数值结果或结论),建模的创新之处与特色等。
①短:字数尽量控制在500字内;语言精简,用词准确;②精:阐述细致具体的方法;列出主要结论③完整:写出主要模型(名称)、方法和结果,解决了什么问题,有何特色等;摘要应具有独立性和自明性,应是一篇完整的短文。
截断切割大学生数学建模word版

截断切割数学建模论文摘要 本文讨论了将一个待加工长方体经过六次截断切割成一个成品长方体的切割方式问题,利用重心偏移法,考虑了第七及第k+1次切割之间的联系,建立了动态规划的数学模型,并用直接搜索法进行了求解。
本文接着用此模型对某些部门的切割准则作了正确的评价,并给了当e=0时的简明优化准则,最后用具体实例验证了模型的可靠性,并对一些初值进行了详细的讨论,给出了所有的最优解。
本文还对模型进行了误差分析,并对模型进行了推广。
关键词 动态规划 切割方式 f-原则一、问题的提出与分析某些工业部门(如贵重石材加工等)采用截断切割的加工方式。
这里“截断切割”是指将物体沿某个切割平面分成两部分。
从一个长方体中加工出一个已知尺寸,位置预定的长方体(这两个长方体的对应表面是平行的),通常要经过6次截断切割。
设水平切割单位面积的费用是垂直切割单位面积的费用的r 倍,且当先后两次垂直切割的平面(不管它们之间是否穿插水平切割)不平行时,因调整刀具需额外费用e 。
试为这些部门设计一种安排各面加工次序(称“切割方式”)的方法,使加工费用最少。
并对某部门用的如下准则作出评论:每次选择一个加工费用最少的待切割面进行切割。
该问题可以采用重心偏移法。
在切割之前,长方体的重心是确定的,每切割一次它的重心就偏移一次,而且偏移有一定的规律,它只是沿着长、宽或高的方向偏移。
待原长方体加工成成品长方体之后,长方体的重心经过六次偏移已与成品长方体的重心重合了。
这就是长方体的重心偏移过程。
该问题是一个动态规划问题,是分级决策方法和最佳化原理的综合应用。
首先是建立分级决策的模型。
用d k 表示第k 次决策,J k 表示第k 级的级收益,现在一定条件下,寻求一组可行决策变量{}621,,,d d d ,使问题的总收益J 为最佳。
二、基本假设与符号约定(一) 基本假设1. 由工艺要求,与水平工作台接触的待加工长方体底面是事先指定的,成品长方体的尺寸已知,位置预定,且两个长方体和对应表面是平行的。
数学建模优秀论文.doc
数学建模优秀论文.doc数学建模比赛预选赛温室中的绿色生态臭氧病虫害防治2009年12月,哥本哈根国际气候大会在丹麦举行之后,温室效应再次成为国际社会的热点。
如何有效地利用温室效应来造福人类,减少其对人类的负面影响成为全社会的聚焦点。
臭氧对植物生长具有保护与破坏双重影响,其中臭氧浓度与作用时间是关键因素,臭氧在温室中的利用属于摸索探究阶段。
假设农药锐劲特的价格为10万元/吨,锐劲特使用量10mg/kg-1水稻;肥料100元/亩;水稻种子的购买价格为5.60元/公斤,每亩土地需要水稻种子为2公斤;水稻自然产量为800公斤/亩,水稻生长自然周期为5个月;水稻出售价格为2.28元/公斤。
根据背景材料和数据,回答以下问题:(1)在自然条件下,建立病虫害与生长作物之间相互影响的数学模型;以中华稻蝗和稻纵卷叶螟两种病虫为例,分析其对水稻影响的综合作用并进行模型求解和分析。
(2)在杀虫剂作用下,建立生长作物、病虫害和杀虫剂之间作用的数学模型;以水稻为例,给出分别以水稻的产量和水稻利润为目标的模型和农药锐劲特使用方案。
(3)受绿色食品与生态种植理念的影响,在温室中引入O3型杀虫剂。
建立O3对温室植物与病虫害作用的数学模型,并建立效用评价函数。
需要考虑O3浓度、合适的使用时间与频率。
(4)通过分析臭氧在温室里扩散速度与扩散规律,设计O3在温室中的扩散方案。
可以考虑利用压力风扇、管道等辅助设备。
假设温室长50 m、宽11 m、高3.5 m,通过数值模拟给出臭氧的动态分布图,建立评价模型说明扩散方案的优劣。
(5)请分别给出在农业生产特别是水稻中杀虫剂使用策略、在温室中臭氧应用于病虫害防治的可行性分析报告,字数800-1000字。
论文题目:温室中的绿色生态臭氧病虫害防治姓名1:学号:专业:姓名1:学号:专业:姓名1:学号:专业:2010 年5月3日目录一.摘要 (3)二.问题的提出 (5)三.问题的分析 (5)四.建模过程 (6)1)问题一 (6)1.模型假设 (6)2.定义符号说明 (6)3.模型建立 (6)4.模型求解 (7)2)问题二 (9)1.基本假设 (9)2.定义符号说明 (10)3.模型建立 (10)4.模型求解 (11)3)问题三 (12)1.基本假设 (12)2.定义符号说明 (12)3.模型建立 (13)4.模型求解 (13)5.模型检验与分析 (14)6.效用评价函数 (15)7.方案 (16)4).问题四 (17)1.基本假设 (17)2.定义符号说明 (17)3.模型建立 (18)4.动态分布图 (19)5.评价方案 (19)五.模型的评价与改进 (20)六.参考文献 (21)一.摘要:“温室中的绿色生态臭氧病虫害防治”数学模型是通过臭氧来探讨如何有效地利用温室效应造福人类,减少其对人类的负面影响。
《数学建模》论文word模板
《数学建模》论文(宋体、小三、居中)题目:数学与信息科学学院学院:专业:班级:姓名:学号:2015 年月日1车道被占用对城市道路通行能力的影响摘 要本文针对交通事故占用车道对城市道路通行能力的影响进行分析,通过采集附件1、附件2中的数据,对横断面实际通行能力、上游车流量与时间的函数关系运用拟合,通过判断车辆排队长度与实际通行能力、事故持续时间、上游车流量的关系,并建立了它们之间的微分方程模型.运用Matlab 软件,对模型进行分析和求解.对于问题一,为得出事故发生到撤离期间,横断面实际通行能力和时间的函数关系.对事故发生即刻起每10秒统计通过横断面汽车的标准当量数,再转化 为单位为/pcu h 来表示实际通行能力,通过对附件1所给视频中车辆数据的统计与筛选,用Matlab 软件将统计筛选数据进行多项式拟合,得到该函数关系为21()0.305622.22941392.0532f t t t =-+.对于问题二,运用问题一的方法对处理附件2,同理得出函数关系为20()0.0106 2.34661365.7067f t t t =-+,根据两图曲线走势得出两图趋势大体相当,但图4.2较图4.1曲线平缓,说明图4.2的横断面实际通行能力受事故影响较小.产生差异的原因是根据附件3上左转流量比例35%、直行流量比例44% 和右转流量比例21%,即三车道比一车道车流量大,导致二三车道占用后需要换道的较多于一二车道占用,从而二三车道被占用时对横断面实际通行能力影响大,符合曲线走势.对于问题三,根据路段上游车流量与事故横断面实际通行能力对路段车辆排队长度变化率的关系为基础,利用问题一求横断面实际通行能力的时间变化函数的方法得出路段上游车流量与时间的函数,建立车辆排队长度与横断面实际通行能力、事故持续时间、上游车流量间的微分方程模型,假设车辆排队单位长度与横断面实际同行能力、路段上游车流量均称正比例关系,与事故持续时间之间的关系可以忽略不计,即得该微分方程模型为'2211()()()f t k f t k f t =+,再利用Maple 及初始值解出所设参量1k ,2k .对于问题四,由于题设条件符合上述模型,故将所给数据带入问题三所建模型当中求出时间即可.事故所处位置距离上游路口变为140米,根据视频中的实地情况,该路段中的支路位置将处在事故发生的下游,会相对减弱道路拥堵程度即提高实际通行能力,则运用原始模型求出时间相对应该偏小,但误差不会太大.关键词:实际通行能力;微分方程模型;拟合;Maple 软件目录(由域生成的目录,交稿前此页可以保留或删掉)摘要 (1)1、问题重述与问题分析 (3)1.1 问题重述(大家一定要注意样式的使用) (3)1.2 问题分析 (3)2、模型假设 (4)3、符号说明 (4)4、模型的建立与求解 (5)4.1 问题一的模型建立与求解 (5)4.2 问题二的模型建立与求解 (5)4.3 问题三的模型建立与求解 (6)4.4 问题四的求解 (7)5、模型的评价与改进 (8)5.1 对现有模型进行评价 (8)5.2 对现有模型的改进 (8)参考文献 (8)附录A (9)附录B (10)21、问题重述与问题分析1.1 问题重述(大家一定要注意样式的使用)随着城市化进程的加快,城市车辆数量剧增,交通事故日显突出,交通事故车道被占用导致车道或道路横断面通行能力在单位时间内降低.由于城市道路具有交通流密度大、连续性强等特点,一条车道被占用,也可能降低路段所有车道的通行能力,即使时间短,也可能引起车辆排队,出现交通阻塞.如处理不当,甚至出现区域性拥堵.就针对交通事故降低车道通行能力方面解决如下问题:(1) 描述视频中交通事故发生至撤离期间,事故所处横断面实际通行能力的变化过程.(2) 分析说明同一横断面交通事故所占车道不同对该横断面实际通行能力影响的差异.(3) 构建数学模型,分析交通事故所影响的路段车辆排队长度与事故横断面实际通行能力、事故持续时间、路段上游车流量间的关系.(4) 假如视频1(附件1)中的交通事故所处横断面距离上游路口变为140米,路段下游方向需求不变,路段上游车流量为1500/pcu h,事故发生时车辆初始排队长度为零,且事故持续不撤离.则求从事故发生开始到车辆排队长度将到达上游路口的时间.1.2 问题分析本题给出了两个交通事故发生时道路通行情况的视频及其示意图,通过视频采集数据来建立数学模型.针对问题一:根据实际通行能力的概念,在交通事故出现之前,道路保持基本通行能力,不必考虑实际通行能力,在事故出现即刻到撤离时间段内,通过视频1每10秒逐一统计标准车当量数(统计表见附件6),再转化为/pcu h为单位表示实际通行能力,利用Matlab软件将所统计筛选的数据拟合出一条曲线,筛选的目的是将视频中出现跳跃产生模糊的剪去,该曲线的走势及拟合出的函数反应实际通行能力的变化过程.针对问题二:就视频2采用问题一相同的方法统计,拟合出一条曲线及函数,将曲线一二进行比较,从而得出所占车道不同对横断面实际通行能力影响的差异.产生差异的原因是根据附件3上左转流量比例35%、直行流量比例44% 和右转流量比例21%,说明三车道比一车道车流量大,则所占二三车道比一二车道对降低实际通行能力影响大.3针对问题三:构建路段车辆排队长度与事故横断面实际通行能力、事故持续时间、路段上游车流量间的模型,利用问题一所求出的实际通行能力的函数,用同样的方法求出上游车流量的函数关系及车辆排队长度与时间的函数关系(统计表见附录).根据车流量排队长度的变化率与横断面实际通行能力、路段上游车流量间的关系为基础,建立一个微分方程模型,再利用Maple软件及初始值解微分方程中的参量.针对问题四:问题四条件基本吻合问题三所建的模型,则直接将数据带进模型求出即可.事故所处位置距离上游路口变为140米,该路段中的支路位置将处在事故发生的下游,会相对减弱道路拥堵程度即提高实际通行能力,则运用原始模型求出时间相对应该偏小,但误差不会太大,则直接代入模型求解.2、模型假设(1)假设道路上行驶的车辆均以匀速的车速跟踪行驶;(2)都是从静止状态匀加速启动;(3)假设车辆排队单位长度与横断面实际同行能力、路段上游车流量均称正比例关系,与事故持续时间之间的关系可以忽略不计;3、符号说明t: 表示事故持续时间m: 事故横断面实际通行的标准车当量q: 事故横断面实际通行能力(/pcu h)n: 路段上游进入该横断面的标准车当量p: 路段上游进入该横断面的车流量(/pcu h)r: 交通事故所影响的路段车辆排队长度2()f t: 二三车道横断面实际通行能力的变化函数1()f t: 路段上游车流量的变化函数()f t: 路段车辆排队长度与时间关系的函数0()f t:一二车道横断面实际通行能力的变化函数1k: 横断面实际通行能力拟合时的参量2k: 路段上游车流量拟合时的参量454、模型的建立与求解4.1 问题一的模型建立与求解经分析,问题一是通过拟合曲线和函数来定量描述事故发生到撤离期间,横断面实际通行能力的变化,其实际通行能力是用每10秒统计通过横断面汽车的标准当量数,再转化为单位为/pcu h 来表示实际通行能力.图4.1实际通行能力的时间变化图(占用二三车道)是通过Matlab 拟合得到,从而得到实际通行能力与时间的关系21()0.305622.22941392.0532f t t t =-+ 根据曲线及函数说明,当事故发生即刻实际通行能力达到最大,之后随时间持续实际通行能力降低一段时间后又恢复上升,待事故撤离瞬间实际通行能力变大,之后恢复道路基本通行能力.可得出实际通行能力与事故持续时间之间并非单调关系,近似拟合方程有个最低点.图4.1 实际通行能力的时间变化图(占用二三车道)4.2 问题二的模型建立与求解经分析问题二是将问题一的事故发生车道变为一二,其本质做法相同,根据问题一所得结论,即实际通行能力并不是随事故持续时间单调降低的,又根据问题二拟合曲线走势,易看出两条曲线的走势相似,只是问题二对应曲线较一平缓,说明事故占用二三车道对道路横截面实际通行能力影响较大,更容易使道路堵塞,而在一二车道相对三车道上的疏通能力较强,与附件3所提供的右转、直行、左转流量比例存在联系,如图4.2实际通行能力的时间变化图(占用一二车道)图4.2 实际通行能力的时间变化图(占用一二车道)4.3 问题三的模型建立与求解根据交通事故所影响的路段车辆排队长度与横断面实际通行能力、事故持续时间和路段上游车流量间的关系得出,把持续时间当作自变量,运用微分方程,如方程显示不全就用单位行距即可(Mathtype的插入Right-numbered).67(8.1)由问题一及(1.1)式可知,已知横断面实际通行能力关于时间的函数关系0()f t ,因视频中可提取的数据很多,所以路段上游车流量与持续时间可通过拟合得出同上的函数和曲线如图4.3上游车流量的时间变化图()!!!n r n r - .再用相同的方式得出路段车辆排队长度随时间变化的函数关系及曲线.由假设条件知假设车辆排队单位长度与横断面实际同行能力、路段上游车流量均称正比例关系,与事故持续时间之间的关系可以忽略不计.根据'2211()()()f t k f t k f t =+利用Maple 软件及初始值计算得出1k 2k (如表1.1所示)则模型求得函数为1k = —1.6903, 2k =1.8 ,即12() 1.6903() 1.8()f t f t f t '=-+.表1.1 示例表格五号黑体(尽可能用三线表)五号 五号 五号 宋体 宋体4.4 问题四的求解由题意可知,此时最大车辆排队长度为140,而()f t 是排队长度与持续时间的函数关系,因此,欲求达到最大车辆排队长度所需的时间,只需用maple 软件直接把140代入即可,解得t =98s ,其中位于事故下游的支路不加考虑.5、模型的评价与改进5.1 对现有模型进行评价优点:(1)通过数据的拟合,弱化了数据的随机性,强化了其规律性;(2)模型的参数是通过回归参数的最小二乘估计法得到的,精确度较高;(3)采用微分方程模型建立起问题三中的各个关系,同时得到函数与问题四条件吻合.(4)在采用微分方程的同时考虑周期性相结合更切合实际.缺点:(1)对数据的拟合会产生较大的误差,并且丧失一些特征点,使得函数与实际相差大(2) 采用微分方程需针对连续函数,而此模型中以10秒为间隔相当于连续.会存在一定偏差.5.2 对现有模型的改进未考虑红绿灯对路段上游车流量的影响,即对模型所建立的函数没有周期性的影响.参考文献[1]姜启源,数学模型(第二版),北京:高等教育出版社,1993年.[2]王松桂,陈兰红,陈立萍,论线性统计模型的应用,中国科学,28(2):1228-1239,1999年.[3]王高雄,论文的模板,/,2014年5月21日.8附录A表:16:49:02 3 1 35 1080 360 16:49:12 3 7 30 1080 2520 16:49:22 4 8 60 1440 2880 16:49:32 2 4 50 720 1440 16:49:38 3516:50:043016:50:14 3 7 60 1080 2520 16:51:54 3 1 120 1080 360 16:52:04 3 1 120 1080 360 16:52:14 4 9 90 1440 3240 16:52:24 2 9 70 720 3240 16:52:34 4 0 60 1440 0 16:52:44 3 0 120 1080 0 16:52:54 3 1 90 1080 360 16:53:04 4 0 90 1440 09附录BMatlab程序:1.第一个视频数据代码t=0:84;q=[1440 1080 1800 1440 1080 1080 2160 1080 1440 1440 720 720 1440 1080 720 720 1080 720 1080 1080 360 1080 1440 1080 1440 1080 1080 720 1080 360 1080 1080 1440 1440 1080 1080 1440 1080 1080 1080 1440 720 1080 1080 720 1080 1080 1440 1440 1080 720 1080 1080 1080 1440 720 1440 1080 1080 1440 1080 720 1080 1080 1800 720 1080 1800 1440 720 720 720 1440 1440 1080 1080 1440 1800 720 1080 1080 1800 1440 1080 4680];A=polyfit(t,q,2)z=polyval(A,t);plot(t,q,'+',t,z,'.')2.第二个视频数据代码t=0:174;q=[720 360 1800 1440 1800 1800 720 1800 2160 1440 1080 1080 1080 720 720 1800 1800 1080 1440 1440 2160 1800 720 1080 1440 1440 1080 2160 1440 720 1080 1080 1800 1800 1080 360 720 1800 2160 1440 1080 720 1080 1440 1440 1080 1440 1440 1440 1440 1800 1800 2160 1440 1080 1440 1080 1440 720 720 360 1080 1440 1800 1080 720 720 1800 1080 1440 1080 1080 1440 1080 1800 720 720 360 360 1440 1440 1800 1080 1800 1440 1080 1080 1800 1080 1080 720 1440 1440 1800 1440 1440 1440 1440 1080 1080 1080 1440 1440 1080 1080 1440 1080 1080 1080 1440 1440 1080 1080 720 1080 1440 1080 1440 1440 1080 1800 1080 1440 1440 1440 1080 1080 1440 1440 1080 1080 1440 1440 1800 1080 1440 1440 1080 1440 1080 1440 1080 1440 1080 1080 1440 1080 1080 360 720 1080 1080 1440 1440 1080 1440 1440 1080 1440 1080 1440 1080 720 1080 1080 1080 1440 1800 1440 1440 1080 1440 1440 1440 1440];12 10 11 10 14 13 24 13];A=polyfit(t,q,2)z=polyval(A,t);plot(t,q,'+',t,z,'.')103.路段上游车流量与时间的函数源程序:t=0:92;y=[360 360 360 2880 1440 0 360 360 0 1800 2520 0 0 360 360 2520 2880 0 0 0 360 1800 1800 0 0 360 360 2520 3240 2160 0 0 0 2520 1800 1080 360 0 360 2520 2880 1440 0 0 2520 3240 1440 0 0 0 3600 2880 1440 360 360 360 3240 3240 0 0 360 0 3960 2520 1440 0 2520 2880 3600 1440 0 0 0 0 2160 1800 720 0 0 0 0 0 0 2880 0 0 3600 2520 0 0 720 0 1800];A=polyfit(t,,p,3)z=polyval(A,t);plot(t,p,'+',t,z,'.')4.路段车辆排队长度与时间的函数源程序:t=0:87;r=[90 90 60 40 60 80 50 30 10 0 0 0 0 0 0 0 0 0 30 50 40 30 0 30 30 30 10 0 0 0 60 40 40 30 30 45 30 60 50 35 30 60 50 35 30 60 30 30 40 120 60 60 45 35 45 120 120 90 70 60 120 90 90 60 60 60 100 120 120 80 90 120 120 120 90 90 90 90 100 90 60 90 90 90 120 120 120 0];A=polyfit(t,r,3)z=polyval(A,t);plot(t,r,'+',t,z,'.')11。
数学建模优秀论文模板
数学建模优秀论文模板标题:基于数学建模方法的XXX问题研究摘要:本文基于数学建模方法,对XXX问题进行了深入研究。
首先,我们对问题进行了全面的分析和理解,并提出了相关假设。
然后,我们通过建立数学模型,利用数学工具和算法对问题进行求解。
最后,我们对模型进行了验证和优化,并得出了一系列重要结论。
本研究获得了全国数学建模大赛一等奖。
研究结果具有一定的理论和实践价值,对于解决类似问题具有一定的指导意义。
关键词:数学建模;XXX问题;模型构建;求解方法;实践价值1.引言1.1问题背景1.2研究目的1.3研究意义2.问题分析和理解2.1对问题进行全面分析2.2提出相关假设2.3确定问题的关键要素及其相互关系3.模型建立3.1建立问题的数学模型3.2假设与符号定义3.3模型的假设和参数4.模型求解4.1求解方法的选择4.2模型求解过程4.3算法的设计与实现5.模型验证和优化5.1模型的验证方法5.2模型的优化策略5.3鲁棒性分析6.结果与讨论6.1模型求解结果6.2结果分析与讨论6.3结果的实际应用价值7.模型的评价与展望7.1模型的优点和不足7.2模型的推广和改进方向附录注意事项:1.这只是一个模板的大致结构,具体的内容要根据实际情况进行补充和修改。
2.摘要部分简洁明了地介绍了研究的目的、方法和结果。
3.引言部分对问题进行了背景说明,明确研究目的和意义。
4.问题分析和理解部分对问题进行了深入分析和理解,确定了问题的关键要素和假设。
5.模型建立部分对问题进行了数学建模,并定义了相关的符号和假设。
6.模型求解部分介绍了所选用的求解方法和实际算法的设计。
7.模型验证和优化部分对模型进行了验证和优化,包括鲁棒性分析。
8.结果与讨论部分对模型求解结果进行了分析和讨论,并探讨了结果的实际应用价值。
9.模型的评价与展望部分对模型的优点和不足进行了评价,并提出了模型的推广和改进方向。
数学建模大赛一等奖作品Word 文档
数学建模论文高速公路道路交通事故分析预测摘要我国目前的道路交通安全状况相对于世界水平要差得多,高速公路道路交通事故所造成的损失非常高。
因此,改善交通安全状况、预防和减少高速公路交通事故具有重大的现实意义。
针对这样的现状,我们必须进行高速公路交通事故的预测,从而及早采取措施进行预防工作,从而减少事故发生次数及损失程度。
针对此次建模的要求,在对此问题的深入研究下,我们提出了合理的假设,将本问题归结为一个预测分析的问题,其基本思想是通过聚类分析、SPSS软件求解、GM(1,1)灰色预测模型、多元线性回归分析,组合模型等方法的运用得到最优的预测结果。
针对问题一,我们首先运用了聚类分析的思想,建立了基于聚类分析的模型Ⅰ,通过聚类分析方法对给定的信息的筛选、加工、延伸和扩展,从而将评价对象确定在某一范围内,通过了该方法,最终得到了各类评价等级方法,为科学预测交通事故提供了依据。
针对问题二,本文选取受伤人数这一单项指标作为预测的对象,首先运用了GM(1,1)灰色预测模型,建立模型Ⅱ,通过对给定的事故原始数据,通过MATLAB 软件预测了五年内的交通事故受伤人数;运用多元线性回归方法建立模型Ⅲ,在模型Ⅱ和模型Ⅲ的基础之上,通过基于组合模型思想的模型Ⅳ,求解得出了交通事故受伤人数在五年内的预测。
关键词:SPSS聚类分析 GM(1,1)灰色预测模型组合预测模型 MATLAB目录一.问题重述 (3)二.问题的分析 (4)三.模型假设与符号系统 (5)3.1模型假设 (5)3.2符号系统 (6)四.模型的建立及求解 (7)4.1 问题一 (7)4.1.1建立模型Ⅰ (7)4.1.2模型Ⅰ的求解及结果 (8)4.1.3实验结果的分析说明 (9)4.2 问题二 (12)4.2.1建立GM(1,1)模型Ⅱ (12)4.2.2 用MATLAB求解模型Ⅱ (16)4.2.3 建立模型Ⅲ (19)4.2.4 建立优化模型Ⅳ (20)4.2.5最优组合模型的求解 (21)五.模型的评价 (22)参考文献 (23)附录 (24)一.问题重述随着道路交通事业的发展,高速公路交通事故也在不断增加,对人类的生命和财产安全构成了极大的威胁。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学建模之我见内容摘要:数学作为现代科学的一种工具和手段,要了解什么是数学模型和数学建模,了解数学建模一般方法及步骤。
关键词:数学模型、数学建模、数学建模应具备的能力、数学建模的提升、数学建模应用题伴随着当今社会的科学技术的飞速发展,数学已经渗透到各个领域,数学建模也显得尤为重要。
数学建模在人们生活中扮演着重要的角色,而且随着计算机技术的发展,数学建模更是在人类的活动中起着重要作用,数学建模也更好的为人类服务。
一、数学模型1、数学模型是对于现实世界的一个特定对象,一个特定目的,根据特有的内在规律,做出一些必要的假设,运用适当的数学工具,得到一个数学结构。
简单地说:就是系统的某种特征的本质的数学表达式(或是用数学术语对部分现实世界的描述),即用数学式子(如函数,图形,代数方程,微分方程,积分方程,差分方程等)来描述(表述,模拟)所研究的客观对象或系统在某一方面的存在规律。
随着社会的发展,生物,医学,社会,经济……,各学科,各行业都涌现现出大量的实际课题,急待人们去研究,去解决。
但是,社会对数学的需求并不只是需要数学家和专门从事数学研究的人才,而更大量的是需要在各部门中从事实际工作的人善于运用数学知识及数学的思维方法来解决他们每天面临的大量的实际问题,取得经济效益和社会效益。
他们不是为了应用数学知识而寻找实际问题(就像在学校里做数学应用题),而是为了解决实际问题而需要用到数学。
而且不止是要用到数学,很可能还要用到别的学科,领域的知识,要用到工作经验和常识。
特别是在现代社会,要真正解决一个实际问题几乎都离不开计算机。
可以这样说,在实际工作中遇到的问题,完全纯粹的只用现成的数学知识就能解决的问题几乎是没有的。
你所能遇到的都是数学和其他东西混杂在一起的问题,不是"干净的"数学,而是"脏"的数学。
其中的数学奥妙不是明摆在那里等着你去解决,而是暗藏在深处等着你去发现。
也就是说,你要对复杂的实际问题进行分析,发现其中的可以用数学语言来描述的关系或规律,把这个实际问题化成一个数学问题,这就称为数学模型。
2、为什么要建数学模型在科学领域中,数学因为其众所周知的准确而成为研究者们最广泛用于交流的语言--因为他们普遍相信,自然是严格地演化着的,尽管控制演化的规律可以很复杂甚至是混沌的。
因此,人们常对实际事物建立种种数学模型以期通过对该模型的考察来描述,解释,预计或分析出与实际事物相关的规律。
3、数学模型具有下列特征:数学模型的一个重要特征是高度的抽象性。
通过数学模型能够将形象思维转化为抽象思维,从而可以突破实际系统的约束,运用已有的数学研究成果对研究对象进行深入的研究。
数学模型的另一个特征是经济性。
用数学模型研究不需要过多的专用设备和工具,可以节省大量的设备运行和维护费用,用数学模型可以大大加快研究工作的进度,缩短研究周期,特别是在电子计算机得到广泛应用的今天,这个优越性就更为突出。
但是,数学模型具有局限性,在简化和抽象过程中必然造成某些失真。
所谓"模型就是模型"(而不是原型),即是指该性质。
二、数学建模数学建模是利用数学方法解决实际问题的一种实践。
即通过抽象,简化,假设,引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解。
简而言之,建立数学模型的这个过程就称为数学建模。
模型是客观实体有关属性的模拟。
陈列在橱窗中的飞机模型外形应当象真正的飞机,至于它是否真的能飞则无关紧要;然而参加航模比赛的飞机模型则全然不同,如果飞行性能不佳,外形再象飞机,也不能算是一个好的模型。
模型不一定是对实体的一种仿照,也可以是对实体的某些基本属性的抽象,例如,一张地质图并不需要用实物来模拟,它可以用抽象的符号,文字和数字来反映出该地区的地质结构。
数学模型也是一种模拟,是用数学符号,数学式子,程序,图形等对实际课题本质属性的抽象而又简洁的刻划,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略。
数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识。
这种应用知识从实际课题中抽象,提炼出数学模型的过程就称为数学建模。
实际问题中有许多因素,在建立数学模型时你不可能,也没有必要把它们毫无遗漏地全部加以考虑,只能考虑其中的最主要的因素,舍弃其中的次要因素。
数学模型建立起来了,实际问题化成了数学问题,就可以用数学工具,数学方法去解答这个实际问题。
如果有现成的数学工具当然好。
如果没有现成的数学工具,就促使数学家们寻找和发展出新的数学工具去解决它,这又推动了数学本身的发展。
例如,开普勒由行星运行的观测数据总结出开普勒三定律,牛顿试图用自己发现的力学定律去解释它,但当时已有的数学工具是不够用的,这促使了微积分的发明。
求解数学模型,除了用到数学推理以外,通常还要处理大量数据,进行大量计算,这在电子计算机发明之前是很难实现的。
因此,很多数学模型,尽管从数学理论上解决了,但由于计算量太大而没法得到有用的结果,还是只有束之高阁。
而电子计算机的出现和迅速发展,给用数学模型解决实际问题打开了广阔的道路。
而在现在,要真正解决一个实际问题,离了计算机几乎是不行的。
数学模型建立起来了,也用数学方法或数值方法求出了解答,是不是就万事大吉了呢不是。
既然数学模型只能近似地反映实际问题中的关系和规律,到底反映得好不好,还需要接受检验,如果数学模型建立得不好,没有正确地描述所给的实际问题,数学解答再正确也是没有用的。
因此,在得出数学解答之后还要让所得的结论接受实际的检验,看它是否合理,是否可行,等等。
如果不符合实际,还应设法找出原因,修改原来的模型,重新求解和检验,直到比较合理可行,才能算是得到了一个解答,可以先付诸实施。
但是,十全十美的答案是没有的,已得到的解答仍有改进的余地,可以根据实际情况,或者继续研究和改进;或者暂时告一段落,待将来有新的情况和要求后再作改进。
应用数学知识去研究和和解决实际问题,遇到的第一项工作就是建立恰当的数学模型。
从这一意义上讲,可以说数学建模是一切科学研究的基础。
没有一个较好的数学模型就不可能得到较好的研究结果,所以,建立一个较好的数学模型乃是解决实际问题的关键之一。
数学建模将各种知识综合应用于解决实际问题中,是培养和提高同学们应用所学知识分析问题,解决问题的能力的必备手段之一。
三、数学建模的一般方法建立数学模型的方法并没有一定的模式,但一个理想的模型应能反映系统的全部重要特征:模型的可靠性和模型的使用性。
建模的一般方法:1。
机理分析机理分析就是根据对现实对象特性的认识,分析其因果关系,找出反映内部机理的规律,所建立的模型常有明确的物理或现实意义。
(1) 比例分析法--建立变量之间函数关系的最基本最常用的方法。
(2) 代数方法--求解离散问题(离散的数据,符号,图形)的主要方法。
(3) 逻辑方法--是数学理论研究的重要方法,对社会学和经济学等领域的实际问题,在决策,对策等学科中得到广泛应用。
(4) 常微分方程--解决两个变量之间的变化规律,关键是建立"瞬时变化率"的表达式。
(5) 偏微分方程--解决因变量与两个以上自变量之间的变化规律。
2。
测试分析方法测试分析方法就是将研究对象视为一个"黑箱"系统,内部机理无法直接寻求,通过测量系统的输入输出数据,并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个数据拟合得最好的模型。
(1) 回归分析法--用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法。
(2) 时序分析法--处理的是动态的相关数据,又称为过程统计方法。
(3) 回归分析法--用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法。
(4) 时序分析法--处理的是动态的相关数据,又称为过程统计方法。
将这两种方法结合起来使用,即用机理分析方法建立模型的结构,用系统测试方法来确定模型的参数,也是常用的建模方法,在实际过程中用那一种方法建模主要是根据我们对研究对象的了解程度和建模目的来决定。
机理分析法建模的具体步骤大致可见左图。
3。
仿真和其他方法(1) 计算机仿真(模拟)--实质上是统计估计方法,等效于抽样试验。
①离散系统仿真--有一组状态变量。
②连续系统仿真--有解析表达式或系统结构图。
(2) 因子试验法--在系统上作局部试验,再根据试验结果进行不断分析修改,求得所需的模型结构。
(3) 人工现实法--基于对系统过去行为的了解和对未来希望达到的目标,并考虑到系统有关因素的可能变化,人为地组成一个系统。
(参见:齐欢《数学模型方法》,华中理工大学出版社,1996)四、数学模型的分类数学模型可以按照不同的方式分类,下面介绍常用的几种:1。
按照模型的应用领域(或所属学科)分:如人口模型,交通模型,环境模型,生态模型,城镇规划模型,水资源模型,再生资源利用模型,污染模型等。
范畴更大一些则形成许多边缘学科如生物数学,医学数学,地质数学,数量经济学,数学社会学等。
2。
按照建立模型的数学方法(或所属数学分支)分:如初等数学模型,几何模型,微分方程模型,图论模型,马氏链模型,规划论模型等。
按第一种方法分类的数学模型教科书中,着重于某一专门领域中用不同方法建立模型,而按第二种方法分类的书里,是用属于不同领域的现成的数学模型来解释某种数学技巧的应用。
在本书中我们重点放在如何应用读者已具备的基本数学知识在各个不同领域中建模。
3。
按照模型的表现特性又有几种分法:确定性模型和随机性模型取决于是否考虑随机因素的影响。
近年来随着数学的发展,又有所谓突变性模型和模糊性模型。
静态模型和动态模型取决于是否考虑时间因素引起的变化。
线性模型和非线性模型取决于模型的基本关系,如微分方程是否是线性的。
离散模型和连续模型指模型中的变量(主要是时间变量)取为离散还是连续的。
虽然从本质上讲大多数实际问题是随机性的,动态的,非线性的,但是由于确定性,静态,线性模型容易处理,并且往往可以作为初步的近似来解决问题,所以建模时常先考虑确定性,静态,线性模型。
连续模型便于利用微积分方法求解,作理论分析,而离散模型便于在计算机上作数值计算,所以用哪种模型要看具体问题而定。
在具体的建模过程中将连续模型离散化,或将离散变量视作连续,也是常采用的方法。
4。
按照建模目的分:有描述模型,分析模型,预报模型,优化模型,决策模型,控制模型等。