初中数学《有理数的概念》典型题精编
人教版七年级数学上册《有理数相关概念》专题训练-附参考答案

人教版七年级数学上册《有理数相关概念》专题训练-附参考答案目录正数和负数 ...................................................................................................................................... 1 有理数概念及其分类 ...................................................................................................................... 2 有理数的分类 .................................................................................................................................. 2 有理数的应用 .................................................................................................................................. 5 数轴的定义 ...................................................................................................................................... 8 数轴上表示有理数 .......................................................................................................................... 9 数轴上表示有理数(带字母) .................................................................................................... 10 数轴的性质 .................................................................................................................................... 12 数轴上的应用 ................................................................................................................................ 13 相反数的定义 ................................................................................................................................ 15 相反数的性质 ................................................................................................................................ 15 相反数与数轴 ................................................................................................................................ 16 绝对值的定义 ................................................................................................................................ 17 含字母的绝对值化简 .................................................................................................................... 18 非负性 ............................................................................................................................................ 20 绝对值求值 (21)【例1】在数1- 0 3.05- π- 2+ 12-中 负数有( )A .1个B .2个C .3个D .4个【解答】解:在数1- 0 3.05- π- 2+ 12-中 负数有1- 3.05- π- 12- 共4个.故选:D .【变式训练1】中国是最早采用正负数表示相反意义的量的国家.某仓库运进小麦6吨 记为6+吨 那么仓库运出小麦8吨应记为( )吨. A .8+B .8-C .8±D .2-【解答】解:仓库运进小麦6吨 记为6+吨∴仓库运出小麦8吨应记为8-吨故选:B .【变式训练2】若收入3元记为3+ 则支出2元记为( )A .2-B .1-C .1D .2【解答】解:由题意知 收入3元记为3+ 则支出2元记为2- 故选:A .【变式训练3】冬残奥会举办最理想的温度是17C ︒-至10C ︒ 若10C ︒表示零上10C ︒ 那么17C ︒-表示()A .零上17C ︒B .零上27C ︒C .零下17C ︒D .零下17C ︒-【解答】解:17C ︒-表示零下17C ︒ 故选:C .【例2】下列各数中属于负整数的是( ) A .0B .3C .5-D . 1.2-【解答】解:A 0为整数 故选项不符合题意B 3为负正整数 故选项不符合题意C 5-为负整数 故选项符合题意D 1.2-为负分数 故选项不符合题意.故选:C .【变式训练1】在 3.5- 227 0.161161116⋯ 2π中 有理数有( )个. A .1B .2C .3D .4【解答】解:A 3.5-是负分数 故是有理数B227是正分数 故为有理数 C 0.161161116⋯是无限不循环小数 是无理数 故不是有理数D2π是含有π的数 是无理数 故不是有理数 所以有理数有两个 故选:B . 【变式训练2】在122- 3.5+ 0 0.7- 5 13-中 负分数有( )A .1个B .2个C .3个D .4个【解答】解:在122- 3.5+ 0 0.7- 5 13-中负分数有0.7- 13- 共有2个故选:B .【变式训练3】下列说法中 正确的是( ) A .正有理数和负有理数统称有理数 B .正分数 零 负分数统称分数 C .零不是自然数 但它是有理数 D .一个有理数不是整数就是分数【解答】解:A .正有理数 零和负有理数统称有理数 故本选项不合题意B .正分数和负分数统称分数 故本选项不合题意C .零是自然数 也是有理数 故本选项不合题意D .一个有理数不是整数就是分数 说法正确 故本选项符合题意.故选:D .有理数的分类 有理数的分类:①按定义 有理数可分为:②按正 负 有理数可分为:【例3】将下列各数填在相应的圆圈里: 6+ 8- 75 0.4- 0 23%37 2006- 1.8- 34-.【解答】解:如图:【变式训练1】把下列各数分别填在相应的集合内:11- 4.8 73 2.7-163.141592634-73正分数集合:{ 4.8 163.141592673}⋯负分数集合:{}⋯非负整数集合:{}⋯非正整数集合:{}⋯.【解答】解:正分数集合:{4.8163.14159267}3⋯负分数集合:{2.7-3} 4-⋯非负整数集合:{730}⋯非正整数集合:{11-0}⋯.故答案为:4.8 163.1415926732.7 -3 4 -73 011-【变式训练2】把下列各数分别填入相应的集合里.224- 5 3.14 π3-0.15.(1)整数集合:{0 5 3-...}(2)分数集合:{...}(3)有理数集合:{...}(4)非负数集合:{...}.【解答】解:(1)整数集合:{0 5 3...}-(2)分数集合:22{4- 3.14 0.15...}(3)有理数集合:{0224- 5 3.14 3-0.15...}(4)非负数集合:{0 5 3.14 π0.15...}.故答案为:0 5 3-224- 3.14 0.150224- 5 3.14 3-0.150 5 3.14 π0.15.【变式训练3】把下列各数分别填入相应的集合:6+0 8-π 4.8-7-2270.658-.整数集合{6+0 8-7-}分数集合{}正有理数集合{}负有理数集合{}非负有理数集合{}自然数集合{}.【解答】解:整数集合{6+0 8-7}-分数集合{4.8-2270.65}8-正有理数集合{6+2270.6}负有理数集合{8- 4.8-7-5} 8 -非负有理数集合{6+0 2270.6}自然数集合{6+0}.故答案为:6+0 8-7- 4.8-2270.658-6+2270.6 8- 4.8-7-58-6+02270.6 6+有理数的应用【例4】某工艺厂计划一周生产工艺品2800个平均每天生产400个但实际每天生产量与计划相比有出入.下表是某周的生产情况(超产记为正减产记为负):(2)已知该厂实行每周计件工资制每生产一个工艺品可得70元若超额完成任务则超过部分每个另奖60元少生产一个扣100元.试求该工艺厂在这一周应付出的工资总额.【解答】解:(1)计划一周生产工艺品2800个=++--+-+-=(个)∴这周生产的数量2800(6261611158)2810(2)由(1)可知本周比计划多生产10个=⨯+⨯=(元).∴这一周应付出的工资2810706010197300【变式训练1】A水果超市最近新进了一批百香果每斤进价10元为了合理定价在第一周试行机动价格卖出时每斤以15元为标准超出15元的部分记为正不足15元的部分记为负超市记录第一周百香果的售价情况和售出情况:)第一周星期三超市售出的百香果单价为15元这天的利润是元.(2)第一周超市出售此种百香果的收益如何?(盈利或亏损的钱数)(3)超市为了促销这种百香果决定从下周一起推出两种促销方式:方式一:购买不超过5斤百香果每斤20元超出5斤的部分每斤降价4元方式二:每斤售价17元.林老师决定下周在A水果超市购买40斤百香果通过计算说明应选择上述两种促销方式中的哪种方式购买更省钱.【解答】解:(1)卖出时每斤以15元为标准表格中的数据表示超出15元的部分记为正不足15元的部分记为负∴星期三超市售出的百香果单价为15元这天的利润是10(1510)50⨯-=(元)故答案为:15(2)12023501013021555450225⨯-⨯+⨯-⨯+⨯+⨯-⨯=-(元)-⨯++++++=⨯=(元)(1510)(2035103015550)5165825-+=(元)(225)825600所以第一周超市出售此种百香果盈利600元(3)方式一:205(405)(204)660⨯+-⨯-=(元)方式二:4017680⨯=(元)660680<∴选择方式一购买更省钱.【变式训练2】体育课上某小组的8名男同学进行了100米测验达标成绩为15秒下表是这个小组8名男生的成绩记录(“+“表示成绩大于15秒).(2)这个小组男生的达标率为多少?(3)这个小组男生的平均成绩是多少秒?【解答】解:(1)15 1.213.8-=(秒).故这个小组男生的最好成绩是13.8秒(2)6100%75%8⨯=.故这个小组男生的达标率为75%(3)0.60.8 1.20.900.60.40.32-+--++--=-15(2)814.75+-÷=(秒).答:这个小组男生的平均成绩是14.75秒.【变式训练3】某粮仓原有大米148吨某一周该粮仓大米的进出情况如下表:(当天运进大米8吨记作8+吨:当天运出大米8吨记作8-吨.)运进或运出大米多少吨?(2)若大米进出库的装卸费用为每吨15元求这一周该粮仓需要支付的装卸总费用.【解答】解:(1)14832262316262198m-+--++-=解得10m=-.答:星期五该粮仓是运出大米运出大米10吨(2)|32|26|23||16||10|26|21|154-++-+-+-++-=154152310⨯=(元).答:这一周该粮仓需要支付的装卸总费用为2310元.【例5】如图是一些同学在作业中所画的数轴其中画图正确的是() A.B.C.D.【解答】解:A刻度不均匀故错误B正确C数据顺序不对故错误D没有正方向故错误.故选:B.【变式训练1】在下列图中正确画出的数轴是()A.B.C.D.【解答】A单位长度不一致故该选项不符合题意B有原点正方向单位长度故该选项符合题意C没有原点故该选项不符合题意D没有正方向故该选项不符合题意.故选:B.【变式训练2】如图所示下列数轴的画法正确的是()A.B.C.D.【解答】解:A单位长度不一致故此选项不符合题意B缺少原点故此选项不符合题意C规定了原点单位长度正方向的直线叫做数轴故此选项符合题意D缺少正方向故此选项不符合题意故选:C.【变式训练3】下列各图是四位同学所画的数轴其中正确的是() A.B.C.D.【解答】解:A选项中数轴缺少原点A∴选项不合题意B选项单位长度不一致B∴选项正确C选项中负方向1-和2-标错了C∴选项不合题意D选项中符合数轴的三要素D∴选项不合题意.故选:D.【例6】如图数轴上一个点被叶子盖住了这个点表示的数可能是() A.2.3B. 1.3-C.3.7D.1.3【解答】解:叶子盖住的点位于2和3之间四个选项中的数只有2.3这个适合这个位置故选:A.【变式训练1】如图在数轴上有M N两点则两点表示的数字之和不可能()A .2B .4-C . 3.45-D .7-【解答】解:设点M N 在数轴上所表示的数为m n 且0n m << 由于点N 离原点的距离比点M 到原点的距离要大0m n ∴<<-0m n ∴+< 即两点表示的数字之和不可能为正数.故选:A .【变式训练2】数32-在数轴上的位置可以是( )A .点A 与点B 之间 B .点B 与点O 之间C .点O 与点D 之间 D .点D 与点E 之间【解答】解:302-< 是负数∴在原点左侧3212-<-<-∴数32-在数轴上的位置可以是点A 与点B 之间 故选:A .【变式训练3】如图 点A 是数轴上一点 则点A 表示的数可能为( )A . 1.5-B . 2.5-C .2.5D .1.5【解答】解:根据图示可得点A 表示的数在2-和1-之间 四个选项中只能是 1.5-. 故选:A .【例7】如图 数轴上A B 两点所对应的有理数分别为a 和b 则a b -的结果可能是( )A .1-B .1C .2D .3【解答】解:由图可知 210.51b a -<<-<<<a b ∴-的结果可能是C .故选:C .【变式训练1】如图 点A B C D 四个点在数轴上表示的数分别为a b c d 则下列结论中 错误的是( )A .0a c +<B .0b a ->C .0ac >D .0b d< 【解答】解:根据数轴上点的位置得:0a b c d <<<< ||||||||c b d a <<<0a c ∴+< 0b a -> 0ac <0bd<. 故选:C .【变式训练2】有理数a b c 在数轴上所对应的点如图所示 则下列结论正确的是( )A .0a b +>B .0a b ->C .0a c +<D .0b c +>【解答】解:由数轴可知0b c a c b <-<<<<-A 0a b +< 故A 不符合题意.B 0a b -> 故B 符合题意.C 0a c +> 故C 不符合题意.D 0b c +< 故D 不符合题意.故选:B .【变式训练3】如图 若数轴上A B 两点对应的有理数分别为a b 则a b +的值可能是( )A .2B .1C .1-D .2-【解答】解:由图可知 32a -<<- 12b <<a b ∴+的结果可能是1-.故选:C .【例8】一只蚂蚁沿数轴从原点向右移动了3个单位长度到达点A则点A表示的数是() A.3B.3-C.0D.3±【解答】解:由题意知蚂蚁沿数轴从原点向右移动了3个单位长度到达点A首先点A表示的数是正数又与原点相距三个单位长度∴点A表示的数是3故选:A.【变式训练1】下列各数在数轴上所对应的点与原点的距离最远的是()A.2B.1C. 1.5-D.3-【解答】解:A.2到原点的距离是2个长度单位不符合题意B.1到原点的距离是1个长度单位不符合题意C. 1.5-到原点的距离是1.5个长度单位不符合题意D.3-到原点的距离是3个长度单位符合题意∴在数轴上所对应的点与原点的距离最远的点表示的数是3-.故选:D.【变式训练2】数轴上表示数为a和4a-的点到原点的距离相等则a的值为() A.2-B.2C.4D.不存在【解答】解:由题意知:a与4a-互为相反数40a a∴+-=解得:2a=.故选:B.【变式训练3】如图A B C D E为某未标出原点的数轴上的五个点且AB BC CD DE===则点C所表示的数是()A.2B.7C.11D.12【解答】解:17(3)20AE=--=又AB BC CD DE===AB BC CD DE AE+++=154DE AE ∴== D ∴表示的数是17512-= C 表示的数是17527-⨯=故选:B . 数轴上的应用【例9】如图 点O 为数轴的原点 点A B 均在数轴上 点B 在点A 的右侧 点A 表示的数是5-65AB OA =.(1)求点B 表示的数(2)将点B 在数轴上平移3个单位 得到点C 点M 是AC 的中点 求点M 表示的数.【解答】解:(1)65AB OA = 5OA =6AB ∴=651BO AB AO ∴=-=-=则点B 表示的数是1(2)当点B 向左平移时 3CB =∴点C 表示的数是2-点M 是AC 的中点∴点M 表示的数是5(2)3.52-+-=- 当点B 向右平移时 3CB =C ∴表示的数是4点M 是AC 的中点M ∴表示的数是54122-+=- 所以点M 表示的数是 3.5-或12-.【变式训练1】在今年720特大洪水自然灾害中 一辆物资配送车从仓库O 出发 向东走了4千米到达学校A 又继续走了1千米到达学校B .然后向西走了9千米到达学校C 最后回到仓库O .解决下列问题:(1)以仓库O 为原点 以向东为正方向 用1个单位长度表示1千米 画出数轴.并在数轴上表示A BC 的位置(2)结合数轴计算:学校C 在学校A 的什么方向 距学校A 多远?(3)若该配送车每千米耗油0.1升 在这次运送物资回仓的过程中共耗油多少升? 【解答】解:(1)如图(2)4(4)8--=(千米)答:学校C 在学校A 的西边 距学校8A 千米 (3)419418+++=(千米)180.1 1.8⨯=(升)答:共耗油1.8升.【变式训练2】出租车司机小刘某天上午营运全是在南北走向的某条大街上进行的 如果规定向北为正 向南为负 他这天上午的行程是(单位:千米):12+ 8- 10+ 13- 10+ 12- 6+ 15- 11+14-.(1)将最后一名乘客送达目的地时 小张距上午出发点的距离是多少千米?在出发点的什么方向? (2)若汽车耗油量为0.6升/千米 出车时 邮箱有油67.4升 若小张将最后一名乘客送达目的地 再返回出发地 问小张今天下午是否需要加油?若要加油至少需要加多少才能返回出发地?若不用加油 请说明理由.【解答】解:(1)(12)(8)(10)(13)(10)(12)(6)(15)(11)(14)13++-+++-+++-+++-+++-=-(千米). 答:小张距上午出发点的距离是13千米 在出发点的南方 (2)(12810131012615111413)0.674.4++++++++++⨯=(升)74.467.47-=(升)答:需要加油 要加7升油.【变式训练3】如图 已知数轴上点O 是原点 点A 表示的有理数是2- 点B 在数轴上 且满足3OB OA =.(1)求出点B 表示的有理数(2)若点C 是线段AB 的中点 请直接写出点C 表示的有理数. 【解答】解:(1)3OB OA = 2AO =326OB ∴=⨯=当点B 在点A 的左侧时 点B 表示的数为6- 当点B 在点A 的右侧时 点B 表示的数为6 综上 点B 表示的有理数是6±.(2)当点B 在点A 的左侧时 点C 表示的有理数为:|6(2)|22242-----=--=- 当点B 在点A 的右侧时|6(2)|222---=故点C 表示的有理数为4-或【例10】2022的相反数是( ) A .2022-B .2022C .12022D .12022-【解答】解:2022的相反数是2022-. 故选:A .【变式训练1】23-的相反数是( )A .32-B .32C .23 D .23-【解答】解:23-的相反数是:23.故选:C .【变式训练2】相反数等于它本身的数是( ) A .1B .0C .1-D .0或1±【解答】解:相反数等于它本身的数是 故选:B .【变式训练3】一个数的相反数是最大的负整数 则这个数为( ) A .1- B .0C .1D .不存在这样的数【解答】解:最大的负整数是1- 根据概念 (1-的相反数)(1)0+-= 则1-的相反数是1 故选:C .【例11】若1x -与2y -互为相反数 则2022()x y -= . 【解答】解:1x -与2y -互为相反数 120x y ∴-+-= 1x y ∴-=-∴原式2022(1)1=-=.故答案为:【变式训练1】若m n 为相反数 则(2021)m n +-+为 2021- . 【解答】解:m n 为相反数0m n ∴+=(2021)(2021)2021m n m n ∴+-+=++-=-.故答案为:2021-.【变式训练2】若a b 互为相反数 则(2)a b --的值为 2- . 【解答】解:因为a b 互为相反数 所以0a b +=所以(2)22022a b a b a b --=-+=+-=-=-. 故答案为:2-.【变式训练3】若a b 互为相反数 则(4)a b +-的值为 4- . 【解答】解:由题意得:0a b +=. (4)4044a b a b ∴+-=+-=-=-.故答案为:4-.相反数与数轴【例12】数轴上点A 表示3- B C 两点所表示的数互为相反数 且点B 到点A 的距离为 3 则点C 所表示的数应是 .【解答】解:设B 点表示的数是x |(3)|3BA x =--=解得0x =或6x =-∴点B 表示0或6-由B C 两点所表示的数互为相反数 得C 点表示的数是0或6故答案为:0或【变式训练1】如图 数轴上表示数2的相反数的点是( )A .点NB .点MC .点QD .点P【解答】解:2的相反数是2- 点N 表示2-∴数轴上表示数2的相反数的点是点N .故选:A .【变式训练2】已知数轴上A B 两点间的距离是6 它们分别表示的两个数a b 互为相反数()a b > 那么a = b = . 【解答】解:a b 互为相反数 ||||a b ∴=A B 两点间的距离是6||||3a b ∴==a b > 3a ∴= 3b =-.故答案为:3 3-.【变式训练3】一个数在数轴上表示的点距原点3个单位长度 且在原点的左边 则这个数的相反数是 .【解答】解:设此数是x 则||3x = 解得3x =±. 此数在原点左边∴此数是3- 3-的相反数是3故答案为:3绝对值的定义【例13】3-的绝对值是( )A .13-B .3C .13D .3-【解答】解:|3|3-=. 故选:B .【变式训练1】有理数2- 12- 0 32中 绝对值最大的数是( )A .2-B .12-C .0D .32【解答】解:2-的绝对值是2 12-的绝对值是12 0的绝对值是0 32的绝对值是32.312022>>> 2∴-的绝对值最大.故选A .【变式训练2】在3- 0.3 0 13这四个数中 绝对值最小的数是( ) A .3-B .0.3C .0D .13【解答】解:|3|3-= |0.3|0.3= |0|0= 11||33=100.333<<<∴绝对值最小的数是故选:C .【变式训练3】下列说法中正确的是( ) A .两个负数中 绝对值大的数就大 B .两个数中 绝对值较小的数就小 C .0没有绝对值D .绝对值相等的两个数不一定相等【解答】解:两个负数比较 绝对值越大 对应的数越小A ∴选项不合题意B 选项不合题意0的绝对值为0 C ∴选项不合题意绝对值相等的两个数可能相等 也可能互为相反数D ∴选项正确故选:D .【例14】有理数x y 在数轴上对应点如图所示:(1)在数轴上表示x - ||y (2)试把xy 0 x - ||y 这五个数从小到大用“<”号连接(3)化简:||||||x y y x y +--+. 【解答】解:(1)如图(2)根据图象 0||x y y x -<<<<(3)根据图象 0x > 0y < 且||||x y >0x y ∴+> 0y x -<||||||x y y x y ∴+--+ x y y x y =++--y =.【变式训练1】有理数a b c 在数轴上的位置如图:(1)判断正负 用“>”或“<”填空:b c - < 0 b a - 0 c a - (2)化简:||||||b c b a c a -+---.【解答】解:(1)观察数轴可知:0a b c <<<0b c ∴-< 0b a -> 0c a ->.故答案为:< > >.(2)0b c -< 0b a -> 0c a ->||||||0b c b a c a c b b a c a ∴-+---=-+--+=.【变式训练2】有理数a b c 在数轴上的位置如图(1)判断正负 用“>”或“<”填空:c b - > 0 a b + 0 a c - (2)化简:||||2||c b a b a c -++--.【解答】解:(1)由图可知 0a < 0b > 0c > 且||||||b a c <<0c b -> 0a b +< 0a c -<故答案为:> < <(2)原式[()][2()]c b a b a c =-+-+---22c b a b a c =---+- 2a b c =--.【变式训练3】已知a b c 三个数在数轴上对应点如图 其中O 为原点 化简|||2|||||b a a b a c c ---+--.【解答】解:根据数轴可得0c b a <<<|||2|||||(2)()20b a a b a c c a b a b a c c a b a b a c c ∴---+--=---+---=--++-+=.【例15】若|3||5|0x y ++-= 那么的值是多少? 【解答】解:由题意得 30x += 50y -= 解得3x =- 5y = 所以 352x y +=-+= 答:x y +的值是【变式训练1】已知|3||5|0a b -++= 求: (1)a b +的值 (2)||||a b +的值.【解答】解:|3||5|0a b -++=30a ∴-= 50b += 3a ∴= 5b =-(1)3(5)2a b +=+-=- (2)|||||3||5|358a b +=+-=+=.【变式训练2】如果|3|a -与|5|b +互为相反数 求a b -的值. 【解答】解:|3|a -与|5|b +互为相反数|3||5|0a b ∴-++=又|3|0a - |5|0b +30a ∴-= 50b +=解得3a = 5b =-3(5)358a b ∴-=--=+=.【变式训练3】已知|2||2|0x y x -+-= 求20202019x y -的值.【解答】解:|2||2|0x y x -+-=20x ∴-= 20y x -=2x ∴= 1y =则202020192020220192021x y -=⨯-=.绝对值求值【例16】已知||3a = ||5b = 且a b > 求2b a -的值.【解答】解:因为||3a = ||5b =所以3a =或3- 5b =或5-.又因为a b >所以3a =或3- 5b =-①当3a = 5b =-时252311b a -=--⨯=-.②当3a =- 5b =-时252(3)1b a -=--⨯-=.综上所述:2b a -的值为11-或【变式训练1】已知||3x = ||7y =.(1)若x y < 求x y +的值(2)若0xy < 求x y -的值.【解答】解:由题意知:3x =± 7y =±(1)x y <3x ∴=± 7y =10x y ∴+=或 4(2)0xy <3x ∴= 7y =-或3x =- 7y =10x y ∴-=±1.如果向东走5米记作:“5+” 那么向西走8米记作( )A .8+B .8-C .5+D .5- 【解答】解:向东走5米记作5+米∴向西走8米记作8-米.故选:B .2.如果水库的水位高于正常水位2m 时 记作2m + 那么低于正常水位3m 时 应记作( )A .3+ mB .3- mC .13+ mD .13- m 【解答】解:如果水库的水位高于正常水位2m 时 记作2m + 那么低于正常水位3m 时 应记作3m -. 故选:B .3.下面两个数互为相反数的是( )A .3-和(3)-+B .|2|-和|2|C .712和127D .14和0.25- 【解答】解:A (3)3-+=- 所以两数相等 不合题意B |2|2-= |2|2= 所以两数相等 不合题意C 712127不互为相反数 不合题意 D10.254= 所以互为相反数 符合题意. 故选:D .4.在0.2 (5)-- 1|2|2-- 15% 0 35(1)⨯- 22- 2(2)--这八个数中 非负数有( ) A .4个 B .5个 C .6个 D .7个【解答】解:0.20> (5)0--> 15%0> 00=是非负数故选:A .5.在一次数学活动课上 某数学老师在4张同样的纸片上各写了一个正整数 从中随机取2张 并将它们上面的数相加 重复这样做 每次所得的和都是5 6 7 8中的一个数 并且这4个数都能取到 根据以上信息 下列判断正确的是( )A .四个正整数中最小的是1B .四个正整数中最大的是8C .四个正整数中有两个是2D .四个正整数中一定有3【解答】解:相加得5的两个整数可能为:1 4或2 3.相加得6的两个整数可能为:1 5或2 4或3 3.相加得7的两个整数可能为:1 6或2 5或3 4.相加得8的两个整数可能为:1 7或2 6或3 5或4 4.每次所得两个整数和最小是5∴最小两个数字为2 3每次所得两个整数和最大是8∴最大数字为4或5当最大数字为4的时四个整数分别为2 3 4 4.当最大数字为5时四个整数分别为2 3 3 5.∴四个正整数中一定有3.故选:D.6.点M N P和原点O在数轴上的位置如图所示点M N P表示的有理数为a b c(对应顺序暂不确定).如果0>那么表示数c的点为()+>ab acbc<0b cA.点M B.点N C.点P D.点O【解答】解:0bc<∴c异号b+>b c所以M表示b c中的负数P表示其中的正数所以M表示数c.这样也符合条件ab ac>故选:A.7.一辆货车从超市出发向东走了3km到达小彬家继续向东走了1.5km到达小颖家然后向西走了9.5km到达小明家最后回到超市.小明家距小彬家()km.A.4.5B.6.5C.8D.13.5【解答】解:由题意画图如下:∴小明家距小彬家9.5 1.58()km -=故选:C .8.下列各组数中 互为相反数的是( )A .43和34-B .13和0.333-C .14和4D .a 和a -【解答】解:A 43和34- 虽然符号相反 但是绝对值不相等 所以它们不是相反数 故A 错误 B13和0.333- 符号相反 但绝对值不相等 所以它们不是相反数 故B 错误 C 14和4 符号相同 所以它们不是相反数 故C 错误 D a 和a - 符号相反 绝对值相等 所以它们互为相反数 故D 正确.故选:D .9.在现代生活中 手机微信支付已经成为一种新型的支付方式.如果微信零钱收入100元记为100+元 那么微信零钱支出36元记为 36-元 .【解答】解:如果微信零钱收入100元记为100+元 那么微信零钱支出36元记为36-元.故答案为:36-元.10.温度升高1C ︒记为1C ︒+ 气温下降9C ︒记为 9C ︒- 【解答】解:温度升高1C ︒记为1C ︒+∴气温下降9C ︒记为:9C ︒-.故答案为:9C ︒-.11.把25%化成小数是 0.25 .【解答】解:把25%化成小数是:0.25故答案为:0.25.12.定义:对于任意两个有理数a b 可以组成一个有理数对(,)a b 我们规定(,)1a b a b =+-.例如(2,5)2512-=-+-=.根据上述规定解决下列问题:(1)有理数对(2,1)-= 0(2)当满足等式(5,32)5x m -+=的x 是正整数时 则m 的正整数值为 .【解答】解:(1)根据题中的新定义得:原式2(1)1110=+--=-=.故答案为:0(2)已知等式化简得:53215x m -++-= 解得:1123m x -= 由x m 都是正整数 得到1129m -=或1123m -=解得:1m =或4.故答案为:1或4.13.测量一幢楼的高度 七次测得的数据分别是:79.8m 80.6m 80.4m 79.1m 80.3m 79.3m 80.5m .(1)以80为标准 用正数表示超出部分 用负数表示不足部分 写出七次测得数据对应的数(2)求这七次测量的平均值(3)写出最接近平均值的测量数据 并说明理由.【解答】解:(1)若以80为标准 用正数表示超出部分 用负数表示不足部分 他们对应的数分别是: 0.2- 0.6+ 0.4+ 0.9- 0.3+ 0.7- 0.5+(2)80(0.20.60.40.90.30.70.5)780()m +-++-+-+÷=答:这七次测量的平均值是80m .(3)参考(1)可得:因为|0.2|0.2-= 在七次测得数据中绝对值最小所以绝对值最接近80m 的测量数据为79.8m答:最接近平均值的测量数据为79.8m .14.暴雨天气 交通事故频发 一辆警车从位于一条南北走向的主干道上的某交警大队出发 一整天都在这条主干道上执勤和处理事故 如果规定向北行驶为正 这辆警车这天处理交通事故行车的里程(单位:千米)如下:4+ 5- 2- 3- 6+ 3- 2- 7+ 1+ 7- 请问:(1)第几个交通事故刚好发生在某交警大队门口?(2)当交警车辆处理完最后一个事故时 该车辆在哪个位置?(3)如果警车的耗油量为每百千米12升 那么这一天该警车从出发值勤到回到交警大队共耗油多少升?【解答】解:(1)(4)(5)(2)(3)(6)0++-+-+-++=∴第5个交通事故刚好发生在某交警大队门口(2)(4)(5)(2)(3)(6)(3)(2)(7)(1)(7)4++-+-+-+++-+-+++++-=-∴当交警车辆处理完最后一个事故时 该车辆在交警大队南边4千米的位置(3)12(|4||5||2||3||6||3||2||7||1||7||4|) 5.28100++-+-+-+++-+-+++++-+-⨯=(升) 答:这一天该警车从出发值勤到回到交警大队共耗油5.28升.15.已知下列各数:5-13 4 0 1.5- 5 133 12-.把上述各数填在相应的集合里: 正有理数集合:{ 13 4 5 133}⋯ 负有理数集合:{ }⋯分数集合:{ }⋯.【解答】解:大于0的有理数称为正有理数 ∴正有理数有13 4 5 133小于0的有理数称为负有理数∴负有理数有5- 1.5- 12- 正分数和负分数都是分数 且小数也是分数 ∴分数有131.5- 133 12-. 故答案为134 5 133 5- 1.5- 12- 13 1.5- 133 12-.。
(必考题)初中七年级数学上册第一章《有理数》经典题(含答案解析)

1.丁丁做了4道计算题:① 2018(1)2018-=;② 0(1)1--=-;③ 1111326-+-=;④11()122÷-=-请你帮他检查一下,他一共做对了( )道 A .1道B .2道C .3道D .4道A 解析:A【分析】根据乘方的意义以及有理数的减法、乘法、除法法则,有理数加减混合运算法则即可判断.【详解】①2018(1)1-=,故本小题错误;②0(1)1--=,故本小题错误; ③1113267-+-=-,故本小题错误; ④11()122÷-=-,正确; 所以,他一共做对了1题.故选A .【点睛】本题考查了有理数的乘方、加法以及除法法则,熟练掌握运算法则是解题关键. 2.13-的倒数的绝对值( )A .-3B .13-C .3D .13C 解析:C【分析】 首先求13-的倒数,然后根据绝对值的含义直接求解即可.【详解】 13-的倒数为-3,-3绝对值是3, 故答案为:C .【点睛】本题考查了倒数和绝对值的概念,熟练掌握概念是解题的关键.3.下列运算正确的有( )①()15150--=;②11111122344⎛⎫÷-+= ⎪⎝⎭; ③2112439⎛⎫-= ⎪⎝⎭;④()30.10.0001-=-;⑤22433-=- A .1个B .2个C .3个D .4个A解析:A【分析】 根据有理数加减乘除运算法则,和乘方的运算法则逐一判断即可.【详解】()151530--=-,故①错误;11111511211223412121255⎛⎫÷-+=÷=⨯= ⎪⎝⎭,故②错误; 2217492339⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭,故③错误; ()30.10.001-=-,故④错误;22433-=-,故⑤正确; 故选A .【点睛】本题考查了有理数的运算,乘方的运算,关键是熟练掌握有理数的运算法则. 4.下列计算中,错误的是( )A .(2)(3)236-⨯-=⨯=B .()144282⎛⎫÷-=⨯-=- ⎪⎝⎭C .363(6)3--=-++=D .()()2399--=--= C解析:C【分析】根据有理数的运算法则逐一判断即可.【详解】 (2)(3)236-⨯-=⨯=,故A 选项正确;()144282⎛⎫÷-=⨯-=- ⎪⎝⎭,故B 选项正确; 363(6)9--=-+-=-,故C 选项错误;()()2399--=--=,故D 选项正确;故选C .【点睛】本题考查了有理数的运算,重点是去括号时要注意符号的变化.5.据报通,国家计划建设港珠澳大桥,估解该项工程总报资726亿元,用科学记数法表示726亿正确的是( )A.7.26×1010B.7.26×1011C.72.6x109D.726×108A解析:A【解析】【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【详解】726亿=7.26×1010.故选A.【点睛】本题考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n 的值是解题的关键.6.下列有理数的大小比较正确的是()A.1123<B.1123->-C.1123->-D.1123-->-+ B解析:B【分析】根据有理数大小的比较方法逐项判断即得答案.【详解】解:A、1123>,故本选项大小比较错误,不符合题意;B、因为1122-=,1133-=,1123>,所以1123->-,故本选项大小比较正确,符合题意;C、因为1122-=,1133-=,1123>,所以1123-<-,故本选项大小比较错误,不符合题意;D、因为1122--=-,1133-+=-,1123-<-,所以1123--<-+,故本选项大小比较错误,不符合题意.故选:B.【点睛】本题考查了有理数的大小比较和有理数的绝对值,属于基础题型,掌握比较大小的方法是解题的关键.7.用计算器求243,第三个键应按()A.4 B.3 C.y x D.=C解析:C【解析】用计算器求243,按键顺序为2、4、y x、3、=.故选C.点睛:本题考查了熟练应用计算器的能力,解题关键是熟悉不同的按键功能.8.绝对值大于1且小于4的所有整数的和是()A.6 B.–6 C.0 D.4C解析:C【解析】绝对值大于1且小于4的整数有:±2;±3,–2+2+3+(–3)=0.故选C.9.如果用+0.02克表示一只乒乓球质量超出标准质量0.02克,那么一只乒乓球质量低于标准质量0.02克记作().A.+0.02克B.-0.02克C.0克D.+0.04克B解析:B【解析】-0.02克,选A.10.一个数的绝对值是3,则这个数可以是()A.3B.3-C.3或者3-D.1 3 C解析:C【解析】试题∵一个数的绝对值是3,可设这个数位a,∴|a|=3,∴a=±3故选C.11.2020年5月7日,世卫组织公布中国以外新冠确诊病例约为3504000例,把“3504000”用科学记数法表示正确的是()A.3504×103B.3.504×106C.3.5×106D.3.504×107B解析:B【分析】科学记数法表示较大的数形式为a×10n的形式,其中1≤|a|<10,n为整数,10的指数n比原来的整数位数少1.【详解】3504000=3.504×106,故选:B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.据《经济日报》2018年5月21日报道:目前,世界集成电路生产技术水平最高已达到7nm(1nm=10﹣9m),主流生产线的技术水平为14~28nm,中国大陆集成电路生产技术水平最高为28nm .将28nm 用科学记数法可表示为( )A .28×10﹣9mB .2.8×10﹣8mC .28×109mD .2.8×108m B解析:B【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】28nm =28×10﹣9m = 2.8×10﹣8m ,所以28nm 用科学记数法可表示为:2.8×10﹣8m , 故选B .【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.13.已知有理数a ,b 满足0ab ≠,则||||a b a b +的值为( ) A .2±B .±1C .2±或0D .±1或0C 解析:C【分析】根据题意得到a 与b 同号或异号,原式利用绝对值的代数意义化简即可得到结果.【详解】∵0ab ≠,∴当0a >,0b <时,原式110=-=;当0a >,0b >时,原式112=+=;当0a <,0b <时,原式112=--=-;当0a <,0b >时,原式110=-+=.故选:C .【点睛】本题考查了绝对值,熟练掌握绝对值的代数意义是解本题的关键.14.某市11月4日至7日天气预报的最高气温与最低气温如表:其中温差最大的一天是( )A .11月4日B .11月5日C .11月6日D .11月7日C解析:C运用减法算出每一天的温差,再进行比较即可.【详解】11月4日的温差为19415-=(℃);11月5日的温差为12(3)15--=(℃);11月6日的温差为20416-=(℃);11月7日的温差为19514-=(℃).所以温差最大的一天是11月6日.故选C.【点睛】考核知识点:有理数减法运用.根据题意列出减法算式是关键.15.下列计算结果正确的是()A.-3-7=-3+7=4B.4.5-6.8=6.8-4.5=2.3C.-2-13⎛⎫-⎪⎝⎭=-2+13=-213D.-3-12⎛⎫-⎪⎝⎭=-3+12=-212D解析:D【分析】本题利用有理数的加减运算法则求解各选项,即可判断正误.【详解】A选项:3710--=-,故错误;B选项:4.5 6.8 4.5( 6.8) 2.3-=+-=-,故错误;C选项:1122()21333---=-+=-,故错误;D选项运算正确.故选:D.【点睛】本题考查有理数的加减运算,按照对应法则仔细计算即可.1.计算(﹣1)÷6×(﹣16)=_____.【分析】根据有理数乘除法法则进行计算【详解】解:(-1)÷6×(-)=-×(−)=故答案为【点睛】此题考查了有理数的乘除法熟练掌握法则是解本题的关键解析:136.【分析】根据有理数乘除法法则进行计算.解:(-1)÷6×(-16),=-16×(−16),=1 36.故答案为1 36.【点睛】此题考查了有理数的乘除法,熟练掌握法则是解本题的关键.2.在整数5-,3-,1-,6中任取三个数相乘,所得的积的最大值为______.90【解析】分析:根据有理数的乘法以及有理数的大小比较列式进行计算即可得解详解:所得乘积最大为:(-5)×(-3)×6=5×3×6=90故答案为90点睛:本题考查了有理数的乘法以及有理数的大小比较熟解析:90【解析】分析:根据有理数的乘法以及有理数的大小比较列式进行计算即可得解.详解:所得乘积最大为:(-5)×(-3)×6,=5×3×6,=90.故答案为90.点睛:本题考查了有理数的乘法以及有理数的大小比较,熟记运算法则并准确列出算式是解题的关键.3.已知a是7的相反数,b比a的相反数大3,则b比a大____.17【分析】先根据相反数的定义求出a和b再根据有理数的减法法则即可求得结果【详解】由题意得a=-7b=7+3=10∴b-a=10-(-7)=10+7=17故答案为:17【点睛】本题考查了有理数的减法解析:17【分析】先根据相反数的定义求出a和b,再根据有理数的减法法则即可求得结果.【详解】由题意,得a=-7,b=7+3=10.∴b-a=10-(-7)=10+7=17.故答案为:17.【点睛】本题考查了有理数的减法,解答本题的关键是熟练掌握有理数的减法法则∶减去一个数等于加上这个数的相反数.4.把35.89543精确到百分位所得到的近似数为________.90【分析】要精确到百分位看看那个数字在百分位上然后看看能不能四舍五入【详解】解:3589543可看到9在百分位上后面的5等于5往前面进一位所以有理数3589543精确到百分位的近似数为3590故答解析:90【分析】要精确到百分位,看看那个数字在百分位上,然后看看能不能四舍五入.【详解】解:35.89543可看到9在百分位上,后面的5等于5,往前面进一位,所以有理数35.89543精确到百分位的近似数为35.90,故答案为:35.90.【点睛】本题考查了精确度,精确到哪一位,即对下一位的数字进行四舍五入.5.定义一种正整数的“H运算”:①当它是奇数时,则该数乘3加13;②当它是偶数时,则取该数的一半,一直取到结果为奇数停止.如:数3经过1次“H运算”的结果是22,经过2次“H运算”的结果为11,经过3次“H运算”的结果为46,那么数28经过2020次“H运算”得到的结果是_________.16【分析】从28开始分别按照偶数和奇数的计算法则依次计算直到出现循环即可得解【详解】解:第1次:;第2次:;第3次:;第4次:;第5次:;第6次:;第7次:等于第5次所以从第5次开始奇数次等于1偶解析:16【分析】从28开始,分别按照偶数和奇数的计算法则依次计算,直到出现循环即可得解.【详解】⨯⨯=;解:第1次:280.50.57⨯+=;第2次:371334⨯=;第3次:340.517⨯+=;第4次:3171364⨯⨯⨯⨯⨯⨯=;第5次:640.50.50.50.50.50.51⨯+=;第6次:311316⨯⨯⨯⨯=,等于第5次.第7次:160.50.50.50.51所以从第5次开始,奇数次等于1,偶数次等于16.因为2020是偶数,所以数28经过2020次“H运算”得到的结果是16.故答案为16.【点睛】本题考查了有理数的乘法,发现循环规律,是解题的关键.6.计算:5213(15.5)65772⎛⎫⎛⎫⎛⎫-+++-+-=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭__________.0【分析】将同分母的分数分别相加再计算加法即可【详解】原式故答案为:0【点睛】此题考查有理数的加法计算法则掌握有理数加法的运算律:交换律和结合律是解题的关键解析:0【分析】将同分母的分数分别相加,再计算加法即可.【详解】原式5213615.5510100772⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=-+-++-=-+= ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦.故答案为:0.【点睛】此题考查有理数的加法计算法则,掌握有理数加法的运算律:交换律和结合律是解题的关键.7.气温由﹣20℃下降50℃后是__℃.-70【分析】先将-20-50转化为-20+(-50)再由有理数的加法运算法则进行计算【详解】解:零上的温度用正数来表示零下的温度用负数来表示再根据有理数的减法的运算法则(减去一个数等于加上这个数的解析:-70【分析】先将-20-50转化为-20+(-50),再由有理数的加法运算法则进行计算.【详解】解:零上的温度用正数来表示,零下的温度用负数来表示,再根据有理数的减法的运算法则(减去一个数等于加上这个数的相反数),将有理数的减法化为有理数的加法来进行计算.∵-20-50=-20+(-50)=-70∴答案为:-70.【点睛】本题考查了有理数的减法的运算法则(减去一个数等于加上这个数的相反数),有理数的加法运算法则之一:(同号两数相加,和的正负号取任何一个加数的正负号,和的绝对值取两个加数的绝对值的和),熟记并灵活运用这两个运算法则是解本题的关键.8.若m﹣1的相反数是3,那么﹣m=__.2【分析】根据只有符号不同的两个数互为相反数可得关于m的方程根据解方程可得m的值再根据在一个数的前面加上负号就是这个数的相反数可得答案【详解】解:由m-1的相反数是3得m-1=-3解得m=-2-m=解析:2【分析】根据只有符号不同的两个数互为相反数,可得关于m 的方程,根据解方程,可得m 的值,再根据在一个数的前面加上负号就是这个数的相反数,可得答案.【详解】解:由m-1的相反数是3,得m-1=-3,解得m=-2.-m=+2.故选:A .【点睛】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.9.已知0a >,0b <,b a >,比较a ,a -,b ,b -四个数的大小关系,用“<”把它们连接起来:_______.b <-a <a <-b 【分析】先在数轴上标出ab-a-b 的位置再比较即可【详解】解:∵a >0b <0|b|>|a|∴b <-a <a <-b 故答案为:b <-a <a <-b 【点睛】本题考查了数轴相反数和有理数的大小解析:b <-a <a <-b【分析】先在数轴上标出a 、b 、-a 、-b 的位置,再比较即可.【详解】解:∵a >0,b <0,|b|>|a|,∴b <-a <a <-b ,故答案为:b <-a <a <-b .【点睛】本题考查了数轴,相反数和有理数的大小比较,能知道a 、b 、-a 、-b 在数轴上的位置是解此题的关键.10.若2(1)20a b -+-=,则2015()a b -= _______________.-1【分析】直接利用偶次方的性质以及绝对值的性质得出ab 的值进而得出答案【详解】由题意得:a -1=0b ﹣2=0解得:a =1b =2故=(1﹣2)2015=-1故答案为-1【点睛】本题考查了非负数的性质解析:-1【分析】直接利用偶次方的性质以及绝对值的性质得出a ,b 的值,进而得出答案.【详解】由题意得:a -1=0,b ﹣2=0,解得:a =1,b =2,故2015()a b -=(1﹣2)2015=-1.故答案为-1.【点睛】本题考查了非负数的性质,正确得出a,b的值是解题的关键.11.某班同学用一张长为1.8×103mm,宽为1.65×103mm的大彩色纸板制作一些边长为3×102mm的正方形小纸板写标题(不能拼接).则一张这样的大纸板最多能制作符合上述要求的正方形小纸板___________张.30【分析】分别用大彩纸的长宽除以小正方形的边长再取商的整数部相乘即可【详解】解:∵18×103÷(3×102)=6165×103÷(3×102)=55∵纸板张数为整数∴18×103÷(3×102)解析:30【分析】分别用大彩纸的长、宽除以小正方形的边长,再取商的整数部相乘即可.【详解】解:∵1.8×103÷(3×102)=6.1,65×103÷(3×102)=5.5,∵纸板张数为整数,∴1.8×103÷(3×102)=6.1≈6,65×103÷(3×102)=5.5≈5,∴最多能制作5×6=30(张).故答案为30.【点睛】本题考查了有理数的计算,正确应用正方形的边长是解答本题的关键.1.在数轴上,一只蚂蚁从原点O出发,它先向左爬了2个单位长度到达点A,再向右爬了3个单位长度到达点B,最后向左爬了9个单位长度到达点C.(1)写出A,B,C三点表示的数;(2)根据点C在数轴上的位置回答,蚂蚁实际上是从原点出发,向什么方向爬了几个单位长度?解析:(1)A,B,C三点表示的数分别是-2,1,-8;(2)向左爬了8个单位.【分析】(1)向左用减法,向右用加法,列式求解即可写出答案;(2)根据C点表示的数,向右为正,向左为负,继而得出答案.【详解】解:(1)A点表示的数是0-2=-2,B点表示的数是-2+3=1,C点表示的数是1-9=-8;(2)∵O点表示的数是0;C点表示的数是-8,∴蚂蚁实际上是从原点出发,向左爬了8个单位.【点睛】本题考查了数轴的知识及有理数的加减法的应用,属于基础题,比较简单,理解向左用减法,向右用加法,是关键.2.点A、B在数轴上所表示的数如图所示,回答下列问题:(1)将A在数轴上向左移动1个单位长度,再向右移动9个单位长度,得到点C,求出B 、C 两点间的距离是多少个单位长度?(2)若点B 在数轴上移动了m 个单位长度到点D ,且A 、D 两点间的距离是3,求m 的值.解析:(1)B 、C 两点间的距离是3个单位长度;(2)m 的值为2或8.【分析】(1)利用数轴上平移左移减,右移加可求点C 所表示的数为﹣3﹣1+9=5,利用绝对值求两点距离BC =|2﹣5|=3;(2)分类考虑当点D 在点A 的左侧与右侧,利用AD=3,求出点D 所表示的数,再利用BD=m 求出m 的值即可.【详解】解:(1)点C 所表示的数为﹣3﹣1+9=5,∴BC =|2﹣5|=3.(2)当点D 在点A 的右侧时,点D 所表示的数为﹣3+3=0,所以点B 移动到点D 的距离为m =|2﹣0|=2,当点D 在点A 的左侧时,点D 所表示的数为﹣3﹣3=﹣6,所以点B 移动到点D 的距离为m =|2﹣(﹣6)|=8,答:m 的值为2或8.【点睛】本题考查数轴上平移,两点距离问题,利用AD 的距离分类讨论点D 的位置是解题关键. 3.计算:(1)()()34287⨯-+-÷;(2)()223232-+---.解析:(1)16-;(2)6.【分析】(1)先算乘除,后算加法即可;(2)原式先计算乘方运算,再化简绝对值,最后算加减运算即可求出值.【详解】(1)原式12416=--=-(2)原式34926=-+-=【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.4.如图,在数轴上有三个点,,A B C ,回答下列问题:(1)若将点B 向右移动5个单位长度后,三个点所表示的数中最小的数是多少? (2)在数轴上找一点D ,使点D 到,A C 两点的距离相等,写出点D 表示的数; (3)在数轴上找出点E ,使点E 到点A 的距离等于点E 到点B 的距离的2倍,写出点E表示的数.-(2)0.5(3)3-或7-解析:(1)1【分析】(1)根据移动的方向和距离结合数轴即可回答;(2)根据题意可知点D是线段AC的中点;(3)在点B左侧找一点E,点E到点A的距离是到点B的距离的2倍,依此即可求解.【详解】解:(1)点B表示的数为-4+5=1,∵-1<1<2,∴三个点所表示的数最小的数是-1;(2)点D表示的数为(-1+2)÷2=1÷2=0.5;(3)点E在点B的左侧时,根据题意可知点B是AE的中点,AB=|-1+4|=3则点E表示的数是-4-3=-7.点E在点B的右侧时,即点E在AB上,则点E表示的数为-3.【点睛】本题主要考查的是有理数大小比较,数轴的认识,找出各点在数轴上的位置是解题的关键.。
有理数基本概念(含答案)

有理数基本概念一、单选题(共10道,每道10分)1.下列说法不正确的是( )A.-3.14既是负数、分数,也是有理数B.0是正数与负数的分界C.正有理数和负有理数统称为有理数D.正分数、负分数统称为分数答案:C解题思路:试题难度:三颗星知识点:有理数的分类2.下列说法正确的是( )A.有理数不是正数就是负数B.温度0℃代表没有温度C.零是整数,也是正数D.零是最小的非负数答案:D解题思路:试题难度:三颗星知识点:有理数及其分类3.下列说法中错误的是( )A.是负分数B.1.5不是整数C.正整数、负整数都是有理数D.在有理数中,不是正数的数一定是负数答案:D解题思路:试题难度:三颗星知识点:有理数的分类4.下列说法正确的是( )A.数轴是一条规定了原点、正方向和单位长度的射线B.任意一个有理数都可以用数轴上的一个点来表示C.原点在数轴的正中间D.数轴上离原点越远的点所对应的有理数越大答案:B解题思路:试题难度:三颗星知识点:数轴的作用5.下列说法错误的是( )A.数轴上原点位置的确定是任意的B.数轴的长度是有限的C.数轴上单位长度可以随意确定D.数轴上正方向一般为向右方向答案:B解题思路:试题难度:三颗星知识点:数轴的三要素6.下列说法错误的是( )A.在数轴上表示-3的点与表示+1的点之间的距离是2B.数轴上的原点表示零C.任何一个有理数都可以用数轴上的一个点表示D.在以向右为正方向的数轴上,表示的点在原点左边个单位处答案:A解题思路:试题难度:三颗星知识点:数轴的作用7.下列说法正确的是( )A.5.2是正分数B.数轴上,离原点近的点所对应的有理数的绝对值较大C.数轴上两个点表示的数,左边的总比右边的大D.正数的绝对值是正数答案:A解题思路:试题难度:三颗星知识点:有理数的分类8.下列说法正确的是( )A.两个有理数比较大小,绝对值大的反而小B.一个有理数不是整数就是分数C.一个数的平方都是正数D.0.5不是分数答案:B解题思路:试题难度:三颗星知识点:有理数的分类9.下列说法错误的是( )A.任何有理数都有倒数B.互为倒数的两数的积等于1C.互为倒数的两数符号相同D.和互为倒数答案:A解题思路:试题难度:三颗星知识点:倒数10.关于相反数的叙述错误的是( )A.两数之和为0,则这两个数互为相反数B.若两个数所对应的点到原点的距离相等,且位于原点的两侧,则这两个数互为相反数C.零的相反数是零D.符号不同的两个数互为相反数答案:D解题思路:试题难度:三颗星知识点:相反数。
人教七年级数学上册1.2有理数基础知识概括及同步练习题(含解析)

人教七年级数学上册1.2有理数基础知识概括及同步练习题知识点1:有理数的有关概念有理数:整数和分数统称为有理数。
注:(1)有时为了研究的需要,整数也可以看作是分母为1的数,这时的分数包括整数。
但是本讲中的分数不包括分母是1的分数。
(2)因为分数与有限小数和无限循环小数可以互化,上述小数都可以用分数来表示,所以我们把有限小数和无限循环小数都看作分数。
(3)“0”即不是正数,也不是负数,但“0”是整数。
整数包括正整数、零、负整数。
例如:1、2、3、0、-1、-2、-3等等。
分数包括正分数和负分数,例如:1/2、0.6、-1/2、-0.6等等。
知识点2:有理数的分类(1) 按整数、分数的关系分类:(2) 按正数、负数与0的关系分类:注:通常把正数和0统称为非负数,负数和0统称为非正数,正整数和0称为非负整数(也叫做自然数),负整数和0统称为非正整数。
如果用字母表示数,则a>0表明a是正数;a<0表明a是负数;a≥0表明a是非负数;a≤0表明a是非正数。
知识点3:数轴数轴是理解有理数概念与运算的重要工具,数与表示数的图形(如数轴)相结合的思想是学习数学的重要思想。
正如华罗庚教授诗云:数与形,本是相倚依,焉能分作两边飞。
数缺形时少直觉,形少数是难入微。
数形结合百般好,隔裂分家万事非。
切莫忘,几何代数统一体,永远联系,切莫分离!数与形的第一次联姻——数轴,使数与直线上的点之间建立了对应关系,揭示了数与形的内在联系,并由此成为数形结合的基础。
1.数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴。
数轴的定义包含三层含义:(1) 数轴是一条直线,可以向两端无限延伸;(2) 数轴有三要素——原点、正方向、单位长度,三者缺一不可;(3) 原点的选定、正方向的取向、单位长度大小的确定,都是根据实际需要“规定”的(通常取向右为正方向)。
2.数轴的画法:(1) 画一条直线(一般画成水平的直线)。
(2) 在直线上选取一点为原点,并用这点表示零(在原点下面标上“0”)。
七年级数学上册,有理数的概念 -精讲精练(附答案)

第二章 有理数第一节 正数与负数一、基础知识1、正数与负数(1)正数:像3,1.8%,3.5这样大于0的数叫做正数.正数都大于0.(2)负数:像3-, 2.7-这样在正数前加上符号“-”(负)号的数叫做负数.负数都小于0. (3)符号:一个数前面的“+”,“-”号叫做它的符号.正数前面的“+” 号可以省略,注意3与3+表示是同一个正数. 负数前面的“-” 号不可以省略. (4)用正数和负数表示具有相反意义的量:如果正数表示某种意义,那么负数表示它的相反意义,反之亦然. 比如:用正数表示向南,那么向北3km 可以用负数表示为3km -. “相反意义的量”包括两个方面的含意:一是相反意义;二是要有量.2、“0”的特殊性(1)0既不是正数,也不是负数; (2)0是正数与负数的分界; (3)0是自然数; (4)0是偶数; (5)0是整数; (6)0是有理数; (4)0的意义:①0有时表示没有,比如文具盒中有0支铅笔,表示没有铅笔; ②0有时是一个数,比如0℃是一个确定的温度;③0有时也作为基准,比如海拔高度为0m 表示的是海平面的平均高度.3、常见名词:非负数:正数和零统称为非负数;非正数:负数和零统称为非正数;0是非正数,0是非负数;二、课前预习1.(2021•镇海区模拟)规定向右移动3个单位记作+3,那么向左移动2个单位记作()A.+2B.﹣2C.+D.﹣【分析】一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:向右移动3个单位记作+3,那么向左移动2个单位记作﹣2.故选:B.2.(2021•大渡口区自主招生)下列四个数中,是负数的是()A.1B.2C.3D.﹣4【分析】根据负数的特征可直接得到答案.【解答】解:1,2,3均为正数,﹣4为负数,故选:D.3.(2021春•江北区期中)我国是最早使用负数的国家,东汉初,在我国著名的数学书《九章算术》中,明确提出了“正负术”.如果盈利20元记作“+20元”,那么亏损30元记作()A.﹣30元B.30元C.50元D.﹣50元【分析】利用相反意义量的定义判定即可.【解答】解:如果盈利20元记作“+20元”,那么亏损30元记作”﹣30元“,故选:A.4.(2021•河南模拟)如果零上10℃记作+10℃,那么零下3℃可记为()A.﹣3℃B.+3℃C.±3℃D.℃【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:∵零上10℃记作+10℃,∴零下3℃可记作﹣3℃.故选:A.5.(2021春•天心区月考)在下列选项中,既是分数,又是负数的是()A.8B.C.﹣0.12D.﹣2【分析】利用分数及负数的定义判断即可得到结果.【解答】解:4个选项中,既是分数又是负数的是﹣0.12.故选:C.三、典型例题例1【基础】(2020•广西模拟)如果一个物体向上移动1m,记作+1m,那么这个物体向下移动了2m记作()A.+1m B.﹣1m C.+2m D.﹣2m【分析】根据正负数是表示两种具有相反意义的量,则一个物体向上移动1m,记作+1m,那么这个物体向下移动了2m记作记作+2m.【解答】解:∵物体向上移动1m,记作+1m,∴物体向下移动了2m记作﹣2m.故选:D.【点评】本题考查了正数和负数,相反意义的量用正数和负数表示.例2 【提高】(2019秋•石家庄期末)两千多年前,中国人就开始使用负数,如果收入100元记作+100,那么支出60元应记作()A.﹣60B.﹣40C.+40D.+60【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:根据题意,收入100元记作+100,则支出60元应记作﹣60.故选:A.【点评】本题考查了正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.例3【冲刺】(2020•长春模拟)检验4个工件,每个工件以标准质量为基准,超过的质量记作正数,不足的质量记作负数,从轻重的角度看,最接近标准质量的工件是()A.﹣2B.﹣3C.3D.5【解答】解:﹣2最接近标准质量,故选:A.【点评】本题考查正数和负数;理解正数和负数在实际中的应用是解题的关键.四、课堂练习1.(2020秋•长春期末)四个数﹣1,0,1,中为负数的是()A.﹣1B.0C.1D.【分析】根据负数小于0判断即可.【解答】解:,负数是﹣1.故选:A.2.(2021•双柏县模拟)如果盈利80元记作+80元,那么亏损40元记作元.【分析】根据相反意义量作答.【解答】解:盈利80元记作+80元,那么亏损40元记为﹣40元.故答案为:﹣40.3.(2021•云南模拟)《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是今有两数若其意义相反,则分别叫做正数与负数.若气温零上5℃记作+5℃,若气温零下3℃,则记作℃.【分析】意义相反的量用正、负数表示.【解答】解:∵正、负数表示相反意义的量,气温零上5℃记作+5℃,∴气温零下3℃记作﹣3℃.故答案为:﹣3.4.(2020•雅安)如果用+3℃表示温度升高3摄氏度,那么温度降低2摄氏度可表示为﹣.【分析】直接利用正负数的意义分析得出答案.【解答】解:如果用+3℃表示温度升高3摄氏度,那么温度降低2摄氏度可表示为:﹣2℃.故答案为:﹣2℃.五、巩固练习1.(2021•高邮市模拟)某超市出售的一种品牌大米袋上,标有质量为(20±0.15)kg的字样,从超市中任意拿出该品牌大米两袋,它们的质量最多相差0.3kg.【分析】根据超市出售的某种品牌的大米袋上,标有质量为(20±0.15)kg的字样,可以求得从超市中任意拿出两袋大米,它们的质量最多相差多少.【解答】解:∵某超市出售的一种品牌大米袋上,标有质量为(20±0.15)kg的字样,∴它们的质量最多相差:0.15﹣(﹣0.15)=0.15+0.15=0.3(kg),故答案为:0.3.2.(2021春•莲湖区期中)某公交车每月的支出费用为5000元,每月的乘车人数x与每月的利润(利润=收入费用﹣支出费用)y(元)的变化关系如表所示(票价是固定不变的):x50010001500200025003000…y/元﹣4000﹣3000﹣2000﹣1000m1000…(1)请直接写出上表中m的值;(2)观察表中数据可知,每月的乘车人数达到2500人时,该公交车才不会亏损;(3)当每月乘车人数为4000时,请你估计每月的利润为多少元.【分析】(1)根据表格中的变化过程即可求解;(2)根据表格可得:当每月乘客量达到2500人以上时,该公交车才不会亏损,即可求解;(3)由表中的数据推理即可求解.【解答】解:(1)在这个变化过程中,由表中的数据可知,每月的乘车人数每增加500人,每月的利润可增加1000元;∴m=﹣1000+1000=0;(2)根据表格可得:当每月乘客量达到2500人以上时,该公交车才不会亏损,故答案为:2500;(3)由表中的数据可知,每月的乘车人数每增加500人,每月的利润可增加1000元,当每月的乘车人数为2500人时,利润为0元,故每月乘车人数为4000人时,每月的利润是=3000(元).3.(2019秋•方城县期中)某自行车厂一周内计划平均每天生产200辆自行车,由于种种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产记为正,减产记为负):星期一二三四五六日增减产量/辆+5﹣2﹣4+13﹣10+16﹣9(1)根据记录的数据可知,该厂星期五生产自行车190辆.(2)根据上表记录的数据可知,该厂本周实际生产自行车1409辆.(3)该厂实行每日计件工资制,每生产一辆自行车可得60元,若超额完成任务,则超过部分每辆另外奖励15元,若完不成每天的计划量,则少生产一辆扣20元,那么该厂工人这一周的工资总额是多少元?(4)若该厂实行每周计件工资制,每生产一辆自行车可得60元,若超额完成周计划工作量,则超过部分每辆另外奖励15元,若完不成每周的计划量,则少生产一辆扣20元,那么该厂工人这一周的工资总额是多少元?【分析】(1)根据题意和表格中的数据,可以得到该厂星期五生产自行车的数量;(2)根据题意和表格中的数据,可以得到该厂本周实际生产自行车的数量;(3)根据题意和表格中的数据可以解答本题;(4)根据题意和表格中的数据可以解答本题.【解答】解:(1)∵超产记为正、减产记为负,∴星期五生产自行车200﹣10=190(辆),故答案为:190;(2)该厂本周实际生产自行车200×7+(+5)+(﹣2)+(﹣4)+(+13)+(﹣10)+(+16)+(﹣9)=1409(辆),故答案为:1409;(3)200×7+(+5)+(﹣2)+(﹣4)+(+13)+(﹣10)+(+16)+(﹣9)=1409(辆),1409×60+(5+13+16)×15+(﹣2﹣4﹣10﹣9)×20=84550(元),答:该厂工人这一周的工资总额是84550 元;(4)实行每周计件工资制的工资为1409×60+9×15=84675(元),答:该厂工人这一周的工资总额是84675元.第二节有理数一、基础知识1、有理数(1)整数:正整数、0、负整数统称为整数.所有的正整数组成正整数集合,所有的负整数组成负整数集合.(2)分数:正分数、负分数统称为分数.有限小数和无限循环小数可以化为分数,所以我们也把它们看成分数.(3)有理数:整数和分数统称为有理数.2、有理数的分类:(1)()⎧⎧⎫⎪⎬⎪⎨⎭⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数自然数整数零有理数按定义分类负整数正分数分数负分数 (2)()()⎧⎧⎪⎨⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数有理数按符号分类零零既不是正数,也不是负数负整数负有理数负分数二、课前预习1.(2021•梅列区一模)下列各数属于负整数的是( ) A .2B .﹣2C .﹣D .0【分析】根据负整数的定义即可判定选择项. 【解答】解:在2,﹣2,﹣,0中,属于负整数的是﹣2.故选:B .2.(2021春•杨浦区校级期中)在0.2,﹣(﹣5),﹣,15%,0,5×(﹣1)3,﹣22,﹣(﹣2)2这八个数中,非负数有( ) A .4个B .5个C .6个D .7个【分析】根据大于等于0的数是非负数,可得答案.【解答】解:0.2>0,﹣(﹣5)>0,15%>0,0=0是非负数, 故选:A .三、典型例题例1【基础】(2019秋•云冈区期末)下列各数:﹣5,1.1010010001…,3.14,,20%,,有理数的个数有( ) A .3个B .4个C .5个D .6个【分析】直接利用有理数的定义进而判断得出答案.【解答】解:有理数有﹣5,3.14,,20%共4个.故选:B.【点评】此题主要考查了有理数,正确把握有理数的定义是解题关键.例2【基础】(2020•阳新县校级模拟)下列各数:﹣,1.010010001,,0,﹣π,﹣2.626626662…(每两个2之间多一个6),0.12,其中有理数的个数是()A.3B.4C.5D.6【解答】解:﹣,1.010010001,,0,﹣π,﹣2.626626662…(每两个2之间多一个6),0.12,其中有理数有:﹣,1.010010001,,0,0.12,个数是5.故选:C.例3【提高】(2020•长春模拟)在0、﹣1.5、﹣2、这四个数中,属于负分数的是()A.0B.C.﹣1.5D.﹣2【解答】解:﹣1.5是负分数,故选:C.例4【冲刺】(2019秋•临洮县期中)把下列各数填在相应的括号内:﹣19,2.3,﹣12,﹣0.92,,0,﹣,0.563,π正数集合{ …};负数集合{ …};负分数集合{ …};非正整数集合{ …}.【分析】按照有理数的分类以及意义直接填空即可.【解答】解:正数集合{2.3,,0.563,π…};负数集合{﹣19,﹣12,﹣0.92,﹣…};负分数集合{﹣0.92,﹣…};非正整数集合{﹣19,﹣12,0 …}.故答案为:{ 2.3,,0.563,π…};{﹣19,﹣12,﹣0.92,﹣…};{﹣0.92,﹣…};{﹣19,﹣12,0 …}.【点评】此题考查有理数的分类,注意:非正包括负数和0;分数包括小数.例5【冲刺】2019秋•崇川区校级月考)把下列各数填在相应的大括号内15,﹣,0.81,﹣3,,﹣3.1,﹣4,171,0,3.14正整数集合{ …}负整数集合{ …}整数集合{ …}分数集合{ …}.【分析】按照有理数的分类填写.有理数,根据整数,正数,正分数,负有理数的定义可得出答案.【解答】解:正整数集合{15,171,…}负整数集合{﹣3,﹣4,…}整数集合{15,﹣3,﹣4,171,0,…}分数集合{﹣,0.81,,﹣3.1,3.14 …}.【点评】本题考查了有理数,认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点,注意整数和正数的区别,注意0是整数,但不是正数.四、课堂练习1.(2021•黄冈模拟)最大的负整数是()A.0B.1C.﹣1D.不存在【分析】根据负整数的概念和有理数的大小进行判断.【解答】解:负整数是负数且是整数,即最大的负整数是﹣1.故选:C.2.(2021春•杨浦区期中)下列说法正确的是()A.整数就是正整数和负整数B.负整数的相反数就是非负整数C.有理数中不是负数就是正数D.零是自然数,但不是正整数【分析】按照有理数的分类填写:有理数.【解答】解:A、整数就是正整数和负整数,还有0,故本选项错误;B、负整数的相反数就是正整数,故本选项错误;C、有理数中不是负数就是正数,还有0,故本选项错误;D、零是自然数,但不是正整数,本选项正确;故选:D.3.(2021春•江油市月考)在﹣,,0,﹣1,0.4,π,2,﹣3,﹣6这些数中,有理数有m个,自然数有n个,分数有k个,则m﹣n﹣k的值为()A.3B.2C.1D.4【分析】除π外都是有理数,所以m=8;自然数有0和2,所以n=2;分数有﹣,,0.4,所以k=3;代入计算就可以了.【解答】解:根据题意m=8,n=2,k=3,所以m﹣n﹣k=8﹣2﹣3=8﹣5=3.故选:A.五、巩固练习1.(2021春•杨浦区校级期中)在数,﹣0.4,0.2,3.14,0.1010010001…(每两个之间多一个0),120%,,100这8个数中,有理数有个.【分析】根据有理数是整数、有限小数或无限循环小数,可得答案.【解答】解:在,﹣0.4,0.2,3.14,0.1010010001…(每两个之间多一个0),120%,,100中,有理数有﹣0.4,0.2,3.14,120%,,100等5个.故答案为:5.2.(2021春•南岗区校级月考)百分数160%化成分数是.【分析】写成分数线形式,根据分数基本性质约分即可.【解答】解:160%==,故答案为:.3.(2021春•吴中区月考)观察下列两个等式:,给出定义如下:我们称使等式a﹣b=ab+1成立的一对有理数a、b为“共生有理数对”,记为(a,b),如:数对(2,)、(3,)都是“共生有理数对”.(1)数对(﹣2,1)、(5,)中是“共生有理数对”的是;(2)若(﹣3,m)是“共生有理数对”,求m的值.【分析】根据分别计算a﹣b和ab+1,看是否相等进行判断.【解答】解:(1)∵﹣2﹣1=﹣3,﹣2×1+1=﹣1,∴﹣2﹣1≠﹣2×1+1,数对(﹣2,1)不是共生有理数对;而5﹣=,5×+1=,∴5﹣=5×+1,数对(5,)是共生有理数对.故答案为:(5,).(2)∵(﹣3,m)是共生有理数对,∴﹣3﹣m=﹣3m+1,解得m=2.答:m的值是2.第三节数轴一、基础知识1、数轴(1)数轴:在数学中,可以用一条直线上的点表示数,这条直线叫做数轴.它满足以下要求:(2)原点:在直线上任取一个点表示数0,这个点叫做原点.原点是数轴的基准点.(3)正方向:通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向.选取适当的长度为单位长度,直线上从原点向右,每隔一个单位长度取一个点,依次表示1,2,3,…;从原点向左,用类似的方法依次表示1-,3-,….-,2(4)原点、正方向和单位长度是数轴的三要素.2、数轴的画法(1)画一条水平的直线(一般画水平的数轴);(2)在这条直线上适当位置取一实心点作为原点:(3)确定向右的方向为正方向,用箭头表示;(4)选取适当的长度作单位长度,用细短线画出,并对应标注各数,同时要注意同一数轴的单位长度要一致.3、有理数与数轴的关系(1)一切有理数都可以用数轴上的点表示出来.(2)数轴上的点并不全是有理数,如π也可以在数轴上表示,但π并不是有理数.(3)正有理数位于原点的右边,负有理数位于原点的左边.4、利用数轴比较有理数的大小在数轴上,右边的点所对应的数总比左边的点所对应的数大.因此,正数总大于零,负数总小于零,正数大于负数.二、课前预习1.(2021•长春一模)如图,数轴上点A对应的数是2,将点A沿数轴向左移动3个单位至点B,则点B 对应的数是()A.﹣1B.0C.3D.5【分析】点A向左移动3个单位,则2﹣3=﹣1.【解答】解:∵点A表示的数为2,将点A向左移动三个单位,∴2﹣3=﹣1,即点B表示的数为﹣1.故选:A.2.(2021•河南模拟)如图,数轴上被墨水遮盖的数可能是()A.﹣3.2B.﹣3C.﹣2D.﹣0.5【分析】由数轴上数的特征可得该数的取值范围,再进行判断即可.【解答】解:由数轴上墨迹的位置可知,该数大于﹣3,且小于﹣1,因此备选项中,只有选项C符合题意,故选:C.3.(2021•南海区一模)数轴上表示﹣6和4的点分别是A和B,则线段AB的长度是()A.﹣2B.2C.﹣10D.10【分析】计算数轴上两点间距离.【解答】解:AB=4﹣(﹣6)=10.故选:D.三、典型例题例1【基础】(2020•鼓楼区一模)数轴上,点A、B分别表示﹣1、7,则线段AB的中点C表示的数是()A.2B.3C.4D.5【分析】数轴上点A所表示的数为a,点B所表示的数为b,则AB的中点所表示的数为.【解答】解:线段AB的中点C表示的数为:=3,故选:B.【点评】考查数轴表示数的意义和方法,掌握中点所表示的数的计算方法是得出正确答案的前提.例2【基础】(2019秋•张店区期末)有理数a,b在数轴上的位置如图所示,则下列代数式值是负数的是()A.a+b B.﹣ab C.a﹣b D.﹣a+b【分析】根据a,b在数轴的位置,即可得出﹣1<a<0,b>1,然后对每一个式子进行分析,即可得出答案.【解答】解:∵﹣1<a<0,b>1,∴a+b>0,﹣ab>0,a﹣b<0,﹣a+b>0,故选:C.【点评】此题主要考查了实数与数轴、正数和负数以及代数式求值,根据已知得出a,b取值范围是解题关键,是一道基础题.例3【提高】(2020•绥化一模)如图,数轴的单位长度为1,如果点A表示的数为﹣2,那么点B表示的数是()A.﹣1B.0C.3D.4【分析】根据数轴的单位长度为1,点B在点A的右侧距离点A5个单位长度,直接计算即可.【解答】解:点B在点A的右侧距离点A有5个单位长度,∴点B表示的数为:﹣2+5=3,故选:C.【点评】本题主要考查数轴,解决此题时,明确数轴上右边的数总是比左边的数大是解题的关键.例4【冲刺】(2019秋•仁寿县期末)已知a+b<0,且b<0<a,则数a、b在数轴上距离原点较近的是()A.a B.bC.a、b一样远近D.无法判断【分析】根据已知条件判断出a,b的符号及绝对值的大小即可.【解答】解:∵a+b<0,且b<0<a,∴|a|<|b|,∴数a在数轴上距离原点较近,故选:A.【点评】本题考查的是数轴,熟知数轴上右边的数总比左边的大的特点是解答此题的关键.例5【冲刺】(2019秋•思明区校级月考)一只小球落在数轴上的某点P0,第一次从P0向左跳1个单位到P1,第二次从P1向右跳2个单位到P2,第三次从P2向左跳3个单位到P3,第四次从P3向右跳4个单位到P4……若按以上规律跳了100次时,它落在数轴上的点P100所表示的数恰好是2019,则这只小球的初始位置点P0所表示的数是()A.1969B.1968C.﹣1969D.﹣1968【分析】根据移动的规律,列方程求解即可.【解答】解:设P0所表示的数是a,则a﹣1+2﹣3+4﹣…﹣99+100=2019,即:a+(﹣1+2)+(﹣3+4)+…+(﹣99+100)=2019.a+50=2019,解得:a=1969.点P0表示的数是1969.故选:A.【点评】考查数轴表示数的意义,利用移动规律列出方程是解决问题的关键.四、课堂练习1.(2021•邢台模拟)如图,在数轴上,注明了四段的范围,若某段上有两个整数,则这段是()A.段①B.段②C.段③D.段④【分析】根据数轴的意义及其表示数的性质,可确定四段中各包含的整数个数,即可确定正确答案.【解答】解:段①﹣2.3~﹣1.1中有整数﹣2;段②﹣1.1~0.1中有整数﹣1和0;段③0.1~1.3中有整数1;段④1.3~2.5中有整数2;∴有两个整数的是段②.故选:B.2.(2020秋•宽城区期末)有理数a在数轴上的对应点的位置如图所示,若有理数b满足﹣a<b<a,则b 的值不可能是()A.2B.0C.﹣1D.﹣3【分析】根据a的范围确定出﹣a的范围,进而确定出b的范围,判断即可.【解答】解:根据数轴上的位置得:2<a<3,∴﹣3<﹣a<﹣2,∵﹣a<b<a,∴﹣3<b<3,则b的值不可能为﹣3.故选:D.3.(2020•丰台区模拟)在数轴上,点A,B在原点O的两侧,分别表示数a和3,将点A向左平移1个单位长度,得到点C.若OC=OB,则a的值为()A.﹣3B.﹣2C.﹣1D.2【分析】先用含a的式子表示出点C,根据CO=BO列出方程,求解即可.【解答】解:由题意知:A点表示的数为a,B点表示的数为3,C点表示的数为a﹣1.因为CO=BO,所以|a﹣1|=3,解得a=﹣2或4∵a<0,∴a=﹣2.故选:B.4.(2021春•杨浦区校级期中)数轴上到表示数﹣4点距离为3的点所表示的数为.【分析】到数轴上一点距离相等的点有两个,要分类讨论.【解答】解:距离点数﹣4为3个单位长度的点有两个,它们分别是﹣4+3=,﹣4﹣3=,故答案为﹣或.五、巩固练习1.(2021•海淀区校级模拟)数轴上A,B两点(不与原点O重合)分别表示有理数x1,x2,AB的中点为P,若x1﹣x2<0,且|x1|>|x2|,则关于原点O的位置,下列说法正确的是()A.点O在点A的左侧B.点O在点P的右侧C.点O与点P重合D.点O在线段AP上【分析】根据中点坐标公式可得P表示的数是(x1+x2),再根据x1﹣x2<0,且|x1|>|x2|,可得A表示的数是负数,可得P表示的数是负数,从而求解.【解答】解:∵AB的中点为P,∴P表示的数是(x1+x2),∵x1﹣x2<0,且|x1|>|x2|,∴A表示的数是负数,∴P表示的数是负数,∴点O在点P的右侧.故选:B.2.(2021•长兴县模拟)数轴上一动点A向左移动2个单位长度到达点B,若点B表示的数为1,则点A 表示的数是.【分析】首先画出数轴,然后再根据题意可得点B向右平移2个单位长度就是A,进而可得答案.【解答】解:点A表示的数:1+2=3,故答案为:3.3.(2021春•朝阳区校级月考)对于数轴上的A,B,C三点,给出如下定义:若其中一个点与其他两个点的距离恰好满足3倍的数量关系,则称该点是其它两个点的“倍分点”.例如数轴上点A,B,C表示的数分别是1,4,5,此时点B是点A,C的“倍分点”.(1)当点A表示数﹣2,点B表示数2时,下列各数,0,1,4是点A、B的“倍分点”的是;(2)当点A表示数﹣10,点B表示数30时,P为数轴上一个动点,①若点P是点A,B的“倍分点”,求此时点P表示的数;②若点P,A,B中,有一个点恰好是其它两个点的“倍分点”,直接写出此时点P表示的数.【分析】根基题干提供新定义求解.(1)根据所提供四个数字求解.(2)分类讨论点P位置求解.【解答】解:(1)1,4.(2)①设点P对应的数为x.当点P在AB之间时,∵AB=30+10=40,∴BP=AB时,BP=10,即x=30﹣10=20.当BP=AB时,BP=30,即x=30﹣30=0.当点P在点B右侧,AP=3BP.即x+10=3(x﹣30),解得x=50.当点P在点A左侧,BP=3AP.即30﹣x=3(﹣10﹣x),解得x=﹣30.综上,x=20,0,50,﹣30.②由①得点P是倍分点时,P表示的数为20,0,50,﹣30.当A为倍分点,点P在AB之间时,AB=3AP,40=3(x+10),解得x=.P在点A左侧时,AP=3AB,﹣10﹣x=3×40,解得x=﹣130.AB=3AP,40=3(﹣10﹣x),解得x=.点P在点B右侧,AP=3AB,x﹣(﹣10)=3×40,解得x=110.当点B为倍分点时,同理可求x=110,,,﹣90.综上,P点表示的数可为:20,0,50,﹣30,,﹣130,,110,,,第四节相反数一、基础知识1、相反数互为相反数,a表示任意(1)相反数的概念:只有符号不同的两个数叫做互为相反数.一般地,a与a一个数,可以是正数、负数,也可以是0.特别地,0的相反数是0.相反数是成对出现的.(2)相反数的几何意义:①互为相反数的两个数在数轴上对应的点应分别位于原点两侧,并且到原点的距离相等.②求任意一个数的相反数,只要在这个数的前面添上“-”号即可.2、多重符号的化简(1)一个正数前面不管有多少个“+”号,都可以全部去掉;(2)一个正数前面有偶数个“-”号,也可以把“-”号全部去掉;(3)一个正数前面有奇数个“-”号,则化简后只保留一个“-”号(4)口诀“奇负偶正”,其中“奇偶”是指正数前面的“-”号的个数,“负正”是指化简的最后结果的符号二、课前预习1.(2021•金牛区模拟)﹣2022的相反数是()A.2022B.﹣C.D.﹣2022【分析】相反数的概念:只有符号不同的两个数叫做互为相反数,据此判断即可.【解答】解:﹣2022的相反数是是2022.故选:A.2.(2021春•杨浦区校级期中)下列说法正确的是()A.符号相反的两个数互为相反数B.一个数的相反数一定是正数C.一个数的相反数﹣定比这个数本身小D.一个数的相反数的相反数等于原数【分析】利用相反数的意义对每个选项进行辨别,对于错误的选项可以举出反例,选出正确选项.【解答】解:相反数是只有符号不同的两个数,零的相反数仍旧是零.∵3和﹣5的符号相反,但3和﹣5不是相反数,∴A选项错误;∵5的相反数是﹣5,∴B选项错误;∵﹣2的相反数是2,2>﹣2,∴C选项错误;∵一个数的相反数是它本身,∴D选项正确;故选:D.3.(2021•虹口区二模)下列各数中,2的相反数是()A.2B.﹣2C.D.﹣【分析】直接利用相反数的定义得出答案.【解答】解:2的相反数是:﹣2.故选:B.三、典型例题例1【基础】(2020•郑州二模)﹣2020的相反数是()A.﹣2020B.2020C.﹣D.【分析】直接利用相反数的定义得出答案.【解答】解:﹣2020的相反数是:2020.故选:B.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.例2【基础】(2019秋•新都区期末)﹣(﹣)的相反数是()A.3B.﹣3C.D.﹣【分析】直接利用互为相反数的定义得出答案.【解答】解:﹣(﹣)=的相反数是:﹣.故选:D.【点评】此题主要考查了相反数,正确把握相关定义是解题关键.例3【提高】(2020•天河区模拟)如图,表示互为相反数的两个点是()A.M与Q B.N与P C.M与P D.N与Q【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:2和﹣2互为相反数,此时对应字母为M与P.故选:C.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.例4【提高】(2019秋•遵化市期末)若﹣(+a)=+(﹣2),则a的值是()A.B.C.2D.﹣2【分析】根据相反数的意义得出结果.【解答】解:因为﹣(+a)=+(﹣2),所以﹣a=﹣2,所以a=2,故选:C.【点评】本题考查了相反数的意义.解题的关键是明确一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.例5【冲刺】(2019秋•襄汾县期末)数轴上A点表示﹣3,B、C两点表示的数互为相反数,且点B到点A 的距离是2,则点C表示的数应该是__________.【分析】根据相反数的定义和到点A的距离是2的点的概念,求得点B表示的数为﹣1或﹣5,则点C 表示的数应该是1或5.【解答】解:∵点B到点A的距离是2,∴点B表示的数为﹣1或﹣5,∵B、C两点表示的数互为相反数,∴点C表示的数应该是1或5.故答案为1或5.【点评】本题考查了数轴的有关概念以及相反数的定义.例6【冲刺】(2020•皇姑区二模)如果a表示有理数,那么下列说法中正确的是()A.+a和﹣(﹣a)互为相反数B.+a和﹣a一定不相等C.﹣a一定是负数D.﹣(+a)和+(﹣a)一定相等【解答】解:A、+a和﹣(﹣a)互为相反数;错误,二者相等;B、+a和﹣a一定不相等;错误,当a=0时二者相等;C、﹣a一定是负数;错误,当a=0时不符合;D、﹣(+a)和+(﹣a)一定相等;正确.故选:D.四、课堂练习1.(2021•宁波模拟)与2021相加和为零的数是()A.﹣2021B.C.0D.【分析】根据有理数加法法则:相反数相加为0可得答案.【解答】解:﹣2021+2021=0.故选:A.2.(2021•历下区一模)5的相反数是()A.B.±5C.25D.﹣5【分析】直接利用相反数的定义得出答案.【解答】解:5的相反数是:﹣5.故选:D.3.(2021•汉阳区校级模拟)实数﹣5的相反数是()A.﹣5B.C.﹣D.5【分析】直接利用相反数的定义得出答案.【解答】解:实数﹣5的相反数是:5.故选:D.五、巩固练习1.(2021春•杨浦区校级期中)下列说法正确的是()A.符号相反的两个数互为相反数B.一个数的相反数一定是正数C.一个数的相反数﹣定比这个数本身小D.一个数的相反数的相反数等于原数【分析】利用相反数的意义对每个选项进行辨别,对于错误的选项可以举出反例,选出正确选项.【解答】解:相反数是只有符号不同的两个数,零的相反数仍旧是零.∵3和﹣5的符号相反,但3和﹣5不是相反数,∴A选项错误;∵5的相反数是﹣5,∴B选项错误;∵﹣2的相反数是2,2>﹣2,∴C选项错误;∵一个数的相反数是它本身,∴D选项正确;故选:D.2.(2021•盐城模拟)|﹣π|的相反数是()A.﹣πB.πC.﹣D.【分析】直接利用互为相反数的定义得出答案.【解答】解:∵|﹣π|=π,。
(2021年整理)初一数学上有理数与无理数的概念和练习(有详细的答案)91326

(完整)初一数学上有理数与无理数的概念和练习(有详细的答案)91326 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)初一数学上有理数与无理数的概念和练习(有详细的答案)91326)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)初一数学上有理数与无理数的概念和练习(有详细的答案)91326的全部内容。
有理数和无理数的概念与练习知识清单1定义:有理数:我们把能够写成分数形式nm (m 、n 是整数,n≠0)的数叫做有理数. 无理数:①无限②不循环小数叫做无理数。
2有理数的分类整数和分数都可以写成分数的形式,它们统称为有理数.零既不是正数,也不是负数.有限小数和无限循环小数是有理数.3无理数的两个前提条件:(1) 无限(2)不循环 4两者的区别:(1)无理数是无限不循环小数,有理数是有限小数或无限循环小数。
(2)任何一个有理数后可以化为分数的形式,而无理数则不能。
经典例题例1:下列各数中,哪些是有理数?哪些是无理数?-3,3π,—61,0。
333…,3.30303030…,42,-3。
1415926,0,3。
(相邻两个1之间0的个数逐个加1),面积为π的圆半径为r 。
例2:下列说法正确的是:()A 。
整数就是正整数和负整数B 。
分数包括正分数、负分数C.正有理数和负有理数统称有理数D.无限小数叫做无理数闯关全练一。
填空题:(1)我们把能够写成分数形式n m (m 、n 是整数,n≠0)的数叫做.(2)有限小数和都可以化为分数,他们都是有理数。
(3)小数叫做无理数。
(4)写出一个比-1大的负有理数。
二.判断题(1)无理数与有理数的差都是有理数;(2)无限小数都是无理数;(3)无理数都是无限小数;(4)两个无理数的和不一定是无理数。
初一有理数分类题10题

初一有理数分类题10题摘要:I.引言- 介绍初一有理数的概念- 说明有理数分类的重要性II.10道有理数分类题- 题目1:正有理数、负有理数、零的定义- 题目2:有理数的加法与减法- 题目3:有理数的乘法与除法- 题目4:有理数的乘方- 题目5:有理数的绝对值- 题目6:有理数的大小比较- 题目7:有理数的整除与带余除法- 题目8:有理数的分数表示- 题目9:有理数的约分与通分- 题目10:有理数的性质及应用III.答案与解析- 对每道题目给出正确答案- 对每道题目进行详细解析,说明解题思路和方法正文:I.引言有理数是初中数学中的一个基本概念,它包括正有理数、负有理数和零。
有理数的分类对于理解和掌握有理数的概念、性质及运算具有重要意义。
本文将给出10道有关有理数分类的题目,以帮助大家更好地掌握这一知识点。
II.10道有理数分类题1.正有理数、负有理数、零的定义设a是一个非零有理数,如果a > 0,则称a为正有理数;如果a < 0,则称a为负有理数;如果a = 0,则称a为零。
2.有理数的加法与减法(1) 同号两数相加,取相同的符号,并把绝对值相加;(2) 异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;(3) 有理数的减法是加法的逆运算。
3.有理数的乘法与除法(1) 同号两数相乘,取相同的符号,并把绝对值相乘;(2) 异号两数相乘,取绝对值较大的乘数的符号,并用较大的绝对值乘以较小的绝对值;(3) 任何数同零相乘,都得零;(4) 有理数的除法是乘法的逆运算。
4.有理数的乘方(1) 正数的任何次幂都是正数;(2) 负数的奇次幂是负数,负数的偶次幂是正数;(3) 零的任何正整数次幂都是零。
5.有理数的绝对值(1) 正数的绝对值是它本身;(2) 负数的绝对值是它的相反数;(3) 零的绝对值是零。
6.有理数的大小比较(1) 正数都大于零;(2) 负数都小于零;(3) 正数大于一切负数;(4) 两个负数,绝对值大的其值反而小。
七年级数学上册1.2.1 有理数-有理数的概念及分类-选择题专项练习二(人教版,含解析)

2021-2022学年度人教版七年级数学上册练习二1.2.1 有理数-有理数的概念及分类1.在有理数中,如下结论正确的是()A.存在最大的有理数B.存在最小的有理数C.存在绝对值最大的有理数D.存在绝对值最小的有理数2.下列说法正确的个数有()①负分数一定是负有理数②自然数一定是正数③﹣π是负分数④a一定是正数⑤0是整数A.1个B.2个C.3个D.4个3.下列说法不正确的是()A.数轴上的数,右边的数总比左边的数大B.绝对值最小的有理数是0C.在数轴上,右边的数的绝对值比左边的数的绝对值大D.离原点越远的点,表示的数的绝对值越大4.下列四个数中,正整数是()A.﹣2 B.﹣1 C.0 D.15.下列各数是负整数的是()A.﹣1 B.2 C.5 D6.下列各数:-5,1.1010010001…,3.14,227,20%,3,有理数的个数有()A.3个B.4个C.5个D.6个7.下列说法正确的是( )A.有最大的有理数B.有最小的负有理数C.有最小的正有理数D.有绝对值最小的有理数8.在201922(8),(1),3,0,1,5-------中,负数的个数有( ) A .2个 B .3个 C .4个 D .5个9.下列说法中正确的是( )A .0既不是整数也不是分数B .整数和分数统称有理数C .一个数的绝对值一定是正数D .绝对值等于本身的数是0和1 10.在有理数21,(3),|4|,0,2,(1)2-----+-中,正整数一共有多少个?( )A .1个B .2个C .3个D .4个11.下列四个数中,是负分数的是( )A .2-B .35C .π-D . 4.95-122π,73中有理数有( )A .1个B .2个C .3个D .4个 13.在2π,0.4583, 2.7•-,3.14,12,-23.1010101…(相邻两个1之间有一个0),这6个数中,有( )个有理数.A .4B .3C .2D .1 14.在224,,0,,3.14159,1.3,0.101001000172π-(每相邻两个1之间依次多一个0)有理数的个数有( )A .3个B .4个C .5个D .6个15.下列分数能化成有限小数的是( )A .23B .915C .321D .83616.下列语句中,正确的是( )A .绝对值最小的数是0B .平方等于它本身的数是1C .1是最小的有理数D .任何有理数都有倒数17.下列有理数中,属于整数的是( )A .23B .7-C .5.6D .19- 18.在21,7.5,0,,0.9,153-+--中,负分数共有( )A .4个B .3个C .2个D .1个19.下列各数是无理数的是( )A .﹣2B .227C .0.010010001D .π 20.在有理数0.8-,()5-+,0,536,2--,100中,非负整数有( )A .1个B .2个C .3个D .4个参考答案1.D解析:根据有理数的有关知识即可进行判断.详解:没有最大的有理数,也没有最小的有理数,故A、B错误;没有绝对值最大的有理数,故C错误;有绝对值最小的有理数,是0,故D正确.故选D.点睛:本题考查了有理数的概念,熟练掌握有关知识是解题的关键.2.B解析:分析:根据有理数的分类,可得答案.详解:①负分数一定是负有理数,故①正确;②自然数一定是非负数,故②错误;③-π是负无理数,故③错误④a可能是正数、零、负数,故④错误;⑤0是整数,故⑤正确;故选B.点睛:本题考查了有理数的分类,利用有理数的分类是解题关键,注意a可能是正数、零、负数.3.C解析:试题分析:离原点越远的点,表示的数的绝对值越大.所以在数轴上,右边的数的绝对值比左边的数的绝对值大,这句话是错误的.故选C.考点:数轴上的数的大小比较;绝对值的概念.4.D解析:试题分析:-2、-1是负整数;0是整数,既不是正整数,也不是负整数;1是正整数.故选D.5.A解析:直接利用负整数的定义进而分析得出答案.详解:解:负整数是﹣1,故选A.点睛:本题考查负整数,正确把握负整数的定义是解题关键.6.B解析:根据有理数的定义即可得.详解:根据有理数的定义可得:所给数中是有理数的有-5,3.14,227,20%这4个,需要注意的是223.1428571428577,小数点后142857是循环的,所以它是有理数.故答案为:B.点睛:本题考查了有理数的定义.有理数为整数和分数的统称,有理数的小数部分是有限或是无限循环的数.本题的难点在227的判断上,遇到分数,需化为小数(为便于发现规律,小数点后多算几位),看小数部分是有限的或是无限循环的.7.D解析:利用有理数的有关知识即可进行判断.详解:解:A、没有最大的有理数,故A错误;B 、没有最小的负有理数,故B 错误;C 、没有最小的正有理数,故C 错误;D 、绝对值最小的有理数是0,故D 正确;故选:D .点睛:本题考查了有理数的相关知识,解题的关键是熟记有理数的相关定义.8.C解析:先对每个数进行化简,然后再确定负数的个数.详解:由题意,得-(-8)=8(-1)2019=-1-32=-9-|-1|=-1,∴2019(1)-,23-,|1|--,25-是负数,即有四个负数.故选:C .点睛:考查了正数和负数,解答此题的关键是正确理解正、负数的概念,区分正、负数的关键就是看它的值是大于0还是小于0,不能只看前面是否有负号.9.B解析:试题解析:A.0是整数.故错误.B.正确.C.0的绝对值是0.故错误.D.非负数的绝对值都等于它本身.故错误.故选B.10.A解析:根据列出的数据,按照有理数的相关运算规则进行化简,再根据正整数的概念进行逐一判断即可. 详解:对题干数据进行化简得依次为:1,3,4,0,4,12---,其中只有3是正整数,故选:A.点睛:本题主要考查了有理数中对不同运算形式下的化简,以及考查了正整数的概念,熟练运用有理数的运算法则及理解正整数的概念是解决本题的关键.11.D解析:根据小于零的分数是负分数,可得答案.详解:解:A、-2是负整数,故本选项不合题意;B、35是正分数,故本选项不合题意;C、-π是无理数,故本选项不合题意;D、-4.95是负分数,故本选项符合题意.故选:D.点睛:本题考查了有理数,利用小于零的分数是负分数判断是解题关键.12.B解析:根据有理数的定义,即可得到答案.详解:是整数,∵73是分数,∴73是有理数,∵2π∴有理数有2个,故选B .点睛:本题主要考查有理数的定义,掌握“整数和分数统称有理数”,是解题的关键.13.A解析:根据有理数的定义,即可得到答案.详解: 在2π,0.4583, 2.7•-,3.14,12,-23.1010101…(相邻两个1之间有一个0),这6个数中,有理数为:0.4583, 2.7•-,3.14,12共4个,故选A .点睛:本题主要考查有理数的定义,掌握有理数的定义,是解题的关键.14.C解析:根据整数和分数统称为有理数,分数包含有限小数和无限循环小数即可解答. 详解: 解:有理数有224,,0,3.14159,1.37-,共5个, ,0.10100100012π(每相邻两个1之间依次多一个0)为无理数故选:C .点睛:本题考查了实数,关键是熟悉有理数是有限小数或无限循环小数.15.B解析:一个最简分数,如果分母中只含有质因数2或5,这个分数就能化成有限小数;如果分母中含有2或5以外的质因数,这个分数就不能化成有限小数,据此判断即可. 详解:解:A、23的分母中有质因数3,所以不能化成有限小数,故A选项错误;B、93=155,分母中只有质因数5,所以能化成有限小数,故B选项正确;C、31=217,分母中有质因数7,所以不能化成有限小数,故C选项错误;D、836=29,分母中有质因数3,所以不能化成有限小数,故D选项错误;故选B.点睛:此题主要考查了小数与分数互化的方法的应用,解答此题的关键是要明确:一个最简分数,如果分母中只含有质因数2或5,这个分数就能化成有限小数,如果分母中含有2或5以外的质因数,这个分数就不能化成有限小数.16.A解析:根据有理数的相关概念:绝对值的定义,有理数的乘方,有理数的大小比较,倒数的定义,逐个对选项进行判断即可.详解:A. 绝对值最小的数是0,故本选项正确;B. 平方等于它本身的数是0和1,故本选项错误;C. 最小的有理数可以是负数,故本选项错误;D. 有理数0没有倒数,故本选项错误;故选A.点睛:此题考查有理数,解题关键在于熟悉掌握有理数的相关概念.17.B解析:根据有理数的分类解答即可.详解:解:A.23是正分数,故不符合题意;B.7 是负整数,故符合题意;C.5.6是分数,故不符合题意;D.19-是负分数,故不符合题意;故选B .点睛:本题考查了有理数的分类,熟练掌握有理数的两种分类方式是解答本题的关键. 有理数可分为整数和分数,整数分正整数,零和负整数;分数分正分数和负分数.有理数也可分为正有理数,零和负有理数,正有理数分为正整数和正分数,负有理数分为负整数和负分数.18.C解析:根据负分数的定义判断即可.详解:解:在-1, +7.5, 0, 23-, -0.9, 15中,负分数有23-和-0.9,共两个. 故选:C .点睛:此题考查了负分数的认识,注意小数是特殊的分数.19.D解析:试题分析:A .是整数,是有理数,选项错误;B .是分数,是有理数,选项错误;C .是有限小数,是有理数,选项错误;D .是无理数,选项正确.故选D .考点:无理数.20.B解析:根据大于或等于0的整数是非负整数解答即可.详解:解:在有理数0.8-,()5-+,0,536,2--,100中,非负整数有:0,100共2个.故选:B.点睛:本题主要考查非负整数的定义,属于基础题型,注意有的有理数要化简后再进行判断.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学《有理数的概念》典型题精编一、选择题(本大题共20小题,共60.0分)1. 下列四个数中,是正整数的是( )A. −1B. 0C. 12D. 12. 下列二次根式中,与√2之积为有理数的是( )A. √18B. √34C. √12D. −√273. 下列各数中是有理数的是( )A. πB. 0C. √2D. √53 4. 下列各数:−1,π2,4.112134,0,227,3.14,其中有理数有( )A. 6个B. 5个C. 4个D. 3个5. 下列四个数中,正整数是( )A. −2B. −1C. 0D. 1 6. 在数3,−13,0,−3中,与−3的差为0的数是( )A. 3B. −13C. 0D. −3 7. 从√2、0、π、227、6这五个数中随机抽取一个数,抽到有理数的概率是( )A. 15B. 25C. 35D. 45 8. 下列各数中是负整数的是( )A. −2B. 5C. 12D. −25 9. 下列各数中,是负整数的是( )A. −6B. 3C. 0D. 12 10. 在0、−1.5、−2、34这四个数中,属于负分数的是( )A. 0B. 34C. −1.5D. −211. 若a 是绝对值最小的有理数,b 是最大的负整数,c 是倒数等于它本身的自然数,则代数式a −b +c 的值为( )A. 0B. 2C. 1D. 3 12. 在227,π3,1.62,0四个数中,有理数的个数为( )A. 4B. 3C. 2D. 113.与−2的和等于0的数是()A. 12B. 0 C. 2 D. −1214.用−a表示的数一定是()A. 负数B. 正数或负数C. 负整数D. 以上全不对15.在0,1,−2,−3.5四个数中,是负整数的为()A. 0B. 1C. −2D. −3.516.下列四个数中,是正整数的是()A. −2B. πC. 12D. 1017.下列实数−3、√4、0、π中,无理数是()A. −3B. √4C. 0D. π18.下列说法正确的是()A. 整数包括正整数和负整数;B. 零是整数,但不是正数,也不是负数;C. 分数包括正分数、负分数和零;D. 有理数不是正数就是负数.19.下列说法中正确的是()A. 整数包括正整数和负整数B. 零是整数,但不是正数,也不是负数C. 分数包括正分数、负分数和零D. 有理数不是正数就是负数20.下列计算结果为负数的是A. (−3)+(−4)B. (−3)−(−4)C. (−3)×(−4)D. (−3)−4答案和解析1.【答案】D【解析】【分析】此题主要考查正整数概念,解题主要把握既是正数还是整数两个特点,比较简单.正整数是指既是正数还是整数,由此即可判定求解.【解答】解:A.−1是负整数,故选项错误;B.0是非正整数,故选项错误;C.12是分数,不是整数,错误;D.1是正整数,故选项正确.故选:D.2.【答案】A【解析】【分析】本题考查二次根式的乘法,有理数,将各项与√2相乘,再对结果进行分析即可.【解答】解:A、√18×√2=√36=6,6是有理数,符合题意;B、√34×√2=√62,√62不是有理数,不符合题意;C、√12×√2=√24=2√6,2√6不是有理数,不符合题意;D、−√27×√2=−√54=−3√6,−3√6不是有理数,不符合题意,故选A3.【答案】B【解析】解:A、π是无限不循环小数,属于无理数,故本选项错误;B、0是有理数,故本选项正确;C、√2是无理数,故本选项错误;D、√53无理数,故本选项错误;根据有理数是有限小数或无限循环小,可得答案.本题考查了有理数,有限小数或无限循环小数是有理数.4.【答案】B【解析】【分析】此题主要考查了有理数,关键是掌握有理数的分类.根据有理数分为整数和分数,进而可得答案.【解答】解:在−1,π2,4.112134,0,227,3.14中有理数有:−1,4.112134,0,227,3.14,故选B.5.【答案】D【解析】解:A、−2是负整数,故选项错误;B、−1是负整数,故选项错误;C、0是非正整数,故选项错误;D、1是正整数,故选项正确.故选:D.正整数是指既是正数还是整数,由此即可判定求解.此题主要考查正整数概念,解题主要把握既是正数还是整数两个特点,比较简单.6.【答案】D【解析】解:根据题意得:0+(−3)=−3,则与−3的差为0的数是−3,故选:D.与−3的差为0的数就是0+(−3),据此即可求解.本题考查了有理数的运算.熟练掌握有理数减法法则是解本题的关键.7.【答案】C【解析】本题考查了概率公式以及有理数,根据有理数的定义找出五个数中的有理数的个数是解题的关键. 根据有理数的定义可找出在√2,0,π,227,6这5个数中只有0、227和6为有理数,再根据概率公式即可求出抽到有理数的概率.【解答】解:∵在√2,0,π,227,6这5个数中只有0、227和6为有理数,∴从√2,0,π,227,6这5个数中随机抽取一个数,抽到有理数的概率是35.故选C . 8.【答案】A【解析】解:A 、−2为负整数,故选项正确;B 、5为正整数,故选项错误;C 、12为正分数,故选项错误;D 、−25为负分数,故选项错误. 故选:A .根据负整数的定义即可判定选择项.本题主要考查了实数的相关概念及其分类方法,然后就可以熟练进行判断,难度适中. 9.【答案】A【解析】解:A 、−6为负整数,故选项正确;B 、3为正整数,故选项错误;C 、0不是正数,也不是负数,故选项错误;D 、12为正分数,故选项错误. 故选:A .根据负整数的定义即可判定选择项.本题主要考查了实数的相关概念及其分类方法,然后就可以熟练进行判断,难度适中. 10.【答案】C【解析】解:−1.5是负分数,故选:C .0不是正数也不是负数;−1.5是负分数;−2是负整数;34是正分数.本题考查有理数;熟练掌握有理数的分类是解题的关键. 11.【答案】B【解析】【分析】此题主要考查了绝对值,有理数的定义,代数式求值,根据绝对值与有理数的定义求出a 、b 、c 的值是解本题的关键.根据题意确定出各自的值,代入原式计算即可求出值.【解答】解:根据题意得:a =0,b =−1,c =1,则a −b +c =0−(−1)+1=2,故选B .12.【答案】B【解析】解:在227,π3,1.62,0四个数中,有理数为227,1.62,0,共3个,故选:B .根据有理数的定义,即可解答.本题考查了有理数的分类,解决本题的关键是熟记有理数的分类. 13.【答案】C【解析】解:因为互为相反数的两个数的为0,所以与−2的和等于0的数是2,故选:C .根据互为相反数的两个数的为0解答即可.本题考查了有理数的相关概念:相反数.解题的关键是明确互为相反数的两个数的为0.14.【答案】D【解析】【分析】本题考查了有理数,熟练掌握字母表示数的意义是解题的关键.根据字母表示数解答.【解答】解:a>0时,−a<0,是负数,a=0时,−a=0,0既不是正数也不是负数,a<0时,−a>0,是正数,综上所述,−a表示的数可以是负数,正数或0.故选D.15.【答案】C【解析】【分析】本题主要考查负整数的知识,解答本题的关键是知道负整数的含义.【解答】解:根据负整数的含义,知道在0,1,−2,−3.5四个数中,是负整数的为−2.故选C.16.【答案】D【解析】【分析】此题主要考查正整数概念,解题主要把握既是正数还是整数两个特点,比较简单.正整数是指既是正数还是整数,由此即可判定求解.【解答】解:A.−2是负整数,故选项错误;B.π是无理数,故选项错误;C.1是分数,不是整数,错误;2D.10是正整数,故选项正确.故选D.17.【答案】D【解析】【分析】本题主要考查的是有理数、无理数的定义的有关知识,由题意利用有理数、无理数的定义进行求解即可.【解答】解:√4=2是有理数,−3,0是有理数,π是无理数.故选D.18.【答案】B【解析】【分析】认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.注意整数和正数的区别,注意0是整数,但不是正数,0不是分数.整数包括:正整数,0,负整数;分数包括正分数和负分数,有理数分为整数和分数.【解答】解:A.0也属于整数,所以A是错误的;B.整数包括:正整数,0,负整数,但0既不属于正数,也不属于负数,所以B正确;C.分数不包括0,所以C是错误的;D.0也是有理数,但既不属于正数,也不属于负数,所以D是错误的.故选B.19.【答案】B【解析】【分析】认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.注意整数和正数的区别,注意0是整数,但不是正数,0不是分数.整数包括:正整数,0,负整数;分数包括正分数和负分数,有理数分为整数和分数.【解答】解:A.0也属于整数,所以A是错误的;B.整数包括:正整数,0,负整数,但0既不属于正数,也不属于负数,所以B正确;C.分数不包括0,所以C是错误的;D.0也是有理数,但既不属于正数,也不属于负数,所以D是错误的.故选B.20.【答案】A【解析】【分析】本题主要考查了有理数的运算,根据运算法则直接计算,然后判断正负即可得到答案.【解答】解:A.(−3)+(−4)=−7,故A正确; B.(−3)−(−4)=1,故B错误; C.(−3)×(−4) =12,故C错误 D.(−3)−4 =1,故D错误.81故选A.。