第一讲 TI嵌入式处理器平台及开发工具CCS简介

什么是嵌入式软件开发嵌入式系统软件开发所需要学习那些知识_百(精)

什么是嵌入式软件开发?嵌入式系统软件开发所需要学习那些知识? 随着智能化和信息化网络化的不断发展,嵌入式技能已经日趋成为一种新时代新技术革命的关键。对于嵌入式系统和嵌入式软件开发人员来说,这份职业无疑是种高端应用技术的结合。是一个很有前景的职业。 嵌入式趋势来势汹涌,目前为止已经被很多企业所应用,对于这方面人才的需求更是倍感吃紧。关于嵌入式具体应用不做详细的解说,在这里有必要强调一下,嵌入式软件开发是含义,和要想在嵌入式软件开发中取得不菲的成绩所需掌握那些最基础的知识。 嵌入式技术执行专用功能并被内部计算机控制的设备或者系统。嵌入式系统不能使用通用型计算机,而且运行的是固化的软件,嵌入式技术及应用是计算机应用技术的新发展,具有广泛的应用领域和发展前景,就业形势看好。 嵌入式系统是一种专用的计算机系统,作为装置或设备的一部分。通常,嵌入式系统是一个控制程序存储在ROM中的嵌入式处理器控制板。事实上,所有带有数字接口的设备,如手表、微波炉、录像机、汽车等,都使用嵌入式系统,有些嵌入式系统还包含操作系统,但大多数嵌入式系统都是是由单个程序实现整个控制逻辑,笼统地来说,嵌入式系统是以应用为中心,以计算机技术为基础,软硬件可裁剪,适应应用系统对功能、可靠性、成本、体积、功耗等严格要求的专用计算机系统。 这么多的应用可见嵌入式系统的前景和人才需求是相当大的,在最近几年中关于这一类的培训也层出不穷,所涉及到的课程和知识点相对来说还是有点差异的,在深圳达内福田培训中心网站上看到了关于嵌入式系统软件开发所需要掌握的几大知识点,感觉划分的很细致。 主要包含以下8个核心部分 1.Linux操作系统核心

嵌入式开发工具使用

《嵌入式开发工具使用》 实验报告 学生姓名:______________________ 学号:— 专业班级:_______________ 指导教师:_________________ 完成时间: 实验2嵌入式开发工具使用实验 一?实验目的 了解嵌入式开发工具套件组成,掌握开发工具安装,熟练运用gcc各命令选项,熟练编写Makefile和使用make工具,掌握gdb各命令用于应用程序调试。 二?实验内容 实验 2.1 arm-linux-gcc安装 实验2.2编译工具gcc使用 实验2.3 编写Makefile和使用make编译 实验2.4使用gdb调试应用程序 实验2.5 使用code::blocks进行图形化编程 三?预备知识 Linux使用等 四?实验设备及工具(包括软件调试工具) 硬件:ARM嵌入式开发平台、PC机Pentium100以上、串口线。软件:WinXP或 UBUNTU开发环境。 五?实验步骤 5.1交叉编译工具配置及编译 第一步,解压缩交叉编译器工具,命令为: #cd /tmp _____________________________________________________________________ ? arm-l inu x-gcc可执行文件位于目录 /root/gcc-gdb-make_exp _________________________________________ 。 第二步,修改PATH环境变量,将arm-linux-gcc可执行文件目录添加到PATH环境变量中,命令为 5.2 arm-l inu x-gcc编译工具使用

嵌入式微处理器系统读书报告

《嵌入式微处理器系统》专题读书报告 姓名:全妤

1、引言 随着医疗电子、智能家居、物流管理和电力控制等方面的不断风靡,嵌入式系统利用自身积累的底蕴经验,重视和把握这个机会,想办法在已经成熟的平台和产品基础上与应用传感单元的结合,扩展物联和感知的支持能力,发掘某种领域物联网应用。作为物联网重要技术组成的嵌入式系统,嵌入式系统的视角有助于深刻地、全面地理解物联网的本质。 2、嵌入式系统的概念 嵌入式系统被定义为以应用为中心、计算机技术为基础、软件硬件可裁剪、适应应用系统对功能、可靠性、成本、体积功耗严格要求的专用计算机系统。 2.1嵌入式系统的组成 一个嵌入式系统装置一般都由嵌入式计算机系统和执行装置组成。嵌入式计算机系统是整个嵌入式系统的核心,由硬件层、中间层、系统软件层和应用软件层组成。执行装置也称为被控对象,它可以接受嵌入式计算机系统发出的控制命令,执行所规定的操作或任务。 2.1.1 硬件层 硬件层中包含嵌入式微处理器、存储器(SDRAM、ROM、Flash等)、通用设备接口和I/O接口(A/D、D/A、I/O等)。

在一片嵌入式处理器基础上添加电源电路、时钟电路和存储器电路,就构成了一个嵌入式核心控制模块。其中操作系统和应用程序都可以固化在ROM中。 1)嵌入式微处理器 嵌入式系统硬件层的核心是嵌入式微处理器,嵌入式微处理器与通用CPU最大的不同在于嵌入式微处理器大多工作在为特定用户群所专用设计的系统中,它将通用CPU许多由板卡完成的任务集成在芯片内部,从而有利于嵌入式系统在设计时趋于小型化,同时还具有很高的效率和可靠性。 2)存储器 嵌入式系统需要存储器来存放和执行代码。嵌入式系统的存储器包含Cache、主存和辅助存储器。 3)通用设备接口和I/O接口 嵌入式系统和外界交互需要一定形式的通用设备接口,如A/D、D/A、I/O等,外设通过和片外其他设备的或传感器的连接来实现微处理器的输入/输出功能。每个外设通常都只有单一的功能,它可以在芯片外也可以内置芯片中。外设的种类很多,可从一个简单的串行通信设备到非常复杂的802.11无线设备。

微处理器系统与嵌入式系统1—7章最全答案合集

“微处理器系统原理与嵌入式系统设计”第一章习题解答 1.1 什么是程序存储式计算机? 程序存储式计算机指采用存储程序原理工作的计算机。 存储程序原理又称“·诺依曼原理”,其核心思想包括: ●程序由指令组成,并和数据一起存放在存储器中; ●计算机启动后,能自动地按照程序指令的逻辑顺序逐条把指令从存储器中 读出来,自动完成由程序所描述的处理工作。 1.2 通用计算机的几个主要部件是什么? ●主机(CPU、主板、存); ●外设(硬盘/光驱、显示器/显卡、键盘/鼠标、声卡/音箱); 1.3 以集成电路级别而言,计算机系统的三个主要组成部分是什么? 中央处理器、存储器芯片、总线接口芯片 1.4 阐述摩尔定律。 每18个月,芯片的晶体管密度提高一倍,运算性能提高一倍,而价格下降一半。 1.5 讨论:摩尔定律有什么限制,可以使用哪些方式克服这些限制?摩尔定律还会持续多久?在摩尔定律之后电路将如何演化? 摩尔定律不能逾越的四个鸿沟:基本大小的限制、散热、电流泄露、热噪。具体问题如:晶体管体积继续缩小的物理极限,高主频导致的高温…… 解决办法:采用纳米材料、变相材料等取代硅、光学互联、3D、加速器技术、多核…… (为了降低功耗与制造成本,深度集成仍是目前半导体行业努力的方向,但这不可能永无止,因为工艺再先进也不可能将半导体做的比原子更小。用作绝缘材料的二氧化硅,已逼近极限,如继续缩小将导致漏电、散热等物理瓶颈,数量集成趋势终有终结的一天。一旦芯片上线条宽度达到纳米数量级时,相当于只有几个分子的大小,这种情况下材料的物理、化学性能将发生质的变化,致使采用现行工艺的半导体器件不能正常工作,摩尔定律也就要走到它的尽头了。业界专家预计,芯片性能的增长速度将在今后几年趋缓,一般认为摩尔定律能再适用10年左右,其制约的因素一是技术,二是经济。)

!嵌入式系统开发资料(入门必备)

获取更多权威电子书请登录https://www.360docs.net/doc/ad2688955.html, ARM嵌入式系统开发综述ARM开发工程师入门宝典

获取更多权威电子书请登录https://www.360docs.net/doc/ad2688955.html, 前言 嵌入式系统通常是以具体应用为中心,以处理器为核心且面向实际应用的软硬件系统,其硬件是整个嵌入式系统运行的基础和平台,提供了软件运行所需的物理平台和通信接口;而嵌入式系统的软件一般包括操作系统和应用软件,它们是整个系统的控制核心,提供人机交互的信息等。所以,嵌入式系统的开发通常包括硬件和软件两部分的开发,硬件部分主要包括选择合适的MCU或者SOC 器件、存储器类型、通讯接口及I/O、电源及其他的辅助设备等;软件部分主要涉及OS porting和应用程序的开发等,与此同时,软件中断调试和实时调试、代码的优化、可移植性/可重用以及软件固化等也是嵌入式软件开发的关键。 嵌入式系统开发的每一个环节都可以独立地展开进行详细的阐述,而本文的出发点主要是为嵌入式开发的初学者者提供一个流程参考。因为对于初学者在面对一个嵌入式开发项目的时候,往往面临着诸多困难,如选择什么样的开发平台?什么样的器件类型?在进行编译时怎样实现代码优化?开发工具该如何选择和使用?在进行程序调试时应该注意那些问题以及选择什么样的嵌入式OS 等等。希望通过本文,能帮助初学者了解有关ARM嵌入式系统开发流程。

获取更多权威电子书请登录https://www.360docs.net/doc/ad2688955.html, 目录 前言 (2) 1 嵌入式开发平台 (4) 1.1 ARM的开发平台: (4) 1.2 器件选型 (7) 2 工具选择 (11) 3 编译和连接 (13) 3.1 RVCT的优化级别与优化方向 (16) 3.2 Multifile compilation (21) 3.3调试 (22) 4 操作系统 (23) 4.1 哪里可以得到os 软件包 (Open Source and Linux Kernel) (25) 4.2 安装镜像 (26) 4.3 交叉编译 (26) 总结 (27)

嵌入式微处理器未来市场趋势

嵌入式微處理器未來市場趨勢 CPU的架構大致上可分為CISC CPU & RISC CPU。 CISC CPU適用於大量資料運算的應用(INTEL、AMD、VIA的x86 CPU)。 RISC CPU所強調的是執行的效率與省電的要求(ARM、MIPS、ARC …)。 不論是CISC或是RISC CPU,都可以依據CPU內部處理資料匯流排的寬度,可區分成8位元、16位元、32位元與64位元等四種。根據In-Stat的統計,成長最快的是64位元嵌入式CPU,主要應用在STB、DTV與電視遊戲機等需要大量資料處理的產品。 8至64位元主要產品中所使用嵌入式CPU種類 全球的嵌入式CPU供應商第一大廠商是ARM,排名第二是MIPS。但兩家的產品定位並不完全相同。 ARM的CPU會強調省電應用;MIPS則主打高效能的產品。 因此在過去強調省電訴求的行動電話是嵌入式產品最大應用產品情況下,ARM 的營收皆優於MIPS。MIPS已逐漸淡出16位元CPU的市場,而專注於32位元以上的CPU。ARM與其最大競爭對手MIPS的差異處在於,以交易機制來分析,一般而言,ARM的授權金比重較高,而MIPS則收取比例較高的權利金。 早期台灣廠商CPU或MCU相關技術可區分成三類,8051架構、6502架構與自行研發等三種。INTEL的8051與Motorola的6502都是8位元的架構,初期都是由工研院所授權獲得,並推廣至國內業者。另外自行研發的也不在少數,例如凌陽、盛群、金麗或十速等公司,但都是32位元以下的架構。

嵌入式微處理(CPU)器與微控制器(MCU) 微處理器強調運算效能,而微控制器著重控制功能。 在SoC整合趨勢下,嵌入式微處理器加上記憶體、邏輯與I/O等IP將構成強大效能的微控制器;而增強位元數後的微控制器亦具有MPU的強大處理功能。 微處理器若以應用產品的軟體平台來區分,可分成特定應用型與泛用型兩種。特定應用型: 操作軟體大致是依據終端產品所需的功能加以設計,其最大特色是封閉的操作環境,終端產品的使用者大致上不需了解軟體的構造,也不能修改其操作功能,應用產品有印表機、數位相機、車用設備與遊戲機等,這類型產品通常較簡單其穩定性也要求較高。 泛用型: 如簡易的電腦一樣,有著相似而共通的作業系統,主要應用在PDA、Smart Phone、STB(視訊轉換器)、Thin Client等。此類產品因具有資訊交換的功能,其作業系統較複雜,相容性的要求也較高。 微控制器主要是負責系統產品中控制功能的IC元件。目前電子產品朝向輕薄短小、功能強大、價格低廉等目標發展,加上開發時程日益縮短,微控制器具有整合諸多功能於一身的特性,不但節省開發時間,在降低體積與成本上也有相當大的助益。 微控制器因有下列優點: 1.低價 2.較小的程式碼 3.可使用C語言編譯,開發更容易 4.耗電量較低 5.最高的效能與價格比 16位元以上的微控制器主要應用在通訊(如ISDN、USB等)、車用與工業等項目;由於需要符合工業規格,必須認證後才能出貨,技術層次較高。 隨著系統產品功能的多樣化,人機介面必須具有親和力…等,微控制器的效能亦不斷要求提升,近年來32/64位元微控制器成長率有越來越高的趨勢。

嵌入式Linux应用软件开发流程

从软件工程的角度来说,嵌入式应用软件也有一定的生命周期,如要进行需求分析、系统设计、代码编写、调试和维护等工作,软件工程的许多理论对它也是适用的。 但和其他通用软件相比,它的开发有许多独特之处: ·在需求分析时,必须考虑硬件性能的影响,具体功能必须考虑由何种硬件实现。 ·在系统设计阶段,重点考虑的是任务的划分及其接口,而不是模块的划分。模块划分则放在了任务的设计阶段。 ·在调试时采用交叉调试方式。 ·软件调试完毕固化到嵌入式系统中后,它的后期维护工作较少。 下面主要介绍分析和设计阶段的步骤与原则: 1、需求分析 对需求加以分析产生需求说明,需求说明过程给出系统功能需求,它包括:·系统所有实现的功能 ·系统的输入、输出 ·系统的外部接口需求(如用户界面) ·它的性能以及诸如文件/数据库安全等其他要求 在实时系统中,常用状态变迁图来描述系统。在设计状态图时,应对系统运行过程进行详细考虑,尽量在状态图中列出所有系统状态,包括许多用户无需知道的内部状态,对许多异常也应有相应处理。 此外,应清楚地说明人机接口,即操作员与系统间地相互作用。对于比较复杂地系统,形成一本操作手册是必要的,为用户提供使用该系统的操作步骤。为使系统说明更清楚,可以将状态变迁图与操作手册脚本结合起来。

在对需求进行分析,了解系统所要实现的功能的基础上,系统开发选用何种硬件、软件平台就可以确定了。 对于硬件平台,要考虑的是微处理器的处理速度、内存空间的大小、外部扩展设备是否满足功能要求等。如微处理器对外部事件的响应速度是否满足系统的实时性要求,它的稳定性如何,内存空间是否满足操作系统及应用软件的运行要求,对于要求网络功能的系统,是否扩展有以太网接口等。 对于软件平台而言,操作系统是否支持实时性及支持的程度、对多任务的管理能力是否支持前面选中的微处理器、网络功能是否满足系统要求以及开发环境是否完善等都是必须考虑的。 当然,不管选用何种软硬件平台,成本因素都是要考虑的,嵌入式Linux 正是在这方面具有突出的优势。 2、任务和模块划分 在进行需求分析和明确系统功能后,就可以对系统进行任务划分。任务是代码运行的一个映象,是无限循环的一段代码。从系统的角度来看,任务是嵌入式系统中竞争系统资源的最小运行单元,任务可以使用或等待CPU、I/O设备和内存空间等系统资源。 在设计一个较为复杂的多任务应用系统时,进行合理的任务划分对系统的运行效率、实时性和吞吐量影响都极大。任务分解过细会不断地在各任务之间切换,而任务之间的通信量也会很大,这样将会大大地增加系统的开销,影响系统的效率。而任务分解过粗、不够彻底又会造成原本可以并行的操作只能按顺序串行执行,从而影响系统的吞吐量。为了达到系统效率和吞吐量之间的平衡折中,在划分任务时应在数据流图的基础上,遵循下列步骤和原则:

Intel XScale(TM) 嵌入式微处理器简介

Intel XScale?嵌入式微处理器简介 Intel Xscale内核是和ARM? Architecture V5TE结构兼容的微处理器。Intel? XScale?core内核集成了多种微结构的特点,从而能够完成更过的性能要求。这样用户可以根据自己的需求进行配置,实现自己特定的功能。Intel? XScale?的这些微结构很多应用在存储器当中,主要包括: ?当数据缓冲从外部存储器获取数据是,仍然能够执行指令; ?写缓冲; ?写回数据缓冲(Write-back data cache) ?缓冲锁定(Cache locking) ?可配置的缓冲方式(X Bit, C Bit for Cacheable, B Bit for Bufferable) Intel Xscale内核的上述特点,使它能够有效的处理语音信号,乘法累加操作还可以完成多种语音和多媒体CODEC算法。 特点改进的性能 Intel? 超级流水线技术 7-stage integer/8-stage存储器超级流水线内核获得更高的速度 和较低的功耗  Intel?动态电压管理 动态电压和频率允许应用系统对性能和功耗进行合理的折衷  Intel? Media处理技术 多累加协处理器同时完成两个16-bit SIMD 乘法(带40-bit累 加),有效的媒体处理;  电源管理单元 通过idle、 sleep、和快速wake-up模式,降低功耗  128-entry Branch Target Buffer  使流水线载有分支支零时仍能够保持正确  32 KB Instruction Cache 保持重要指令,提高系统性能,降低系统功耗  32 KB Data Cache 保持重要数据,提高系统性能,降低系统功耗  2 KB Mini-Data Cache 在频繁改变数据流时,避免"thrashing" of the D-Cache 32-entry 程序存储器管理 单元  使能逻辑到物理地址变换、访问允许和I-Cache attributes 32-entry数据存储器管理 单元  使能逻辑到物理地址变换、访问允许和D-Cache attributes  4-entry Fill and Pend Buffers 通过允许数据缓冲的non-blocking和"hit-under-miss"操作,提高内和效率。  性能监测单元 完成两个32-bit event counters和一个32-bit cycle counter for analysis of hit rates, etc.  Debug调试单元 采用硬件断点和256-entry跟踪缓冲调试程序  32-bit Coprocessor Interface 在内核和协处理器间提供高性能的接口  64-bit内和存储器总线,同时32-bit输入和32-bit输出 Gives up to 4.8 GBytes/sec. @ 600 MHz bandwidth for internal accesses 8-entry Write Buffer 当数据写入到存储器是,允许内和继续执行。  ARM兼容性 1

嵌入式微处理器与操作系统_华中师范大学20年春季考试题库及答案

[试题分类]:嵌入式微处理器与操作系统Z_82411005 [题型]:单选 [大题名称]:单项选择题 [题目数量]:60 [分数]:2 1.Makefile文件预定定义变量$^表示()。 A.目标文件的完整名称 B.所有不重复的依赖文件,以空格隔开 C.第一个依赖文件的名称 D.第二个依赖文件的名称 [答案]:B [一级属性]: [二级属性]: [难度]: [公开度]: 2.如果生成通用计算机上(系统是Linux操作系统)能够执行的程序,则使用的C编译是()。 A.TC B.VC C.GCC D.arm-linux-gcc [答案]:C [一级属性]: [二级属性]: [难度]: [公开度]: 3.创建根文件系统映像文件使用的工具是()。 A.BusyBox B.cramfs C.make D.vi [答案]:A [一级属性]: [二级属性]: [难度]: [公开度]: 4.S3C2410X系统的存储空间分成()组(bank)。 A.2 B.4 C.8 D.16 [答案]:C

[一级属性]: [二级属性]: [难度]: [公开度]: 5.GDB软件是()。 A.调试器 B.编译器 C.文本编译器 D.连接器 [答案]:A [一级属性]: [二级属性]: [难度]: [公开度]: 6.嵌入式系统和通用计算机相比,描述不正确的是()? A.专用性强 B.实时性好 C.可裁剪性好 D.功耗高 [答案]:D [一级属性]: [二级属性]: [难度]: [公开度]: 7.ARM9使用几级流水线。 A.2 B.3 C.5 D.7 [答案]:C [一级属性]: [二级属性]: [难度]: [公开度]: 8.ARM公司主要依靠()获得利润。 A.生产芯片 B.销售芯片 C.制定标准 D.出售芯片技术授权 [答案]:D

嵌入式软件开发流程图

嵌入式软件开发流程 一、嵌入式软件开发流程 1.1 嵌入式系统开发概述 由嵌入式系统本身的特性所影响,嵌入式系统开发与通用系统的开发有很大的区别。嵌入式系统的开发主要分为系统总体开发、嵌入式硬件开发和嵌入式软件开发3大部分,其总体流程图如图1.1所示。 图1.1 嵌入式系统开发流程图 在系统总体开发中,由于嵌入式系统与硬件依赖非常紧密,往往某些需求只能通过特定的硬件才能实现,因此需要进行处理器选型,以更好地满足产品的需求。另外,对于有些硬件和软件都可以实现的功能,就需要在成本和性能上做出抉择。往往通过硬件实现会增加产品的成本,但能大大提高产品的性能和可靠性。 再次,开发环境的选择对于嵌入式系统的开发也有很大的影响。这里的开发环境包括嵌入式操作系统的选择以及开发工具的选择等。比如,对开发成本和进度限制较大的产品可以选择嵌入式Linux,对实时性要求非常高的产品可以选择Vxworks等。

1.2 嵌入式软件开发概述 嵌入式软件开发总体流程为图4.15中“软件设计实现”部分所示,它同通用计算机软件开发一样,分为需求分析、软件概要设计、软件详细设计、软件实现和软件测试。其中嵌入式软件需求分析与硬件的需求分析合二为一,故没有分开画出。 由于在嵌入式软件开发的工具非常多,为了更好地帮助读者选择开发工具,下面首先对嵌入式软件开发过程中所使用的工具做一简单归纳。 嵌入式软件的开发工具根据不同的开发过程而划分,比如在需求分析阶段,可以选择IBM的Rational Rose等软件,而在程序开发阶段可以采用CodeWarrior(下面要介绍的ADS 的一个工具)等,在调试阶段所用的Multi-ICE等。同时,不同的嵌入式操作系统往往会有配套的开发工具,比如Vxworks有集成开发环境Tornado,WindowsCE的集成开发环境WindowsCE Platform等。此外,不同的处理器可能还有对应的开发工具,比如ARM的常用集成开发工具ADS、IAR和RealView等。在这里,大多数软件都有比较高的使用费用,但也可以大大加快产品的开发进度,用户可以根据需求自行选择。图4.16是嵌入式开发的不同阶段的常用软件。 图1.2 嵌入式开发不同阶段的常用软件 嵌入式系统的软件开发与通常软件开发的区别主要在于软件实现部分,其中又可以分为编译和调试两部分,下面分别对这两部分进行讲解。 1.交叉编译 嵌入式软件开发所采用的编译为交叉编译。所谓交叉编译就是在一个平台上生成可以在另一个平台上执行的代码。在第3章中已经提到,编译的最主要的工作就在将程序转化成运行该程序的CPU所能识别的机器代码,由于不同的体系结构有不同的指令系统。因此,不同的CPU需要有相应的编译器,而交叉编译就如同翻译一样,把相同的程序代码翻译成不同CPU的对应可执行二进制文件。要注意的是,编译器本身也是程序,也要在与之对应的某一个CPU平台上运行。嵌入式系统交叉编译环境如图4.17所示。

嵌入式LINUX开发工具选择

嵌入式Linux具有稳定、可伸缩及开放源代码等特点,可兼容多 种处理器和主机,广泛适用于各种产品和应用。但是,交叉编译、 设备驱动程序开发/调试,以及更小尺寸等要求对嵌入式Linux开 发者来说都是严峻的挑战。为应对这些挑战,针对嵌入式Linux开 发的专用工具应运而生,而且发展十分迅猛。 但是,许多这类开发工具都不兼容非X86平台,而且也没有很好 地实现归档备案或集成。在其它开发环境下,组件间的高度集成并 没有完全兑现。因此,要想完全从这些免费的软件组件开始创建 一个完整的跨平台开发环境,开发者应意识到这将需要大量的调 研、实施、培训和维护方面的工作。 Linux 是少数既可以在嵌入式设备上运行也可作为开发环境的操 作系统之一。这一特性可让开发者在转向此开发系统之前于常用硬 件(比如X86桌面系统)之上开发、调试和测试应用程序和库,因 此可减少对标准参考平台和指令集仿真器的依赖。这一技术仅适用于应用程序和库,但不适用于设备驱动程序,因为后者的开发依赖于 Linux架构。 开放源代码团体及一些软件供应商可提供设备驱动程序开发工具。由于设备驱动程序比标准应用程序距离硬件更近,因此它们的开发比较困难。所幸的是,Linux 桌面系统可以利用一些Windows及其它操作系统所没有的工具。有足够经验开发设备驱动程序的开发人员可能已经习惯将Linux作为他们的桌面开发系统了。 Linux的快速发展及其桌面方案的不断涌现提出了一个重要问题:所选择的工具方案怎样在不同的Linux分布式系统上运行?它们依赖于主机平台的软件配置吗? 有些Linux工具提供独立于主机平台的开发环境,包括一系列可支持开发工具的应用软件、库和实用程序。这一方法几乎将开发环境与主机配置完全隔离开来,因此主机可以是任何Linux分布式系统,而且任何更新和修改都不会影响开发环境的功能。 这种方法的主要缺点是对存储空间的要求有所增加――约200MB,因为它自己实际上相当于一个微型Linux分布式系统。 可用的工具 一个嵌入式Linux产品的开发需要几个阶段,包括为目标板配置和构建基本Linux OS;调试应用程序、库、内核及设备驱动程序/内核模块;出货前最终方案的优化、测试和验证。 有数百种开放源代码开发工具可供选择。只要开发者原意花时间和精力去调研、实施和维护一系列各不相同的工具,总能找出一个完整的解决方案,完成几乎任何开发任务。

嵌入式软件开发流程

嵌入式软件的开发流程 嵌入式系统是指用于执行独立功能的专用计算机系统。它由包括微处理器、定时器、微控制器、存储器、传感器等一系列微电子芯片与器件,和嵌入在存储器中的微型操作系统、控制应用软件组成,共同实现诸如实时控制、监视、管理、移动计算、数据处理等各种自动化处理任务。嵌入式系统以应用为中心,以微电子技术、控制技术、计算机技术和通讯技术为基础,强调硬件软件的协同性与整合性,软件与硬件可剪裁,以此满足系统对功能、成本、体积和功耗等要求。最简单的嵌入式系统仅有执行单一功能的控制能力,比如说单片机的应用,在唯一的ROM 中仅有实现单一功能控制程序,无微型操作系统。复杂的嵌入式系统,例如个人数字助理(PDA)、手持电脑(HPC)等,具有与PC几乎一样的功能。实质上与PC的区别仅仅是将微型操作系统与应用软件嵌入在ROM、RAM 和/或FLASH存储器中,而不是存贮于磁盘等载体中。很多复杂的嵌入式系统又是由若干个小型嵌入式系统组成的。 近些年来,随着以计算机技术,通讯技术为主的信息技术的快速发展和Internet 的广泛应用,传统的控制学科正在发生变革,出现了许多新的生长点。伴随而来的一个现象是控制专业的相当多的学生在毕业后进入了计算机,通讯行业,以致有人说学控制没有用,自动化专业可以取消了。这些情况的出现使我们控制教育工作者反复思考,传统的控制应如何拓宽它的领域?控制专业应该教什么才使学生感到有用?流行的嵌入式操作系统可以分为两类:一类是从运行在个人电脑上的操作系统向下移植到嵌入式系统中,形成的嵌入式操作系统,如微软公司的Windows CE及其新版本,SUN公司的Java操作系统,朗讯科技公司的Inferno,嵌入式Linux等。这类系统经过个人电脑或高性能计算机等产品的长期运行考验,技术日趋成熟,其相关的标准和软件开发方式已被用户普遍接受,同时积累了丰富的开发工具和应用软件资源。 另一类是实时操作系统,如WindRiver 公司的VxWorks,ISI 的pSOS,QNX系统软件公司的QNX,ATI 的Nucleus,中国科学院凯思集团的Hopen嵌入式操作系统等,这类产品在操作系统的结构和实现上都针对所面向的应用领域,对实时性高可靠性等进行了精巧的设计,而且提供了独立而完备的系统开发和测试工具,较多地应用在军用产品和工业控制等领域中。Linux 是90年代以来逐渐成熟的一个开放源代码的操作系统。PC机上的Linux 版本在全球数以百万计爱好者的合力开发下,得到了非常迅速的发展。90 年代末uClinux,RTLinux 等相继推出,在嵌入式领域得到了广泛的关注,它拥有大批的程序员和现成的应用程序,是研究开发工作的宝贵资源。 一、嵌入式软件开发流程 1.1 嵌入式系统开发概述 由嵌入式系统本身的特性所影响,嵌入式系统开发与通用系统的开发有很大的区别。嵌入式系统的开发主要分为系统总体开发、嵌入式硬件开发和嵌入式软件开发3大部分,其总体流程图如图1.1所示。

DSP 、单片机以及嵌入式微处理器区别

DSP 、单片机以及嵌入式微处理器都是嵌入式家族的一员。最大区别是DSP能够高速、实时地进行数字信号处理运算。数字信号处理运算的特点是乘/加及反复相乘 求和(乘积累加)。为了能快速地进行数字信号处理的运算,(1)DSP设置了硬件乘法/累加器,(2)能在单个指令周期内完成乘/加运算。(3)为满足FFT、卷积等数字信号处理的特殊要求,目前DSP大多在指令系统中设置了“循环寻址”及“位倒序”寻址指令和其他特殊指令,使得寻址、排序的速度大大提高。DSP完成1024复点FFT的运算,所需时间仅为微秒量级。 高速数据的传输能力是DSP高速实时处理的关键之一。新型的DSP设置了单独的DMA总线及其控制器,在不影响或基本不影响DSP处理速度的情况下,作并行的数据传送,传送速率可达每秒百兆字节。DSP内部有流水线,它在指令并行、功能单元并行、多总线、时钟频率提高等方面不断创新和改进。因此,DSP与单片机、嵌入式微处理器相比,在内部功能单元并行、多DSP核并行、速度快、功耗小、完成各种DSP算法方面尤为突出。 单片机也称微控制器或嵌入式控制器,它是为中、低成本控制领域而设计和开发的。单片机的位控能力强,I/O接口种类繁多,片内外设和控制功能丰富、价格低、使用方便,但与DSP相比,处理速度较慢。DSP具有的高速并行结构及指令、多总线,单片机却没有。DSP处理的算法的复杂度和大的数据处理流量更是单片机不可企及的。嵌入式微处理器的基础是通用计算机中的CPU(微处理器)。是嵌入式系统的核心。为满足嵌入式应用的特殊要求,嵌入式微处理器虽然在功能上和标准微处理器基本是一样的,但在工作温度、抗电磁干扰、可靠性等方面一般都做了各种增强。与工业控制计算机相比,嵌入式微处理器具有体积小、质量轻、成本低、可靠性高的优点,但是在电路板上必须包括ROM、RAM、总线接口、各种外设等器件,从而降低了系统的可靠性,技术保密性也较差。在应用设计中,嵌入式微处理器及其存储器、总线、外设等安装在专门设计的一块电路板上,只保留和嵌入式应用有关的母板功能,可大幅度减小系统的体积和功耗。目前,较流行的是基于ARM7、ARM9系列内核的嵌入式微处理器。 嵌入式微处理器与DSP的一个很大区别,就是嵌入式处理器的地址线要比DSP 的数目多,所能扩展的存储器空间要比DSP的存储器空间大的多,所以可配置实时多任务操作系统(RTOS)。RTOS是针对不同处理器优化设计的高效率、可靠性和可信性很高的实时多任务内核,它将CPU时间、中断、I/O、定时器等资源都包装起来,留给用户一个标准的应用程序接口(API),并根据各个任务的优先级,合理地在不同任务之间分配CPU时间。RTOS是嵌入式应用软件的基础和开发平台。常用的RTOS:Linux(为几百KB)和VxWorks(几MB)。 由于嵌入式实时多任务操作系统具有的高度灵活性,可很容易地对它进行定制或作适当开发,来满足实际应用需要。例如,移动计算平台、信息家电(机顶盒、数字电视)、媒体手机、工业控制和商业领域(例如,智能工控设备、ATM机等)、电子商务平台,甚至军事应用,吸引力巨大。所以,目前嵌入式微处理器的应用是继单片机、DSP之后的又一大应用热门。但是,由于嵌入式微处理器通常不能高效地完成许多基本的数字处理运算,例如,乘法累加、矢量旋转、三角函数等。它的 体系结构对特殊类型的数据结构只能提供通用的寻址操作,而DSP则有专门的简捷寻址机构和辅助硬件来快速完成。所以嵌入式微处理器不适合高速、实时的数字信号处理运算。而更适合“嵌入”到系统中,完成高速的“通用”计算与复杂

ARM嵌入式系统开发综述.

视听研究所 主页:论坛: 所有资料均收集于各网站。 若您认为有关资料不适合公开,请联系newvideo@https://www.360docs.net/doc/ad2688955.html, 我们会第一时间删除。 感谢各位网友的无私奉献和支持! 加密时间:2008-2-1 获取更多权威电子书请登录 ARM 嵌入式系统开发综述 ARM 开发工程师入门宝典 获取更多权威电子书请登录 前言 嵌入式系统通常是以具体应用为中心,以处理器为核心且面向实际应用的软硬件系统,其硬件是整个嵌入式系统运行的基础和平台,提供了软件运行所需的物理平台和通信接口;而嵌入式系统的软件一般包括操作系统和应用软件,它们是整个

系统的控制核心,提供人机交互的信息等。所以,嵌入式系统的开发通常包括硬件和软件两部分的开发,硬件部分主要包括选择合适的MCU 或者SOC 器件、存储器类型、通讯接口及I/O、电源及其他的辅助设备等;软件部分主要涉及OS porting和应用程序的开发等,与此同时,软件中断调试和实时调试、代码的优化、可移植性/可重用以及软件固化等也是嵌入式软件开发的关键。 嵌入式系统开发的每一个环节都可以独立地展开进行详细的阐述,而本文的出发点主要是为嵌入式开发的初学者者提供一个流程参考。因为对于初学者在面对一个嵌入式开发项目的时候,往往面临着诸多困难,如选择什么样的开发平台?什么样的器件类型?在进行编译时怎样实现代码优化?开发工具该如何选择和使用?在进行程序调试时应该注意那些问题以及选择什么样的嵌入式OS 等等。希望通过本文,能帮助初学者了解有关ARM 嵌入式系统开发流程。 获取更多权威电子书请登录 目录 前言 (2) 1 嵌入式开发平台 (4) 1.1 ARM的开发平台: (4) 1.2 器件选型 (7) 2 工具选择 (11) 3 编译和连接 (13) 3.1 RVCT的优化级别与优化方向 (16) 3.2 Multifile compilation (21) 3.3调试 (22)

嵌入式软件开发流程

嵌入式软件开发流程

————————————————————————————————作者:————————————————————————————————日期:

嵌入式软件开发流程 一、嵌入式软件开发流程 1.1 嵌入式系统开发概述 由嵌入式系统本身的特性所影响,嵌入式系统开发与通用系统的开发有很大的区别。嵌入式系统的开发主要分为系统总体开发、嵌入式硬件开发和嵌入式软件开发3大部分,其总体流程图如图1.1所示。 图1.1 嵌入式系统开发流程图 在系统总体开发中,由于嵌入式系统与硬件依赖非常紧密,往往某些需求只能通过特定的硬件才能实现,因此需要进行处理器选型,以更好地满足产品的需求。另外,对于有些硬件和软件都可以实现的功能,就需要在成本和性能上做出抉择。往往通过硬件实现会增加产品的成本,但能大大提高产品的性能和可靠性。 再次,开发环境的选择对于嵌入式系统的开发也有很大的影响。这里的开发环境包括嵌入式操作系统的选择以及开发工具的选择等。比如,对开发成本和进度限制较大的产品可以选择嵌入式Linux,对实时性要求非常高的产品可以选择Vxworks等。

1.2 嵌入式软件开发概述 嵌入式软件开发总体流程为图4.15中“软件设计实现”部分所示,它同通用计算机软件开发一样,分为需求分析、软件概要设计、软件详细设计、软件实现和软件测试。其中嵌入式软件需求分析与硬件的需求分析合二为一,故没有分开画出。 由于在嵌入式软件开发的工具非常多,为了更好地帮助读者选择开发工具,下面首先对嵌入式软件开发过程中所使用的工具做一简单归纳。 嵌入式软件的开发工具根据不同的开发过程而划分,比如在需求分析阶段,可以选择IBM的Rational Rose等软件,而在程序开发阶段可以采用CodeWarrior(下面要介绍的ADS 的一个工具)等,在调试阶段所用的Multi-ICE等。同时,不同的嵌入式操作系统往往会有配套的开发工具,比如Vxworks有集成开发环境Tornado,WindowsCE的集成开发环境WindowsCE Platform等。此外,不同的处理器可能还有对应的开发工具,比如ARM的常用集成开发工具ADS、IAR和RealView等。在这里,大多数软件都有比较高的使用费用,但也可以大大加快产品的开发进度,用户可以根据需求自行选择。图4.16是嵌入式开发的不同阶段的常用软件。 图1.2 嵌入式开发不同阶段的常用软件 嵌入式系统的软件开发与通常软件开发的区别主要在于软件实现部分,其中又可以分为编译和调试两部分,下面分别对这两部分进行讲解。 1.交叉编译 嵌入式软件开发所采用的编译为交叉编译。所谓交叉编译就是在一个平台上生成可以在另一个平台上执行的代码。在第3章中已经提到,编译的最主要的工作就在将程序转化成运行该程序的CPU所能识别的机器代码,由于不同的体系结构有不同的指令系统。因此,不同的CPU需要有相应的编译器,而交叉编译就如同翻译一样,把相同的程序代码翻译成不同CPU的对应可执行二进制文件。要注意的是,编译器本身也是程序,也要在与之对应的某一个CPU平台上运行。嵌入式系统交叉编译环境如图4.17所示。

嵌入式系统开发方法综述

嵌入式系统开发方法综述 刘丹 (机械工业仪器仪表综合技术经济研究所,北京市 100055)Liu Dan (Instrumentation Technology & Economy Institute, Beijing 100055) Development Methods of Embedded System Abstract: Embedded systems have particular properties, such as real-time, concurrency, distribution, high reliability,and etc., which lead to large challenges and urgent requirements for corresponding methods and tools when developing such systems. From the view of engineering practice, the paper summarizes what problems developers will face during embedded system design, and what main methods and technologies will be used for resolving such problems. These methods and technologies are called embedded system developing methods. Key words: Embedded System HW-SW Co-Design Method Formal Modeling Method Structural Design Method Object-Oriented Design Method 【摘 要】嵌入式系统的实时性、并发性、分布性和高可靠性等特点使得系统的开发面临巨大挑战,迫切需 要相应开发方法的指导和开发工具的支持。本文从工程实践角度出发,总结在嵌入式系统设计过程中,开发人员会面临哪些主要问题,以及为解决问题而产生哪些主要方法和技术。这些方法和技术被统称为嵌入式系统的开发方法。 【关键词】嵌入式系统 软硬件协同设计方法 形式化建模方法 结构化设计方法 面向对象设计方法 收稿日期:2008-08-01作者简介:刘丹(1977-),女,博士,毕业于中科院沈阳自动化研究所,现就职于机械工业仪器仪表综合技术经济研究所,主要从事工业自动化、控制网络的技术和标准化研究,现负责PROFIBUS PA产品的认证测试工作。 引言 嵌入式系统是指以应用为中心、以计算机技术为基础、软硬件可裁剪、适应应用环境对功能、实时性、可靠性、成本、体积、功耗等严格约束的专用计算机系统。嵌入式系统的内容广泛,小到一个芯片,大到复杂的分布式系统都可以称为嵌入式系统,通常以SoC、单片机、单板机、多板式箱式结构、嵌入式PC等形式嵌入到信息家电、数字通信、工业控制、航空航天、医疗设施、军事电子等领域的设备或系统中,作为处理和控制的核心。 嵌入式系统的实时性、并发性、分布性和高可靠性等特点使得系统的开发面临巨大挑战,迫切需要相应的开发方法的指导和开发工具的支持。嵌入式系统开发方法的研究内容包括设计方法论、工程开发技术、以及相应辅助工具的开发。现代的系统开发是一个基于模型(model-based)的,从规约到实现的过程。模型是反映真实世界和系统实现两方面的抽象,帮助开发人员把握应用的最重要特性,是系统分析与验证的 基础,并为软件和硬件的实现要素提供表示视图。因此,系统模型设计在整个开发过程中最为重要。此外,任何工程开发技术都是在一定设计方法基础上提出一系列开发步骤,辅助工具则为这些设计方法和开发技术提供自动或半自动的工具支持。因此,设计方法决定了系统开发过程中的其它分析、验证、实现等方法,或者广义上说,系统的设计方法就是系统的开发方法。 本文从工程实践角度出发,总结在嵌入式系统设计过程中,开发人员会面临哪些主要问题,以及为解决问题而产生哪些主要方法和技术。这些方法和技术被统称为嵌入式系统的开发方法。 1 软硬件“分离”设计方法与软硬件协同设计方法 首先,用户或产品开发决策者要根据对产品性能、体积、开发成本以及上市时间等设计指标的评估,决定系统最终是以电路板式,还是以芯片式的形式实现。一般而言,对性能和体积要求不高,产品数量小,如1~几百个,但要求上市时间早的嵌入式系统,多采用电路板式实现;反之,系统体积小,产品数量大,但对上市时间要求比较松的嵌入式系统,多采用SoC芯片式实现。相应地,对于设计者而言,不同的实现形式一般应用不同的设计方法,包括软硬件“分离”设计和软硬件协同设计。 Review and Research

《嵌入式微处理器结构与应用》实训报告

桂林电子科技大学信息科技学院 《嵌入式微处理器结构与应用》实训报告 学号1152100135 姓名殷浩 指导教师:韩桂明,张锟,赵志鹏 2014 年6 月20 日

实训题目:倒计时秒表 1系统设计 1.1 设计要求 1.1.1 设计任务 使用串口连接51单片机与arm9实验箱实现99秒倒计时,并通过数码管显示。当倒计时为0时,点亮LED灯,蜂鸣器报警。 1.1.2 性能指标要求 (1) 实现99秒倒计时,并通过数码管显示; (2) 四个按键:一个“运行/暂停”按键,一个“加计时”按键,一个“减计时”按键,一个“复位”按键; (3) 四个指示灯:倒计时为0时,指示灯闪烁。 (4) 扩展多位数码管,实现多位显示(动态扫描) (5) 加入蜂鸣器,可作声音报警使用。 注意:(数码管、按键和指示灯均连接到单片机I/O口) 1.2 设计思路及设计框图 1.2.1设计思路 单片机通过按键扫描,发送不同指令并通过串口发送到arm9实验箱上,arm9程序响应接收到的指令,实现相应的计算和控制功能,并向单片机传回数据,单片机接收arm9反馈回来的数据并输出显示。 1.2.2总体设计框图 串口发送 2各个模块程序的设计 2.1单片机最小系统

单片机最小系统,或者称为最小应用系统,是指用最少的元件组成的单片机可以工作的系统。对51系列单片机来说,最小系统一般应该包括:单片机、晶振电路、复位电路。 复位电路:由电容串联电阻构成,结合"电容电压不能突变"的性质,可以知道,当系统一上电,RST脚将会出现高电平,并且,这个高电平持续的时间由电路的RC值来决定。典型的51单片机当RST脚的高电平持续两个机器周期以上就将复位,所以,适当组合RC的取值就可以保证可靠的复位.一般C 取10u,R取8.2K。原则就是要让RC组合可以在RST脚上产生不少于2个机周期的高电平。 晶振电路:典型的晶振取11.0592MHz(因为可以准确地得到9600波特率和19200波特率,用于有串口通讯的场合)/12MHz(产生精确的uS级时歇,方便定时操作) 2.2数码管显示 这次实训我们使用的是四位一体共阴数码管,经过测量,分别找到了它的段选和位选。用它来显示秒表的秒值,数码管的使能端接到P2.0、P2.1、P2.2和P2.3上,其余8个引脚分别单片机P0口相连,根据单片机引脚与数码管的连接关系,可以列出显示不同数字的段选码。从而准确的输出秒表的正确秒值。

相关文档
最新文档