全国数学建模优秀论文

合集下载

全国大学生数学建模竞赛C题国家奖一等奖优秀论文

全国大学生数学建模竞赛C题国家奖一等奖优秀论文

脑卒中发病环境因素分析及干预摘要本文主要讨论脑卒中发病环境因素分析及干预问题。

根据题中所给出的数据,利用SPSS20 软件进行相关性统计分析,分别对各气象因素进行单因素分析,进而建立后退法线性回归分析模型,得到脑卒中与气压、气温、相对湿度之间的关系。

同时在广泛收集各种资料并综合考虑环境因素,对脑卒中高危人群提出预警和干预的建议方案。

首先,利用SPSS20软件,从患病人群的性别、年龄、职业进行统计分析,得到2007-2010年男性患病人数高于女性,且男性所占比例有逐年下降趋势,女性则有上升趋势,因此,性别比例呈减小趋势。

分析不同年龄段患病人数,得到患病高峰期为75-77岁之间,且青少年比例逐年呈增长趋势,可见患病比例趋于年轻化。

同时在不同的职业中,农民发病人数最多,教师,渔民,医务人员,职工,离退人员的发病人数较少。

其次,由题中所给数据先进行单因素分析,剔除对脑卒中影响不显著的因素,得出气温、气压、相对湿度对脑卒中的影响程度大小,进而采用后退法线性回归分析建立模型,利用SPSS20对数据进行分析,求得脑卒中发病率与气温、气压、相对湿度之间的关系。

即发病率与平均温度成正相关,与最高温度成负相关,发病率与平均气压成正相关,与最低气压成负相关,与平均相对湿度成负相关,与最小相对湿度成正相关。

最后,通过查找资料发现,影响脑卒中的因素有两类,一类是不可干预因素,如年龄、性别、家族史,另一类是可干预因素,如高血压、高血脂、糖尿病、肥胖、抽烟、酗酒等因素。

分析这些因素,建立双变量因素分析模型,并结合问题1和问题2,对高危人群提出预警和干预的建议方案。

关键词脑卒中单因素分析后退法线性回归分析双变量因素分析一问题的重述脑卒中(俗称脑中风)是目前威胁人类生命的严重疾病之一,它的发生是一个漫长的过程,一旦得病就很难逆转。

这种疾病的诱发已经被证实与环境因素,包括气温、湿度之间存在密切的关系。

对脑卒中的发病环境因素进行分析,其目的是为了进行疾病的风险评估,对脑卒中高危人群能够及时采取干预措施,也让尚未得病的健康人,或者亚健康人了解自己得脑卒中风险程度,进行自我保护。

全国数模优秀论文

全国数模优秀论文

全国数模优秀论文摘要:数学建模竞赛是我国高校和科研机构之间最具影响力的竞赛之一。

在每年的比赛中,数模优秀论文成为了评选标杆。

本文将介绍一些全国数模优秀论文的典型案例以及其独特之处,以期为今后的数学建模竞赛提供参考和借鉴。

第一部分:背景介绍数学建模竞赛在我国的高校和科研机构之间已经有着悠久的历史。

每年,大量的参赛团队通过精心准备和协作,在赛场上展示自己的数学建模能力。

然而,仅有少部分论文能够被评为全国数模优秀论文。

这些论文具有出色的创新性、严谨的研究方法和对实际问题的深入理解。

第二部分:案例分享2.1 实时监测系统优化某团队在2019年的数学建模竞赛中提出了一种实时监测系统的优化方案。

该方案通过改进数据采集与传输方式、优化算法和提高系统的稳定性,使实时监测系统的准确性和效率得到了极大的提升。

这项优化方案在实际应用中显著降低了监测数据的延迟和误差,为实时监测领域的相关研究提供了有益的参考。

2.2 路径优化及决策支持系统另一团队的研究成果是关于路径优化及决策支持系统。

他们利用数学模型和优化算法,对城市交通拥堵问题进行了研究,并提出了一种有效的路径优化策略,能够帮助驾驶员避开拥堵路段,减少交通时间和燃料消耗。

该论文的创新之处在于结合实时交通数据、地理信息和优化算法,为城市交通领域提供了新的思路和解决方案。

2.3 物流网络规划在2020年的数学建模竞赛中,一支团队针对物流网络规划问题进行了深入研究。

他们结合了图论、运筹学和网络优化方法,提出了一种高效的物流网络规划模型,并利用实际数据进行验证。

该模型不仅考虑了用户需求和运输成本,还考虑了不同供应商之间的协同与共享,使物流网络的效率和资源利用率得到了极大的提高。

第三部分:独特之处3.1 创新性全国数模优秀论文的独特之处在于具有创新性。

这些论文通过对现有问题的重新思考,提出了新的解决方法和思路。

创新性不仅体现在算法和模型的设计上,更是在问题的选取和实际应用中的独特性。

优秀的数学建模论文范文(通用8篇)

优秀的数学建模论文范文(通用8篇)

优秀的数学建模论文范文第1篇摘要:将数学建模思想融入高等数学的教学中来,是目前大学数学教育的重要教学方式。

建模思想的有效应用,不仅显著提高了学生应用数学模式解决实际问题的能力,还在培养大学生发散思维能力和综合素质方面起到重要作用。

本文试从当前高等数学教学现状着手,分析在高等数学中融入建模思想的重要性,并从教学实践中给出相应的教学方法,以期能给同行教师们一些帮助。

关键词:数学建模;高等数学;教学研究一、引言建模思想使高等数学教育的基础与本质。

从目前情况来看,将数学建模思想融入高等教学中的趋势越来越明显。

但是在实际的教学过程中,大部分高校的数学教育仍处在传统的理论知识简单传授阶段。

其教学成果与社会实践还是有脱节的现象存在,难以让学生学以致用,感受到应用数学在现实生活中的魅力,这种教学方式需要亟待改善。

二、高等数学教学现状高等数学是现在大学数学教育中的基础课程,也是一门必修的课程。

他能为其他理工科专业的学生提供很多种解题方式与解题思路,是很多专业,如自动化工程、机械工程、计算机、电气化等必不可少的基础课程。

同时,现实生活中也有很多方面都涉及高数的运算,如,银行理财基金的使用问题、彩票的概率计算问题等,从这些方面都可以看出人们不能仅仅把高数看成是一门学科而已,它还与日常生活各个方面有重要的联系。

但现在很多学校仍以应试教育为主,采取填鸭式教学方式,加上高数的教材并没有与时俱进,将其与生活的关系融入教材内,使学生无法意识到高数的重要性以及高数在日常生活中的魅力,因此产生排斥甚至对抗的心理,只是在临考前突击而已。

因此,对高数进行教学改革是十分有必要的,而且怎么改,怎么让学生发现高数的魅力,并积极主动学习高数也是作为教师所面临的一个重大问题。

三、将数学建模思想融入高等数学的重要性第一,能够激发学生学习高数的兴趣。

建模思想实际上是使用数学语言来对生活中的实际现象进行描述的过程。

把建模思想应用到高等数学的学习中,能够让学生们在日常生活中理解数学的实际应用状况与解决日常生活问题的方便性,让学生们了解到高数并不只是一门课程,而是整个日常生活的基础。

数学建模优秀论文

数学建模优秀论文

数学建模优秀论文数学建模学科作为一门研究数学方法、技术和思想在实际问题中应用的交叉学科,近年来得到越来越多人的关注和重视。

在数学建模领域,一篇优秀的论文具有创新性的理论分析和实际问题解决能力,能够给出深入的研究和具体的建议,为相关领域的发展提供新的思路和方向。

下面将介绍几篇数学建模领域的优秀论文,分别从不同角度分析其特点和贡献。

论文标题:《基于博弈论的市场竞争模型及应用》这篇论文从博弈论的角度出发,建立了一套市场竞争模型,通过数学分析探讨了市场竞争中的双方策略选择和均衡状态的形成机制。

论文使用博弈论的理论框架,分析了市场中企业之间的竞争行为及其影响因素,提出了一种新的竞争策略,并运用到实际市场中进行了验证与应用。

该研究为市场竞争策略的制定和优化提供了新的方法和思路,对现实经济发展具有积极的推动作用。

论文标题:《城市公共交通优化调度模型与算法研究》这篇论文围绕城市公共交通系统的优化调度问题展开研究,通过建立数学模型,结合算法设计和实际数据分析,提出了一种高效的调度方案。

该论文采用图论和最优化理论方法,对公交车辆调度过程进行了优化和改进,提高了公共交通系统的运行效率和服务质量。

这篇论文的研究成果具有一定的创新性和实用性,对城市公共交通系统的发展和提升具有积极的推动作用。

论文标题:《金融衍生品定价模型研究与应用》这篇论文基于金融数学理论和随机过程方法,研究了金融衍生品的定价问题。

通过建立数学模型,分析了金融衍生品价格的波动规律和风险特征,提出了一种新的定价模型,并将其应用到实际金融市场中进行了验证和评估。

该论文对金融市场的稳定性和风险控制具有一定的参考价值,为金融衍生品交易提供了更为科学和合理的定价方法。

总的来说,数学建模优秀论文需要结合数学理论和实际问题,具有创新性和实用性,能够为相关领域的发展和应用提供新的思路和方法。

通过对数学建模领域的优秀论文进行研究和分析,可以更好地理解数学建模的重要性和应用广泛性,为相关研究和实践提供有益的借鉴和参考。

数学建模优秀论文(精选范文10篇) 2021

数学建模优秀论文(精选范文10篇) 2021

根据实际问题来建立数学模型,对数学模型来进行求解,然后根据结果去解决实际问题,这就是数学建模,本篇文章主要是向大家介绍几篇数学建模优秀论文得范文,希望对有这方面参考得学者有所帮助。

数学建模优秀论文精选范文10篇之第一篇:培养低年段学生数学建模意识得微课教学---------------------------------------------------------------------------------------------------------------------感谢使用本套资料,希望本套资料能带给您一些思维上的灵感和帮助,个人建议您可根据实际情况对内容做适当修改和调整,以符合您自己的风格,不太建议完全照抄照搬哦。

---------------------------------------------------------------------------------------------------------------------摘要:本文阐述了录制微课对培养学生建模意识得必要性和可行性,认为在小学数学教学中,鼓励低年段学生录制微课有积极意义,主张提高小学生建模语言表达能力,通过任务驱动和学生自主录制微课,逐步深入学习建模内容,培养并增强学生得建模意识。

关键词:低年段数学; 微课; 建模意识;当今社会,信息技术高速发展使教学资源高度丰富。

广大教师纷纷探讨如何利用信息技术更好地为教学服务,有效地改进教与学得方式,提高学生学习兴趣。

一、录制微课对培养学生建模意识得必要性和可行性“三年级现象”备受关注,很多人认为小学三年级是道坎,有得学生一、二年级数学成绩很好,到了三年级就断崖式下降。

如果真得出现这种现象,那么学生一、二年级数学成绩好只是表象。

一、二年级是学生初步感知数学得重要时期。

低年段数学知识是基础,对于低年段数学教学包括建模教学必须引起广大教育工作者得重视,让学生从小接受正确得教学模式,真正掌握学习数学得思想方法,避免出现短暂成绩好得现象。

数学建模经典论文五篇

数学建模经典论文五篇

1、 血样的分组检验在一个很大的人群中通过血样检验普查某种疾病,假定血样为阳性的先验概率为p(通常p 很小).为减少检验次数,将人群分组,一组人的血样混合在一起化验.当某组的混合血样呈阴性时,即可不经检验就判定该组每个人的血样都为阴性;而当某组的混合血样呈阳性时,则可判定该组至少有一人血样为阳性,于是需要对这组的每个人再作检验.(1)、当p 固定时(如0.01%,…,0.1%,…,1%)如何分组,即多少人一组,可使平均总检验次数最少,与不分组的情况比较. (2)、当p 多大时不应分组检验.(3)、当p 固定时如何进行二次分组(即把混合血样呈阳性的组再分成小组检验,重复一次分组时的程序).模型假设与符号约定1 血样检查到为阳性的则患有某种疾病,血样呈阴性时的情况为正常2 血样检验时仅会出现阴性、阳性两种情况,除此之外无其它情况出现,检验血样的药剂灵敏度很高,不会因为血样组数的增大而受影响. 3 阳性血样与阳性血样混合也为阳性 4 阳性血样与阴性血样混合也为阳性 5 阴性血样与阴性血样混合为阴性 n 人群总数 p 先验概率血样阴性的概率q=1-p血样检验为阳性(患有某种疾病)的人数为:z=np 发生概率:x i P i ,,2,1, = 检查次数:x i R i ,,2,1, = 平均总检验次数:∑==xi i i R P N 1解1设分x 组,每组k 人(n 很大,x 能整除n,k=n/x ),混合血样检验x 次.阳性组的概率为k q p -=11,分组时是随机的,而且每个组的血样为阳性的机率是均等的,阳性组数的平均值为1xp ,这些组的成员需逐一检验,平均次数为1kxp ,所以平均检验次数1kxp x N +=,一个人的平均检验次数为N/n,记作:k k p kq k k E )1(1111)(--+=-+=(1) 问题是给定p 求k 使E(k)最小. p 很小时利用kp p k -≈-1)1(可得kp kk E +=1)( (2) 显然2/1-=p k 时E(k)最小.因为K 需为整数,所以应取][2/1-=p k 和1][2/1+=-p k ,2当E (k )>1时,不应分组,即:1)1(11>--+k p k,用数学软件求解得k k p /11-->检查k=2,3,可知当p>0.307不应分组.3将第1次检验的每个阳性组再分y 小组,每小组m 人(y 整除k,m=k/y ).因为第1次阳性组的平均值为1xp ,所以第2次需分小组平均检验1yxp 次,而阳性小组的概率为m q p -=12(为计算2p 简单起见,将第1次所有阳性组合在一起分小组),阳性小组总数的平均值为21yp xp ,这些小组需每人检验,平均检验次数为21yp mxp ,所以平均总检验次数211yp mxp yxp x N ++=,一个人的平均检验次数为N/n,记作(注意:n=kx=myx)p q q q mk p p m p k m k E m k -=-+-+=++=1),1()1(111),(211 (3) 问题是给定p 求k,m 使E (k,m )最小.P 很小时(3)式可简化为21),(kmp mkpk m k E ++≈ (4)对(4)分别对k,m 求导并令其等于零,得方程组:⎪⎪⎩⎪⎪⎨⎧=+-=++-0012222kp m kp mp mp k 舍去负数解可得:2/14/3,21--==p m p k (5)且要求k,m,k/m 均为整数.经在(5)的结果附近计算,比较E(k,m),得到k,m 的最与表1比较可知,二次分组的效果E(k,m)比一次分组的效果E(k)更好.2、铅球掷远问题铅球掷远比赛要求运动员在直径2.135m 的圆内将重7.257kg 的铅球投掷在 45的扇形区域内,建立模型讨论以下问题1.以出手速度、出手角度、出手高度 为参数,建立铅球掷远的数学模型;2.考虑运动员推铅球时用力展臂的动 作,改进以上模型.3.在此基础上,给定出手高度,对于 不同的出手速度,确定最佳出手角度 问题1模型的假设与符号约定1 忽略空气阻力对铅球运动的影响.2 出手速度与出手角度是相互独立的.3 不考虑铅球脱手前的整个阶段的运动状态. v 铅球的出手速度 θ 铅球的出手角度 h 铅球的出手高度 t 铅球的运动时间 L 铅球投掷的距离g 地球的重力加速度(2/8.9s m g=)铅球出手后,由于是在一个竖直平面上运动.我们,以铅球出手点的铅垂方向为y 轴,以y 轴与地面的交点到铅球落地点方向为x 轴构造平面直角坐标系.这样,铅球脱手后的运动路径可用平面直角坐标系表示,如图.因为,铅球出手后,只受重力作用(假设中忽略空气阻力的影响),所以,在x 轴上的加速度0=,在y 轴上的加速度g a y -=.如此,从解析几何角度上,以时间 t 为参数,易求得铅球的运动方程:⎪⎩⎪⎨⎧+-==h gt t v y t v x 221sin cos θθ 对方程组消去参数t ,得h x x v gy ++-=)(tan cos 2222θθ……………………………………………(1) 当铅球落地时,即是0=y ,代入方程(1)解出x 的值v ggh gh v g v x θθθθθ2222sin 22cos sin cos sin 2-++=对以上式子化简后得到铅球的掷远模型θθθ22222cos 22sin 222sin g v h g v g v L +⎪⎪⎭⎫ ⎝⎛+=………………………………(2) 问题2我们观察以上两个阶段,铅球从A 点运动到B 点,其运动状态是匀加速直线运动的,加速距离是2L 段.且出手高度与手臂长及出手角度是有一定的联系,进而合理地细化各个因素对掷远成绩的约束,改进模型Ⅰ.在投掷角度为上进行受力分析,如图(3)由牛顿第二定 律可得,ma mg F =-θsin 再由上式可得,θsin g mFa -=………………………………………(3) 又,22022aL v v =-,即22022aL v v += (4)将(3)代入(4)可得,θsin 2222202g L m FL v v -⎪⎭⎫⎝⎛+= ………………………(5) (5)式进一步说明了,出手速度v 与出手角度θ有关,随着θ的增加而减小.模型Ⅰ假设出手速度与出手角度相互独立是不合理的. 又根据图(2),有θsin 1'L h h += (6)由模型Ⅰ,同理可以得到铅球脱手后运动的距离θθθ22222cos 22sin 222sin g v h g v g v L +⎪⎪⎭⎫ ⎝⎛+= 将 (4)、(5)、(6)式代入上式整理,得到铅球运动的距离()⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡-⎪⎭⎫⎝⎛++++-⎪⎭⎫ ⎝⎛+=θθθθθ22220'2220sin sin 22sin 2112sin 2sin 22g L m FL v h g g g L m FL v L 对上式进行化简:将m=7.257kg,2/8.9s m g = 代入上式,再令m h 60.1'= (我国铅球运动员的平均肩高),代入上式进一步化简得,()⎪⎪⎭⎫ ⎝⎛-++-++⨯θθθθθ2222232222sin sin 6.192756.06.19sin 6.19sin 2756.0sin 1L FL v L FL v ………………(7) 所以,运动员投掷的总成绩θcos 1L L S +=问题3给定出手高度,对于不同的出手速度,要确定最佳的出手角度.显然,是求极值的问题,根据微积分的知识,我们要先求出驻点,首先,模型一中L 对θ求导得,g hv g v g hv v g v d dL θθθθθθθθ22224242cos 82sin sin cos 42cos 2sin 2cos +-+=令0=θd dL,化简后为, 0sin cos 42cos 2sin cos 82sin 2cos 2422242=-++θθθθθθθhgv v hgv v v根据倍角与半角的三角关系,将以上方程转化成关于θ2cos 的方程,然后得,hv g g vgh gh222cos +=+=θ (3)()θθ2sin sin 6.192756.051.0222L FL v L -+=从(3)式可以看出,给定铅球的出手高度h ,出手速度v 变大,相应的最佳出手角度θ也随之变大.对(3)式进行分析,由于0,0>>θh ,所以02cos >θ,则40πθ≤<.所以,最佳出手角度为)arccos(212vgh gh +=θ θ是以π2为周期变化的,当且仅当N k k ∈⎪⎭⎫⎝⎛∈±,4,02ππθ时,πθk 2±为最佳出手角度.特别地,当h=0时(即出手点与落地点在同一高度),最佳出手角度︒=45α3、零件的参数设计粒子分离器某参数(记作y )由7个零件的参数(记作x x 12,,…x 7)决定,经验公式为:y x x x x x x x x x x x =⎛⎝ ⎫⎭⎪-⎛⎝ ⎫⎭⎪⨯--⎛⎝ ⎫⎭⎪⎡⎣⎢⎢⎤⎦⎥⎥⎛⎝ ⎫⎭⎪-17442126210361532108542056324211667......y 的目标值(记作y 0)为1.50。

全国大学生数学建模竞赛论文1

全国大学生数学建模竞赛论文1

目录一 问题重述问题重述......................................................... ......................................................... 1 二 问题分析问题分析......................................................... ......................................................... 2 三 模型假设模型假设......................................................... ......................................................... 2 四 符号说明符号说明......................................................... ......................................................... 2 五 模型的建立与求解模型的建立与求解................................................. ................................................. 3 六结果分析六结果分析......................................................... (12)一 问题重述通常加油站都有若干个储存燃油的地下储油罐,并且一般都有与之配套的“油位计量管理系统”,采用流量计和油位计来测量进/出油量与罐内油位高度等数据,等数据,通过预先标定的罐容表通过预先标定的罐容表通过预先标定的罐容表(即罐内油位高度与储油量的对应关系)(即罐内油位高度与储油量的对应关系)(即罐内油位高度与储油量的对应关系)进行实进行实时计算,以得到罐内油位高度和储油量的变化情况。

大学生数学建模论文(专业推荐范文10篇)

大学生数学建模论文(专业推荐范文10篇)

大学生数学建模是一项基础性得学科竞赛,可以交流更多得经验,学习更多得知识,所以大学生数学建模很受学者们得欢迎,本篇文章就向大家介绍一些大学生数学建模论文,供给大家作为一个参考。

大学生数学建模论文专业推荐范文10篇之第一篇:数学建模对大学生综合素质影响得调查研究---------------------------------------------------------------------------------------------------------------------感谢使用本套资料,希望本套资料能带给您一些思维上的灵感和帮助,个人建议您可根据实际情况对内容做适当修改和调整,以符合您自己的风格,不太建议完全照抄照搬哦。

---------------------------------------------------------------------------------------------------------------------摘要:文章通过问卷网以调查问卷得形式和线下访谈得方法 ,对笔者所在学校参加过数学建模竞赛得同学和未参加过数学建模竞赛得同学对数学建模对自身综合素质得影响进行了调查研究。

调查表明,大部分学生都能认识到数学建模学习和竞赛对其自身综合素质得提升是有帮助得,但是大多数学生对数学建模得意义认识还不到位。

文章对调查结果进行分析,结合笔者得切身体会对地方高校数学建模课程教学及学生参加竞赛提出某些建议。

关键词:数学建模; 大学生; 综合素质; 研究;一、前言随着社会得不断进步和发展,大学生想要在激烈得人才竞争中脱颖而出,就必须要不断提高自己得综合素质,而良好得综合素质不仅应具有坚实得理论基础,扎实得专业知识,还应该具有较强得创新能力、与他人合作得能力、较强得语言表达能力、以及稳定得心理状态。

许多科学家断言未来科学技术得竞争是数学技术得竞争,这无疑对数学能力提出了更高得要求,不可否认数学建模课程教学及建模竞赛是提升大学生数学能力得有效途径。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 问题分析
对于模型一,为了定量评估2010年上海世博会的影响力,我们首先选取城市基础设施建设的投入这一个侧面,因为通过查找相关数据,我们发现,城市基础设施建设的投入在上海整个GDP的增长中占有很大的比重,对GDP的贡献占主体地位。而层次分析法是对社会经济系统进行系统分析的有力工具。为此,我们通过研究上海统计局的相关数据,使用层次分析法来评估世博会的召开对基础设施建设的投入的影响,目标层为世博会的召开对基础设施建设的投入的影响,准则层依次为电力建设、交通运输、邮电通信、公用事业、市政建设,方案层依次为没有召开世博时的影响、召开世博时的影响。首先我们通过层次分析法算出电力建设、交通运输、邮电通信、公用事业、市政建设的相对权重,然后应用模糊数学中的综合评价法对上海世博会对城市基础设施建设的影响作出综合的评价,应用综合评价法计算出没有召开世博和召开世博两种情况下的权重,从而得出上海世博会的召开对城市基础设施建设的影响。
对于模型二,直接以GDP这个硬性直接指标来衡量上海世博会对上海的影响。先根据上海没有申办世博会的GDP总额的相关数据,建立线性回归模型,由此预测不举办世博会情况下2010年上海市的GDP总额;再由2002年至2009年的GDP值用线性回归预测出举办世博会情况下2010年上海市的GDP总额,并将两种情况进行对比得出世博会对上海GDP的影响。
3 模型假设
3.1假设非典和奥运等重大事件对世博前的城市基础建设的投入影响很小,可以忽略。
3.2 假设不同时期国家的经济实力不同,对城市基础建设的投入影响很小,可以忽略。
3.3 假设我们查到的数据真实可靠。
4符号说明
为一致性指标;
为随机一致性指标;
为一致性比率;
为成对比较矩阵的最大特征值;
分别为电力建设、交通运输、邮电建设、共用设施、市政建设2010年各项投入金额的理论预测值;
41.17
表4评价指数表
将表4中的每一行进行归一化处理,可以得到表5归一化后的评价指数表,如下表所示
预测的结果
实际的结果
电力建设投入
0.39
0.61
交通运输投入
0.11
0.89
邮电通信投入
0.11
0.89
共用设施投入
0.36
0.64
市政建设投入
0.42
0.58
表5归一化后的评价指数表
写成矩阵形式为
它的权重向量为
第七步:由表7数据运用公式可以计算出有世博GDP实际值与预测值的误差范围在1.4%左右,也比较小,并且随着时间的推移,有世博GDP实际值与预测值的误差越来越小。说明我们完全可以运用以上模型来预测有世博的情况下2010年的GDP的值。
第八步:由有世博预测曲线的函数关系式 :计算出有世博情况2010年的GDP的预测值为19834亿元。
129.53
838.91
108.59
112.81
543.34
2009
253.39
978.24
122.66
135.95
623.21
合计
1004.33
4286.45
744.06
619.47
2530.63
表12002-2009城市基础设施投资额
结合表1,运用1—9尺度得到电力建设、交通运输、邮电建设、共用设施、市政建设两两之间的比,得到权重的两两对比值如下表2所示
分别为电力建设、交通运输、邮电建设、共用设施、市政建设2010年各项实际投入金额;
分别为电力建设、交通运输、邮电建设、共用设施、市政建设2009年各项实际投入金额;
分别为电力建设、交通运输、邮电建设、共用设施、市政建设2010年理论投入金额的增长率的理论计算值;
分别为电力建设、交通运输、邮电建设、共用设施、市政建设各项2010年实际投入的增长率计算值;
第四步:我们考虑从上海统计年鉴(见附录)表中2002年开始到2009年各项基础设施的投资额的数据进行多项式拟合,就能找到最契合投资额与时间的函数表达式,这样就能预测2010年的各项投资额数据。
为此我们利用表3至表7预测的曲线分别计算出2010年城市基础设施建设中的电力建设、交通运输、邮电通信、公用事业、市政建设这五个方面的投入金额 。再与2009年的实际值 进行比较,运用公式计 (1)算出理论上的增长率。
图1层次分析结构图
第二步:构造成对比较阵。我们结合上海统计年鉴(见附录1)中的相关数据,我们对原始数据进行处理,得到表1的相关数据,如下表所示:
2002-2009城市基础设施投资额
年份
电力建设
交通运输
邮电通信
公用事业
市政建设
2002
62.14
63.01
108.23
148.42
201.69
2003
66
图4邮电通信投入-时间关系
同理根据邮电通信投入-时间关系趋势线预测曲线的函数表达式 ,我们可以求出2010年交通运输投入的理论值应该是 亿元。从而由公式(1)计算出邮电通信投入的理论增长率是 。
图5共用设施建设投入-时间关系
同理根据共用设施建设投入-时间关系趋势线预测曲线的函数表达式 ,我们可以求出2010年交通运输投入的理论值应该是 亿元。从而由公式(1)计算出共用设施建设投入的理论增长率是 。
电力建设
交通运输
邮电建设
共用设施
市政建设
电力建设
1
1/6
2
3
1/4
交通运输
6Hale Waihona Puke 1774
邮电建设
1/2
1/7
1
1
1/4
共用设施
1/3
1/8
1
1
1/4
市政建设
4
1/4
4
4
1
表2 权重的两两对比值
则成对比较矩阵为
第三步:计算权向量并做一致性检验。我们使用matlab计算出矩阵A的最大特征值 ,并利用和法计算出特征向量,并将特征向量归一化后得到特征向量为 ,并利用 计算出一致性指标 =0.050675,并查出 时的随机一致性指标 ,计算出一致性比率 ,因此一致性检验通过,这时最大特征值对应的特征向量 即为电力建设、交通运输、邮电建设、共用设施、市政建设这五个因素的权重。
图2电力建设投入-时间关系
根据电力建设投入-时间关系趋势线预测曲线的函数表达式 ,我们可以求出2010年电力建设投入的理论值应该是 亿元。从而由公式(1)计算出电力投入的理论增长率是 。
图3交通运输投入-时间关系
根据交通运输投入-时间关系趋势线预测曲线的函数表达式 ,我们可以求出2010年交通运输投入的理论值应该是 亿元。从而由公式(1)计算出交通运输投入的理论增长率是 。
通过查找相关数据,我们知道了2010城市基础设施建设中的电力建设、交通运输、邮电通信、公用事业、市政建设各项实际投入的金额,如下表3所示
2010年
电力建设
交通运输
邮电通信
共用设施
市政建设
实际投入(亿元)
349.05
1490.23
258.68
215.37
879.80
表3 各项实际投入的金额
根据上表中给的数据,运用公式(2)我们就可以算出电力建设、交通运输、邮电建设、共用设施、市政建设各项2010年实际投入相对2009年实际增长率分别是 。
第一步:根据上海年鉴数据得到1978年至2009年上海市GDP的相关数据(见附录7.2),并对其进行初步处理得到1978年至2002年的上海市GDP的相关数据,由线性回归得到无世博时年份与GDP之间的函数关系,见下图:
图7无世博预测曲线
第二步:由无世博预测曲线的函数关系式: 计算出无世博情况下1998年-2002年的GDP预测值,并与实际数据比较得到下表:
273.77
76.58
36.91
151.36
2004
89.52
316.96
54.39
26.92
184.8
2005
124.22
385.58
58.32
41.33
276.28
2006
116.23
589.52
113.72
56.23
249.84
2007
163.3
840.46
101.57
60.9
300.11
2008
组合权向量为
进一步我们将它们进行归一化后得到
则结果表明召开世博会比没有召开世博会对上海城市基本设施建设的影响要高出40%。
模型二
本模型中,先根据上海没有申办世博会的GDP总额的相关数据,建立线性回归模型,由此预测不举办世博会情况下2010年上海市的GDP总额;再由2002年至2009年的GDP值用线性回归预测出举办世博会情况下2010年上海市的GDP总额,并将两种情况进行对比得出世博会对上海GDP的影响。
关键词:层次分析法模糊数学线性回归城市基础建设GDP
1 问题重述
2010年上海世博会是首次在中国举办的世界博览会。从1851年伦敦的“万国工业博览会”开始,世博会正日益成为各国人民交流历史文化、展示科技成果、体现合作精神、展望未来发展等的重要舞台。请你们选择感兴趣的某个侧面,建立数学模型,利用互联网数据,定量评估2010年上海世博会的影响力。
通过上面的 和 计算结果,分别表示2010年没有世博的预测投入的增长率,和有世博的实际增长率。我们可以由这两组数据建立评价指数表如下表4所示。
预测的结果
实际的结果
电力建设投入
24.24
37.75
交通运输投入
6.65
52.34
邮电通信投入
7.64
63.05
共用设施投入
32.94
58.42
市政建设投入
30.29
上海世博会影响力的定量评估
摘要
相关文档
最新文档