人教版数学七年级下册第六章检测卷(含解析)

合集下载

最新人教版初中数学七年级数学下册第六单元《数据的收集、整理与描述》检测(有答案解析)

最新人教版初中数学七年级数学下册第六单元《数据的收集、整理与描述》检测(有答案解析)

一、选择题1.为了调查某校学生的视力情况,在全校的1000名学生中随机抽取了100名学生,下列说法正确的是()A.此次调查属于全面调查B.样本容量是100C.1000名学生是总体D.被抽取的每一名学生称为个体2.某学习小组将要进行一次统计活动,下面是四位同学分别设计的活动序号,其中正确的是()A.实际问题→收集数据→表示数据→整理数据→统计分析合理决策B.实际问题→表示数据→收集数据→整理数据→统计分析合理决策C.实际问题→收集数据→整理数据→表示数据→统计分析合理决策D.实际问题→整理数据→收集数据→表示数据→统计分析合理决策3.某校组织学生参加安全知识竞赛,并抽取部分学生成绩绘制成如图所示的统计图(每组不包括最小值,包括最大值),图中从左至右前四组的百分比分别是4,12,40,28,第五组的频数是8.下列判断正确的有()00000000①第五组的百分比为16%;②参加统计调查的竞赛学生共有100人;③成绩在70-80分的人数最多;④80分以上(不含80分)的学生有14名.A.1个B.2个C.3个D.4个4.以下问题,不适合抽样调查的是()A.了解全市中小学生的每天的零花钱B.旅客上高铁列车前的安检C.调查某批次汽车的抗撞击能力D.调查某池塘中草鱼的数量5.为提高学生的课外阅读水平,我市各中学开展了“我的梦,中国梦”课外阅读活动,某校为了解七年级学生每日课外阅读所用的时间情况,从中随机抽取了部分学生,进行了统计分析,整理并绘制出如图所示的频数分布直方图,有下列说法:①这次调查属于全面调查②这次调查共抽取了200名学生的人数最少③这次调查阅读所用时间在2.53h的人数占所调查人数的40%,其中正确的有().④这次调查阅读所用时间在1 1.5hA.②③④B.①③④C.①②④D.①②③6.下列调查方式,你认为最合适的是()A.调查市场上某种白酒的塑化剂的含量,采用全面调查方式B.调查鞋厂生产的鞋底能承受的弯折次数,采用全面调查方式C.调查端午节期间市场上粽子的质量,采用抽样调查方式D.“长征﹣3B火箭”发射前,检查其各零部件的合格情况,采用抽样调查的方式7.已知一组数据:10,8,6,10,8,13,11,12,10,10,7,9,8,12,9,11,12,9,10,11,则频率为0.2的范围是()A.6~7 B.10~11 C.8~9 D.12~138.某学校对七年级随机抽取若干名学生进行“创建文明城市”知识答题,成绩分为1分,2分,3分,4分共4个等级,将调查结果绘制成如右图所示的条形统计图和扇形统计图.根据图中信息,这些学生中得2分的有()人.A.8 B.10 C.6 D.99.如图是某校七年级学生到校方式的条形图,下列说法错误的是()A.步行人数占七年级总人数的60%B.步行、骑自行车、坐公共汽车人数的比为2∶3∶5C.坐公共汽车的人数占七年级总人数的50%D.这所学校七年级共有300人10.下列调查中,调查方式选择合理的是()A.为了了解北斗三号卫星零件的质量情况,选择全面调查B.为了了解胜溪湖森林公园全年的游客流量,选择全面调查C.为了了解某品牌木质地板的甲醛含量,选择全面调查D.新冠肺炎疫情期间,为了了解出入某小区的居民的体温,选择抽样调查11.下列调查方式,你认为最合适的是()A.要调查一批灯管的使用寿命,采用全面调查的方式B.扬泰机场对旅客进行登机前安检,采用抽样调查方式C.为有效控制“新冠疫情”的传播,对国外入境人员的健康状况,采用普查方式D.试航前对我国国产航母各系统的检查,采用抽样调查方式12.某公司为了解职工参加体育锻炼情况,对职工某一周平均每天锻炼(跑步或快走)的里程进行统计(保留整数),并将他们平均每天锻炼的里程数据绘制成扇形统计图,关于他们平均每天锻炼里程数据,下列说法不正确的是()A.平均每天锻炼里程数据的中位数是2B.平均每天锻炼里程数据的众数是2C.平均每天锻炼里程数据的平均数是2.34D.平均每天锻炼里程数不少于4km的人数占调查职工的20%二、填空题13.一个池塘中放养一些草鱼若干,现想测算一下池塘中草鱼的总条数,小明在池塘中放入60条红鲫鱼,一周后,小明在池塘中捞出200条鱼中有5条是红鲫鱼,把鱼全部放回池塘中.请你猜测池塘中现在大约有______条草鱼...14.某班有60人,其中参加读书活动的人数为15人,参加科技活动的人数占全班人数的1,参加艺术活动的比参加科技活动的多5人,如图则参加体育活动的人所占的扇形的圆6心角为____________.15.新冠肺炎在我国得到有效控制后,各校相继开学.为了检测学生在家学习情况,在开学初,我校进行了一次数学测试,如图是某班数学成绩的频数分布直方图,则由图可知,得分在70分以上(包括70分)的人数占总人数的百分比为__________.16.统计得到的一组数据有80个,其中最大值为141,最小值为50,取组距为10,可以分成 _______________组.17.某公司有员工800人举行元旦庆祝活动,A、B、C分别表示参加各种活动的人数的百分比(如图),规定每人都要参加且只能参加其中一项活动,则下围棋的员工共有______人.18.已知一组数据有40个,把它分成五组,第一组、第二组、第四组、第五组的频数分别是10,8,7,6,第三组频数是________.19.小明对某班级同学参加课外活动内容进行问卷调查后(每人必选且只选一种),绘制成如图所示的统计图,已知参加踢毽子的人数比参加打篮球的人数少6人,则参加“其他”活动的人数为__________人.20.在整数20200520中,数字“0”出现的频率是_________.三、解答题21.全民健身运动已成为一种时尚,为了解宝鸡市居民健身运动的情况,某健身馆的工作人员开展了一项问卷调查,问卷包括五个项目:A:健身房运动;B:跳广场舞;C:参加暴走团;D:散步;E:不运动.以下是根据调查结果绘制的统计图表的一部分.运动形式A B C D E人数1230m549请你根据以上信息,回答下列问题:(1)接受问卷调查的共有______人,图表中的m=______,n=______;(2)统计图中,A类所对应的扇形圆心角的度数是多少?(3)宝鸡市团结公园是附近市民喜爱的运动场所之一,每晚都有“暴走团”活动,若最邻近的某社区约有1500人,那么估计一下该社区参加体育公园“暴走团”的大约有多少人?22.为了了解小学生的体能情况,抽取了某校一个年级的部分学生进行一分钟跳绳次数的测试,将所得数据整理后,画出频率分布直方图如图所示.已知图中从左到右前三个小组的频率分别是0.1,0.3,0.4,第一小组的频数为5(1)求第四小组的频率.(2)问参加这次测试的学生数是多少?(3)若次数在75次以上(含75次)为达标,试估计该年级学生跳绳测试的达标人数是多少人?23.下面是公司去年每月收入和支出情况统计图,请根据统计图填空并回答问题.(1)月收入和支出相差最小.月收入和支出相差最大;(2)12月收入和支出相差万元;(3)去年平均每月支出万元.24.2020年3月,中共中央、国务院颁布了《关于全面加强新时代大中小学劳动教育的意见》.某市教育局发布了“普通中小学校劳动教育状况评价指标”,为了解某校学生一周劳动次数的情况,随机抽取若干学生进行调查,得到如下两幅不完整的统计图.请根据图中信息,解答下列问题:(1)求这次调查活动共抽取的人数.(2)直接写出m= ,n= .(3)请将条形统计图补充完整.25.某校为了解七年级学生体育测试情况,以九年级(1)班学生的体育测试成绩为样本,,,,四个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中按A B C D所给信息解答下列问题:(说明:A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下)(1)请把条形统计图补充完整;(2)样本中D级的学生人数占全班学生人数的百分比是;(3)扇形统计图中A级所在的扇形的圆心角度数是;(4)若该校九年级有500名学生,请你用此样本估计体育测试中A级和B级的学生人数约为人.26.在我区开展的“美丽江北,创文我同行”活动中,某校倡议八年级学生利用双休日在各自社区参加义务劳动.为了解同学们劳动情况,学校随机调查了部分同学的劳动时间,并用得到的数据绘制成不完整的统计图表,如下图所示:劳动时间(时)频数(人数)频率0.5120.121300.31.5x0.4218y合计m1(1)统计表中的m=__________,x=_________,y=________;(2)如果绘制成扇形图,义务劳动2小时的人数所占圆心角的度数是________°;(3)请将频数分布直方图补充完整;(4)求所有被调查同学的平均劳动时间.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据全面调查与随机抽样调查、样本容量、总体、个体的定义逐项判断即可得.【详解】A、此次调查属于随机抽样调查,此项错误;B、样本容量是100,此项正确;C、1000名学生的视力是总体,此项错误;D、被抽取的每一名学生的视力称为个体,此项错误;故选:B.【点睛】本题考查了全面调查与随机抽样调查、样本容量、总体、个体,熟练掌握统计调查的相关概念是解题关键.2.C解析:C【解析】统计调查一般分为以下几步:收集数据、整理数据、描述数据、分析数据,故选C .3.B解析:B【分析】根据频数分布直方图的知识及频数与频率的关系可以得到解答.【详解】解:由1-4%-12%-40%-28%=16%可知①正确; 由100816%85016÷=⨯=可知参加统计调查的竞赛学生共有50人,∴②错误; 由频数分布直方图可以得知成绩在70-80分的人数最多,∴③正确; 由()5028%16%5044%22⨯+=⨯=可知80分以上(不含80分)的学生有22名,④错误;故选B .【点睛】本题考查频数与频率的应用,熟练掌握频数与频率的关系及频数分布直方图的知识是解题关键 .4.B解析:B【解析】A 、了解全市中小学生的每天的零花钱,人数较多,应采用抽样调查,故此选项错误;B 、旅客上高铁列车前的安检,意义重大,不能采用抽样调查,故此选项正确;C 、调查某批次汽车的抗撞击能力,具有破坏性,应采用抽样调查,故此选项错误;D 、调查某池塘中草鱼的数量众多,应采用抽样调查,故此选项错误;故选B .5.A解析:A【分析】根据抽样调查和频数分布直方图的性质逐个分析计算,即可得到答案.【详解】这次调查属于抽样调查,故①错误;结合频数分布直方图,可计算得共抽取10208070128200+++++=名学生,故②正确;结合频数分布直方图,阅读所用时间在2.53h -的共8名学生,人数最少,故③正确;这次调查阅读所用时间在1 1.5h 的人数占比为802=2005,即40%,故④正确; 故选:A .【点睛】 本题考查了抽样调查、频数分布直方图的知识;解题的关键是熟练掌握抽样调查、频数分布直方图的性质,从而完成求解.6.C解析:C【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】解:A 、调查市场上某种白酒的塑化剂的含量,采用全面调查方式,适合抽样调查; B 、了调查鞋厂生产的鞋底能承受的弯折次数,适合抽样调查;C 、调查端午节期间市场上粽子的质量,适合采用抽样调查方式;D 、“长征﹣3B 火箭”发射前,检查其各零部件的合格情况,适合采用全面调查方式; 故选:C .【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查. 7.D解析:D【分析】分别计算出各组的频数,再除以20即可求得各组的频率,看谁的频率等于0.2.【详解】A 中,其频率=2÷20=0.1;B 中,其频率=6÷20=0.3;C 中,其频率=8÷20=0.4;D 中,其频率=4÷20=0.2.故选D .【点睛】首先数出数据的总数,然后数出各个小组内的数据个数,即频数.根据频率=频数÷总数进行计算.8.A解析:A【分析】首先根据4分的人数和百分比求出总人数,然后计算出3分的人数,最后用总人数减去1分、3分和4分的总人数得出答案【详解】解:总人数=12÷30%=40人,得3分的人数=42.5%×40=17人,得2分的人数=40-(3+17+12)=8人.故选:A.9.A解析:A【解析】观察条形统计图可知:步行人数有60人,骑自行车的人数有90人,坐公共汽车的人数有150人.即可得这所学校七年级共有60+90+150=300人;坐公共汽车的人数占七年级总人数的50%;步行、骑自行车、坐公共汽车人数的比为60:90:150=2∶3∶5;步行人数占七年级总人数的20%(60100%20%300⨯=),所以四个选项中只有选项A错误,故选A.10.A解析:A【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】A、为了了解北斗三号卫星零件的质量情况的调查是精确度要求高的调查,适于全面调查,故本选项正确;B、为了了解胜溪湖森林公园的游客流量,因为普查工作量大,适合抽样调查,故本选项错误;C、为了了解某品牌木质地板的甲醛含量,因为普查工作量大,适合抽样调查,故本选项错误;D、新冠肺炎疫情期间,为了了解出入某小区的居民的体温,是精确度要求高的调查,适于全面调查,故本项错误,故选:A.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.11.C解析:C【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】解:A、要调查一批灯管的使用寿命,具有破坏性,应用抽样调查,故A错误;B、扬泰机场对旅客进行登机前安检,事关重大,采用普查方式,故B错误;C、为有效控制“新冠疫情”的传播,对国外入境人员的健康状况,事关重大,采用普查方式,故C正确;D、试航前对我国国产航母各系统的检查,采用普查方式,故D错误.故选:C.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.12.D解析:D【分析】中位数、众数和平均数的定义分别对每一项进行分析,即可得出答案.【详解】解:A、把这些数从小到大排列,则平均每天锻炼里程数据的中位数是2,故本选项正确;B、∵2出现了20次,出现的次数最多,则平均每天锻炼里程数据的众数是2,故本选项正确;C、平均每天锻炼里程数据的平均数是:11222031045532.3412201053⨯+⨯+⨯+⨯+⨯=++++,故本选项正确;D、平均每天锻炼里程数不少于4km的人数占调查职工的53100%16%50+⨯=,故本选项错误;故选:D.【点睛】此题考查了条形统计图、中位数、众数和平均数的概念,读懂统计图,从统计图中得到必要的信息是解决问题的关键.二、填空题13.2340【分析】捕捞200条鱼发现其中5条有标记即在样本中有标记的占到再根据有标记的共有60条列式计算即可【详解】根据题意得:池塘中的鱼大约有60÷=2400(条)∴草鱼大约有2400-60=234解析:2340【分析】捕捞200条鱼,发现其中5条有标记,即在样本中,有标记的占到5200,再根据有标记的共有60条,列式计算即可.【详解】根据题意得:池塘中的鱼大约有60÷5200=2400(条).∴草鱼大约有2400-60=2340条故答案为:2340.【点睛】此题考查了用样本的信息来估计总体的信息,本题体现了统计思想,用到的知识点是样本的百分比=整体的百分比.14.【分析】分别求出参加科技活动和参加艺术活动的人数即可得到参加体育活动的人数根据参加体育活动的人数占比即可求解其圆心角度数【详解】解:参加科技活动的人数为:(人)参加艺术活动的人数为:(人)∴参加体育解析:120︒【分析】分别求出参加科技活动和参加艺术活动的人数,即可得到参加体育活动的人数,根据参加体育活动的人数占比即可求解其圆心角度数.【详解】解:参加科技活动的人数为:160106⨯=(人),参加艺术活动的人数为:10515+=(人),∴参加体育活动的人数为:6015101520---=,∴参加体育活动的人所占的扇形的圆心角为2036012060︒⨯=︒,故答案为:120︒.【点睛】本题考查扇形统计图的圆心角度数,求出参加体育活动的人数占比是解题的关键.15.【分析】计算出总人数及成绩在70分以上(含70)的学生人数列式计算即可【详解】解:∵总人数=4+12+14+8+2=40成绩在70分以上(含70)的学生人数=14+8+2=24∴成绩在70分以上(含解析:60%【分析】计算出总人数及成绩在70分以上(含70)的学生人数,列式计算即可.【详解】解:∵总人数=4+12+14+8+2=40,成绩在70分以上(含70)的学生人数=14+8+2=24,∴成绩在70分以上(含70)的学生人数占全班总人数的百分比为24100%60%40⨯=.故答案是:60%.【点睛】本题考查读频数分布直方图的能力及对信息进行处理的能力.16.10【分析】组数定义:数据分成的组的个数称为组数根据组数=(最大值-最小值)÷组距计算注意小数部分要进位【详解】解:这组数据的极差为141-50=9191÷10=91因此数据可以分为10组故答案为:解析:10【分析】组数定义:数据分成的组的个数称为组数,根据组数=(最大值-最小值)÷组距计算,注意小数部分要进位.【详解】解:这组数据的极差为141-50=91,91÷10=9.1,因此数据可以分为10组,故答案为:10.【点睛】本题考查的是组数的计算,属于基础题,只要根据组数的定义来解即可.17.160【分析】用员工总数乘以下围棋的百分比即可求出答案【详解】下围棋的员工共有(人)故答案为:160【点睛】此题考查利用扇形统计图的百分比求某部分的数量掌握求部分数量是计算公式是解题的关键解析:160【分析】用员工总数乘以下围棋的百分比即可求出答案.【详解】⨯--=(人),下围棋的员工共有800(138%42%)160故答案为:160.【点睛】此题考查利用扇形统计图的百分比求某部分的数量,掌握求部分数量是计算公式是解题的关键.18.9【分析】用总频数减去各组已知频数可得【详解】第三组频数是40-10-8-7-6=9故答案为:9【点睛】考核知识点:频数理解频数的定义是关键数据的个数叫频数解析:9【分析】用总频数减去各组已知频数可得.【详解】第三组频数是40-10-8-7-6=9故答案为:9【点睛】考核知识点:频数.理解频数的定义是关键.数据的个数叫频数.19.10【分析】先由扇形统计图得出参加踢毽子与打篮球的人数所占的百分比结合参加踢毽子的人数比参加打篮球的人数少6人求出参加课外活动一共的人数进一步可求参加其他活动的人数【详解】解:6÷(30-15)=4解析:10【分析】先由扇形统计图得出参加踢毽子与打篮球的人数所占的百分比,结合参加踢毽子的人数比参加打篮球的人数少6人,求出参加课外活动一共的人数,进一步可求参加“其他”活动的人数.【详解】解:6÷(30%-15%)=40(人),40×25%=10(人).答:参加“其他”活动的人数为10人.故答案为:10.【点睛】本题考查的是扇形统计图.在扇形统计图中,各部分占总体的百分比之和为1,每部分占总体的百分比等于该部分所对应的扇形圆心角的度数与360°的比.20.5【分析】直接利用频率的定义分析得出答案【详解】解:∵在整数20200520中一共有8个数字数字0有4个故数字0出现的频率是故答案为:【点睛】此题主要考查了频率的求法正确把握定义是解题关键解析:5【分析】直接利用频率的定义分析得出答案.【详解】解:∵在整数20200520中,一共有8个数字,数字“0”有4个,故数字“0”出现的频率是12.故答案为:12.【点睛】此题主要考查了频率的求法,正确把握定义是解题关键.三、解答题21.(1)150,45,36;(2)A类所对应的扇形圆心角的度数是28.8 ;(3)估计该社区参加“暴走团”的大约有450人.【分析】(1)由B项目的人数及其百分比求得总人数,根据各项目人数之和等于总人数求得m=45,再用D项目人数除以总人数可得n的值;(2)360°乘以A项目人数占总人数的比例可得;(3)总人数乘以样本中C人数所占比例.【详解】(1)接受问卷调查的共有:30÷20%=150人,m=150-(12+30+54+9)=45,n%=54÷150×100%=36%,∴n=36,故答案为:150、45、36;(2)A类所对应的扇形圆心角的度数为360°×12150=28.8°;(3)1500×45150=450(人),答:估计该社区参加“暴走团”的大约有450人.【点睛】本题考查的是统计表和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.22.(1)0.2;(2)50人;(3)45人【分析】(1)第四小组的频率=1-0.1-0.3-0.4=0.2;(2)学生数=50.1=50(人);(3)达标率为0.9,达标人数=50×0.9=45(人).【详解】(1)第四小组的频率=1-0.1-0.3-0.4=0.2;(2)学生数=50.1=50(人);(3)∵达标率为1-0.1=0.9,∴达标人数=50×0.9=45(人).【点睛】本题考查了样本的频率,频数,样本容量,达标率,熟记频数,频率,样本容量的关系是解题的关键.23.(1)4,7;(2)30;(3)30.【分析】(1)利用折线统计图得到每月的收入与支出,从而得到收入和支出相差最小的月份和收入和支出相差最大的月份;(2)利用折线统计图得到12月的收入与支出,从而得到结论;(3)利用平均数的计算方法,把12个月的支出相加除以12得到平均每月支出数.【详解】解:(1)1月份收入为40万,支出为20万,收入与支出相差:40-20=20(万元)2月份收入为60万,支出为30万,收入与支出相差:60-30=30(万元)3月份收入为30万,支出为10万,收入与支出相差:30-10=20(万元)4月份收入为30万,支出为20万,收入与支出相差:30-20=10(万元)5月份收入为50万,支出为20万,收入与支出相差:50-20=30(万元)6月份收入为60万,支出为30万,收入与支出相差:60-30=30(万元)7月份收入为80万,支出为20万,收入与支出相差:80-20=60(万元)8月份收入为70万,支出为30万,收入与支出相差:70-30=40(万元)9月份收入为70万,支出为40万,收入与支出相差:70-40=30(万元)10月份收入为80万,支出为50万,收入与支出相差:80-50=30(万元)11月份收入为90万,支出为40万,收入与支出相差:90-40=50(万元)12月份收入为80万,支出为50万,收入与支出相差:80-50=30(万元)∴4月份收入为30万,支出为20万,收入与支出相差最小;7月份收入为80万,支出为20万,相差最大;故答案为:4,7;(2)12月份收入为80万,支出为50万,收入和支出相差80-50=30万元,故答案为:30;(3)去年每月支出的平均数为112(20+30+10+20+20+30+20+30+40+50+40+50)=30(万元).故答案为:30.【点睛】本题考查了折线统计图:折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化.折线图不但可以表示出数量的多少,而且能够清楚地表示出数量的增减变化情况.24.(1)200人;(2)86,27;(3)图见解析.【分析】(1)从统计图中可知:1次及以下的频数为20,占调查人数的10%,可求出抽查人数;(2)3次的占调查人数的43%,可求出3次的频数,确定m的值,进而求出4次以上的频数,求出n的值;(3)求出2次的频数,即可补全条形统计图.【详解】(1)2010%200÷=(人),所以这次调查活动共抽取200人.(2)20043%86⨯=(人),5420027%÷=,即86m =,27n =,故答案为:86,27;(3)200×20%=40,补全条形统计图如下:【点睛】本题考查的条形统计图,扇形统计图的意义和制作方法,从两个统计图中获取数量和数量之间的关系是解答本题的关键.25.(1)补充完整的条形统计图见解析;(2)10%;(3)72°;(4)330.【分析】(1)根据题意可以求得D 级的人数,从而可以将条形统计图补充完整;(2)根据扇形统计图可以求得D 级所占的百分比;(3)根据扇形统计图可以求得A 级所在扇形圆心角的度数;(4)根据统计图中的数据可以估计体育测试中A 级和B 级的学生人数.【详解】(1)九年级一班的学生有:10×20%=50(人),∴D 等级的人数有:50−10−23−12=5(人),补充完整的条形统计图如下图所示,(2)由扇形统计图可得,样本中D 级的学生人数占全班学生人数的百分比是:1−20%−46%−24%=10%, 故答案为:10%;(3)扇形统计图中A 级所在的扇形的圆心角度数是:360°×20%=72°,故答案为:72°;(4)此样本估计体育测试中A 级和B 级的学生人数约为:500×(20%+46%)=330(人),故答案为:330.【点睛】。

新初中数学七年级下册第六章《实数》检测试题(含答案解析)(1)

新初中数学七年级下册第六章《实数》检测试题(含答案解析)(1)

新初中数学七年级下册第六章《实数》检测试题(含答案解析)(1)⼈教版七年级数学下册第六章实数复习检测试题⼀、选择题(每⼩题3分,共30分)1.下列各数中最⼤的数是( )A.3 C.π D.-32.下列说法正确的是()A.任何数都有算术平⽅根B.只有正数有算术平⽅根C.0和正数都有算术平⽅根D.负数有算术平⽅根3.下列语句中,正确的是( )A.⽆理数都是⽆限⼩数B.⽆限⼩数都是⽆理数C.带根号的数都是⽆理数D.不带根号的数都是⽆理数4.的⽴⽅根是( )A.-1B.OC.1D. ±15.在-1.732,π,3.,2,3.212 212 221…(每相邻两个1之间依次多⼀个2),3.14这些数中,⽆理数的个数为( )A.5个B.2个C.3个D.4个6.有下列说法:①实数和数轴上的点⼀⼀对应;②不含根号的数⼀定是有理数;③负数没有平⽅根;④是17的平⽅根.其中正确的有()A.3个B.2个C.1个D.0个7.下列说法中正确的是( )A.若a为实数,则a≥0B.若a为实数,则a的倒数为1 aC.若x,y为实数,且x=yD.若a为实数,则a2≥08.若a2=4,b2=9,且ab<0,则a﹣b的值为()A.﹣2B.±5C.5D.﹣59.实数a,b在数轴上的位置如图所⽰,则|a|-|b|可化简为( )A.a-bB.b-aC.a+bD.-a-b10.如图,数轴上的点A,B,C,D分别表⽰数﹣1,1,2,3,则表⽰2﹣的点P应在()A.线段AO上B.线段OB上C.线段BC上D.线段CD上⼆、填空题(每⼩题3分,共24分)1.按键顺序是“,,则计算器上显⽰的数是.2.⼀个数的平⽅根和它的⽴⽅根相等,则这个数是.3.计算:-2+-|-2|=.4.若某数的平⽅根为a+3和2a-15,则这个数是.5.⽐较⼤⼩:-23-0.02;3.6.定义运算“@”的运算法则为:x@y=xy﹣1,下⾯给出关于这种运算的⼏种结论:①(2@3)@(4)=19;②x@y=y@x;③若x@x=0,则x﹣1=0;④若x@y=0,则(xy)@(xy)=0.其中正确结论的序号是.7.计算:|3-π|+-的结果是.三、解答题(共46分)1.计算(6分)(1)|1-|+||+|-2|+|2-|;(2) (-2)3×---.2.(6分)求未知数的值:(1)(2y﹣3)2﹣64=0;(2)64(x+1)3=27.3.(8分)已知=0,求实数a,b的值,并求出的整数部分和⼩数部分.4.(8分)设a.b为实数,且=0,求a2﹣的值.5. (10分)王⽼师给同学们布置了这样⼀道习题:⼀个数的算术平⽅根为2m-6,它的平⽅根为±(m-2),求这个数.⼩张的解法如下:依题意可知,2m-6是(m-2),-(m-2)两数中的⼀个.(1)当2m-6=m-2时,解得m=4.(2)所以这个数为2m-6=2×4-6=2.(3)当2m-6=-(m-2)时,解得m=83.(4)所以这个数为2m-6=2×83-6=-23.(5)综上可得,这个数为2或-23.(6)王⽼师看后说,⼩张的解法是错误的.你知道⼩张错在哪⾥吗?为什么?请予以改正.6.(8分)设的整数部分和⼩数部分分别是x,y,试求x,y的值与x﹣1的算术平⽅根.参考答案与解析⼀、选择题1.B2. C3.A4.C5.D6.A7.D8.B9.C 10. A A⼆、填空题11.4 12.0 13.1 14. 49 15.<>16. ①②④17.1三、解答题1. 解:(1)原式1221-+=-.(2)原式=-8×4-4×14-3=-32-1-3=-36.2⼈教版数学七下第六章实数能⼒⽔平检测卷⼀.选择题(共10⼩题)1.下列选项中的数,⼩于4且为有理数的为()A.πB.16 C.D.92.已知|a|=5, =7,且|a+b|=a+b,则a-b的值为()A.2或12 B.2或-12 C.-2或12 D.-2或-12 3.若实数a,b是同⼀个数的两个不同的平⽅根,则()A.a-b=0 B.a+b=0 C.a-b=1 D.a+b=14.⽤计算器求25的值时,按键的顺序是()A.5、x y、2、= B.2、x y、5、= C.5、2、x y、= D.2、3、x y、=5.如果x2=2,有x=±当x3=3时,有x想⼀想,从下列各式中,能得出x=±的是()A.2x=±20 B.20x=2 C.±20x=20 D.3x=±20 6.下列选项中正确的是()A.27的⽴⽅根是±3B的平⽅根是±4C.9的算术平⽅根是3D.⽴⽅根等于平⽅根的数是17.在四个实数、3、-1.4中,⼤⼩在-1和2之间的数是()A .B .3CD .-1.481-的相反数是()A .1-B 1-C .1-D 1+9a ,⼩数部分为b ,则a-b 的值为()A .- 13B .6-C .8-D 6- 10.下列说法:①-1是1的平⽅根;②如果两条直线都垂直于同⼀直线,那么这两条直线平⾏;在两个连续整数a 和b 之间,那么a+b=7;④所有的有理数都可以⽤数轴上的点表⽰,反过来,数轴上的所有点都表⽰有理数;⑤⽆理数就是开放开不尽的数;正确的个数为()A .1个B .2个C .3个D .4个⼆.填空题(共6⼩题)11.已知a 的平⽅根是±8,则它的⽴⽅根是;36的算术平⽅根是.122(3)b ++=0= .13A 的算术平⽅根为B ,则A+B= .14.若45,<<则满⾜条件的整数a 有个.15.如图,M 、N 、P 、R 分别是数轴上四个整数所对应的点,其中有⼀点是原点,并且MN=NP=PR=1,数a 对应的点在M 与N 之间,数b 对应的点在P 与R 之间,若|a|+|b|=3,则原点是(M 、N 、P 、R 中选).16.=5,付⽼师⼜⽤计算器求得:=55=555, =5555,个3,2016个4)= .三.解答题(共7⼩题)17.求出下列x的值(1)4(x-1)2-36=0(2)27(x+1)3=-6418.计算:(1)|2||1|--(2--++19.学校计划围⼀个⾯积为50m2的长⽅形场地,⼀边靠旧墙(墙长为10m),另外三边⽤篱笆围成,并且它的长与宽之⽐为5:2.讨论⽅案时,⼩马说:“我们不可能围成满⾜要求的长⽅形场地”⼩⽜说:“⾯积和长宽⽐例是确定的,肯定可以围得出来.”请你判断谁的说法正确,为什么?20.已知5a+2的⽴⽅根是3,3a+b-1的算术平⽅根是4,c(1)求a,b,c的值;(2)求3a-b+c的平⽅根.21.如果⼀个正数的两个平⽅根是a+1和2a-22,求出这个正数的⽴⽅根.22-的⼩数部分,此1事实上,⼩明的表⽰⽅法是有道理的,1,将这个数减去其整数部分,222<<<<即23,23,⼈教版七年级数学下册章末质量评估第六章实数⼈教版七年级数学下册第六章实数单元检测卷⼀、选择题1.若⼀个数的算术平⽅根等于它的相反数,则这个数是( D )A.0 B.1C.0或1 D.0或±12.下列各式成⽴的是( C )A. =-1B. =±1C. =-1D. =±13.与最接近的整数是( B )A.0 B.2 C.4 D.54..若x-3是4的平⽅根,则x的值为( C )A.2 B.±2 C.1或5 D.165.下列说法中,正确的个数有( A )①两个⽆理数的和是⽆理数;②两个⽆理数的积是有理数;③⽆理数与有理数的和是⽆理数;④有理数除以⽆理数的商是⽆理数.A.1个 B.2个 C.3个 D.4个6. 下列选项中正确的是( C )A.27的⽴⽅根是±3B.的平⽅根是±4A.6.69 B.6.7 C.6.70 D.±6.708.⼀个底⾯是正⽅形的⽔池,容积是11.52m3,池深2m,则⽔池底边长是( C ) A.9.25m B.13.52m C.2.4m D.4.2m9. ⽐较2, , 的⼤⼩,正确的是(C )A. 2< <B. 2< <C. <2<10.如果⼀个实数的算术平⽅根等于它的⽴⽅根,那么满⾜条件的实数有(C)A.0个B.1个om]C.2个D.3个⼆、填空题11.3的算术平⽅根是____3____.12.(1)⼀个正⽅体的体积是216cm3,则这个正⽅体的棱长是____6________cm;(2) 表⽰_______9_____的⽴⽅根;13.已知a,b为两个连续整数,且a<1514.已知⼀个有理数的平⽅根和⽴⽅根相同,则这个数是______0______.15.实数1-216.写出39到23之间的所有整数:____3,4 15.0________.三、解答题17.求下列各数的平⽅根和算术平⽅根:(1)1.44;解:1.44的平⽅根是± 1.44=±1.2,算术平⽅根是 1.44=1.2.(2)169289;解:169289的平⽅根是±169289=±1317,算术平⽅根是169289=1317.(3)(-911)2. 解:(-911)2的平⽅根是±(-911)2=±911,算术平⽅根是(-911)2=911.[] 18.已知⼀个正数x 的两个平⽅根分别是3-5m 和m -7,求这个正数x 的⽴⽅根.由已知得(3-5m)+(m -7)=0,-4m -4=0,解得:m=-1.所以3-5m=8,m -7=-8.所以x=(±8)2=64.所以x 的⽴⽅根是4.19.计算:(1)2+3 2-5 2;(2)2(7-1)+7;4121÷318;(4)|3-2|+|3-2|-|2-1|;(5)1-0.64-3-8+425-|7-3|.解:(1)原式=(1+3-5)×2=- 2.(2)2(7-1)+7=2 7-2+7=3 7-2.(3)原式=0.6×211÷12。

七年级数学(下)(人教版)第6章 实数 检测题(含详解)

七年级数学(下)(人教版)第6章 实数 检测题(含详解)

第六章实数检测题〔时辰:90分钟,总分值:100分〕一、选择题〔每题3分,共30分〕1.以下语句中精确的选项是〔〕A.的平方根是B.9的平方根是C.9的算术平方根是D.9的算术平方根是2.以下结论精确的选项是〔〕A. B.C. D.3.的平方根是, 64的破方根是,那么的值为〔〕A.3B.7C.3或7D.1或74.当时,的值为( )A. B. C. D.5.以下关于数的说法精确的选项是〔〕A. 有理数根本上无限小数B. 无限小数根本上在理数C. 在理数根本上无限小数D. 无限小数是在理数6.与数轴上的点存在逐一对应关系的数是〔〕A.实数B.有理数C.在理数D.整数7.以下说法精确的选项是〔〕A.负数不破方根B.一个负数的破方根有两个,它们互为相反数C.假定一个数有破方根,那么它必有平方根D.不为0的任何数的破方根,都与谁人数本身的标志同号8.以下各式成破的是〔〕A. B. C. D.9.在实数,,,,中,在理数有〔〕A.1个B.2个C.3个D.4个10.在-3,-,-1,0这四个实数中,最大年夜的是〔〕A. B. C. D.二、填空题〔每题3分,共24分〕11.的平方根是,的算术平方根是 .12.比较大小:(填“>〞“<〞“=〞〕.13.曾经明白+,那么.14.在中,________是在理数.15.的破方根的平方是________.16.假定的平方根为,那么 .17._____跟 _______统称为实数.18.假定、互为相反数,、互为负倒数,那么=_______.三、解答题〔共46分〕19.〔6分〕比较以下各组数的大小:〔1〕与;〔2〕与.20.〔6分〕比较以下各组数的大小:〔1〕与;〔2〕与.21.〔6分〕写出符合以下条件的数:〔1〕绝对值小于的所有整数之跟;〔2〕绝对值小于的所有整数.22.〔8分〕求以下各数的平方根跟算术平方根:23.〔6分〕求以下各数的破方根:24.〔6分〕曾经明白,求的值.25.〔8分〕先阅读下面的解题过程,然后再解答:形如的化简,只要我们寻到两个数,使,,即,,那么便有:.比如:化简:.解:起首把化为,这里,,由于,,即,,因而.按照上述例题的方法化简:.第六章实数检测题参考答案1.D2.A 分析:选项B中,差错 ;选项C中,差错 ;选项D中,差错;只要 A 是精确的.3.D 分析:由于,9的平方根是,因而.又64的破方根是4,因而,因而.4.A 分析:是指的算术平方根,应选A.5.C 分析:在理数是指无限不循环小数,也的确是说在理数根本上无限小数.6.A 分析:数轴上的点与实数存在逐一对应的关系 .7.D8.C 分析:由于因而,故A不成破;由于因而,故B不成破;由于故C成破;由于因而 D不成破 .9.A 分析:由于因而在实数,,,,中,有理数有,,,,只要是在理数.10.D 分析:由于,因而最大年夜的是11.分析:;,因而的算术平方根是.12.分析:即13.8 分析:由+,得,因而.14.分析:由于因而在中,是在理数.15.分析:由于的破方根是,因而的破方根的平方是.16.81 分析:由于,因而,即.17.有理数在理数分析:由实数的定义:有理数跟在理数统称为实数,可得.18.分析:由于、互为相反数,、互为负倒数,因而,因而,故.19.解:〔1〕由于因而.(2) 由于因而.20.解:〔1〕由于,且,因而.〔2〕.由于因而,因而 .21.解:〔1〕由于因而.因而绝对值小于的所有整数为因而绝对值小于的所有整数之跟为〔2〕由于因而绝对值小于的所有整数为.22.解:由于因而平方根为由于因而的算术平方根为.由于因而平方根为由于因而的算术平方根为.由于因而平方根为由于,因而的算术平方根为由于因而平方根为由于,因而的算术平方根为23.解:由于,因而的破方根是.由于因而的破方根是.由于,因而的破方根是.由于,因而的破方根是.24.解:由于,因而,即,因而.故,从而,因而,因而.25.解:可知,由于,因而.。

最新人教版初中数学七年级下册第六章《实数》单元综合练习题(含答案)

最新人教版初中数学七年级下册第六章《实数》单元综合练习题(含答案)

人教版七年级数学下册第六章实数单元检测题一、选择题(每题3分,共30分)1.-3的绝对值是()A.33B.-33 C. 3 D.132.下列实数中无理数是()A. 1.21B.3-8 C.3-32 D.2273. 下列说法:①一个数的平方根一定有两个;②一个正数的平方根一定是它的算术平方根;③负数没有立方根.其中正确的个数有()A.0个B.1个C.2个D.3个4.下列说法正确的是 ()A.无限小数是无理数B.不循环小数是无理数C.无理数的相反数还是无理数D.两个无理数的和还是无理数5.如果x2=2,有;当x3=3时,有,想一想,从下列各式中,能得出的是()A.x2=±20 B.x20=2 C.x±20=20 D.x3=±206.下列选项中正确的是()A.27的立方根是±3 B.的平方根是±4C.9的算术平方根是3 D.立方根等于平方根的数是17.下列四个数中的负数是()A.﹣22 B.2)1( C.(﹣2)2 D.|﹣2|8无理数一定是无限不循环小数②算术平方根最小的数是零③﹣6是(﹣6)2的一个算术平方根④﹣=其中正确的是()A.①②③B.②③④C.①②④D.①③④9. 已知3≈1.732,30≈5.477,那么300 000≈()A.173.2 B.±173.2 C.547.7 D.±547.7二、填空题(本大题共8小题,共32分)1.比较大小:(填写“<”或“>”)2.观察分析下列数据,寻找规律:0,3,6,3,12,15,18,…,那么第13个数据是________.3.已知实数m满足+=,则m=.4.已知,a23<b,且a、b是两个连续的整数,则|a+b|= .5.若的值在两个整数a与a+1之间,则a=.6.如图,正方形ABCD被分成两个小正方形和两个长方形,如果两个小正方形的面积分别是6cm2和2cm2,那么两个长方形的面积和为cm2.7.请写出一个大于8而小于10的无理数:.8.数轴上有A、B、C三个点,B点表示的数是1,C点表示的数是,且AB=BC,则A点表示的数是.三、解答题(38分)1.(6分)已知实数a,b满足a-14+|2b+1|=0,求b a的值.2.(6分)已知,求的算术平方根.3.(6分)计算:(1)9×(﹣32)+4+|﹣3|(2) .4.(本题8分)将下列各数填在相应的集合里.π,3.141 592 6,-0.456,3.030 030 003…(每两个3之间依次多1个0).有理数集合:{ …}; 无理数集合:{ …}; 正实数集合:{ …}; 整数集合:{ …}.5.(12分)数学活动课上,张老师说:“2是无理数,无理数就是无限不循环小数,同学们,你能把2的小数部分全部写出来吗?”大家议论纷纷,晶晶同学说:“要把它的小数部分全部写出来是非常难的,但我们可以用(2-1)表示它的小数部分.”张老师说:“晶晶同学的说法是正确的,因为1<2<4,所以1<2<2,所以2的整数部分是1,将这个数减去其整数部分,差就是小数部分.”亮亮说:“既然如此,因为2<5<3,所以5的小数部分就是(5-2)了.”张老师说:“亮亮真的很聪明.”接着,张老师出示了一道练习题:已知8+3=x+y,其中x是一个整数,且0<y<1,请你求出2x+(3-y)2 019的值.参考答案:人教版七年级数学下册第六章实数能力检测卷一.选择题(共10小题)1.16的平方根是()A.4 B.-4 C.16或-16 D.4或-42.下列各等式中计算正确的是()A±4 B C=-3 D= 3 23.若方程2(4)x-=19的两根为a和b,且a>b,则下列结论中正确的是()A.a是19的算术平方根B.b是19的平方根C.a-4是19的算术平方根D.b+4是19的平方根4.给出下列说法:①-2是49;③;④2的平)A.0个B.1个C.2个D.3个5.如果-b是a的立方根,则下列结论正确的是()A.3b-=a B.-b=3a C.b=3a D.3b=a6.已知一个正数的两个平方根分别为3a-1和-5-a,则这个正数的立方根是()A.-2 B.2 C.3 D.47.若一个正方形的面积为7,它的周长介于两个相邻整数之间,这两个相邻整数是()A.9,10 B.10,11 C.11,12 D.12,138)A.线段AB上B.线段BC上C.线段CD上D.线段DE上9.已知a、b均为正整数,且a>,b>,则a+b的最小值为( )A.6 B.7 C.8 D.910.在实数,3.1415926,π2,,,,,0.1010010001…(相邻两个1中间一次多1个0)中,无理数有( )A.2个B.3个C.4个D.5个二.填空题(共6小题)11.4的平方根是; 的立方根是.12.非零整数x、y 0,请写出一对符合条件的x、y的值:.13.一个正方体,它的体积是棱长为2cm的正方体的体积的8倍,则这个正方体的棱长是cm.14.5x+9的立方根是4,则2x+3的平方根是.15小的无理数.16.数轴上从左到右依次有A、B、C三点表示的数分别为a、b其中b为整数,且满足|a+3|+|b-2|=b-2,则b-a= .三.解答题(共7小题)17.求出下列x的值.(1)16x2-49=0;(2)24(x-1)3+3=0.18.计算|1|++-19.已知|a|=5,b 2=4,c 3=-8. (1)若a<b,求a+b 的值; (2)若abc>0,求a-3b-2c 的值.20.已知a+1的算术平方根是1,-27的立方根是b-12,c-3的平方根是±2,求a+b+c 的平方根.21.阅读材料:我们定义:如果两个实数的差等于这两个实数的商,那么这两个实数就叫做“差商等数对”.即:如果a-b=a÷b,那么a 与b 就叫做“差商等数对”,记为(a,b).例如: 4-2=4÷2;932-=9÷3;21(1)2⎛⎫--- ⎪⎝⎭=1÷(1);2⎛⎫-- ⎪⎝⎭则称数对91(4,2),,3,,122⎛⎫⎛⎫--⎪ ⎪⎝⎭⎝⎭是“差商等数对”.根据上述材料,解决下列问题: (1)下列数对中,“差商等数对”是______(填序号);①(-8.1,-9),②11,,22⎛⎫⎪⎝⎭③+ (2)如果(x,4)是“差商等数对”,请求出x 的值;22.对于实数a ,我们规定:用符号的最大整数,称为a 的根整数,例如:=3,=3.(1)仿照以上方法计算:==.(2)若=1,写出满足题意的x 的整数值人教版七年级数学下册能力提升卷:第六课实数一.选择题(共10小题) 1.下列计算错误的是( ) A .-3+2=-1B .(-0.5)×3×(-2)=3C .232⎛⎫- ⎪⎝⎭=-3D -1.12 ) A .8B .-8C .2D .-23.如果-b 是a 的立方根,则下列结论正确的是( ) A .3b -=aB .-b=3aC .b=3aD .3b =a4.-125 ) A .-2B .4C .-8D .-2或-85.小明在作业本上做了4=-5;②=4=-6,他做对的题有( ) A .1道B .2道C .3道D .4道6.数轴上A 、B 两点表示的数分别是-3和3.则表示的点位于A 、B 两点之间的是( )A .πB .-4CD .1037.实数a ,b 在数轴上的位量如图所示,则下列结论正确的是( ) A .|a+b|=a-bB .|a-b|=a-bC .|a+b|=-a-bD .|a-b|=b-a8.在数3,(---中,大小在-1和2之间的数是( )A .-3B .-(-2)C .0D 9.下列各数中:是无理数的有( )A .1个B .2个C .3个D .4个10.已知a,b为两个连续整数,且,<<则a+b的值为()a bA.9 B.8 C.7 D.6二.填空题(共6小题)11.64的平方根是,立方根是,算术平方根是.12.若30.3670=30.7160, 3.670=1.542,则3367== .13.若m的立方根,则m+3=14.|4|-=15.写出一个比4大且比5小的无理数:.161的值在两个整数a与a+1之间,则a= .三.解答题(共8小题)17.求出下列x的值(1)4(x-1)2-36=0(2)27(x+1)3=-6418.(1+.(2|119.已知一个正数的两个平方根分别为a和3a-8 (1)求a的值,并求这个正数;(2)求217a-的立方根.20.把下列各数的序号填在相应的大括号内:①-17;②π;③8||;5--④31;-⑤1;36⑥-0.92;⑦23;-+⑧-;⑨1.2020020002;正实数{ }负有理数{ }无理数{ }从以上9个数中选取2个有理数,2个无理数,用“+、-、×、÷”中的3种不同的运算符号将选出的4个数进行运算(可以用括号),使得计算结果为正整数,列出式子并计算.22.已知2a-1的平方根是±3,已知2a-1的平方根是±3,3a+b-9的立方根是2,c的整数部分,求a+b+c的平方根.23.如图,面积为30的长方形OABC 的边OA 在数轴上,O 为原点,OC=5,将长方形OABC 沿数轴水平移动,O,A,B,C 移动后的对应点分别记为1111,,,,O A B C 移动后的长方形1111O A B C 与原长方形OABC 重叠部分的面积记为S . (1)当S 恰好等于。

人教版七年级下册数学:第六章《实数》达标检测卷(含答案)

人教版七年级下册数学:第六章《实数》达标检测卷(含答案)

人教版七年级下册数学达标检测卷 【检测内容:第六章 实数 满分:120分】一、选择题(每小题3分,共30分)1. 数4的算术平方根是( )A .2B .-2C .±2D .22. 下列各数中,属于无理数的是( )A .13B .1.414C .2D .4 3. 面积为4的正方形的边长是( )A .4的平方根B .4的算术平方根C .4开平方的结果D .4的立方根 4. 在实数|-3.14|,-3,-3,π中,最小的数是( )A .-3B .-3C .|-3.14|D .π5. 如图,A ,B ,C ,D 是数轴上的四个点,其中最适合表示无理数π的是( )A.点AB.点BC.点CD.点D6. 23(1)-的立方根是( )A .-1B .0C .1D .±17. 实数10( )A .4和5之间B .5和6之间C .6和7之间D .7和8之间8. 下列计算正确的是( )A 2(3)- 3B 35-35C 36 6D .0.360.69. 若8x m y 与6x 3y n 的和是单项式,则(m +n )3的平方根为( )A.±8B.8C.±4D.410. 已知x 是整数,当|x 30取最小值时,x 的值是( )A .5B .6C .7D .8二、填空题(每小题3分,共24分)11. .(填“>”“<”或“=”)12. 0.50.5.(填“>”“=”或“<”)13. 1的值在两个整数a与a+1之间,则a=.14. 自由落体的公式为h=12gt2(g为重力加速度,g≈9.8 m/s2).若物体下落的高度h为78.4 m,则下落的时间t是s.15. 观察下列各式:;=;…,请用你发现的规律写出第8个式子.16. 若实数a+b的平方根是±4,实数13a的立方根是-2,则16a+b的平方根为.17. 一般地,如果x4=a(a≥0),则称x为a的四次方根.一个正数a的四次方根有两个,它们互为相反数,.10,则m=.18. 对于两个不相等的实数a,b,定义一种新的运算:a*b(a+b>0),如3*2那么15*(6*3)=.三、解答题(共66分)19. (8分)计算:(-2)2+-1|20. (8分)已知实数2a-3的平方根是±5,求2a-b的平方根.21. (9分)如图,一只蚂蚁从点A沿数轴向右爬2个单位长度到点B,点A,设点B表示的数为m.(1)求m 的值;(2)求|m -1|+|m +2022|的值.22. (9分)有一个长、宽之比为5∶2的长方形小路,其面积为20 m 2.(1)求这个长方形小路的长和宽;(2)用10块大小相同的正方形地板砖刚好把这个小路铺满,求这种地板砖的边长.(结果保留根号)23. (10分)已知M =43n m -+m +3的算术平方根,N =2432m n n -+-n -2的立方根,试求M -N 的值.24. (10分)阅读下面的文字,2是无理数,而无理数是无限不循环小数,2的小数部分我们不可能全部写出来.而2<2,2-12的小数部分.请解答下列问题:29的整数部分是 ,小数部分是 ;(2)10a 15的整数部分为b ,求a +b 10.25. (12分)如图所示的正方形纸板是由两张大小相同的长方形纸板拼接而成的,已知一个长方形纸板的面积为162 cm2.(1)求正方形纸板的边长;(2)若将该正方形纸板进行裁剪,然后拼成一个体积为343 cm3的正方体,求剩余纸板的面积.参考答案1. A2. C3. B4. B5. D6. C7. C8. D9. A 10. A11. <12. >13. 514. 415.1810=11016. ±617. ±1018.2719. 解:原式=41-3.20. 解:∵2a-3的平方根是±3,∴2a-3=9,则a=6.5,∴2b+3=25,则b=11,∴2a-b =1,∴2a-b的平方根是±1.21. 解:(1)m=2.(2)|m-1|+|m+2022|=|2-1|+|2+2022|=|1|+|2024|-1+2024=2023.22. 解:(1)设长方形小路的长为5x m,则宽为2x m.根据题意,得5x·2x=20,即x2=2,∴x或x=-舍去). 答:长方形小路的长为m,宽为m.(2)(m).23. 解:由已知得n-4=2,2m-4n+3=3,解得m=12,n=6,∴M N,∴M-N.24. 解:(1)5 5(2)∴∴a=3.<<∴∴b=3,∴a+b-3+30.25. 解:(1)根据题意,=18(cm),即正方形纸板的边长为18 cm.(2)根据题意,拼成的正方体的边长为=7(cm),则拼成正方体需要纸板的面积为7×7×6=294(cm2),剩余纸板的面积为162×2-294=30(cm2).。

【3套打包】郑州市人教版初中数学七年级下册第六章《实数》单元综合练习题(解析版)

【3套打包】郑州市人教版初中数学七年级下册第六章《实数》单元综合练习题(解析版)

人教版七年级数学下册第六章实数单元测试题(含分析)一、 (共 10 小,每小 3 分,共 30分 )1.(-2) 2的算平方根是 ()A.-2B.±2 C . 2 D.2.察一数据,找律:0、、、、、⋯,那么第10 个数据是 ()A .B .C . 7 D.3.以下法正确的选项是 ()A . 0.25 是 0.5 的一个平方根B.正数有两个平方根,且两个平方根之和等于0C. 72的平方根是7D.数有一个平方根4.假如一个正数的平方根2a+1 和3a- 11,a= ()A .±1B .1C .2 D.95.以下法正确的选项是()A .-1 的倒数是1B.-1 的相反数是- 1C. 1 的立方根是±1D. 1 的算平方根是16.的平方根 ()A.±8B.±4C.±2 D. 47.在以下数:、、、、- 1.010 010 001 ⋯中,无理数有 ()2A.1个B.2个C.3个D. 4个8.介于以下哪两个整数之()A.0与1B.1与2C.2与3 D. 3 与 49.数-1的相反数是()A.-1-B.+1C. 1-D.-110.计算 |2-|+ | - 3|的结果为 ()A . 1B.-1C. 5-2 D.2 -5二、填空题 (共 8 小题,每题 3 分,共 24 分)11.当 m≤ ________时,存心义.12.当的值为最小值时,a=________.13.若a2= 9,则 a 3= ________.14.若 x2- 49= 0,则 x=________.15.一个立方体的体积是9,则它的棱长是________.16.已知第一个正方体纸盒的棱长为 6 cm,第二个正方体纸盒的体积比第一个纸盒的体积大127 cm3,则第二个纸盒的棱长是________ cm.17.的整数部分是 ________.18.数轴上点A,点 B 分别表示实数,- 2,则A、 B 两点间的距离为________.三、解答题(共8 小题,共66 分)19.( 8 分)计算:(1)|-|+ |-1|-|3-|;(2)-++.20. ( 8 分)求知足以下等式的x 的值:(1)25 x2= 36;(2)( x- 1)2= 4.21. (6 分)我们知道:是一个无理数,它是无穷不循环小数,且1<< 2,则我们把1叫做的整数部分,-1叫做的小数部分.假如的整数部分为a,小数部分为b,求代数式a+b 的值.22. ( 6 分)已知一个正数的平方根分别是3x+2 和 4x- 9,求这个数.23.(8分)已知:|2|(c-5)2= 0,求:+-的值.a-++24. ( 8 分)已知M=是m+3的算术平方根,N=是n-2的立方根,试求 M-N 的值.25.( 10 分)请依据如下图的对话内容回答以下问题.(1)求该魔方的棱长;(2)求该长方体纸盒的长.26.( 12分)我们来看下边的两个例子: () 2= 9×4, (× )2=()2×( )2= 9×4,和×都是 9×4 的算术平方根,而9×4 的算术平方根只有一个,因此=× .()2= 5×7, ( × )2= ( )2×(7)2= 5×7,和×都是 5×7 的算术平方根,而 5×7 的算术平方根只有一个,因此__________. (填空 )(1)猜想:一般地,当 a≥0,b≥0时,与× 之间的大小关系是如何的?(2)运用以上结论,计算:的值.答案分析1.【答案】 C【分析】 (- 2)2= 4.4 的算平方根是 2.2.【答案】B【分析】0=,=,=,=,=通数据找律可知,第,=n 个数,⋯,那么第10 个数据:=.3.【答案】B【分析】 A.0.5 是 0.25 的一个平方根,故 A ;C. 72= 49,49 的平方根是±7,故 C ;D.数没有平方根,故 D .4.【答案】 C【分析】依据意得:2a+ 1+ 3a-11= 0,移归并得: 5a= 10,解得: a= 2.5.【答案】 D【分析】 A. - 1 的倒数是- 1,故;B.- 1 的相反数是1,故;C. 1 的立方根是1,故;D. 1 的算平方根是1,正确6.【答案】 C【分析】因= 4,又因 ( ±2)2= 4,因此的平方根是±2.7.【答案】 C【分析】、、-1.010 010 001⋯是无理数.28.【答案】 C【分析】因4< 5< 9,因此 2<<3.9.【答案】 C【分析】数- 1 的相反数是- (-1)=1-.10.【答案】 C【分析】原式=2-+3-=5-2.11.【答案】 3【分析】要使根式存心义,则3- m≥0,解得 m≤3.12.【答案】2【分析】由于≥0,因此的最小值为0,3a -6= 0,解得:a= 2.13.【答案】±27【分析】由于a2= 9,因此 a =±3,因此a3=±27.14.【答案】±7【分析】∵ x2- 49= 0,∴ x2= 49,∴ x=±7.15.【答案】【分析】建立方体的棱长为a,则 a3=9,因此 a =.16.【答案】 7【分析】依据题意得:=7,则第二个纸盒的棱长是7 cm.17.【答案】 4【分析】由于16< 17< 25,因此 4<<5,因此的整数部分是 4.18.【答案】 2【分析】-(-2)=2.19.【答案】解: (1)原式=-+-1-3+=2-4;(2)原式=- (- 2)+ 5+ 2= 2+ 5+2= 9.【分析】(1) 依据绝对值的意义去绝对值获得原式=-+-1-3+,而后归并即可;(2)先进行开方运算获得原式=- (- 2)+ 5+2,而后进行加法运算.20.【答案】解: (1)把系数化为1,得 x2=,开平方得,x=±6;5(2)开平方得, x-1=±2,x=±2+ 1,即 x= 3 或- 1. 【分析】 (1)先把系数化为1,再利用平方根定义解答;(2)把 x-1 看作整体,再利用平方根定义解答.21.【答案】解:由于27< 50< 64,因此3<< 4,因此的整数部分a= 3,小数部分 b=- 3.因此 a+ b= 3+- 3=.【分析】先依照立方根的性质估量出的大小,而后可求得a, b 的值,最后辈入计算即可.22.【答案】解:一个正数的平方根分别是3x+ 2 和 4x- 9,则 3x+ 2+ 4x- 9= 0,解得: x= 1,故 3x+ 2= 5,即该数为 25.【分析】利用平方根的定义直接得出x 的值,从而求出这个数.23.【答案】解:由于|a- 2|++ (c- 5)2= 0,因此a= 2, b=- 8, c= 5.因此原式=+-=- 2+ 4-5=- 3.【分析】第一依照非负数的性质求得a、 b、c 的值,而后辈入求解即可.24.【答案】解:由于M=是 m+ 3 的算术平方根,N=是 n- 2 的立方根,因此可得:m- 4= 2,2m- 4n+3= 3,解得: m= 6, n= 3,把 m= 6, n= 3 代入 m+ 3= 9, n- 2=1,因此可得M= 3,N= 1,把 M=3, N=1 代入 M-N=3- 1=2.【分析】依据算术平方根及立方根的定义,求出M、 N 的值,代入可得出M- N 的值.325.【答案】解: (1)设魔方的棱长为xcm,可得: x = 216,解得: x= 6.答:该魔方的棱长 6 cm.(2)设该长方体纸盒的长为 ycm,6y2= 600, y2= 100, y=10.答:该长方体纸盒的长为10 cm.【分析】 (1)依据立方根,即可解答;(2)依据平方根,即可解答.26.【答案】解:依据题人教版七年级数学下册第六章实数能力检测卷一.选择题(共10 小题)1.16 的平方根是()A.4B. -4C. 16 或 -16D.4 或 -42.以下各等式上当算正确的选项是()A.16 =±4B.327 =-9C.( 3)2 =-3D.9=3243.若方程(x4)2=19的两根a和b,且a>b,以下中正确的选项是()A. a 是 19 的算平方根B. b 是 19 的平方根C. a-4 是 19 的算平方根D. b+4 是 19 的平方根4.出以下法:① -2 是 4 的平方根;②9 的算平方根是9;③327 =-3;④2的平方根是2.此中正确的法有()A.0 个B.1 个C.2 个D.3 个5.假如 -b 是 a 的立方根,以下正确的选项是()A.b3 =a B. -b= a3C. b= a3D.b3 =a6.已知一个正数的两个平方根分3a-1 和 -5-a,个正数的立方根是()A. -2B. 2C. 3D.47.若一个正方形的面7,它的周介于两个相整数之,两个相整数是()A.9,10B. 10,11C. 11,12D.12,138.如,在数上表示无理数8 的点落在()A.段 AB 上B.段 BC上C.段 CD上D.段 DE 上9.已知 a、 b 均正整数,且a>, b>, a+b 的最小 ()A. 6B. 7C. 8D. 910.在数2,,,,, 0.1010010001⋯(相两个 1, 3.1415926 ,π中一次多 1 个0)中,无理数有 ()A.2 个B.3 个C.4 个D.5 个二.填空(共 6 小)11. 4 的平方根是;16的立方根是.12.非零整数x、 y 足x3y =0,写出一切合条件的x、 y 的:.13.一个正方体,它的体积是棱长为2cm 的正方体的体积的8 倍,则这个正方体的棱长是cm.14. 5x+9 的立方根是4,则15.写出一个比7 大且比2x+3 的平方根是11 小的无理数..16.数轴上从左到右挨次有A、B、C 三点表示的数分别为a、b、10,此中 b 为整数,且满足|a+3|+|b-2|=b-2,则b-a=.三.解答题(共7 小题)17.求出以下x 的值.(1)16x2-49=0;3(2)24(x-1) +3=0.18.计算3( 1)3327( 2)2|13|19.已知 |a|=5,b 2=4,c3=-8.(1)若 a<b,求 a+b 的值;(2)若 abc>0,求 a-3b-2c 的值.20.已知 a+1 的算术平方根是1,-27 的立方根是b-12,c-3 的平方根是± 2,求 a+b+c 的平方根.21.阅读资料:我们定义:假如两个实数的差等于这两个实数的商,那么这两个实数就叫做“差商等数对” .即:假如 a-b=a÷b,那么 a 与 b 就叫做“差商等数对”,记为 (a,b).比如:4-2=4 ÷ 2;9 3 =9÷3;221( 1)=1÷( 1);22则称数对 (4,2),9,3,11 是“差商等数对”.依据上述资料,解决以下问题:2,2(1)以下数对中,“差商等数对”是______(填序号);① (-8.1,-9),②1,1, ③(222,2)22(2)假如 (x,4)是“差商等数对”,恳求出x 的值;22.关于实数 a,我们规定:用符号[a ]表示不大于a的最大整数,称[a]为 a 的根整数,比如:[ 9]=3,[ 10]=3.(1)模仿以上方法计算:[ 4]=;[37]= .(2)若[x]=1,写出知足题意的x 的整数值人教版七年级下册第六章实数单元同步测试一、选择题1、以下说法正确的选项是()A.负数没有立方根B.一个正数的立方根有两个,它们互为相反数C.假如一个数有立方根,则它必有平方根D.不为 0 的任何数的立方根,都与这个数自己的符号同号2、以下语句中正确的选项是()A.-9 的平方根是 -3B.9 的平方根是 3C.9 的算术平方根是3D.9 的算术平方根是 33、以下说法中正确的选项是()A、若 a 为实数,则a0 B 、若 a 为实数,则 a 的倒数为1a C、若 x,y 为实数,且x=y ,则x y D 、若 a 为实数,则a204、估量28 7 的值在A. 7 和8之间B. 6 和 7 之间C. 3 和4之间D. 2 和 3 之间5、以下各组数中,不可以作为一个三角形的三边长的是()A 、 1、 1000、 1000B 、 2、 3、5C 、 32,42 ,52D 、 3 8 , 3 27 , 3 646、以下说法中,正确的个数是( )(1)- 64 的立方根是- 4;( 2)49 的算术平方根是7 ;(3)1的立方根为1;(4)1是27341的平方根。

人教版初中七年级下册数学第六章单元测试卷(3)(附答案解析)

人教版初中七年级下册数学第六章单元测试卷(3)(附答案解析)

单元检测卷一.选择题.1.(3分)一块面积为10m2的正方形草坪,其边长()A.小于3m B.等于3m C.在3m与4m之间D.大于4m2.(3分)﹣是的()A.相反数B.倒数C.绝对值D.算术平方根3.(3分)若a=,则估计a的值所在的范围是()A.1<a<2 B.2<a<3 C.3<a<4 D.4<a<54.(3分)如图所示,下列存在算术平方根的是()A.a﹣b B.ab C.b﹣a D.a+b5.(3分)若式子+有意义,则x的取值范围是()A.x≥2 B.x≤3 C.x≥3 D.2≤x≤36.(3分)下列说法不正确的是()A.无理数是无限不循环小数B.凡带根号的数都是无理数C.开方开不尽的数是无理数D.数轴上的点不是表示有理数,就是表示无理数7.(3分)已知a≠0,a、b互为相反数,则下列各组数中互为相反数的有()①a+1与b+1;②2a与2b;③与;④与.A.1组 B.2组 C.3组 D.4组8.(3分)(﹣0.7)2的平方根是()A.﹣0.7 B.±0.7 C.0.7 D.0.499.(3分)下列式子中,正确的是()A.10<<11 B.11<<12 C.12<<13 D.13<<14 10.(3分)在实数﹣7,0.9,,﹣,,中,无理数有()A.1个 B.2个 C.3个 D.4个11.(3分)如图,数轴上A、B两点对应的实数分别是1和,若点A关于点B 的对称点为点C,则点C所对应的实数为()A.B.1+C.2+D.+1二.填空题.12.(3分)的值为.13.(3分)写出一个3到4之间的无理数.14.(3分)﹣8的立方根与4的平方根之和为.15.(3分)若|x﹣1|=,则x=.16.(3分)观察分析下列数据,按规律填空:,2,,2,,…,(第n个数).三.解答题.17.计算.(1)++(2)|﹣|+.18.已知5+的小数部分是a,4﹣的小数部分是b,求a+b的值.19.求满足下列各式x的值.(1)2y2﹣8=0(2)(x+3)3=﹣27.20.若c=,其中a=6,b=8,求c的值.21.若c2=a2+b2,其中c=25,b=15,求a的值.22.已知一个正方体的体积是1000cm3,现在要在它的8个角上分别截去8个大小相同的小正方体,使截去后余下的体积是488cm3,问截得的每个小正方体的棱长是多少?23.我们可以把根号外的数移到根号内,从而达到化简的目的.例如:2==.(1)请仿照上例化简.①3②﹣(2)请化简a.参考答案与试题解析一.选择题.1.(3分)一块面积为10m2的正方形草坪,其边长()A.小于3m B.等于3m C.在3m与4m之间D.大于4m【考点】2B:估算无理数的大小.【分析】易得正方形的边长,看在哪两个正整数之间即可.【解答】解:正方形的边长为,∵<<,∴3<<4,∴其边长在3m与4m之间,故选C.【点评】考查估算无理数的大小;常用夹逼法求得无理数的范围.2.(3分)﹣是的()A.相反数B.倒数C.绝对值D.算术平方根【考点】28:实数的性质.【分析】和为0的两数为相反数,由此即可求解.【解答】解:∵﹣+=0,∴﹣是的相反数.故选:A.【点评】本题主要考查了相反数的概念:两个相反数它们符号相反,绝对值相同.3.(3分)若a=,则估计a的值所在的范围是()A.1<a<2 B.2<a<3 C.3<a<4 D.4<a<5【考点】2B:估算无理数的大小.【专题】11 :计算题.【分析】应先找到所求的无理数在哪两个和它接近的整数之间,然后判断出所求的无理数的范围即可求解.【解答】解:∵16<20<25,∴4<<5.故选:D.【点评】此题主要考查了无理数的估算能力,“夹逼法”是估算的一般方法,也是常用方法.4.(3分)如图所示,下列存在算术平方根的是()A.a﹣b B.ab C.b﹣a D.a+b【考点】22:算术平方根.【分析】根据a、b在数轴上的位置确定出b﹣a<0,a+b<0,a﹣b>0,ab<0,然后再根据算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根可得a﹣b有算术平方根.【解答】解:根据数轴可得:a>0,b<0,|a|<|b|,则:b﹣a<0,a+b<0,a﹣b>0,ab<0,存在算术平方根的是a﹣b,故选:A.【点评】此题主要考查了算术平方根,关键是掌握算术平方根的概念,非负数a 的算术平方根a 有双重非负性:①被开方数a是非负数;②算术平方根a 本身是非负数.5.(3分)若式子+有意义,则x的取值范围是()A.x≥2 B.x≤3 C.x≥3 D.2≤x≤3【考点】72:二次根式有意义的条件.【专题】11 :计算题.【分析】根据二次根式有意义的条件可得,然后再解不等式组可得解集.【解答】解:由题意得,解①得:x≥2,解②得:x≤3,不等式组的解集为:2≤x≤3,故选:D.【点评】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.6.(3分)下列说法不正确的是()A.无理数是无限不循环小数B.凡带根号的数都是无理数C.开方开不尽的数是无理数D.数轴上的点不是表示有理数,就是表示无理数【考点】26:无理数.【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,结合选项进行选择.【解答】解:A、无理数是无限不循环小数,该说法正确,故本选项错误;B、不是所有根号的数都是无理数,例如是有理数,原说法错误,故本选项正确;C、开方开不尽的数是无理数,该说法正确,故本选项错误;D、数轴上的点不是表示有理数,就是表示无理数,该说法正确,故本选项错误.故选B.【点评】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.7.(3分)已知a≠0,a、b互为相反数,则下列各组数中互为相反数的有()①a+1与b+1;②2a与2b;③与;④与.A.1组 B.2组 C.3组 D.4组【考点】28:实数的性质.【分析】根据互为相反数的和为0,可得两个数的关系.【解答】解:a≠0,a、b互为相反数,①a+1+b+1=2,故①不是相反数;②2a+2b=2(a+b)=0,故②是相反数;③0,故③不是相反数;④=0,故④是相反数.故选:B.【点评】本题考查了相反数,注意不为0的两个数的和为0,这两个数互为相反数.8.(3分)(﹣0.7)2的平方根是()A.﹣0.7 B.±0.7 C.0.7 D.0.49【考点】21:平方根.【专题】11 :计算题.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根.【解答】解:∵(﹣0.7)2=0.49,又∵(±0.7)2=0.49,∴0.49的平方根是±0.7.故选B.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.9.(3分)下列式子中,正确的是()A.10<<11 B.11<<12 C.12<<13 D.13<<14【考点】2B:估算无理数的大小.【专题】11 :计算题.【分析】先把127前后的两个完全平方数找到,即可判断的范围.【解答】解:∵102=100,112=121,122=144,且121<127<144,∴11<<12故选B.【点评】此题要考查了利用平方的方法来估算无理数的大小,要求小数熟练掌握平方根的性质.10.(3分)在实数﹣7,0.9,,﹣,,中,无理数有()A.1个 B.2个 C.3个 D.4个【考点】26:无理数.【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,找出无理数的个数.【解答】解:=3,无理数有:,,共2个.故选B.【点评】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.11.(3分)如图,数轴上A、B两点对应的实数分别是1和,若点A关于点B 的对称点为点C,则点C所对应的实数为()A.B.1+C.2+D.+1【考点】29:实数与数轴.【分析】设点C所对应的实数是x.根据中心对称的性质,即对称点到对称中心的距离相等,即可列方程求解.数轴上两点间的距离等于数轴上表示两个点的数的差的绝对值,即较大的数减去较小的数.【解答】解:设点C所对应的实数是x.则有x﹣=﹣1,x=2﹣1.故选A.【点评】此题主要考查了数轴上两点间的距离的计算方法以及中心对称的性质,解题关键利用对称的性质及数轴上两点间的距离解决问题.二.填空题.12.(3分)的值为1.【考点】73:二次根式的性质与化简;6E:零指数幂;6F:负整数指数幂.【专题】11 :计算题.【分析】根据0指数,负整数指数的性质,二次根式的性质进行计算.【解答】解:原式=(﹣2)+1+2=1.故答案为:1.【点评】本题考查了0指数,负整数指数的性质,二次根式的性质.a﹣p=(a ≠0),a0=1(a≠0),=a(a≥0).13.(3分)写出一个3到4之间的无理数π.【考点】2B:估算无理数的大小.【专题】26 :开放型.【分析】按要求找到3到4之间的无理数须使被开方数大于9小于16即可求解.【解答】解:3到4之间的无理数π.答案不唯一.【点评】本题主要考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题.14.(3分)﹣8的立方根与4的平方根之和为0或﹣4.【考点】2C:实数的运算;21:平方根;24:立方根.【专题】11 :计算题.【分析】利用平方根及立方根的定义列出算式,计算即可得到结果.【解答】解:根据题意得:﹣8的立方根为﹣2,4的平方根为±2,则﹣8的立方根与4的平方根之和为0或﹣4.故答案为:0或﹣4.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.15.(3分)若|x﹣1|=,则x=+1,1﹣.【考点】28:实数的性质.【专题】11 :计算题.【分析】根据到一点距离相等的点有两个,可得答案.【解答】解:|x﹣1|=,x﹣1=或x﹣1=﹣,x=+1,或x=1﹣,故答案为:+1,1﹣.【点评】本题考查了实数的性质,到一点距离相等的点有两个,注意不要漏掉.16.(3分)观察分析下列数据,按规律填空:,2,,2,,…,(第n个数).【考点】37:规律型:数字的变化类.【专题】2A :规律型.【分析】第一数为;第二个数为;第3个数为,那么第n个数为.【解答】解:第n个数为.【点评】解决此类探究性问题,关键在观察、分析已知数据,寻找它们之间的相互联系,探寻其规律.三.解答题.17.计算.(1)++(2)|﹣|+.【考点】2C:实数的运算.【专题】11 :计算题.【分析】(1)原式利用平方根及立方根的定义化简,计算即可得到结果;(2)原式利用绝对值及二次根式的化简公式计算即可得到结果.【解答】解:(1)原式=9﹣3+4=10;(2)原式=﹣+3﹣=3﹣.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.已知5+的小数部分是a,4﹣的小数部分是b,求a+b的值.【考点】2B:估算无理数的大小.【专题】11 :计算题.【分析】首先得出的取值范围,进而分别得出a,b的值,即可得出答案.【解答】解:∵<<,∴2<<3,∴5+的小数部分是a,则a=5+﹣7=﹣2+,∵4﹣的小数部分是b,∴b=4﹣﹣1=3﹣,∴a+b的值为:﹣2++3﹣=1.【点评】此题主要考查了估计无理数的方法,得出a,b的值是解题关键.19.求满足下列各式x的值.(1)2y2﹣8=0(2)(x+3)3=﹣27.【考点】24:立方根;21:平方根.【专题】11 :计算题.【分析】(1)方程变形后,利用平方根定义开方即可求出解;(2)方程利用立方根的定义化简即可求出解.【解答】解:(1)方程变形得:y2=4,开方得:y=±2;(2)开立方得:x+3=﹣3,解得:x=﹣6.【点评】此题考查了立方根,以及平方根,熟练掌握各自的定义是解本题的关键.20.若c=,其中a=6,b=8,求c的值.【考点】22:算术平方根.【专题】11 :计算题.【分析】将a与b的值代入已知等式计算即可求出c的值.【解答】解:当a=6,b=8时,c=====10.【点评】此题考查了算术平方根,熟练掌握平方根定义是解本题的关键.21.若c2=a2+b2,其中c=25,b=15,求a的值.【考点】22:算术平方根.【专题】11 :计算题.【分析】将b与c代入已知等式计算即可求出a的值.【解答】解:将c=25,b=15,代入c2=a2+b2,得625=a2+225,∴a2=400,解得:a=±20.【点评】此题考查了算术平方根,熟练掌握平方根定义是解本题的关键.22.已知一个正方体的体积是1000cm3,现在要在它的8个角上分别截去8个大小相同的小正方体,使截去后余下的体积是488cm3,问截得的每个小正方体的棱长是多少?【考点】24:立方根.【专题】12 :应用题.【分析】由于个正方体的体积是1000cm3,现在要在它的8个角上分别截去8个大小相同的小正方体,使截去后余下的体积是488cm3,设截得的每个小正方体的棱长xcm,根据已知条件可以列出方程1000﹣8x3=488,解方程即可求解.【解答】解:设截得的每个小正方体的棱长xcm,依题意得1000﹣8x3=488,∴8x3=512,∴x=4,答:截得的每个小正方体的棱长是4cm.【点评】此题主要考查了立方根的应用,其中求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号.23.我们可以把根号外的数移到根号内,从而达到化简的目的.例如:2==.(1)请仿照上例化简.①3②﹣(2)请化简a.【考点】73:二次根式的性质与化简.【专题】11 :计算题.【分析】(1)利用已知计算方法将根号外的因数平方后移到根号内部即可;(2)利用已知计算方法将根号外的因式平方后移到根号内部即可,注意符号.【解答】解:(1)①3==,②﹣=﹣=﹣;(2)a=﹣=﹣.【点评】此题主要考查了二次根式的化简,正确确定二次根式的符号是解题关键.。

新人教版初中数学七年级下册第六章《实数》检测试题(含答案)

新人教版初中数学七年级下册第六章《实数》检测试题(含答案)

人教版七年级数学下册章末质量评估第六章实数人教版七年级数学下册第六章实数单元检测卷一、选择题1.若一个数的算术平方根等于它的相反数,则这个数是( D )A.0 B.1C.0或1 D.0或±12.下列各式成立的是( C )A. =-1B. =±1C. =-1D. =±13.与最接近的整数是( B )A.0 B.2 C.4 D.54..若x-3是4的平方根,则x的值为( C )A.2 B.±2 C.1或5 D.165.下列说法中,正确的个数有( A )①两个无理数的和是无理数;②两个无理数的积是有理数;③无理数与有理数的和是无理数;④有理数除以无理数的商是无理数.A.1个 B.2个 C.3个 D.4个B.的平方根是±4A.6.69 B.6.7 C.6.70 D.±6.708.一个底面是正方形的水池,容积是11.52m3,池深2m,则水池底边长是( C )A.9.25m B.13.52m C.2.4m D.4.2m9. 比较2, , 的大小,正确的是(C )A. 2<<B. 2<<C.<2<D.<<210.如果一个实数的算术平方根等于它的立方根,那么满足条件的实数有(C) A .0个 B .1个om] C .2个D .3个二、填空题11.3的算术平方根是____3____.12.(1)一个正方体的体积是216cm 3,则这个正方体的棱长是____6________cm ;(2) 表示_______9_____的立方根;13.已知a ,b 为两个连续整数,且a<15<b ,则a +b 的值为 7 . 14.已知一个有理数的平方根和立方根相同,则这个数是______0______.15.实数1-216.写出39到23之间的所有整数:____3,4 15.0________. 三、解答题17.求下列各数的平方根和算术平方根:(1)1.44;解:1.44的平方根是± 1.44=±1.2,算术平方根是 1.44=1.2. (2)169289; 解:169289的平方根是±169289=±1317,算术平方根是169289=1317.(3)(-911)2.解:(-911)2的平方根是±(-911)2=±911,算术平方根是(-911)2=911.[]18.已知一个正数x的两个平方根分别是3-5m和m-7,求这个正数x的立方根.由已知得(3-5m)+(m-7)=0,-4m-4=0,解得:m=-1.所以3-5m=8,m-7=-8.所以x=(±8)2=64.所以x的立方根是4.19.计算:(1)2+3 2-5 2;(2)2(7-1)+7;(3)0.36×4121÷318;(4)|3-2|+|3-2|-|2-1|;(5)1-0.64-3-8+425-|7-3|.解:(1)原式=(1+3-5)×2=- 2.(2)2(7-1)+7=2 7-2+7=3 7-2.(3)原式=0.6×211÷12人教版初中数学七年级下册第六章《实数》检测卷一、选择题(每题3分,共30分)1. 下列各数中,没有平方根的是( )A. |-4|B. -(-4)C. (-4)2D. -422. 1的值应在( )A. 3和4之间B. 4和5之间C. 5和6之间D. 6和7之间3. 下列说法中,错误的是( )A. ±2B. 是无理数C.是有理数 D. 4. 下列说法中,错误的是 ( )A. -4是16的一个平方根B. 17是(-17)2的算术平方根C.164的算术平方根是18D. 0.9的算术平方根是0.03 5. 下列语句写成式子正确的是 ( )A. 4是16的算术平方根,即±4B. 4是(-4)2 4C. ±4是16的平方根,即 4D. ±4是16±46. 如图,数轴上点 N 表示的数可能是 ( )A. 10B. 5C. 3D. 27. 在实数0,π,227( ) A. 1个 B. 2个 C. 3个 D. 4个 8. a ,b ,c 在数轴上的对应点如图所示,则|a -b |+|b +c |-|a +c |的值为 ( )A. 2b +2cB. b +cC. 0D. a +b +c 9. 下列四个结论中,正确的是 ( )A.32<52 B. 54<32C.32<2<2 D. 1<2<5410. 一个自然数的算术平方根是a ,则下一个自然数的平方根是 ( ) A. a 2+1 B. ±(a 2+1) C. a 2+1 D. ±a 2+1二、填空题(每题3分,共24分)11.的算术平方根为 ,(-3)2的平方根是 .12. -338的立方根是 ,的立方根是 . 13. 在-5,- 3,0,π,6中,最大的一个数是 .14. =9,则x = ;若x 2=9,则x = .15. 若a <b 且a ,b 为连续正整数,则a 2+b 2的平方根为 .16. 5.70618.044= .17. =3,|b |=5,且ab <0,则a +b 的算术平方根为 .18. 请你辨别:下图依次是面积为1,2,3,4,5,6,7,8,9的正方形,其中边长是有理数的正方形有 个,边长是无理数的正方形有 个.三、解答题(共66分)19. (8分)计算下列各题.(1) |3-|2;(2)20. (8分)求下列各式中的x的值.(1)(x+2)3+27=0;(2)2(2x+1)2-12=0.21. (9分)已知3既是x-1的算术平方根,又是x-2y+1的立方根,求x2-y2人教版七年级数学下册第六章实数复习检测试题一、选择题(每小题3分,共30分)1.下列各数中最大的数是( )A.3 C.π D.-32.下列说法正确的是()A.任何数都有算术平方根B.只有正数有算术平方根C.0和正数都有算术平方根D.负数有算术平方根3.下列语句中,正确的是( )A.无理数都是无限小数B.无限小数都是无理数C.带根号的数都是无理数D.不带根号的数都是无理数4.的立方根是( )A.-1B.OC.1D. ±15.在-1.732,π,3.,2,3.212 212 221…(每相邻两个1之间依次多一个2),3.14这些数中,无理数的个数为( )A.5个B.2个C.3个D.4个6.有下列说法:①实数和数轴上的点一一对应;②不含根号的数一定是有理数;③负数没有平方根;④是17的平方根.其中正确的有()A.3个B.2个C.1个D.0个7.下列说法中正确的是( )A.若a为实数,则a≥0B.若a为实数,则a的倒数为1 aC.若x,y为实数,且x=yD.若a为实数,则a2≥08.若a2=4,b2=9,且ab<0,则a﹣b的值为()A.﹣2B.±5C.5D.﹣59.实数a,b在数轴上的位置如图所示,则|a|-|b|可化简为( )A.a-bB.b-aC.a+bD.-a-b10.如图,数轴上的点A,B,C,D分别表示数﹣1,1,2,3,则表示2﹣的点P应在()A.线段AO上B.线段OB上C.线段BC上D.线段CD上二、填空题(每小题3分,共24分)1.按键顺序是“,,则计算器上显示的数是.2.一个数的平方根和它的立方根相等,则这个数是.3.计算:-2+-|-2|=.4.若某数的平方根为a+3和2a-15,则这个数是.5.比较大小:-23-0.02;3.6.定义运算“@”的运算法则为:x@y=xy﹣1,下面给出关于这种运算的几种结论:①(2@3)@(4)=19;②x@y=y@x;③若x@x=0,则x﹣1=0;④若x@y=0,则(xy)@(xy)=0.其中正确结论的序号是.7.计算:|3-π|+-的结果是.三、解答题(共46分)1.计算(6分)(1)|1-|+||+|-2|+|2-|;(2) (-2)3×---.2.(6分)求未知数的值:(1)(2y﹣3)2﹣64=0;(2)64(x+1)3=27.3.(8分)已知=0,求实数a,b的值,并求出的整数部分和小数部分.4.(8分)设a.b为实数,且=0,求a2﹣的值.5. (10分)王老师给同学们布置了这样一道习题:一个数的算术平方根为2m-6,它的平方根为±(m-2),求这个数.小张的解法如下:依题意可知,2m-6是(m-2),-(m-2)两数中的一个.(1)当2m-6=m-2时,解得m=4.(2)所以这个数为2m-6=2×4-6=2.(3)当2m-6=-(m-2)时,解得m=83.(4)所以这个数为2m-6=2×83-6=-23.(5)综上可得,这个数为2或-23.(6)王老师看后说,小张的解法是错误的.你知道小张错在哪里吗?为什么?请予以改正.6.(8分)设的整数部分和小数部分分别是x,y,试求x,y的值与x﹣1的算术平方根.参考答案与解析一、选择题1.B2. C3.A4.C5.D6.A7.D8.B9.C 10. A A二、填空题11.4 12.0 13.1 14. 49 15.<>16. ①②④17.1三、解答题1. 解:(1)原式1221-+=-.(2)原式=-8×4-4×14-3=-32-1-3=-36.2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版数学七年级下册第六章检测卷一、选择题1.(3分)4的平方根是( ) A .2B .16C .±2D .±162.(3分)下列实数中是无理数的是( ) A .B .C .π0D .3.(3分)下列四个数中,是负数的是( ) A .|﹣2| B .(﹣2)2C .﹣D .4.(3分)下列说法不下确的是( ) A .6是36的平方根B .(﹣6)2的平方根是6C .(﹣6)2的平方根是±6 D .﹣6是36的平方根5.(3分)一个数的立方根等于这个数的算术平方根,则此数是( ) A .0或1 B .0,﹣1和1C .0或﹣1D .﹣1和16.(3分)下列命题中正确的是( ) A .有限小数不是有理数B .无限小数是无理数有限小数不是有理数C .数轴上的点与有理数一一对应D .数轴上的点与实数一一对应 8.(3分)如图,在数轴上表示实数的点可能是( )学校: 班级: 姓名: 考号:A.点P B.点Q C.点M D.点N9.(3分)数字中无理数的个数为()A.1 B.2 C.3 D.410.(3分)设,a在两个相邻整数之间,则这两个整数之和是()A.6 B.7 C.8 D.911.(3分)若与|x﹣y﹣3|互为相反数,则x+y的值为()A.3 B.9 C.12 D.2712.(3分)在算式()□()的□中填上运算符号,使结果最大,这个运算符号是()A.加号 B.减号C.乘号 D.除号二、填空题13.(3分)写一个比﹣小的整数.14.(3分)2﹣的相反数是,绝对值是.15.(3分)在数轴上表示﹣的点到原点的距离为.16.(3分)我们可以利用计算器求一个正数a的算术平方根,其操作方法是按顺序进行按键输入:.小明按键输入显示结果为4,则他按键输入显示结果应为.17.(3分)王老师在讲实数时,画了图(如图所示).即“以数轴的单位长线段为边作一个正方形,然后以点O为圆心,以正方形的对角线长为半径画弧交数轴上一点A”,则点A表示的数是,作这样的图是说明,因此,实数与数轴上的点.18.(3分)数轴上A 、B 两点对应的实数分别是和2,若点A 关于点B 的对称点为点C ,则点C 所对应的实数为 .19.(3分)已知一个正数的平方根是3x ﹣2和5x+6,则这个数是 . 20.(3分)若(x 1,y 1)•(x 2,y 2)=x 1x 2+y 1y 2,则= .21.(3分)把下图折成正方体后,如果相对面所对应的值相等,那么x 的平方根与y 的算术平方根之积为 .22.(3分)1,2,3…,100这100个自然数的算术平方根和立方根中,无理数的个数有 个.23.(3分)已知a 、b 为两个连续的整数,且,则a+b= .24.(3分)计算:﹣|2﹣π|= .三、计算题 25.计算: (1)(2)(3)(4);(5);(6).26.求下列各式中的x的值:(1);(2)27x2=12;(3)(x﹣1)3=5.四、解答题27.物体自由下落的高度h(米)和下落时间t(秒)的关系是:在地球上大约是h=4.9t2,在月球上大约是h=0.8t2,当h=20米时,(1)物体在地球上和在月球上自由下落的时间各是多少?(2)物体在哪里下落得快?28.若a、b互为相反数,c、d互为倒数,m的绝对值是2,求.29.已知a,b,c在数轴上如图所示,化简:.30.阅读下面的文字,解答问题.大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用﹣1来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分.请解答:已知10+=x+y,其中x是整数,且0<y<1,求x﹣y的相反数.参考答案与试题解析一、选择题1.(3分)4的平方根是()A.2 B.16 C.±2 D.±16【考点】21:平方根.【分析】根据正数的平方根的求解方法求解即可求得答案.【解答】解:∵(±2)2=4,∴4的平方根是±2.故选C.【点评】此题考查了平方根的意义.题目比较简单,解题的关键是熟记定义.2.(3分)下列实数中是无理数的是()A.B. C.π0D.【考点】26:无理数;6E:零指数幂.【专题】11 :计算题.【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,结合选项即可得出答案.【解答】解:A、=2,是有理数,故本选项错误;B、=2,是有理数,故本选项错误;C、π0=1,是有理数,故本选项错误;D、是无理数,故本选项正确.故选D.【点评】此题考查了无理数的定义,属于基础题,熟练掌握无理数的三种形式是解答本题的关键.3.(3分)下列四个数中,是负数的是()A.|﹣2| B.(﹣2)2 C.﹣D.【考点】2C:实数的运算;11:正数和负数.【专题】11 :计算题.【分析】根据绝对值的性质,有理数的乘方的定义,算术平方根对各选项分析判断后利用排除法求解.【解答】解:A、|﹣2|=2,是正数,故本选项错误;B、(﹣2)2=4,是正数,故本选项错误;C、﹣<0,是负数,故本选项正确;D、==2,是正数,故本选项错误.故选C.【点评】本题考查了实数的运用,主要利用了绝对值的性质,有理数的乘方,以及算术平方根的定义,先化简是判断正、负数的关键.4.(3分)下列说法不下确的是()A.6是36的平方根B.(﹣6)2的平方根是6C.(﹣6)2的平方根是±6 D.﹣6是36的平方根【考点】21:平方根.【分析】根据平方根的定义直接解答即可.【解答】解:A、6和﹣6都是36的平方根,故本选项正确;B、(﹣6)2的平方根是±6,故本选项错误;C、(﹣6)2的平方根是±6,故本选项正确;D、6和﹣6都是36的平方根,故本选项正确;故选B.【点评】本题考查了平方根的定义,注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.5.(3分)一个数的立方根等于这个数的算术平方根,则此数是()A.0或1 B.0,﹣1和1 C.0或﹣1 D.﹣1和1【考点】24:立方根;22:算术平方根.【分析】根据立方根的定义和算术平方根的定义得到0和1的立方根等于它们的算术平方根.【解答】解:一个数的立方根等于这个数的算术平方根,则这个数为0或1.故选A.【点评】本题考查了立方根:若一个数的立方等于a,那么这个数叫a的立方根,记作.也考查了算术平方根.6.(3分)下列命题中正确的是()A.有限小数不是有理数B.无限小数是无理数有限小数不是有理数C.数轴上的点与有理数一一对应D.数轴上的点与实数一一对应【考点】29:实数与数轴.【分析】A、根据有理数的定义即可判定;B、根据无理数的定义即可判定;C、D、根据数轴与实数的对应关系即可判定.【解答】解:由有理数的定义:正整数、0、负整数、正分数、负分数通称有理数.A、有限小数是有理数,故选项错误;B、无限不循环小数是无理数有限小数是有理数,故选项错误;C、根据数轴的性质:数轴上的点与实数一一对应,故选项错误;D、数轴上的点与实数一一对应,故选项正确.故选D.【点评】本题主要考查了实数与数轴之间的对应关系,解题的关键利用有理数、无理数的定义及实数与数轴的关系.8.(3分)如图,在数轴上表示实数的点可能是()A.点P B.点Q C.点M D.点N【考点】2B:估算无理数的大小;29:实数与数轴.【分析】先对进行估算,再确定是在哪两个相邻的整数之间,然后确定对应的点即可解决问题.【解答】解:∵≈3.87,∴3<<4,∴对应的点是M.故选C【点评】本题考查实数与数轴上的点的对应关系,应先看这个无理数在哪两个有理数之间,进而求解.9.(3分)数字中无理数的个数为()A.1 B.2 C.3 D.4【考点】26:无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:无理数有:,π,共有2个.故选B.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.10.(3分)设,a在两个相邻整数之间,则这两个整数之和是()A.6 B.7 C.8 D.9【考点】2B:估算无理数的大小.【专题】11 :计算题.【分析】由于16<19<25,根据算术平方根得到4<<5,则3<a<4.【解答】解:∵16<19<25,∴4<<5,∴3<﹣1<4,即3<a<4.∴3+4=7.故选B.【点评】本题考查了估算无理数的大小:利用完全平方数和算术平方根对无理数的大小进行估算.也考查了算术平方根.11.(3分)若与|x﹣y﹣3|互为相反数,则x+y的值为()A.3 B.9 C.12 D.27【考点】98:解二元一次方程组;16:非负数的性质:绝对值;23:非负数的性质:算术平方根.【分析】根据互为相反数的和等于0列式,再根据非负数的性质列出关于x、y 的二元一次方程组,求解得到x、y的值,然后代入进行计算即可得解.【解答】解:∵与|x﹣y﹣3|互为相反数,∴+|x﹣y﹣3|=0,∴,②﹣①得,y=12,把y=12代入②得,x﹣12﹣3=0,解得x=15,∴x+y=12+15=27.故选D.【点评】本题主要考查了非负数的性质,初中阶段有三种类型的非负数:绝对值、偶次方、二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.12.(3分)在算式()□()的□中填上运算符号,使结果最大,这个运算符号是()A.加号B.减号C.乘号D.除号【考点】2C:实数的运算;2A:实数大小比较.【专题】11 :计算题.【分析】分别把加、减、乘、除四个符号填入括号,计算出结果即可.【解答】解:当填入加号时:()+()=﹣;当填入减号时:()﹣()=0;当填入乘号时:()×()=;当填入除号时:()÷()=1.∵1>>0>﹣,∴这个运算符号是除号.故选D.【点评】本题考查的是实数的运算及实数的大小比较,根据题意得出填入加、减、乘、除四个符号的得数是解答此题的关键.二、填空题13.(3分)写一个比﹣小的整数﹣2(答案不唯一).【考点】2A:实数大小比较;2B:估算无理数的大小.【分析】先估算出﹣的大小,再找出符合条件的整数即可.【解答】解:∵1<3<4,∴﹣2<﹣<﹣1,∴符合条件的数可以是:﹣2(答案不唯一).故答案为:﹣2(答案不唯一).【点评】本题考查的是实数的大小比较,根据题意估算出﹣的大小是解答此题的关键.14.(3分)2﹣的相反数是﹣2 ,绝对值是2﹣.【考点】28:实数的性质.【分析】一个数a的相反数是﹣a,而正数的绝对值就是这个数本身,负数的绝对值是它的相反数,据此即可求解.【解答】解:﹣(2﹣)=﹣2∵2﹣>0∴2﹣的绝对值是2﹣.故答案是:﹣2和2﹣.【点评】本题主要考查了相反数与绝对值的性质,都是需要熟练掌握的内容.15.(3分)在数轴上表示﹣的点到原点的距离为.【考点】29:实数与数轴.【分析】由于数轴上的点到原点的单位长度即为它到原点的距离,由此即可解决问题.【解答】解:∵表示﹣的点距离原点有个单位长度,∴它到原点的距离为.【点评】此题主要考查了实数和数轴是一一对应的关系以及点在数轴上的几何意义.16.(3分)我们可以利用计算器求一个正数a的算术平方根,其操作方法是按顺序进行按键输入:.小明按键输入显示结果为4,则他按键输入显示结果应为40 .【考点】25:计算器—数的开方.【专题】11 :计算题;2A :规律型.【分析】根据被开方数扩大100倍,算术平方根扩大10倍,直接解答即可.【解答】解:∵=4,∴==40.故答案为:40.【点评】本题主要考查数的开方,根据题意找出规律是解答本题的关键.17.(3分)王老师在讲实数时,画了图(如图所示).即“以数轴的单位长线段为边作一个正方形,然后以点O为圆心,以正方形的对角线长为半径画弧交数轴上一点A”,则点A表示的数是,作这样的图是说明无理数可以用数轴上的点表示出来,因此,实数与数轴上的点一一对应.【考点】29:实数与数轴.【分析】根据勾股定理求出正方形的对角线长,再根据圆的特点得出点A的数,从而得出无理数可以用数轴上的点表示出来,实数与数轴上的点是意义对应的.【解答】解:数轴上正方形的对角线长为:=,由图中可得:点A表示的数是;作这样的图是说明:无理数可以用数轴上的点表示出来,因此,实数与数轴上的点一一对应;故答案为:,无理数可以用数轴上的点表示出来,一一对应.【点评】本题考查了实数和数轴,根据勾股定理求出A点所表示的数,从而得出无理数与数轴的关系.18.(3分)数轴上A、B两点对应的实数分别是和2,若点A关于点B的对称点为点C,则点C所对应的实数为4﹣.【考点】29:实数与数轴.【专题】2B :探究型.【分析】设点A关于点B的对称点为点C为x,再根据A、C两点到B点的距离相等即可求解.【解答】解:设点A关于点B的对称点为点C为x,则=2,解得x=4﹣.故答案为:4﹣.【点评】本题考查的是实数与数轴,即任意一个实数都可以用数轴上的点表示;反之,数轴上的任意一个点都表示一个实数.19.(3分)已知一个正数的平方根是3x﹣2和5x+6,则这个数是.【考点】21:平方根.【专题】11 :计算题.【分析】由于一个非负数的平方根有2个,它们互为相反数.依此列出方程求解即可.【解答】解:根据题意可知:3x﹣2+5x+6=0,解得x=﹣,所以3x﹣2=﹣,5x+6=,∴()2=故答案为:.【点评】本题主要考查了平方根的逆运算,平时注意训练逆向思维.20.(3分)若(x1,y1)•(x2,y2)=x1x2+y1y2,则=﹣2 .【考点】2C:实数的运算.【专题】23 :新定义.【分析】根据题中的新定义化简所求式子,计算即可得到结果.【解答】解:根据题意得:原式=×(﹣)+(﹣)×=﹣1﹣1=﹣2.故答案为:﹣2.【点评】此题考查了实数的运算,弄清题中的新定义是解本题的关键.21.(3分)把下图折成正方体后,如果相对面所对应的值相等,那么x的平方根与y的算术平方根之积为±.【考点】22:算术平方根;21:平方根;I7:展开图折叠成几何体.【分析】由于x﹣y的相对面是1,x+y的相对面是3,所以x﹣y=1,x+y=3,由此即可解得x和y的值,然后即可求出x的平方根与y的算术平方根之积.【解答】解:依题意得x﹣y的相对面是1,x+y的相对面是3,∴x﹣y=1,x+y=3,∴x=2,y=1,∴x的平方根与y的算术平方根之积为±.故答案为:±.【点评】此题主要考查了平方根、算术平方根的定义,解题关键是找出这个正方体的相对面,要求学生自己动手,慢慢体会哪二个面是相对面.22.(3分)1,2,3…,100这100个自然数的算术平方根和立方根中,无理数的个数有186 个.【考点】26:无理数.【分析】分别找出1,2,3…,100这100个自然数的算术平方根和立方根中,有理数的个数,然后即可得出无理数的个数.【解答】解:∵12=1,22=4,32=9,…,102=100,∴1,2,3…,100这100个自然数的算术平方根中,有理数有10个,∴无理数有90个;∵13=1,23=8,33=27,43=64<100,53=125>100,∴1,2,3…,100这100个自然数的立方根中,有理数有4个,∴无理数有96个;∴1,2,3…,100这100个自然数的算术平方根和立方根中,无理数共有90+96=186个.故答案为:186.【点评】本题结合算术平方根与立方根的定义考查了无理数的定义,有一定的难度.23.(3分)已知a、b为两个连续的整数,且,则a+b= 11 .【考点】2B:估算无理数的大小.【分析】根据无理数的性质,得出接近无理数的整数,即可得出a,b的值,即可得出答案.【解答】解:∵,a、b为两个连续的整数,∴<<,∴a=5,b=6,∴a+b=11.故答案为:11.【点评】此题主要考查了无理数的大小,得出比较无理数的方法是解决问题的关键.24.(3分)计算:﹣|2﹣π|= ﹣1.14 .【考点】2C:实数的运算.【分析】先判断3.14﹣π和2﹣π的符号,然后再进行化简,计算即可.【解答】解:﹣|2﹣π|=π﹣3.14+2﹣π=﹣1.14.故答案为:﹣1.14.【点评】此题主要考查实数的运算,其中有二次根式的性质和化简,绝对值的性质,是一道基础题.三、计算题25.计算:(1)(2)(3)(4);(5);(6).【考点】2C:实数的运算.【专题】11 :计算题.【分析】(1)原式利用平方根定义化简得到结果;(2)原式变形后利用平方根定义化简即可得到结果;(3)原式利用平方根的定义化简即可得到结果;(4)原式利用立方根的定义化简即可得到结果;(5)原式利用平方根及立方根的定义化简,计算即可得到结果;(6)原式第二项利用乘法分配律计算,第三项利用绝对值的代数意义化简,计算即可得到结果.【解答】解(1)==9;(2)原式==;(3)原式=±;(4)原式=﹣(﹣3)=3;(5)原式=+0.5﹣10+π=π﹣5;(6)原式=2﹣3﹣1+5=6﹣3.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.26.求下列各式中的x的值:(1);(2)27x2=12;(3)(x﹣1)3=5.【考点】24:立方根;21:平方根;22:算术平方根.【专题】11 :计算题.【分析】(1)根据算术平方根得到|x|=2,然后根据绝对值的意义求解;(2)先变形得到x2=,然后根据平方根定义求解;(3)根据立方根的定义得到x﹣1=,然后解方程.【解答】解:(1)|x|=2,x=±2;(2)x2=,x=±;(3)x﹣1=,x=1+.【点评】本题考查了立方根:若一个数的立方等于a,那么这个数叫a的立方根,记作.也考查了平方根和算术平方根.四、解答题27.物体自由下落的高度h(米)和下落时间t(秒)的关系是:在地球上大约是h=4.9t2,在月球上大约是h=0.8t2,当h=20米时,(1)物体在地球上和在月球上自由下落的时间各是多少?(2)物体在哪里下落得快?【考点】E5:函数值.【分析】(1)把h=20代入函数解析式分别计算即可得解;(2)根据速度=路程÷时间分别求出速度,然后比较大小即可.【解答】解:(1)h=20米时,地球上,4.9t2=20,解得t=,月球上,0.8t2=20,解得t=5;(2)在地球上的速度==7m/s,在月球上的速度==4m/s,所以,在地球上物体下落的快.【点评】本题考查了函数值的求解,准确计算是解题的关键.28.若a、b互为相反数,c、d互为倒数,m的绝对值是2,求.【考点】2C:实数的运算;14:相反数;15:绝对值;17:倒数.【专题】11 :计算题.【分析】根据互为相反数两数之和为0得到a+b=0,根据互为倒数两数之积为1得到cd=1,利用绝对值的代数意义求出m的值,分别代入计算即可求出值.【解答】解:根据题意得:a+b=0,cd=1,m=2或﹣2,当m=2时,原式=0+=;当m=﹣2时,原式=0+=.【点评】此题考查了实数的运算,相反数,绝对值,以及倒数,熟练掌握各自的定义是解本题的关键.29.已知a,b,c在数轴上如图所示,化简:.【考点】73:二次根式的性质与化简;29:实数与数轴.【分析】根据数轴abc的位置推出a+b<0,c﹣a>0,b+c<0,根据二次根式的性质和绝对值进行化简得出﹣a+a+b+c﹣a﹣b﹣c,再合并即可.【解答】解:∵从数轴可知:a<b<0<c,∴a+b<0,c﹣a>0,b+c<0,∴﹣|a+b|++|b+c|=﹣a+a+b+c﹣a﹣b﹣c=﹣a.【点评】本题考查了二次根式的性质,实数、数轴的应用,关键是能得出﹣a+a+b+c ﹣a﹣b﹣c.30.阅读下面的文字,解答问题.大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用﹣1来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分.请解答:已知10+=x+y,其中x是整数,且0<y<1,求x﹣y的相反数.【考点】2B:估算无理数的大小.【专题】21 :阅读型.【分析】根据题意的方法,估计的大小,易得10+的范围,进而可得x﹣y 的值;再由相反数的求法,易得答案.【解答】解:∵1<<2,∴1+10<10+<2+10,∴11<10+<12,∴x=11,y=10+﹣11=﹣1,x﹣y=11﹣(﹣1)=12﹣,∴x﹣y的相反数﹣12.【点评】此题主要考查了无理数的估算能力,解题关键是估算无理数的整数部分和小数部分,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.。

相关文档
最新文档