生化工程(1)

合集下载

生化工程师岗位职责

生化工程师岗位职责

生化工程师岗位职责
生化工程师是指从事生物化工领域的研究、开发和生产的专业人员。

主要负责开发和设计新的生物制品和技术,提高生产效率,控制生产成本,优化生产工艺等。

在这个岗位上,生化工程师拥有以下职责:
1. 研究和开发新的生物制品:生化工程师需要通过研究各种生物化学反应,设计新的生物制品,并开发新的技术来提高生产效率和产品质量。

2. 生产工艺控制:生化工程师需要监控和控制制造过程,以确保生产过程中的质量,安全和效率。

3. 产品质量检测和优化:生化工程师需要对生产出来的产品进行质量检测和分析,并及时对生产工艺进行优化,提高产品质量和产量。

4. 设计和维护实验室设备:生化工程师需要设计和维护实验室的设备和仪器,以确保实验的准确性和可靠性。

5. 制定和执行实验室安全计划:生化工程师需要制定和执行实验室安全计划,确保实验室的人身安全和设备安全。

6. 协调团队合作:生化工程师需要与其他专业人员协调工作,包括实验室技术员、生产员工和市场营销人员等。

7. 项目进度管理:生化工程师需要监测和管理项目进度,并确保项目能够按时完成并交付。

总的来说,生化工程师是一个细心、负责和有创造力的职业。

他们需要有卓越的科学和技术素养,同时需要具备团队合作精神、较强的计划与执行能力,以及解决问题的能力和敏锐的思维能力。

生化反应工程

生化反应工程

生化反应工程1.生物技术产品的生产过程主要由哪四个部分组成?答:1)原材料的预处理(2)生物催化剂的制备;(3)生化反应器及其反应条件的选择和监控;(4)产物的分离纯化。

2.什么是生化反应工程,生化反应工程的研究的主要内容是什么?定义:以生化反应动力学为基础,运用传递过程原理及工程学原理与方法,进行生化反应过程的工程技术分析、开发以及生化反应器的设计、放大、操作控制等综合边缘学科。

主要内容:建立生物反应过程动力学和生物反应器的设计,优化和放大。

3. 生化反应工程研究方法.经验模型法、半经验模型法、数学模型法;多尺度关联分析模型法(因次分析法)和计算流体力学研究法。

.在建立生物反应过程数学模型时,常按下述几个步骤进行: (1)反应过程的适当简化;(2)定量化研究; (3)过程分离原理;4)数学模型的建立。

理想的模型建立通常要考虑的因素1.要明确建立模型的目的2.明确地给出建立模型的假定条件3.希望所含有的参数,能够通过实验逐个确定4.模型应尽可能简单。

第1章 酶催化反应动力学1.有高效的催化活性2.有高度的专一性3.酶反应常需要辅因子的参与4.具有温和的反应条件5.酶的催化活性可被调控6.酶易变性与失活酶反应专一性机制:锁钥学说,诱导契合学说,过渡态学说。

什么叫抑制剂?任何能直接作用于酶并降低酶催化反应速率的物质称为酶的抑制剂1.M-M 方程的建立: E + S 11k k - [E 2k −−→E + P (1)快速平衡假设:2[],p ES r k C =11[],E S ES k C C kC -=[],EO E ES C C C =+得2m axE O S SP S SS S k C C rC r K C K C ==++(2)拟稳态假设:11[]2[]0E S ES ES k C C kC k C ---=得2m axEO S SP m Sm S k C C rC r K C K C ==++2. M-M 方程参数的确定:m ax20E rk C =,mK(1)微分法:* L-B 法 :m axm ax111m SSK r rC r =+* E-H 法:m axss mSr r rK C =- H-W 法:m axm axSm S sC K C r rr=+E-C-B 法:m ax1m sSrK r C =+(2)积分作图法:m ax0m()lnSO S S S C r t C C KC =-+一级反应时,m axmlnSOSC rt K C = 零级反应时,max 0()S S r t C C =-3.有抑制的酶催化反应动力学----由方程推机理,抑制方式(1)竞争性抑制:E + S 11k k - [ES 2k −−→E + PE + I 33k k -−−−→←−−−[EI] 得m ax *SSI Smr C r KC =+,I *m IC 1+)K K mK=((2)非竞争性抑制:E + S 11k k - [E2k −−→E + P ,E + I 33k k -−−−→←−−−[EI], [ES] + I 4-4k k −−−→←−−−[SEI] , [EI] + S 5-5k k −−→←−− [SEI] 得 *max s m I SSr C r K C =+,I *m ax m ax I C /1+)K r r =( (3)反竞争性抑制:E + S 11k k - [E2k −−→E + P ,[ES] + I 33k k -−−−→←−−−[SEI] 得m axI m IC 1+)K SSI S rC r K C =+((4)底物抑制:E + S 11k k - [ES2k −−→E + P ,[ES] + S 33k k - [SES]得m axm 1+)SSS s S SIrC r C K C K =+(,,m axS C =4.双底物酶催化反应(了解):S 1 + S 2 P 1 +P 2(1)随机机制:E + S 1 11k k - [ES 1], E + S 2 2-2k k −−−→←−−−[ES 2], [ES 1] +S 2 12k [ES 1S 2], [ES 2] +S 1 21k [ES 1S 2],[ES 1S 2]K−−→E +P 1+P 2 (2)乒乓机制: E + S 1 11k k - [ES 1]−−→ P 1 +E’,E’ + S 2 2-2k k −−−→←−−−[E’2] −−→ E +P 2(3)顺序机制:E + S 1 11k k - [ES 1],[ES 1] +S 2 2k −−−→←−−−[ES 1S 2],[ES 1S 2]3k −−→ E +P 1+P 2 5.酶的失活动力学:E adrk k −−→←−−E i()[]d r E O k k E a r d d rC tC k k ek k -+=++, 若为不可逆失活,Kr=0,0dK Ea E tC C e-=,K d =1/t d =ln2/t 1/2,K d 为衰变常数,t 1/2为半衰期第2章 细胞反应过程计量学1. 呼吸商:在一定时间内放出的二氧化碳量和消耗的氧气量的比 。

生化工程习题

生化工程习题

生化工程习题一、判断正误1、间歇培养微生物的减速生长期,微生物的比生长速率小于零。

(×)2、反混指不同物料间有混合的现象。

(×)3、PFR反应器中,沿轴向的反应速度是常数。

(×)4、单级连续培养中,如果调整成D(稀释速率)>μ(比生长速率),最终将发生“冲出”现象。

(√)5、一定温度下,微生物营养细胞的均相热死灭动力学符合化学反应的一级反应动力学。

(√)6、限制性底物指微生物的碳源。

(×)7、单级恒化器连续培养某种酵母达一稳态后,流出液中菌体浓度是培养时间的函数。

(×)8、CSTR反应器中物料的返混程度最小。

(×)9、微生物的比生长速率是指单位时间内菌体的增量。

(×)10、间歇培养好氧微生物时,菌体的对数生长期到来时,菌体的摄氧率大幅度增加。

(√)11亚硫酸盐氧化法可以用于测量真实发酵液的Kla。

(×)12、活塞流反应器中,沿径向的反应速度是常数。

(√)13、返混是指不同停留时间物料之间的混合。

(√)14、任何微生物培养过程的YATP均等于10g/mol左右。

(×)15、连续培养反应器中物料的平均停留时间和稀释速率互为倒数。

(√)16、间歇培养好氧微生物时,菌体耗氧速率是常数。

(×)17、对培养基进行热灭菌必须以霉菌的孢子为杀灭对象。

(×)18、在一定温度下,各种不同微生物的比热死亡速率常数值相等。

(×)19、在有细胞回流的单级恒化器中,总的出口处菌体浓度与恒化器中的菌体浓度完全相等。

(×)20、动态法测量Kla不能用于有菌体繁殖的发酵液。

(×)21、连续反应器中物料的平均停留时间用F/V来计算。

(×)22、在活塞流反应器中进行恒温热灭菌,沿物料流动方向菌体热死灭速率逐渐下降。

(√)23、单级恒化器的稀释速率可以任意调整大小。

(×)24、微生物营养细胞易于受热死灭,其比热死亡速率常数K值很高。

生化分离工程的一般工艺流程

生化分离工程的一般工艺流程

生化分离工程的一般工艺流程生化分离工程是一种利用不同物质的化学或生物特性差异进行分离的工程技术。

它主要应用于制药、食品、化工等领域,用于提取、分离和纯化目标物质。

下面将介绍一般的生化分离工艺流程。

一、前处理前处理是生化分离工程的第一步,主要目的是将原料进行预处理,以去除杂质、减少影响分离效果的物质,为后续的分离步骤做好准备。

前处理的具体步骤包括物料破碎、浸泡、搅拌等。

二、提取提取是生化分离工程的核心步骤,它是将目标物质从原料中提取出来的过程。

提取方法多种多样,常用的方法包括溶剂提取、超临界流体提取、浸提等。

在提取过程中,需要控制好提取的时间、温度、pH值等因素,以提高提取效率和提取纯度。

三、分离分离是将提取得到的混合物中的目标物质与其他物质进行分离的过程。

常用的分离方法有蒸馏、结晶、萃取、吸附、离心、膜分离等。

分离的选择要根据目标物质的特性以及产品的要求来确定。

四、纯化纯化是将分离得到的目标物质进一步提纯的过程。

纯化的方法有很多种,常用的方法有晶体生长、再结晶、色谱层析、电泳等。

纯化的目的是提高产品的纯度和质量。

五、精制精制是对纯化后的物质进行进一步处理,以达到更高的纯度和质量要求。

精制的方法包括洗涤、溶解、过滤、干燥等。

在精制过程中,需要注意控制操作的条件,防止杂质的污染。

六、成品制备成品制备是将精制后的物质进行最终的加工和包装,以获得成品产品。

成品制备的步骤包括配制、混合、包装等。

在成品制备过程中,需要严格控制生产工艺,确保产品的质量和安全性。

七、检测与分析检测与分析是生化分离工程的重要环节,它用于检验产品的质量和性能。

常用的检测与分析方法包括色谱分析、质谱分析、核磁共振等。

通过检测与分析,可以对产品进行定性和定量的分析,为产品的质量控制提供依据。

八、工艺优化与改进工艺优化与改进是生化分离工程的持续改进过程。

通过对工艺流程的优化和改进,可以提高产品的产率、纯度和质量,降低生产成本,提高经济效益。

生化工程绪论

生化工程绪论

过滤设备
生物工程发展史

天然细胞
3、现代生物工程


基因工程 蛋白质工程 代谢工程 细胞工程

工程细胞


分离工程


生化反应器

分离工程

代谢工程 细胞工程 发酵工程

酶工程 生物活性物质
(1)基因工程:
1973,Cohen等 DNA体外重组以及E. coli转化
转基因工程菌株的培养、 质粒稳定性,环境 安全性 基因工程药物的提取:蛋白纯化,复性 低压层析系统(轴相分离) HPLC (径向分离) 膜分离技术
生化工程定义

生化工程:运用化学工程的原理与方法, 将生物技术的实验室成果进行工业开发, 使之成为生物反应过程的一门学科。
生化工程是为生物技术服务的化学工程。
(3)连续发酵
二十世纪40年 代末提出概 念 1950,Monod; Novick and Szilark各自 独立提出恒 化器概念
生化反应器
生化工程
第一章 绪论





生化工程的概念 学科的诞生 学科的发展 和生物工程其他学科的关系 研究内容 教学计划和授课内容 学习方法,参考书和网站
生物工程发展史

1、原始阶段
传统发酵技术: 酒、酱制品、 腐乳、食醋、 干酪等
生物工程发展史
2、近代 (1)纯培养发酵 列文虎克 ,巴斯德 ,赫克 面包酵母发酵生产 补料液体通风发酵 丙酮丁醇发酵 培养基灭菌技术
Diagrams
of various important enzyme reactor types.
(4)代谢工程

生化工程 测试题二

生化工程 测试题二

生化工程(生物化学技术原理与应用)测试题二一、名词解释1.排阻极限:不能进入到凝胶网络内部的最小分子的相对分子量。

(渗入极限:能够完全进入到凝胶网络内部的最大分子的相对分子量。

)2.阴离子交换剂:功能基团带正电荷,与阴离子交换。

(书:阳离子交换剂的电荷基团带负电,反离子带正电。

因此这种交换剂可以与溶液中的正电荷化合物或阳离子进行交换反应。

阴离子交换剂是在树脂中分别引入季胺[—N(CH3)3]、叔胺[—N(CH3)2]、仲胺[—NHCH3]和伯胺[—NH2])基团后构成的。

阴离子交换树脂对化学试剂及热都不如阳离子交换树脂稳定。

)3.交换容量:是指离子交换剂能提供交换离子的量,它反映离子交换剂与溶液中离子进行交换的能力。

通常以每毫克或每毫升交换剂含有可解离基团的毫克当量数(meq/mg或meq/ml)表示。

(书:是指离子交换剂与溶液中离子或离子化合物进行交换的能力。

一般用总交换容量和有效交换容量表示。

)4.层析技术:主体介质由互不相溶的流动相和固定相组成,利用混合物中各组分物理化学性质的差异(如吸附力、分子形状及大小、分子亲和力、分配系数等),使各组分在两相中的分布程度不同,从而使各组分以不同的速度移动而达到分离的目的。

(层析是以基质为固定相(呈柱状或薄层状),以液体或气体为流动相,使有效成分和杂质在这两个相中连续不断、反复多次地进行分配或交换、吸附作用,最终达到分离混合物之目的。

)5.矫正保留时间:(书P416)【死时间(t r0):不与固定相作用的物质从进样到出现峰极大值时的时间,它与色谱柱的空隙体积成正比。

由于该物质不与固定相作用,因此,其流速与流动相的流速相近。

据t0可求出流动相平均流速。

(书:死时间是指不被固定相吸附或溶解的空气或甲烷,从进样口经过柱体出现浓度极大值所需的时间,即空气通过色谱柱所需要的时间。

)保留时间t r:试样从进样到出现峰极大值时的时间。

它包括组份随流动相通过柱子的时间t0和组份在固定相中滞留的时间。

生化分离工程知识点总结归纳

生化分离工程知识点归纳第一章绪论1、生物物质分离工程:在工业规模上,通过适当的分离纯化技术与装备并消耗一定的能量和分离介质来实现生物物质(产品)制备的过程,是生物产业的一个重要组成部分。

2、生物工程下游加工过程的特点:(1)成分复杂:固体成分、液体成分(2)悬液中的目标产物浓度低(3)稳定性差:化学(温度和pH值)或微生物引起的降解(4)生物产品质量要求高:纯度、卫生、生物活性3、下游加工过程的一般流程(4个阶段):发酵液的预处理与固液分离、初步纯化(提取)、高度纯化(精制)、成品加工。

4、某一具体产品的分离提取工艺设计中应考虑的问题:①产物本身的性质;②是胞内产物还是胞外产物;③原料中产物和主要杂质浓度;④产物和主要杂质的理化特性及差异;⑤产品用途和质量标准;⑥产品的市场价格;⑦不同分离方法的技术经济比较及废液的处理方法等。

第二章发酵液的预处理与过滤1、发酵液的预处理发酵液的预处理的方法:(1)加热:最简单、最经济的预处理方法是加热,降低料液黏度,也可以对其进行灭菌。

但加热变性的方法只适合于对热稳定性的产物。

(2)调节料液的pH值:促进全细胞聚集。

(3)凝聚和絮凝:凝聚是指通过加入简单电解质降低了胶体粒子间的排斥电位,从而使得范德华引力起主导作用,聚合成较大的胶粒,粒子的密度越大,越易分离。

常用凝聚剂多为阳离子型如明矾、三氯化铁。

絮凝是指预处理时加入絮凝剂(通常指天然或合成的生物大分子聚电解质)既能降低排斥电位,又吸附了周围的微粒,形成桥架作用,促使胶粒形成粗大,密度低的絮凝团。

这些絮凝团很容易被过滤得到。

主要絮凝剂:聚丙烯酰胺、聚苯乙烯、多聚胺衍生物。

(4)使用惰性助滤剂:硅藻土、珍珠岩。

2、真空过滤器的优点:连续自动操作,节省人力,生产能力大。

真空过滤器的缺点:附属设备多,投资费用高,推动力小适用于量大易过滤的料液。

3、压滤器的优点:过滤推动力大,过滤面积大。

压滤器的:缺点:板框压滤机劳动强度大,投资、维护费用高。

生化工程期末考试复习

一.问答题(20分两道)1.生化工程的发展:1. 第一代微生物发酵技术-纯培养技术建立人为控制发酵过程,简单的发酵罐(以厌氧发酵和表面固体发酵为主),生产酵母、酒精、丙酮、丁醇、有机酸、酶制剂等2.第二代微生物发酵技术-深层培养技术建立➢1928年英国弗莱明发现点青霉可以产生抑制葡萄球菌生长的青霉素➢20世纪40年代:青霉素的大量需求-需氧发酵工业化生产建立了高效通气搅拌供氧(深层培养)技术、无菌空气的制备技术及大型生物反应器灭菌技术,促进了生物制品的大规模工业化-进入微生物发酵工业新阶段微生物学,生物化学与化学工程相结合,标志着生物化学工程(Biochemical Engineering)的诞生2. 生化工程的概念:定义:运用化学工程学原理方法, 将生物技术实验成果进行工程化、产业化开发的一门学科。

实质:研究生物反应过程中的工程技术问题,是微生物学、生物化学与化学工程结合。

3.奠定生化工程学科基础的两个关键技术①通气搅拌解决了液体深层培养时的供氧问题。

②抗杂菌污染的纯种培养技术:无菌空气、培养基灭菌、无污染接种、大型发酵罐的密封与抗污染设计制造。

4.高温灭菌机理:微生物受热死亡的活化能ΔE比营养成分受热分解的活化能ΔE’大。

ΔE大,说明反应速率随温度变化也大;当温度升高,微生物死亡速度比营养成分分解速度快。

故采取高温瞬时,有利于快速杀灭菌体,而且减少营养的破坏。

养分虽因温度增高破坏也增加,但因灭菌时间大为缩短,总破坏量因之减少。

5. 深层过滤除菌机理:深层过滤:一定厚度的介质,介质的孔径一般大于细菌,其主要由于滞留作用截获微粒,使空气净化。

滞留作用机制主要构成为:1.惯性碰撞滞留作用:一定质量的颗粒随气流运动,若遇到纤维,由于惯性力作用直线前进,最终碰撞到纤维,摩擦、黏附作用被停滞于纤维表面。

2.阻拦滞留作用:当V< V c 时, 气流流过纤维,纤维周围产生滞流层,微小颗粒在滞流层接触纤维,由于摩擦黏附作用被纤维阻拦滞留的现象。

生化分离工程 知识点

一、沉淀法名解:沉淀与结晶:盐析和盐溶:在高浓度的中性盐存在下,蛋白质(酶)等生物大分子物质在水溶液中的溶解度降低,产生沉淀的过程。

有机溶剂沉淀法:在含有溶质的水溶液中加入一定量亲水的有机溶剂,降低溶质的溶解度,使其沉淀析出。

知识点:常用的蛋白质沉淀方法有哪些?盐析法,等电点沉淀法,有机溶剂沉淀法,非离子型聚合物沉淀法,聚电解质沉淀金属离子沉淀法防止蛋白质沉淀的屏障有蛋白质周围的双电层和水化合膜。

Cohn经验方程式。

在相同离子强度下,盐的种类对蛋白质溶解度的影响有一定差异,一般的规律为:半径小的高价离子的盐析作用较强,半径大的低价离子作用较弱。

等电点沉淀的操作条件是蛋白质分子以两性离子形式存在和其分子净电荷为零(即正负电荷相等) 。

溶液的pH大于等电点时,蛋白质带负电荷,溶液的pH小于等电点时,蛋白质带正电荷。

有机溶剂沉淀时,蛋白质的相对分子质量越大,则有机溶剂用量越少;在溶液等电点附近,则有机溶剂用量越少。

在蛋白质颗粒和溶液界面之间的三种电位。

见下题请简述双电层理论。

在蛋白质颗粒和溶液界面之间存在有三种电位:①胶核表面的电位φ0,是整个双电层的电位或称Nernst电位;②Stern平面上的电位φs;③在滑动面上的电位ξ称ξ电位(或称电动电位)。

这三种电位中只有ξ电位能实际测得,所以认为它是控制胶粒间电排斥作用的电位。

它取决于Nernst电位和反离子的浓度及电荷大小,即随着溶液中离子浓度和价数的升高,ξ电位下降,从面使颗粒间斥力强度减小,溶液趋于不稳定,蛋白质也就会沉淀下来。

沉淀法分离蛋白质有哪些特点?①分离前期就可使原料液体积很快地减小10-50倍,从而简化生产工艺、降低生产费用,浓缩与纯化合二为一;②使中间产物保持在一个中性温和的环境;③可及早地将目标蛋白从其与蛋白水解酶混合的溶液中分离出来,避免蛋白质的降解,提高产物稳定性;④用蛋白质沉淀法作为色谱分离的前处理技术、可使色谱分离使用的限制因素降低到最少。

生化工程中的代谢工程技术

生化工程中的代谢工程技术生化工程是利用生物技术和化学工程的知识、原理、技术和装备开展的一项综合性学科。

在这个领域中,代谢工程技术扮演着重要的角色。

代谢工程是一种利用生物化学、微生物学、分子生物学及相关工程技术来研究、设计和操纵代谢反应和代谢途径的学科。

在生化工程中,代谢工程技术的应用非常广泛,以下是一些典型应用。

一、代谢工程在生物发酵中的应用生物发酵是生化工程中的一个主要研究方向。

代谢工程技术可以被应用于改变菌株的代谢特性,从而提高发酵产物的产量和质量。

例如,利用代谢工程技术,研究人员可以通过超表达特定代谢途径的酶来增加某种产物的产出量,或通过抑制消耗产物的代谢途径来增加产物的积累。

同时,代谢工程技术也可以应用于改良发酵过程的操作和控制策略,从而提高产量和质量的稳定性。

二、代谢工程在药物研发中的应用代谢工程技术在药物研发中也有着重要的应用。

例如,人类细胞中的代谢途径与其他生物体有很大不同,因此研究人员需要寻找合适的模型来研究药物的代谢途径。

代谢工程技术可以被应用于改变细胞的代谢途径,从而提高药物代谢特性的研究精度和准确度。

同时,代谢工程技术也可用于改变细胞的代谢途径,从而提高药物的疗效和稳定性。

三、代谢工程在食品工业中的应用食品工业中的酵母发酵和嗜酸乳杆菌发酵都是代谢工程技术的典型应用。

利用代谢工程技术可以改变酵母和嗜酸乳杆菌的代谢行为,从而提高食品的质量和品味。

例如,研究人员可以通过代谢工程技术改变酵母的挥发性酯类代谢途径,从而影响啤酒的风味。

同时,代谢工程技术也可以应用于改变食品中的多糖组分,以提高其营养价值和健康效益。

四、代谢工程在环境保护中的应用环境保护是代谢工程技术的另一个应用领域。

例如,生物降解是一种利用微生物代谢途径来降解有害物质的环保技术。

代谢工程技术可以被应用于改变微生物的代谢特点,使其更适合降解特定的有害物质。

同时,代谢工程技术还可以被应用于改变微生物的代谢途径和合成途径,从而提高产生新型环保生物物质的效率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档