人教版七年级数学上册第一章有理数复习学案(无答案)
初一上第一章《有理数》总复习教案

初一上第一章《有理数》总复习教案一、内容分析小结与复习分作两个部分。
第一部分概述了正数与负数、有理数、相反数、绝对值等概念,以及有理数的加、减、乘、除、乘方的运算方法与运算律,从而给出全章内容的大致轮廓,第二部分针对这一章新显现的内容、方法等提出了5个问题;通过这5个问题引发学生的摸索,主动进行新的知识的建构。
二、课时安排:小节与复习的要求是要把这一章内容系统化,从而进一步巩固和加深明白得学习内容。
本章的要紧内容能够概括为有理数的概念与有理数的运算两部分。
因此,本章总复习的二课时如此安排(测验课除外):第一课时复习有理数的意义及其有关概念;第二课时复习有理数的运算。
三、教学方法的确定:设计典型例题,检测学生知识,科学地进行小结与归纳。
四、教学安排:第一课时:本节课将复习有理数的意义及其有关概念。
其内容包括正负数、有理数、数轴、有理数大小的比较、相反数与绝对值等。
在教学过程中,应利用数轴来认识、明白得有理数的有关概念,借助数轴,把这些概念串在一起形成一个用以描述有理数特点的系统。
另外,在运用有理数概念的同时,还应注意纠正可能显现的错误认识。
一、教学目标;1、明白得五个重要概念:有理数、数轴、相反数、绝对值、倒数。
2、使学生提高辨别概念能力,能正确地使用这些概念解决问题。
3、能正确比较两个有理数的大小。
二、教学重点:对有理数的五个概念:有理数、数轴、相反数、绝对值、倒数的明白得与运用。
三、教学难点:对绝对值概念的明白得与应用。
四、教学过程:(一)知识梳理:“师”之概念,大体是从先秦时期的“师长、师傅、先生”而来。
其中“师傅”更早则意指春秋时国君的老师。
《说文解字》中有注曰:“师教人以道者之称也”。
“师”之含义,现在泛指从事教育工作或是传授知识技术也或是某方面有特长值得学习者。
“老师”的原意并非由“老”而形容“师”。
“老”在旧语义中也是一种尊称,隐喻年长且学识渊博者。
“老”“师”连用最初见于《史记》,有“荀卿最为老师”之说法。
人教版七年级上册 第1章 有理数复习教案(表格式)

义务教育学校课时教案备课时间:上课时间:A. 正数B. 负数C. 正数或负数D. 正数或0或负数5.下列说法中,错误的有()①-23/7 是负分数;② 1.5 不是整数;③非负有理数不包括 0;④可以写成分数形式的数称为有理数;⑤ 0 是最小的有理数;⑥ -1是最小的负整数. A.1 个 B.2 个 C.3 个 D .4 个6. 把下列各数分别填入相应的括号内:-7,3.5, -3.1415,0,17,0.03, - 2,10,- 4非负整数集合{⋯};整数集合{⋯};正分数集合{⋯};非正数集合{⋯}.【3、数轴】数轴有三要素:原点、正方向、单位长度。
画一条水平直线,在直线上取一点表示0(叫做原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。
在数轴上的所表示的数,右边的数总比左边的数大,所以正数都大于0,负数都小于0,正数大于负数。
所有的有理数都可以用数轴上的点来表示,但数轴上的点并不都表示有理数7. 在数轴上表示下列各数、并将这些数按从小到大的顺序排列,再用“<”连接起来.3,-4,0,2,-2,-1【4、相反数】(1)相反数:只有符号不同的两个数,互为相反数;(2)相反数的几何意义:在数轴上位于原点两侧并且到原点距离相等的两个点所表示的两个则 a_____b,| a |_____| b |.18. 若|a|=3,|b|=7,则|a+b|的值是( )A.10B.4C.10或4D.以上都不对【6. 有理数大小的比较】(1)数学中规定:在水平的数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数.(2)有理数大小的比较法则:①正数大于0,0大于负数,正数大于负数;②两个负数,绝对值大的反而小.(3)两个负数比较大小,绝对值大的反而小。
练习:19. 如图的数轴上,每小格的宽度相等.(1)填空:数轴上点A表示的数是____,点B表示的数是 ____.(2)点C表示的数是− 0.3 ,点D表示的数是-1,请在数轴上分别画出点C和点D的位置.(3)在(1)(2)的条件下将A,B,C,D四个点所表示的数按从大到小的顺序排列,用“>”连接.20. 数轴上表示数a,b的点如图所示,把a,-a,b,-b 按照从小到大的顺序排列,正确的是().A.-b<-a<a<bB. -a <-b<a<bC. -b<a<-a<bD. -b<b<-a<a21.如图,有理数a,b在数轴上对应点的位置如图所示.(1)结合数轴可知:-a___b(用“>、=或<”填空);(2)结合数轴化简:|a+1|+|-b+1|.22.工厂生产的乒乓球超过标准质量的克数记作正数,低于标准质量的克数记作负数,现对5个乒乓球称重情况如下表所示,分析下表,根据绝对值的定义判断哪个球的质量最接近标准?解:| +0.01|=0.01,|-0.02|=0.02,|-0.01|=0.01,| +0.04|=0.04,|-0.03|=0.03.因为0.01<0.02<0.03<0.04,所以A球和C球的质量最接近标准.四.课堂小结、课堂作业板书设计第一章有理数例题课堂练习作业设计与布置作业类型作业内容试做时长基础性作业基本性作业(必做)教科书第16页复习题1复习巩固第1题5分钟鼓励性作业(选择)教科书第17页复习题1复习巩固7题5分钟挑战性作业(选择)教科书第17页复习题1复习巩固9题5分钟拓展性作业作业反馈记录教学反思备课组长审核签字教研组长审核签字年级部审核签字党支部审核签字时间时间时间时间。
人教版七年级上册第一章《有理数》复习导学案

七级上数学NO:1 主备人:银波审核人:授课人:第周星期第组学生预习评价:整理评价第一章《有理数》期末复习一、正、负数、有理数有理数的分类:习题:1.把下列各数填在相应的大括号内:1,-0.1,-789,25,0,-20,-3.14,-590,6/7,2Л,-13/9。
正整数集{…};正有理数集{…};负有理数集{…};负整数集{…};自然数集{…};正分数集{}负分数集{…}2.下列说法正确的是()①零是整数;②零是有理数;③零是自然数;④零是正数;⑤零是负数;⑥零是非负数。
A.①②③⑥B.①②⑥C.①②③D.②③⑥二、数轴:定义:规定了、、的直线,叫数轴。
习题:1.如图所示的图形为四位同学画的数轴,其中正确的是()A、B、C、D、2.下列语句中正确的是()A.数轴上的点只能表示整数B.数轴上的点只能表示分数C.数轴上的点只能表示有理数D.所有有理数都可以用数轴上的点表示出来3.比-3大的负整数是;有理数中,最大的负整数是,最小的正整数是;最大的非正数是。
与原点的距离为三个单位长的点有个,他们分别表示的有理数是_____和_。
在数轴上与−1相距3个单位长度的点有个,为。
4.在数轴上点A表示-4,如果把原点O向负方向移动1个单位,那么在新数轴上点A表示的数是()A、-5,B.-4 C.-3 D.-2 5.下列语句:①数轴上的点只能表示整数;②数轴是一条直线;③数轴上的一个点只能表示一个数;④数轴上找不到既不表示正数,又不表示负数的点;⑤数轴上的点所表示的数都是有理数.正确的说法有() A.1个 B.2个 C.3个 D.4个三、相反数1.定义:只有不同的两个数叫做互为相反数。
0的相反数是。
一般地:若a为任一有理数,则a的相反数为-a2.相反数的几何意义:表示互为相反数的两个点(除0外)分别在原点O的两边,并且到原点的距离相等。
3.互为相反数的两个数,和为0。
注意:一般地,数a的相反数是-a,不一定是负数。
人教版数学七年级上册第一章有理数(1.11.2)复习优秀教学案例

一、案例背景
本节课为人教版数学七年级上册第一章有理数的复习课,主要内容包括有理数的定义、性质、运算及应用。在复习过程中,我以学生已有的知识为基础,通过设计丰富的教学活动,引导学生深入理解有理数的概念,提高运算能力,并培养学生的逻辑思维和数学素养。
(二)问题导向
1. 自主探究:引导学生自主探究有理数的定义、性质和运算方法,培养学生独立思考的能力。
2. 合作交流:组织学生进行小组讨论,分享学习心得,互相解答疑问,提高学生的合作能力和沟通能力。
3. 教师引导:在学生探究过程中,教师要充分发挥引导作用,及时给予学生提示和帮助,引导学生深入思考。
(三)小组合作
三、教学策略
(一)情景创设
1. 生活情境:以购物、计算面积等实际问题为背景,创设有趣的生活情境,让学生在解决问题的过程中自然地引入有理数的概念和运算。
2. 故事情境:通过讲述数学家的故事,激发学生的学习兴趣,使他们感受到数学的趣味性和重要性。
3. 问题情境:设计具有启发性的问题,引导学生思考,激发学生的求知欲,如:“为什么有理数可以表示为分数形式?”“有理数的运算律是如何得出的?”
在教学设计中,我充分考虑了学生的认知规律和兴趣,将教学内容与实际生活相结合,以激发学生的学习兴趣。在教学过程中,我注重启发式教学,引导学生主动探究、合作交流,从而提高学生的数学思维能力和解决问题的能力。同时,我还将情感教育融入教学中,关注学生的个体差异,鼓励学生积极面对困难,培养他们坚持不懈的品质。
2. 学生在小组内分享自己的观点和心得,互相解答疑问,培养学生的合作能力和沟通能力。
3. 教师巡回指导,给予学生提示和帮助,引导学生深入思考,提高学生的探究能力。
人教版七年级数学上册:第一章 有理数 复习教案设计

有理数的运算复习班级: 组号: 姓名:有理数的运算:1.有理数的加法法则:(举例说明)2.有理数减法法则:(举例说明)3.有理数乘法法则:(举例说明)4.有理数除法法则:(举例说明)5.有理数乘方法则:(举例说明)6.用字母分别表示加法的交换律和结合律 乘法的交换律、结合律、分配率(举例说明)7.有理数的混合运算顺序(1)“先 ,再 ,最后 ”的顺序进行;(2)同级运算,从左到右进行;(3)如有括号,先 的运算,按小括号、中括号、大括号依次进行。
2211[(2)(3)](2)5-÷-+-+⨯-二、综合运用1.观察下列算式:22 – 02 =4=1 ×4,42 – 22 =12=3 ×4,62- 42 =20=5 ×4,82 – 62 =28=7 ×4, ……(1)第5个等式是 ;(2)第n 个等式是 . 2.如果规定符号*的意义是 ,求2*(-3)*4的值 复习导航:阅读书,带着书中的问题进行复习思考.完成情况 ])2(542.05[32-⨯÷----ba b a b a +⋅=*3.专题:①充分利用概念已知 a.b 互为相反数,c.d 互为倒数,m 是绝对值最小的数,求代数式2007()()a m b m cd ++-÷的值。
②数形结合的思想方法有理数a.b 在数轴上的位置如图所示 ,试比较:a ,a -,b ,b -这四个数的大小③分类讨论的思想方法已知a 是任一有理数,试比较a 与2a -的大小.④特殊值法若0a >,0b <,且a b <,则a b + 0(填“>”或“<”)三、课堂检测1.(1)(-3)+(-5)= (2)(-4.7)+2.9= (3)(-8)-(-6)= (4)8-(-6)= ( 5)(-3)×9= (6) (-12)÷(-2)= (7)0×(-5317)×(+25.3)= (8)123×(-115)= (9)(34-78)÷(-78)= (10)-2.5÷58×(-14) 2.计算(1) 2211[(2)(3)](2)5-÷-+-+⨯- (2))16(94412)81(-÷⨯÷- (3)1519189⨯ (4) 3)2(32)91()21(31-÷⎥⎦⎤⎢⎣⎡÷-+-⨯- 四、学习小结本单元你还有哪些困惑?五、观察下列各式: 221126+=⨯⨯⨯235 222112346++=⨯⨯⨯37 2222112346+++=×4×5×9,……①由此推算出2222123...10++++等于多少?②2222123...n ++++等于多少?。
第一章有理数综合复习学案人教版七年级上册数学

课题:第一章有理教综合复习一、复习目标:1、能正确掌握数的分类,理解有理数、数轴、相反数、绝对值、倒数五个重要概念。
2、掌握有理数的加、减、乘、除、乘方的运算法那么,能进行有理数的加、减、乘、除、乘方的运算和简单的混合运算。
二、重、难点:重点:绝对值的概念和有理数的运算(包括法那么、运算律、运算顺序、混合运算)。
难点:绝对值的概念及有关计算,有理数的大小比拟,及有理数的运算。
三、知识梳理厂1、正数和负数:____ 0的数叫做正数, ____ 0的数叫做负数,—既不是正数也不是负数。
2、有理数的分类:_______ 和 _______ 统称为有理数。
正有理数有理数<0负有理数3、数轴:规定了_______ 、_______ 、_______ 的_______ 叫做数轴。
4、相反数:像2与-2这样,只有_______ 不同的两个数,叫做互为相反数。
有理数分数5、绝对值:数轴上表示数&的点与原点的________ 叫做数a的绝对值。
一个正数的绝对值是 _______ ;一个负数的绝对值是它的_____ ;0的绝对值是o艮"当a>0 时,| a | = _____ ;当a<0 时,| a | = ____ ;当a=0 时,| a | = ____________________ .6、有理数比拟大小:(1)正数______ 0, 0 _______ 负数,正数_______ 负数;(2)两个负数,绝对值大的_________ o7、有理数加法法那么:(1)同号两数相加,取_______ 的符号,并把 _______ 相加;(2)绝对值不相等的异号两数相加,取______ 较大的加数的符号,并用的绝对值减去 _______ 的绝对值,互为相反数的两个数相加得_____ ;(3)一个数同0相加,仍得______ o8、有理数减法法那么:减去一个数等于______ 这个数的_________ o9、有理数乘法法那么:(1)两数相乘,同号得______ ,异号得______ ,并把__________ 相乘。
人教版七年级上册数学:第一章有理数复习导学案
第一章 有理数复习导学案复习目标:1、梳理本章知识,熟悉知识结构,进一步理解正负数、有理数、相反数、绝对值等概念,熟练进行有理数的运算。
2、体会利用所学知识解决实际问题。
3、加强合作交流,克服易错点及运算错误,提高对本章知识的整体把握。
重难点:有理数的有关概念及运算。
一、自主复习:1. 大于零的数叫 , 在正数前加一个“- ”号的数叫做 , 既不是正数,也不是负数.2. 和 统称为有理数. 有理数的分类为:特别注意:下面分类是否有错误?并请你指出错误的原因。
(1)0⎧⎪⎨⎪⎩正数有理数负数 (2)0⎧⎪⎨⎪⎩整数有理数分数 (3)⎧⎪⎨⎪⎩整数有理数小数分数 (4)⎧⎪⎨⎪⎩正有理数有理数负有理数3. 规定了 、 和 的直线叫数轴。
所有的有理数都可以用数轴上的 表示,但并不是所有的点都表示有理数.数轴上的原点表示数________,原点左边的数表示 ,原点及原点右边的数表示 .在原点右边,越靠近原点的点表示的数越 (填“大”或“小”),在原点左边,越靠近原点的点表示的数越 (填“大”或“小”)。
4. 有理数的大小比较:⑴在数轴上表示的两个数,右边的数总比左边的数 .⑵正数都 0,负数都 0,正数 一切负数; ⑶两个负数比较大小, .5. 数a 的相反数是 . 的相反数大于它本身, 的相反数小于它本身, 的相反数等于它本身. 的倒数等于它本身.6. 一个数a 的绝对值是指数轴上表示数a 的点与 距离,记作 .①一个正数的绝对值是 ; 即:如果a >0,则|a | = ; ②一个负数的绝对值是 ; 如果a <0,则|a | = ;③0的绝对值是 . 如果a = 0,则|a | = . 7. 反之:若一个数的绝对值是它本身,则这个数是 ;若一个数的绝对值是它相反数,则这个数是 ;即若||a a =,则a 0;若||a a =-,则a 0.一个数a 的绝对值是指数轴上表示数a 的点与 距离,记作 .①一个正数的绝对值是 ; 即:如果a >0,则|a | = ;⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数⎧⎧⎫⎨⎪⎪⎩⎪⎪⎪⎪⎨⎬⎪⎪⎧⎪⎪⎨⎪⎪⎭⎩⎩正整数正有理数正分数有理数零负整数负有理数负分数12()有限小数;()无限循环小数.②一个负数的绝对值是 ; 如果a <0,则|a | = ;③0的绝对值是 . 如果a = 0,则|a | = . 反之:若一个数的绝对值是它本身,则这个数是 ;若一个数的绝对值是它相反数,则这个数是 ;即若||a a =,则a 0;若||a a =-,则a 0.有理数有理数的分类 1、按整数、分数分:2、按正数、负数、零分:1、意义:2、在数轴上表示:相反数倒数意义:有理数的大小比较方法2、运算1、在数轴上:2、利用绝对值: 绝对值:1、几何意义:2、代数意义:1、概念法则 加法法则减法法则 乘法法则 除法法则 乘方法则有理数混合运算法则运算律 交换律1、加法交换律2、乘法交换律字母表示: 文字叙述: 字母表示: 文字叙述: 结合律1、加法结合律2、乘法结合律字母表示: 文字叙述: 字母表示: 文字叙述:分配律字母表示: 文字叙述:3、科学记数法的意义:4、近似数的意义:三、本章专题研究: 1、知识专题部分: 专题1加法的运算律例1:计算: 353110(3)(8)(2)5656+-+-+-专题2乘法的运算律及分配律新课标第一网例2:计算:① 1149( 2.5)()8()72---×××× ② 753224()12643--+-×专题3 充分利用概念例3:已知a.b 互为相反数,c.d 互为倒数,m 是绝对值最小的数,求代数式2007()()a m b m cd ++-÷的值。
人教版七年级上册第一章有理数《复习课》导学案
第一章复习课1.会用正、负数表示实际问题中的数量,会用科学记数法表示数,会用数轴上的点表示有理数.2.能借助数轴理解相反数和绝对值的意义,并会求有理数的相反数与绝对值,能比较有理数的大小,能从数与形两方面考虑数学问题.3.能进行有理数的加、减、乘、除、乘方及混合运算,知道有理数的运算律,并能运用运算律简化运算,能用有理数的运算法则解决简单的实际问题.4.重点:有理数的运算及应用.【体系构建】补全本章的知识网络图.①加法;②减法;③乘法;④除法;⑤乘方.【核心梳理】1.在同一个问题中,分别用正数和负数表示具有相反意义的量.2. 整数和分数统称为有理数;有理数也可以分为正有理数、负有理数、0.3.数轴的三要素是原点、正方向和单位长度.4.一般地,a和-a互为相反数.特别地,0的相反数是0;在数轴上表示互为相反数的两个点分别位于原点的两侧且与原点的距离相等.若a,b互为相反数,则a+b= 0,当a、b均不为0时,= -1.5.有理数的绝对值可表示为|a|=6.任何两个有理数都可以比较大小,正数>0,负数<0,正数>负数;两个负数,绝对值大的反而小;在同一数轴上表示的两个数,右边的数总比左边的数大.7.有理数运算法则:(1)有理数加法法则:同号两数相加,取相同的符号,并把绝对值相加.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得零.一个数同零相加,仍得这个数.(2)有理数减法法则:减去一个数等于加上这个数的相反数.(3)有理数乘法法则:两数相乘,同号为正,异号为负,并把绝对值相乘.任何数字同0相乘,都得0.几个不等于0的数字相乘,积的符号由负因数的个数决定.。
人教版数学七年级上册 第一章 有理数 期末复习教案
有理数复习教学设计一、学习目标1.能正确掌握数的分类,理解有理数、数轴、相反数、绝对值、倒数五个重要概念。
2.掌握有理数的加、减、乘、除、乘方的运算法则,能进行有理数的加、减、乘、除、乘方的运算和简单的混合运算;3.养成“言必有据、做必有理、答必正确”的良好思维习惯。
增进“应用数学知识解决实际问题的数学思想。
二、知识重点:绝对值的概念和有理数的运算(包括法则、运算律、运算顺序、混合运算)是本章的重点。
三、知识难点:绝对值的概念及有关计算,有理数的大小比较,及有理数的运算是本章的难点。
四、考点:绝对值的有关概念和计算,有理数的有关概念及混合运算是考试的重点对象。
五、学习策略:先通过知识要点的小结与典型例题练习,然后进行检测,找出漏洞,再进行针对性练习,从而达到内容系统化和应用的灵活性。
六、知识框架:教学过程:有理数的基本概念和相关的基础知识(一)具有相反意义的量与正负数1、向东30米记作+30米,那么-50米记作().2、在-0.1,2,-9,25,+1,0,12中,正数有_________,负数有_________.3、小明在一条东西走向的道路上的一棵梧桐树下,先向东走了12m,再向西走了21m,又向东走了30m,再向西走了17m,此时,小明在梧桐树的什么方向,距离梧桐树多远?4、一批螺帽产品的内径要求可以有±0.02mm的误差,现抽查5个样品,超过规定的毫米值记为正数,不足值记为负数,检查结果如表.则合乎要求的产品数量为()有理数的概念与分类__________________统称有理数。
有理数有两种分类方式,分别是:2.最大的负整数是;最小的正整数是;最大的非正数是;最大的非负数是.3.下面说法中正确的是().A.正整数和负整数统称整数B.分数不包括整数C.正分数,负分数,负整数统称有理数D.正整数和正分数统称正有理数(三)数轴1、规定了_________、_________和_________的_________叫做数轴2、数轴的画法及常见错误分析①画一条水平的______________;②在这条直线上适当位置取一实心点作为______________:③确定向右的方向为______________,用______________表示;④选取适当的长度作单位长度,用细短线画出,并对应标注各数,同时要注意同一数轴的要一致.⑤数轴画法的常见错误举例:有理数与数轴的关系一切有理数都可以用数轴上的______表示出来.在数轴上,右边的点所对应的数总比左边的点所对应的数_____,正数都大于_____,负数都小于_____,正数大于一切负数.注意:数轴上的点不都是有理数,如 .4、在数轴上画出表示下列各数的点,并按从大到小的顺序排列,用“>”号连接起来。
七年级数学上册第一章《有理数》回顾与思考复习教案(新版)新人教版
七年级数学上册第一章《有理数》回顾与思考复习教案(新版)新人教版第一章《有理数》回顾与思考复习内容第一章有理数全部内容.复习目标1.知识与技能引导学生自己回顾本章内容,并独立思考和小组讨论的学习方式,以便学生自己梳理知识,形成知识的联系,使新旧知识成为一个有机的整体.2.过程与方法通过小结与复习加深对负数、相反数、绝对值概念的理解.3.情感态度与价值观培养学生反思意识,进一步体会数学来源于生活,应用于生活.复习过程一、引导学生回顾本章内容;建立如下的知识结构图二、回顾与思考通过提问的方式回顾本章的主要内容,采用独立思考与同伴讨论的学习方式,让学生通过思考回答问题,加深对本章知识的理解.根据学生实际情况,教师给予适当的引导、归纳.1.为什么要引入负数??举出实例说明正数和负数在表示相反意义的量时的作用.现实生活中存在很多个有相反意义的量,如:向东5米与向西5米,零上2℃与零下2℃,收入100元与支出100元,低于海平面150米与高出海平面800?米……用正数表示其中一种量,负数表示和它相反意义的量,这样既简单又明白.?例如吐鲁番盆地的海拔高度为-155m,表示吐鲁番盆地的海拔高度是低于海平面155m.2.数的范围从正整数、零和正分数扩充到有理数后,增加了哪些数?减法中哪些原来不能进行的运算可以进行了?增加了负整数、负分数,解决了原来“小数不能减去大数”的问题,现在任何有理数都可以进行减法运算.3.怎样用数轴表示有理数?数轴与普通直线有什么不同??怎样用数轴解释绝对值和相反数?任何一个有理数都可以用数轴上的一个点表示,但数轴上的点不是都表示有理数,这一点,以后我们将要学习.数轴是一条特殊的直线,是规定了正方向、原点和单位长度的直线.原点、正方向、单位长度也称数轴的三要素,缺一不可.数轴上一个点与原点的距离相等的两个点所表示的数是互为相反数.4.怎样比较有理数的大小?有理数的大小比较方法有两种,一是利用数轴,在数轴上较左边的点比较右边的点所表示的数小;二是用绝对值,两个负数,绝对值大的反而小.正数大于零,负数小于零.5.有理数的加法与减法有什么关系?乘法与除法呢?有理数的减法可以转化为加法,转化的桥梁是相反数,减去一个数等于加上这个数的相反数,同样,除法可以转化为乘法,转化的桥梁是倒数,除以一个数(不为0),等于乘以这个数的倒数.有理数的混合运算都可以转化为加法与乘法.6.有理数满足哪些运算律?交换律:a+b=b+a,ab=ba结合律:(a+b)+c=a+(b+c)(a·b)·c=a(bc)分配律:(a+b)·c=ac+bc其中a、b、c表示任意有理数.三、巩固练习1.某大楼地上共有12层,地下共有4层,每层高2.8米,?请用正负数表示这栋楼每层的楼层号,某人乘电梯从地下3层升至地上7层,电梯一共上升了多少米?分析:表示各楼层号的方法不唯一,可以把地面一层记为“0”,那么地上各层(?从下到上)依次记为0,1,2,3,…,11,地下各层(从上到下)依次记作-1,-2,-3,-4.?电梯从地下3层(即-3)上升至地上7层(即+7).一共上升了(+6)-(-3)=9(层)若将地面一层记为1,地下一层记为-1,那么地上(从下往上)各层记为1,2,3,…,12,地下各层(从上往下)记为-1,-2,-3,-4.电梯一共上升了7-(-3)-1=9(层),因为编号中少了“0”层.所以电梯一共上升了9×2.8=25.2(米).2.a、b互为相反数,c、d互为倒数,│m│=4,求2a2003-(cd)+2b-3m的值.分析:由a、b互为相反数,可知a+b=0,由c、d互为倒数,得cd=1,那么(cd)2003=1.因为│m│=4,所以m=+4或-4,2a表示2×a,2b表示2×b,因此可利用加法交换律、分配律,2a+2b=2(a+b),在这里运算律解决了大难题.解:2a-(cd)2003+2b-3m=2a+2b-(cd)2003-3m=2(a+b)-(cd)2003-3m因为a+b=0,cd=1,所以原式=1-3m.当m=4时,原式=-1-3×4=-1-12=-13.当m=-4时,原式=-1-3×(-4)=-1+12=11.3.课本第51页,复习题1第2、5(1)(3)(5)(7)(9)(11)(13)、7、12、15题.四、作业布置1.课本第51页至第52页,复习题1,第1、3、5(2)(4)(6)(8)(10)(12)(14)、6、7、9、10、11题.2.选用课时作业设计.课时作业设计一、填空题.1.产品成本提高-11%,实际表示_________.2.大于-3且不大于2的所有整数有_________.3.若│x-2│+y2=0,则x=________,y=________.4.比较大小:(1)-0.1______-0.01;(2)0______-│-0.2│.二、选择题.5.已知-3的相反数是x,-4的绝对值是y,那么x+y的相反数是(). A.3 B.4 C.7 D.-76.已知a为有理数,下列式子一定正确的是().A.│a│=a B.│a│=-a C.│a│≥a D.│a│≤a7.下列各组数中,数值相等的是().A.-32和23 B.-22和(-2)2C.-33和(-3)3 D.(-3×2)2和-3×228.五个有理数的积为负数,其中负因数的个数一定不可能是().A.1个 B.3个 C.4个 D.5个三、解答题.9.把下列各数在数轴上表示出来,并用“<”号连接起来.2,0,-3.5,-1,(-3)2,-│-2│.10.计算.(1)(-81)÷(-)×÷(-16);(2)-22-(-3)2-32-(-2)3;(3)(-+-)×(-36).11.已知│a│=8,│b│=5,且a>b,求a+b的值.答案:一、1.成本降低了11% 2.-2 -1 0 1 2 3.2 04.(1)< (2)>二、5.D 6.C 7.C 8.C三、9.-3.5<-│-2│<-1<0<2<(-3)210.(1)-1 (2)-14 (3)-11 11.13或3本章疑难解析1.(习题1.3)第12题,加法与减法是互为逆运算,加数=和-另一个加数,如(5)题,由-15-(-8)=-15+8=-7,所以应填-7;(6)题,-6-(-13)=-6+13=7,所以应填7.第14题,第一天的最高价等于开盘价+0.3元,最低价等于开盘价-0.2元,因此,第一天的涨幅为0.3-(-0.2)=0.5(元),同理第二天的涨幅为0.2-(-0.1)=0.3(元),第三天的涨幅为0-(-0.2)=0.2(元),所以这三天的平均涨幅为:(0.5+0.3+0.2)÷3=≈0.3(元).2.习题(1.4)第12题,(1)、(2)根据两数相乘(或相除),异号得负,所以都填“<”号,(3)题是同号两数相乘(或相除),得正,所以都填“>”号.(4)题,根据零与任何数相乘都得零,所以a·b=0;又根据零除以任何不等于0的数,都是0,所以=0.第13题,2×1=2,2×=1,2×(-1)=-2,2×(-)=-1,这是正数1,都分别小于它的2倍,而负数-1,-都分别大于它的2倍,因此,一个非0有理数不一定小于它的2倍,?因为根据异号两数相乘的法则,积为负数,两个负数,绝对值大的反而小,所以当这个数是负数时,它一定比它的2倍大.第15题,(-4)÷2=-2,4÷(-2)=-2,所以(-4)÷2=4÷(-2).即=-成立.又(-4)÷(-2)=2,4÷2=2,所以=.它们可以总结为:分子、分母和分式本身,这三种符号中,?任意改变其中两种符号,分式的值不变.3.习题(1.5)第8题,由已知条件可知这个长方体的长、下底面是边长为a的正方形,四周是长、宽分别为a、b的长方形,所以,长方体的体积为a2b,表面积为2a2+4ab,当a=2,b=5时,a2b=22×5=20,2a2+4ab=2×22+4×2×5=8+40=48,所以长方体的体积为20立方单位,?表面积为48平方单位.第9题,比较两个速度大小,速度单位要一致,330米/秒=0.33千米/秒=1188千米/时,而1.1×105千米/时=110000千米/时,所以,地球绕太阳公转的速度比声音在空气中的传播速度大的多.第12题,(1)式成立,根据负数的偶次幂是正数,所以a2>0,其实只要a≠0,a2>0都成立;(2)式也成立,因为a与-a是不为0的相反数,它们的偶次幂都是正数,且相等;(3)?式不成立,当a<0时a2>0,而-a2表示a2的相反数,所以这时-a2一定是一个负数;(4)式不成立,当a<0时,a3<0(根据负数的奇次方是负数),-a3表示a3的相反数,所以-a3是正数.4.(单元测试)第10题,根据“两个负数,绝对值大的反而小”,所以a<b,小数减大数不够减,?所以差为负数,因此a-b<0.< p=""> 第12题,-(-2)=2,-│-2│=-2,-(-3)2=-9,[-(-3)] 2=32=9,所以选B.</b,小数减大数不够减,?所以差为负数,因此a-b<0.<>。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有理数复习导学案
设计:邹勇 审核: 执教: 使用时间: 学习目标:1.理解有理数的意义,能用数轴上的点表示有理数,能比较有理数的大小。
2.理解相反数和绝对值的意义,掌握求有理数的相反数与绝对值的方法。
3.理解乘方的意义,掌握有理数的加、减、乘、除、乘方及简单的混合运算。
4.能运用有理数的运算解决简单的问题。
第一部分:基础知识过关 1.(1)如果节约用水30吨记为+30吨,那么浪费20吨记为吨.
(2)如果4年后记作+4,那么8年前记作. (3)将1 608 000 000用科学记数法表示为 . 2.下列说法正确的是( )
A.整数就是自然数 B.0不是自然数
C.正数和负数统称为有理数 D.0是整数而不是正数 3.把下列各数填入相应的大括号内:
-7,0.125,12,-31
2
,3,0,50%,-0.3
(1)整数集合{ }(2)分数集合{ }
(3)负分数集合{ }(4)非负数集合{ }
(5)有理数集合{ } 4.是最小的正整数,是最小的非负数,是最大的非正数. 5.与原点距离为3.5个单位长度的点有个,它们分别是和 6.若a 与a-2互为相反数,则a 的相反数是
7.-4的绝对值是,绝对值等于4的数是.│3.14-|= 8. 计算
(1)(-32)-(+121)-(-41) (2)(-0.1)-(-831)+(-1132)-(-101
)
(3)(-1.5)-(-1.4)-(-3.6)+(-4.3)-(+5.2) (4)-22-
(5)(-7)-(-4)-(+5),(6)(-9.8)×(-6.2)×(-26)×(-30.7)×0 9. 某出租司机某天下午营运全是在东西走向的人民大道进行的,•如果规定向东为正,向西为负,他这天下午行车里程如下(单位:千米) +15,+14,-3,-11,+10,-12,+4,-15,+16,-18
(1)他将最后一名乘客送到目的地,该司机距下午出发点的距离是多少千米?
(2)若汽车耗油量为0.3公升/千米,这天下午汽车共耗油多少公升? 第二部分:能力提升
1.-23-的倒数是()A. 32
B.32-
C.23
D.
2
3
-
2.下列运算错误的是()
A.-8×2×6=-96
B.(-1)2 014+(-1)2 015=0
C.-(-3)2=-9
D.2÷
43
×
34
=2
3.如图A ,B 两点在数轴上表示的数分别为a ,b ,下列式子成立的是( )
A.ab >0
B.a +b <0
C.(b -a )(a +1)>0
D.(b -1)(a -1)>0
4.若|a -1|+(b +3)2=0,则ba =( )A.1 B.-1 C.3 D.-3
5.规定一种新的运算“*”:对于任意有理数x ,y 满足x *y =x -y +xy .例如,3*2=3-2+3×2=7,则2*1=()A.4 B.3 C.2 D.1
6.下列各数|-2|,-(-2)2,-(-2),(-2)3中,负数的个数有()
A .1个
B .2个
C .3个
D .4个 7.如果a +b <0,并且ab >0,那么()
A .a <0,b <0
B .a >0,b >0
C .a <0,b >0
D .a >0,b <0 8.已知3x -8与2互为相反数,则x =_
9.若|x+2|+|y ﹣3|=0,则x+y=________ ,x y =________. 10.已知a ,b 互为相反数,且|a -b |=6,则b -1=____. 11.计算:1+2-3-4+5+6-7-8+9+10-11-12+……-+2 018= 12.观察下列各式:,
,
,…,根据观
察计算:
=________.(n 为正整数)
13.计算:(1)1137
(3)()63412
+-÷-+-;(2)-23+(-2)2×(-1)-(-2)4÷(-2)3; (3) (4)×(-15)(用简便方法计算)
14.若a、b互为相反数,c、d互为倒数,m的绝对值为2.
(1)直接写出a+b,cd,m的值;
(2)求m+cd+a+b
m的值.
15.已知|a|=5,|b|=3,且|a-b|=b-a,求a+b的值.
16.已知a、b互为相反数,c、d互为倒数,|m|=2,求代数式2m﹣(a+b﹣1)+3cd
的值
17.解决问题:一辆货车从超市出发,向东走了3千米到达小彬家,继续走2.5千米到达小颖家,然后向西走了10千米到达小明家,最后回到超市.
(1)以超市为原点,以向东的方向为正方向,用1个单位长度表示1千米,在数轴上
表示出小明家,小彬家,小颖家的位置.
(2)小明家距小彬家多远?
(3)货车一共行驶了多少千米?
(4)货车每千米耗油0.2升,这次共耗油多少升?
18. 已知数轴上有A、B、C三点,分别表示有理数-26,-10,10,动点P从A出发,以每秒1个单位的速度向终点C移动,设点P移动时间为t
秒.(1)用含t的代数式表示P到点A和点C的距离:PA=________,PC=_____________(2)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回,当点P运动到点C时,P、Q两点运动停止,①当P、Q两点运动停止时,求点P和点Q的距离;②求当t为何值时P、Q两点恰好在途中相遇。