芳纶纤维

芳纶纤维
芳纶纤维

芳纶纤维

芳纶是一种高强度、高模量、低密度和耐磨性好的有机合成的高科技纤维。它的全称是芳香族聚酰胺纤维。1974年,美国贸易联合会( U.S,Federal Trade Commission,FTC)将它们命名为“aramid fibers”,我国称为芳纶。其定义是:至少有85%的酰胺链(-CONH-)直接与两苯环相连接。根据此定义,可把主要化学链和环链脂肪基的一般聚酰胺聚合物和其清楚的分开。

20世纪60年代初,美国杜邦公司首先开发出具有优良热稳定性的间位芳给-HF-1,即Nomex纤维;1966年,公司又生产出了对位芳纶即Kevlar纤维;1972年日本帝人公司生产出对位芳纶Conex纤维;1986年荷兰Akzo公司生产出Twaron纤维;1987年日本帝人公司生产出Technora纤维。而我国于1972年开始进行芳纶的研制工作,并于1981年通过芳纶14的鉴定,1985年又通过芳纶1414的鉴定,它们分别相当于美国杜邦公司的Kevlar 29和Kevlar 49。

芳纶可分为邻位、间位及对位3种,而邻位无商业价值。对位芳纶主要有Kevlar(杜邦)、Technora(帝人)、Twaron(原AkzoNobel,现并人帝人)等;J司位芳纶主要有杜邦的Nomex、帝人的Conex等。

对位芳纶的主链结构具有高度的规则性,大分子是以十分伸展的状态存在,它具有耐高温、防火、耐化学腐蚀及高的力学性能和抗疲劳性。它的强度为钢的3倍,为强度较高的涤纶工业丝的4倍,它的初始模量为涤纶工业丝的4—10倍,聚酰胺纤维的10倍以上。它的稳定性好,在150℃温度下收缩率为0。它在高温下仍能保持较高的强度,如在260℃温度下仍可保持原强度的65%。

间位芳纶的大分子链呈锯齿状,它具有优良的物理力学性能,如强度、断后延伸率等。同时还拥有极佳的耐火和耐氧化性。它在260℃温度连续使用lOOOh后,其强度仍能保持原强度的65%;在300℃高温下使用7cf,仍能保持原强度的50%;它的0强度约为500℃;在火焰中难以燃烧,离开火焰后具有自熄性;它在酸、碱、漂白剂、还原剂及有机溶剂中的稳定性很好。同时还具有良好的抗辐射性能。纤维主要性能见表2-17。

表2-17世界各国生产的主要芳纶的性能比较商品名密度/(g/cm3)抗拉强度/GPa抗拉模慑/GPa断裂伸长率/%Kevlar-29Kevlar-49Kcvlar-l49NomexTwa ronTechnora劳纶14141. 441. 451. 471. 57144-1. 451. 391. 432. 92. 82. 30. 342. 83. 42. 98721301446. 080-12572103巭3.6巭2.4巭1.531巭3.3-2.O巭4.6巭2.7由于芳纶其独特的物理性能和化学性能,使得其广泛用于国防、航空、航天、造船、体育器材、汽车、建筑等工业,例如:在建筑业可以作增强混凝土构件、汽车业可替代石棉来制造刹车片、离合器、整流器等,以降低石棉对环境及人体健康的伤害。还可以用来制作防护服装,如宇航服、消防服等;耐热制品如芳纶增强的橡胶传送带;以及高性能的绳索等。

间位芳纶

间位芳纶全称“聚间苯二甲酰间苯二胺”,英文缩写MPIA( poly-m-phenyleneisophthalamide),我国称为芳纶1313。芳纶1313是一种开发早、应用广、产量大、发展快的耐高温纤维品种,其总量居特种纤维的第二位。其分子结构为:聚间苯二甲酰间苯二胺是排列规整的锯齿型大分子,在熔融以前就已经分解,玻璃化温度Tg 为270℃,在350℃以下不会发生明显的分解和碳化。当温度超过400℃时,纤维逐渐发脆、炭化直至分解,但是不会产生熔滴;在火焰中不延燃,具有较好的阻燃性,极限氧指数LOI 为29%—32%,性能极佳。间位芳纶的突出特点是优异的耐高温性,良好的尺寸稳定性,优良的可纺性、防火性和耐腐蚀性。

(l)聚间苯二甲酰间苯二胺缩聚物的制备芳纶1313由间苯二甲酰氯(ICI)和间苯二胺(MPD)缩聚而成,其反应式为:生产缩聚物主要有如下三种方法。

①界面缩聚法把配方量的间苯二胺溶于定量的水中,加入少量的酸吸收剂成为水相。再将配方量的ICI溶于有机溶剂中,然后边强烈搅拌边把ICI溶液加到MPD的水溶液中,在水和有机相的界面上立即发生反应,生成聚合物沉淀,经过分离、洗涤干燥后得到固体聚合物。

②低温溶液缩聚法先把间苯二胺溶解在N,N二甲基乙酰胺( DMAc)溶剂中,在搅拌下加人间苯二甲酰氯,反应在低温下进行,并逐步升温到反应结束。然后加入氢氧化钙,中和反应生成的氯化氧,使溶液成为DMAc-CaCI2酰胺盐溶液系统,经过浓度调整,可直接用于湿法纺丝,也可以通过碱性的离子交换树脂除去反应生成的HCI。黎苇等研究叔胺添加剂对PMIA缩聚反应的影响,发现不同结构叔胺对PMIA分子量的影响是不同的,其中以加入少量a甲基吡啶作为HCI吸收剂对提高PMIA分子量最为明显。

③乳液缩聚法将ICI溶于与水有一定相溶性的有机溶剂(如环己酮),MPD溶于含有酸吸收剂的水中,高速搅拌,使缩聚反应在搅拌时形成的乳液体系的有机相中进行。此方法利于热量传递。此外,还有专利报道有气相缩聚法制备芳香族聚酰胺。

鉴于低温溶液缩聚与界面缩聚、乳液缩聚相比,耗用溶剂少,生产效率高,在直接使用树脂溶液进行纺丝、打浆和制膜时可以省去树脂析出、水洗和再溶解等操作,在生产上更为经济,所以低温溶液聚合应用广泛。采用低温缩聚法制备聚间苯二甲酰间苯二胺,溶剂为N,N二甲基乙酰胺( DMAc)时,有下列因素对反应有影响:间苯二甲酰氯,间苯二胺纯度,摩尔比,反应温度,反应时间,溶剂中的水分含量和搅拌速度等。

(2)芳纶1313纤维的制备纤维可采用干法纺丝、湿法纺丝或干喷湿纺法制备。

①干法纺丝干法纺丝的流程为将低温溶液缩聚所得的纺丝液用氢氧化钙中和,得到约含20%聚合物及9% CaCl2的黏稠液,经过滤后加热到150~160℃进行干法纺丝,得到初生纤维因带有大量无机盐,需经多次水洗后在300℃左右进行4~5倍的拉伸,或经卷绕后的纤维先进入沸水浴进行拉伸、干燥,再于300℃下张紧1.1倍处理。干法纺丝产品有长丝和短纤维两种。

②湿法纺丝湿法纺丝的一般流程为:纺前愿液温度控制在22℃左右,原液进入体积

密度为1.366的含二甲基乙酰胺和CaCI2凝固浴中,浴温保持60℃,得到的初生纤维经水洗后,在热水浴中拉伸2. 73倍,接着再进行干燥,温度为130℃,然后在320℃的热板上再拉伸1.45倍而制得成品。日本帝人采用此方法。Conex的产品主要为短纤维,有以下几个品种:普通短纤维、原液染色短纤维、短切纤维和高强度长丝。据专利介绍的高强Conex 的湿法纺丝流程为:浆液→凝固浴→洗涤→第→次湿拉伸→第二次湿拉伸→干燥→千拉伸→后处理。制得的纤维抗张强度可达8.48~9.27cN/dtex,伸长率25%~28%在300℃时的热收缩为5.60%~6.O%。

③干喷湿纺法美国孟山都公司综合干纺和湿纺的优点,提出了干喷湿纺的工艺。采用这种工艺,纺丝拉伸倍数大,定向效果好,耐热性高。如湿纺纤维在400℃下热收缩率为80%,而干喷湿纺纤维小于lO%,湿纺的零强温度为440℃,干纺为470℃,而千喷湿纺可提高到515℃。

各大公司采用的生产工艺流程为:美国杜邦公司采用低温溶液聚合,干法纺丝,得纤维Nomex,日本帝人公司采用界面聚合,再溶解,用倒章式湿法纺丝装置进行纺丝,纺出纤维称为Conex;孟山都公司综台干纺和湿纺的优点提出了干喷湿纺工艺。此外,前苏联的ΦeHHnox用热塑挤压法生产。

(3)芳纶1313酌共聚及表面改性针对聚间苯二甲酰间苯二胺纤维的耐疲劳性、阻燃性、耐光性以及和基体树脂的浸润性尚不够理想等问题,国内外开展了大量的研究。

黎苇等以2,5--氯对苯二甲酰氯(DDC)作为第三单体,将其与间苯二甲酰氯(ICl)、间苯二胺(MPD)在N,N-二甲基乙酰胺(DMAc)中进行低温溶液共缩聚反应,合成了含氯取代基的聚间苯二甲酰间苯二胺树脂( PMIAC)。他们在芳香聚合物的苯环上部分引入卤原子,可适度降低大分子链的规整性,有效地提高其阻燃性及和基体树脂的浸润性。日本的Ozawa Shuji等人发表了由芳族二胺和芳族的二元羧酸的二卤化物的缩聚反应制备芳族聚酰胺的专利。Lin等研究了通过选择不同的二胺和二元酰氯可得到不同的重复单元的方法,从而在保持良好的耐热性能的同时,改进材料的阻燃性能。Lin等采用TCP代替间苯二胺,如果10%质量比的TCP代替间苯二胺,可使其5%的热质量损失温度从260.1℃升高到444.5℃。

还可对纤维表面进行化学处理,改善其黏结性能,提高阻燃性等。雷渭援等研究了在Kevlar 49纤维表面氮原子用烯丙基取代的化学处理,使其表面结晶度明显降低,表面形态略显粗糙,但400℃以下的热稳定性没有明显变化。现在通过控制表面反应,已可在Kevlar 纤维上引入各种功能团,以便在制备复合材料时能与树脂母体反应。这项研究是由美国纽约的高分子技术大学承担的,他们研究了反应环境和反应条件对表面形态和纤维力学性能的影响,其中包括表面硝化和硝化后进一步还原,以及Kevlar纤维的表面硝化反应。当引入较多量的功能团时,纤维强度有少量损失。

某些功能团的引入,可改进复合材料的层间剪切强度。这一化学改性方法在芳纶1313纤维上的应用也正在展开。也可以采用等离子处理等物理方法来活化纤维表面,可以使纤维表面最大化,同时在表面形成一个活性层,以提高表面粗糙度。

以上信息由防火资源网搜集整理或发布,了解更多详情请登录https://www.360docs.net/doc/ad5738262.html,

以火灾防护服为例,若将性能不同的两种芳酰胺纤维混合起来,就会产生意想不到的相乘效果。例如在间位芳酰胺中,仅混入5%的对位芳酰胺所制成的衣服,即使处于火焰中,布的强度和外观也不受损,更不会发生破裂。

对位芳纶

对位芳纶全称为聚对苯二甲酰对苯二胺,英文缩写PPTA,我国俗称芳纶1414。对位芳纶采用低温缩聚法合成,其单体主要是对苯二胺(PPD)和对苯二甲酰氯(TPC)或对苯二甲酸(TPA)。

聚对苯二甲酰对苯二胺(PPTA)纺丝制成芳纶纤维。主要商品有Kevlar、Twaron等。PPTA 的缩聚单体是PPD和TPC,PPTA在达到其熔点之前即发生分解,因此既不能用熔融聚合法聚合,也不能用熔融纺丝法纺丝。Du Pont公司采用低温溶液缩聚法生产PPTA,缩聚反应按下式进行。

聚合过程包括适量的PPD在缩聚溶剂中溶解,氮气保护下冷却到-15℃,然后伴随搅拌添加TPC,生成的产物是黏稠的糊状浆,反应物允许静置过夜,同时逐渐升温至室温。通过将此反应物在混合器中用水搅拌,洗去溶剂和HCl,聚合物过滤收集。在该反应中,溶剂的选择、反应物的化学计量、体系中水分等因素对决定聚合物分子质量有重要作用。

缩聚溶剂选用弱碱性酰胺溶剂,如N-甲基吡咯烷酮(NMP)、二甲基乙酰胺、六甲基磷酰胺( HMPA)等。选用酰胺类溶剂的原因是它们对芳香族聚酰胺分子有很强的溶解能力,在聚合物链增长到足够长之前,能防止其从溶液中结晶沉淀出来,从而保证反应活性,得到高分子量产物。实际生产中,采用混合溶剂以便提高聚合物分子量。据报道,Du Pont公司早期采用HMPA/NMP混合物作为缩聚溶剂,当HMPA/NMP的体积比为2:l时,生产的PPTA 有最大的分子量。最佳反应物的浓度约为0.25mol/L,浓度低于0.25mol/L或高于0.3mol/L 会导致分子量的下降。

由于后期发现HMPA溶剂可能致癌.Du Pont公司花费了大量的精力才寻找到一种比较合适的替代溶剂(NMP/CaCl2)。聚合产物的丹子量与NMP/CaCl2的比例有相当大的关系,提高或降低CaCl2的用量都会降低聚合产物的分子量。由于NMP/CaCl2溶剂系统的溶解能力比HMPA/NMP溶剂系统稍差,聚合产物中有低聚体存在,这个问题的解决得益于先进的反应器,新型反应器系统消除了低聚体晶核的产生和结晶。加入碱性化合物中和反应过程中的HCl有利于提高分子质量。发现LiH是最有效的碱性化台物,原因之一是它与HCl反应不产生水,而水的存在将导致链反应的终止。

当二元酸成为廉价原料后,也进行过对苯二甲酸( TPA)与PPD合成PPTA的研究。当TPA和PPD的缩聚反应中有吡啶存在,在含有已经溶解了CaCl2和LiCI的NMP中,可以制得高分子量的PPTA。据报道,采用聚4-乙烯吡啶代替吡啶,可以克服TPA和二元胺缩聚时芳香族聚酰胺分子量低的困难。

纺丝时,采用浓硫酸作溶剂制备纺丝溶液,溶解温度80℃,溶液浓度一般为14%~20%。

采用这些条件是为了获得具有各向异性的液晶纺丝原液。采用干喷湿纺法纺丝,干喷湿纺的作用之一是将喷丝板和低温凝固水浴隔开,以便喷丝板保温,保持纺丝溶液的液晶态。另外,干喷湿纺的空气层有利于纺丝溶液的拉伸。喷头拉伸比(卷绕速度/喷丝于L吐出速度)对初生纤维强度有重要影响,一般大于3。纺丝时预先将纺丝原液加热到70—90℃,纺出喷丝孔后,再经过约0.5cm长的空气层,然后进入温度约10℃、含硫酸量为20%—27%的凝固浴中。由于纺丝溶液具有液晶性质,通过喷丝孔时已经高度取向,初生纤维不必进行拉伸就能获得优良的力学性能,只需水洗干燥就可以得到标准级的芳纶。

为了得到更高模量的芳纶,还需要在氮气流的保护下,进行约550℃的热处理。高模量Kevlar 49就是标准级Kevlar 29通过热处理得到的。湿PPTA初生纤维在高温下的热处理对于提高模量很有效,但对强度的影响不大。

Twaron的制造工艺和Kevlar的类似,但Twaron的缩聚反应溶剂是NMP/CaCl2,受Twaron公司的产品专利保护。PPD在冷却的NMP/CaCI2的悬浮液中溶解,该溶液的主要功能是形成一种带有酰胺键合的复合体,以便使溶液中的聚合物分子链尽可能的长,较高的分子量可以提高纤维的强度。目前PPTA的典型的数均分子量约为2X104(对应于聚合度85和分子链长约110nm).多分散性约为2~3。长丝经上油后干燥,通过若干后处理工序就可以生产出不同品种的长丝产品,Twaron的其他产品如短纤维和浆粕最初都是用长丝制成的。

通过纤维成形技术改善PPTA型芳纶力学性能的措施有:减小喷丝孔和纤维的直径,增加喷丝孔的长径比,增加纺丝张力和纺丝速度,对初生纤维进行浸渍后热处理,冷冻固态下的高压纺丝,聚合物渗透技术等。此类技术基本上是从减少PPTA纤维结构缺陷、提高结晶取向程度来考虑的。

其他新型耐高温纤维

耐高温纤维通常是指可在180℃以上长期使用或在更高温度下仍能在一定时间内保持有用的物理性能的纤维。热对纤维性能的影响有两点:一是高温下纤维的拉伸性能;二是经一定时间的高温作用后,室温下纤维的拉伸性能。前者指纤维承受高温作用的能力,后者则常用作抵抗热降解的分级标准。纤维由于热作用而发生的降解通常是温度、时间、相对湿度和空气循环作用的函数。由于许多热降解与氧有关,和纤维接触的氧气量越多,降解速度也越快,因此极限氧指数是很重要的衡量纤维耐热性能的指标。

随着合成及纺丝技术的进步,耐高温纤维品种向着更高性能或更高性价比方向发展,新型的耐高温纤维不断被研究开发出来。

(1)聚对亚苯基苯并双恶唑纤维(PBO)PBO属于溶致性液晶高分子聚合物,由4,6-二氨基-1,3-间苯二酚盐酸盐与对苯二甲酸在多磷酸溶剂中缩聚反应制得,或与对苯二甲酰氯在甲磺酸溶剂和五氧化二磷中反应制得,PBO纤维通过液晶纺丝制备。

由液晶纺丝所得的PBO纤维最显著的特征是大分子链、微晶和微纤均沿纤维轴向呈现几乎完全取向排列,形成高取向(取向系数高达0,99)的有序结构,因此PBO纤维具有超出一般有机纤维的超级性能,如耐热性和力学性能等。

PBO纤维的极限氧指数(LOI值)为68%,为有机纤维中的最高。其耐热性极佳,热分解温度高达650℃,是目前有机纤维中耐热性能最高的纤维材料,其耐热工作温度比对位芳纶高100℃左右。高强、高模型PBO纤维在300℃热空气中处理lOOh后,强度保持率分别约为48%和42%;在500℃热空气中仍能保持40%;

高模型PBO纤维在400℃下,模量保持率为75%。

PBO纤维的热尺寸稳定性与其他具有伸展限定敛结构的高性能纤维一样具有负的热膨胀系数,它在300℃热空气中无张力处理30min,收缩率为0.1%左右,是芳纶的五分之一。

PBO纤维除具备优异的耐热性能以外,同时具有出色的力学性能,它的拉伸强度高达5.8GPa,拉伸模量达280GPa,因此,PBO纤维被喻为21世纪的超级纤维,几乎可以替代目前有机高性能纤维所有的应用领域。

但是,PBO纤维有一个致命的缺点,即其耐光性较差,暴露于紫外光至可见光区会引起纤维的性能下降,一般在室外慎用或需用涂层保护。

(2)聚对亚苯基苯并双噻唑纤维(PBT)聚对亚苯基苯并裂噻唑纤维是一种具有高强、高模的耐热氧化性新型高分子材料,它的成纤高聚体属于溶致型液晶,采用对苯二硫脲法或对苯二甲酸法反应制得,并溶解于多磷酸溶液中,纤维采用干喷湿纺法纺制。

PBT纤维具有极好的热稳定性,在空气中热分解温度为585℃,在氮气中热分解温度为693℃,在空气中热老化200h后,质量保持率为98%,在372℃下经200h热老化后,质量保持率为53%。

PBT纤维能耐苛刻的环境条件,绝大部分他学药品对其性能不产生影响,但不耐强酸。

在力学性能方面,PBT纤维与PBO纤维相仿,它的抗张强度、抗张模量和断裂伸长率分别为4.2GPa、365GPa和1.1%。

因此,PBT纤维极适宜制备耐热性防护薄板、防切割、防弹、耐高温和耐火焰的防护服等。

(3)聚砜基酰胺纤维(PSA)聚砜基酰胺纤维是耐热性优异的新型耐高温纤维,由对苯二甲酰氯和4,4`-二氨基二苯砜及3,3`-二氨基二苯砜为主要原料聚合制成成纤聚合物后,溶解于二甲基乙酰胺中,然后经湿纺工艺和干纺工艺加工而成。它的成纤高聚物是由酰胺基和砜基相互连接对位苯基和间位苯基所构成的线型大分子,由于大分子主链上存在强吸电子的砜基基团,通过苯环的双键共轭,使其具有优异的耐热特性。

PSA纤维的力学性能与间位芳纶(PMIA)相近,而其耐热性、热稳定性、阻燃性等方面优于PMIA纤维。此外,它还具有自润滑性、耐磨性、抗冲击性、电绝缘性等。

根据PSA纤维的特性,可适用于耐高温防护用品、高温滤材、电绝缘材料、代石棉制品和蜂窝结构材料等。

(4)聚醚醚酮纤维(PEEK)聚醚醚酮纤维作为一种半结晶高分子材料,具有高耐热等级(UL温度指数高达250℃),可在200—260℃长期使用,问世后曾一度被称为超耐热高分子材料。PEEK是由4,4`二氟苯酮和对苯酚碱金属盐反应得到的聚合体经熔融纺丝制得。其分子结构中含有芳香环和柔性的醚键,使得纤维具有超高的热稳定性和化学稳定性。PEEK 纤维的熔点为334℃,玻璃化温度为143℃,在200℃下24h的强度保持率为1OO%,极限氧指数为33%,在火焰中放出的毒气极低。PEEK纤维几乎能耐除浓硫酸外的其他大部分化学试剂,此外PEEK纤维还具有很低的收缩率和良好的电绝缘性。

以上信息由防火资源网搜集整理或发布,了解更多详情请登录https://www.360docs.net/doc/ad5738262.html,

FRB复合材料

2、FRP复合材料在结构加固工程中应用领域 2.1民用建筑、桥梁及工业厂房 FRP复合材料因其优异的力学性能,在民用建筑及工业厂房的加固中应用很多,主要有:①梁加固。加固的作用包括抗弯和抗剪。在进行抗弯加固时,FRP复合材料的纤维方向与梁的轴向一致,一般贴在梁的受拉侧,已提高梁的承载能力。据有关试验得出,只要该梁不是超筋梁,贴一层AK-60可以提高承载力30%左右,贴两层可以提高40%左右;在进行抗剪加固时,FRP复合材料的纤维方向与梁的轴向垂直; ②板加固。一般对于板的加固净空要求比较高,而且加固后不影响其外观,所以用厚度很薄且柔软的FRP复合材料进行加固是一种理想的选择;③柱加固。芳纶纤维布、玻璃纤维布是比较理想的柱加固材料。因为它们的弹模小,相对于碳纤维(弹模235Gpa),其延性较好;并且,在进行棱角打磨时一般只需要10mm左右,一般不需打磨,而碳纤维则需要30mm左右,若采用芳纶纤维就可以节约很多工时。2.2地铁、隧道 因地铁和隧道是一种在地下工作的结构,所以它的受力与地面结构是不一样的。在洞顶和洞侧,它都有土压力的作用,而且也有净空的要求,所以进行裂缝修补时,传统的加固方法不可行,而用芳纶纤维布(不导电)进行加固维修就可以满足它的各方面要求,因为在地铁或隧道的拱顶或侧壁的裂缝一般是多向且不规则的,这就要求修复材料必须具有良好的抗剪性能,而且还是一种不导电的材料,所以芳纶布在隧道地铁工程中是一种最佳的选择。 2.3烟囱、水塔 由于烟囱水塔这样向高空发展的结构,加固维修特别困难,传统加固方法(如扩大截面法、粘钢法)基本上很难解决这样的问题,而采用轻质高强、耐腐蚀、耐久性能都很好的复合材料(尤其是芳纶纤维)进行加固,就是一种很好的方法。 3、几种加固方法的比较

高性能增强材料——芳纶纤维

高性能增强材料——芳纶纤维 安源 摘要: 芳族聚酰胺纤维由美国杜邦公司于20世纪60年代首先开发并最早实现工业化生产。该产品可以用做增强材料。介绍芳族聚酰胺纤维的发展、性能、制备及其应用。 关键词:芳纶;性能;制备;应用 1 概述 增强材料就像树木中的纤维,混凝土中的钢筋一样,是复合材料的重要组成部分,并起到非常重要的作用。它不仅能使材料显示出较高的抗张强度和刚度,而且能减少收缩,提高热变形温度和低温冲击强度等。复合材料的性能在很大程度上取决于纤维的性能、含量及使用状态。例如在纤维增强复合材料中,纤维是承受载荷的组元,纤维的力学性能决定了复合材料的性能。 芳纶是芳族聚酰胺纤维的通称,主要分为聚对苯二甲酰对苯二胺(PPTA)纤维(芳纶1414)和聚间苯二甲酰间苯二胺(PMIA)纤维(芳纶1313)。美国杜邦公司于20世纪60年代首先开发出芳纶1313和芳纶1414 ,并最早实现工业化生产(商品名分别为Nomex和Kevlar)。1987年推出了KevlarHT、Kevlar68和Kevlar149。1986年荷兰阿克苏(Akzo)公司生产出Twaron纤维; 1987年日本帝人公司生产出Technora纤维。而中国于1972年开始进行芳纶的研制工作,并于1981年通过芳纶14的践定,1985年又通过芳纶1414的鉴定,它们分别相当于美国杜邦公司的Kevlar29和Kevlar49。 2 全球芳纶纤维的发展概况 全球芳纶纤维产能主要集中在日本、美国和欧洲,生产芳纶纤维的公司也较为集中,目前全球从事芳纶纤维生产的厂家主要有5个:美国杜邦公司(Kevlar)、日本帝人公司(Twaron、Technora)、俄罗斯卡明斯克化纤股份公司(SVM、Apmoc、Rusar)和特威尔化纤股份公司(SVM、Apmoc)、韩国科隆公司(Kolon),其他国家或公司仅有少量生产。 2009年,全球芳纶纤维生产能力约9.51万t/a,其中对位芳纶纤维产能约6.61万t/a,杜邦和帝人二家公司产能合计6.15万t/a,占对位芳纶纤维产能的93%;间位芳纶纤维的产能约为2.9万t/a,主要的生产公司仍为杜邦公司,产能为全球总产能的75%以上。预测到2015年全球对位芳纶纤维产能可达11.0万t/a,问位芳纶的产能为5.2万t/a。 2009年全球芳纶纤维的消费量约为7.5万t,其中对位芳纶纤维5.2万t,间位芳纶纤维2.3万t。芳纶纤维的消费区域主要也集中在美国、欧洲和日本。欧洲是世界芳纶纤维的最大消费市场,其消费量占全球总消费量的48%,约为3.6万t;美国消费量占全球36,约2.7万t;日本消费量约占全球11%,约0.8万t;其他地区约0.4万t。随着生产技术的发展以及生产成本的逐步降低,芳纶纤维的消费领域已经逐步从应用于军工和航天领域的特殊材料,发展成为在工业和民用领域有着广泛应用的高性能材料。 3 我国芳纶纤维的基本概况

芳纶纤维复合材料

绵阳职业技术学院 材料系 先进复合材料成型工艺 芳纶纤维增强的先进复合材料制品

目录 1 芳纶纤维增强的先进复合材料的应用 (1) 1.1 概况 (1) 1.2 芳纶品种及性能 (1) 1.3 芳纶纤维产品形态及复合材料的成型方法 (3) 1.4 芳纶纤维复合材料的应用 (3) 2 原材料 (5) 2.1 聚氨酯树脂 (5) 2.2 芳纶纤维 (7) 3 制作工艺 (8) 3.1成形方法的选择 (8) 3.2 芳纶1313 (10) 4 修补及性能检测 (10) 4.1 缺陷 (10) 4.2 芳纶表面改性 (10) 5 参考文献 (13)

先进复合材料成型工艺 芳纶纤维增强的先进复合材料制品 1 芳纶纤维增强的先进复合材料的应用 1.1 概况 目前,先进复合材料的增强材料主要是S高强玻璃纤维非碳纤维和芳纶纤维。前两者介绍文章较多,本文主要针对芳纶复合材料及应用情况作概括介绍。 芳纶纤维是芳香族聚酰胺类纤维的通称。它是一种强度高、模量高、低密度、耐折、耐磨性好的人工合成的有机纤维。据了解,现在美国、荷兰、日本、德国、法国和俄罗斯等国都在开发芳纶纤维。我国也进行了这方面研制并取得了一定成绩。 美国杜邦公司开发的芳纷纤维,商品名“凯芙拉”(K velar)有多种规格出售,年产量已达2t。荷兰阿克苏(AKZO)公司研制的芳纶纤维,商品名“特瓦纶”(Twaron),年产量在5000t以上。日本帝人公司开发的共聚芳纶纤维,商品名“太库诺拉”,年产量为500t以上。德国赫斯特公司(HOECHST)生产芳纶纤维年产量为150t。我国1981年研制成功芳纶I,1985年研制成功芳纶Ⅱ,1994年北京燕山石化公司研究院研制成功溶致液晶全芳香族聚酰胺(PPTA),通过专家鉴定,为今后中石、工业化生产开辟了途径。 在世界范围内,芳纶纤维正以年增长率20%左右的速度发展,并从单一军用向民用转移。芳纶纤维用于汽车及防护用品方面占68%,用于造船业达21%,其余为航空、航天及军用。 1.2 芳纶品种及性能 芳纶纤维,因选择原料的不同及合成工艺不同,又可分为间位芳香族聚酰胺纤维,商品名为“欧梅克斯”(Nomex)对位芳香族聚酰胺纤维,商品名“凯芙拉”(Kevlar)和芳香族聚酰胺共聚纤维,商品名“太库诺拉”等。表1将具有代表性的“凯芙拉”纤维和我国研制的芳纶I、芳纶Ⅱ主要性能列出,同时与S高强玻璃纤维及碳纤维进行比较。 从表1中可以发现芳纶纤维密度最小,拉伸强度与S2玻璃纤维和碳纤维接近,拉伸模量居中。此外,芳纶纤维的热稳定性好,可在180℃下长期使用,短期可耐300℃,对强度无大的影响。在-170℃下也不会变脆,仍保持其性能。芳纶纤维的力学性能在有机纤维中是非常突出的,与无机纤维比也不逊色,芳纶纤维除强酸、强碱外,几乎不受有机溶剂、油类影响。但芳纶纤维对紫外线敏感, 若长期暴露在阳光下,其强度会有很大的损失,因此,在使用中应加保护层。 1

芳纶纤维国内市场结构简析

然而,我国对位芳纶纤维的研发起步较晚。因技术研发实力等原因,一直未有规模化生产芳纶1414的企业。而今年以来,苏州兆达特纤科技有限公司在建总投资2.6亿元,年产1000吨对位芳纶技术产业化项目的一期年产500 吨对位芳纶于2010年7月投入运行。 目前全球芳纶产能主要集中在日本和美国、欧洲;生产对位芳纶的厂家主要有美国杜邦公司、日本帝人公司和俄罗斯耐热公司等,前两家公司的年产量分别占世界总产量的55%和40%;仅美国Kevlar纤维目前就有十多个牌号,每个牌号又有数十种规格。 中国从20世纪60年代初开始研究开发间位芳纶生产技术,直到2004年,该项技术才得以攻破,烟台氨纶股份有限公司在国内率先实现间位芳纶的工业化生产,打破了国外公司垄断的局面。到2009年,烟台氨纶股份有限公司的间位芳纶生产能力已达到4300t/a,在世界间位芳纶供应商中列居第二位。除烟台氨纶外,中国苏州圣欧、广东彩艳公司也共有1 000t/a 的间位芳纶生产装置投产,使得中国在全球仅有的6个间位芳纶供应商中占据了3席。间位芳纶的国产化大大拉动了上下游产业的发展。在中国纺织工业加工制造优势明显的背景下,全球间位芳纶产业特别是间位芳纶下游加工业出现了明显向中国转移的趋势。 而随着国内市场需求不断扩大,对位芳纶需求量也与日俱增。据统计,我国每年直接和间接进口对位芳纶及相关制品总额达10亿元人民币,进口量达3000吨,年需求量达5000吨~5500吨,市场潜力巨大。在我国,芳纶纤维的主要用途是光纤补强材料,其次为防弹材料领域。 然而,我国对位芳纶纤维的研发起步较晚。因技术研发实力等原因,一直未有规模化生产芳纶1414的企业。而今年以来,苏州兆达特纤科技有限公司在建总投资2.6亿元,年产1000吨对位芳纶技术产业化项目的一期年产500 吨对位芳纶于2010年7月投入运行;河北硅谷化工公司1000t/a芳纶Ⅱ2006年试车投产,其产品芳纶Ⅱ产品命名为特威纶(Teweil un Fibre)并开始销售。 广东彩艳股份公司研制生产的芳纶Ⅲ是杂环共聚酰胺纤维,其力学性能、复合强度、耐温性能均高于芳纶1414,其中复合强度比芳纶1414高30%以上,可以达到5000Mpa;模量高10%,可以达到145-150GPa以上。 中国纺织工业协会于2007年10月15日在上海市组织和主持了艾麦达纤维科技有限公司“100 吨/年对位芳纶纤维制造中试研究”项目鉴定会。 2010年8月20日上午,中国石化“十条龙”科技攻关项目之一——“对位芳纶的力学性能与结构形态的表征“和“百吨级对位芳纶工业化试验装置成套技术开发”项目在仪化通过了由中国石化科技发展部组织的审查。 河南神马集团有限公司2005年10月成立赛尔项目,开始进行对位芳纶纤维的聚合纺丝及其产业化技术研发,并建设了年产500吨对位芳纶纤维生产线。2007年8月,集团打通

芳纶纤维介绍

芳纶 芳纶(芳族聚酰胺纤维)可能是最知名的特种纤维,由尼龙而来,且与尼龙极其类似。芳纶中含5%直接与两个芳香环相连的酰胺键。著名的品牌,包括杜邦的Nomex和Kevl~,以及日本帝人公司与Kevl~非常相似的Twaron纤维。Kevl~的强度和模量比传统的高强尼龙纤维,分别高2倍和9倍。 Kevlar能够应用于如下领域:防弹材料、复合材料支撑物,振动延续阻滞物、轮胎增强材料,高应力作业下的机械橡胶布、高强低延伸的绳索。Nomex与Kevlar在化学组成上不同,它用异酞酰胺取代对酞酰胺,从而获得有优异耐热性的纤维,在高温条件下有优异的性能。 随着芳纶在安全和强力市场领域应用的深入,市场应用将会缓慢增加,但其量不会显著扩大,问题在于产量/价格/利润之间的相互关系。从Spandex大量上市导致价格下降的经验来看,如果纤维价格下跌20%-50%,纤维的产量将会急剧增加芳纶纤维全称为"聚对苯二甲酰对苯二胺",英文为Aramid fiber,是一种新型高科技合成纤维,具有超高强度、高模量和耐高温、耐酸耐碱、重量轻等优良性能,其强度是钢丝的5~6倍,模量为钢丝或玻璃纤维的2~3倍,韧性是钢丝的2倍,而重量仅为钢丝的1/5左右,在560度的温度下,不分解,不融化。它具有良好的绝缘性和抗老化性能,具有很长的生命周期。芳纶的发现,被认为是材料界一个非常重要的历史进程。 芳纶的发明:20世纪60年代由美国杜邦(DuPont)公司成功地开发并率先产业化; 芳纶的发展: 在30多年的时间里,芳纶纤维走过了由军用战略物资向民用物资过渡的历程,价格也降低了将近一半。现在国外芳纶无论是研发水平还是规模化生产都日趋成熟。在芳纶纤维生产领域,对位芳酰胺纤维发展最快,产能主要集中在日本和美国、欧洲。如美国杜邦的Kevlar纤维,荷兰阿克苏诺贝尔(Akzo Nobel)公司(已与帝人合并)的Twaron 纤维,日本帝人公司的Technora纤维及俄罗斯的Terlon纤维等。间位芳酰胺纤维的品种有Nomex、Conex、Fenelon纤维等。美国杜邦生产的Kevlar纤维,目前就有Kevlar一49、Kevlar-29等十多个牌号,每个牌号又有数十种规格的产品。杜邦公司在去年宣布将扩大Kevlar纤维的生产能力,该扩建项目预计在今年年底完工。帝人、赫斯特等芳纶生产的知名企业也不甘示弱,纷纷扩产或联合,并积极开拓市场,希望成为这个朝阳产业的生力军 芳纶纤维在高性能纤维世界中有独特地位。它是强度很高的纤维——以相同重量为基础,是钢材强度的5倍;其另一种卓越性能是极高的比张力模量(抗拉伸)——其韧度是最常用的增强纤维E-玻璃纤维的三倍。 它具有固有的不可燃性,连续使用温度范围极宽,由﹣320。F(﹣196。C)到400。F(204℃)。可耐受超过1000°F(538℃)的材料作有限度接触。 芳纶KEVLAR是杜邦公司独一无二的aramid纤维系列的注册商标,有四种类型的产品出售——芳纶KEVLAR 29、KEVLAR129、KEVLAR 49、KEVLAR 149。 芳纶是用于增强子午线轮胎及其机械用橡胶制品,如软管、输送带及动力传送皮带而专门设计制造的品种。芳纶的工业专门用途,例如绳索、缆绳、防弹织物、涂层织物、

芳纶纤维材料及其应用

芳纶纤维材料及其应用 摘要:本文对芳纶纤维的发展概况,结构性能以及主要应用领域作简单介绍。最后分析一下芳纶纤维的发展前景。 关键词:芳纶纤维材料;芳纶1313;芳纶1414;结构性能;应用;发展前景 Aramid fiber material and its application Abstract:In this paper, the general development of aramid fiber, structure, performance and main application field are introduced.Finally, analysis of the development of the aramid fiber Key words:Aramid fiber material;Aramid 1313; Aramid 1414;Structure performance; Application; Future development 1 芳纶纤维概况 芳纶纤维即芳香族聚酞胺纤维,是以芳香族化合物为原料经缩聚纺丝制得的合成纤维。芳香族聚酰胺纤维首先是由美国杜邦公司于1965年引入市场的。这种间位取向的芳香族聚酰胺纤维称作Nomex。上世纪70年代早期,杜邦公司开发了第二种产品即对位芳香族聚酰胺纤维Kevlar,并且此后一直占据芳纶的首要地位,直到1986年荷兰Akzo公司的Twaron、1987年日本帝人公司的Technora及俄罗斯的ARMOC纤维的出现,才使Kevlar独占体系崩溃。[1] 芳纶纤维工业化的产品有两种:芳纶1313(全称为聚间苯二甲酰间苯二胺纤维)和芳纶1414(全称为聚对苯二甲酰对苯二胺纤维)。芳纶纤维具有良好的抗冲击和耐疲劳性能,有良好的介电性和化学稳定性,耐有机溶剂、燃料、有机酸及稀浓度的强酸、强碱,耐屈折性和加工性能好。它可用普通织机编织成织物,编织后其强度不低于原纤维强度的90%[2]。 2 芳纶1313 2.1发展情况 芳纶1313最早由美国杜邦公司研制成功并实现工业化生产,产品注册为Nomex(诺美克斯)。1967年正式工业化生产。是一种耐高温纤维,由聚间苯二甲酰间苯二胺构成,是目前所有耐高温纤维中产量最大,应用最广的一个品种。日本Teijin公司于1974年也成功实现商业化,商品名为Conex ,其主要侧重纤维的开发,除常规纤维品种外,还有染色纤维、高度阻燃稳定纤维Conex FR和耐候性极好的Conex L。另外,还有日本Unitika公司的

芳纶纤维概述

芳纶纤维 凡聚合物大分子的主链由芳香环和酰胺键构成,且其中至少85%的酰胺基直接键合在芳香环上,每个重复单元的酰胺基中的氮原子和羰基均直接与芳香环中的碳原子相连接并置换其中的一个氢原子的聚合物称为芳香族聚酰胺纤维,我国定名为芳纶纤维。 芳纶纤维有两大类:全芳族聚酰胺纤维和杂环芳族聚酰胺纤维。全芳族聚酰胺纤维主要包括对位的聚对苯二甲酰对苯二胺和聚对苯甲酰胺纤维、间位的聚间苯二甲酰间苯二胺和聚间苯甲酰胺纤维、共聚芳酰胺纤维以及如引入折叠基、巨型侧基的其它芳族聚酰胺纤维。杂环芳族聚酰胺纤维是指含有氮、氧、硫等杂质原子的二胺和二酰氯缩聚而成的芳纶纤维,如有序结构的杂环聚酰胺纤维等。1、聚对苯二甲酰对苯二胺(PPTA)纤维 PPTA纤维是芳纶在复合材料中应用最为普遍的一个品种。中国于80年代中期试生产此纤维,定名为芳纶1414(芳纶II)。芳纶纤维具有优异的力学、化学、热学、电学等性能。PPTA纤维具有高拉伸强度、高拉伸模量、低密度、优良吸能性和减震、耐磨、耐冲击、抗疲劳、尺寸稳定等优异的力学和动态性能;良好的耐化学腐蚀性;高耐热、低膨胀、低导热、不燃、不熔等突出的热性能以及优良的介电性能。

2、聚对苯甲酰胺(PBA)纤维 中国于80年代初期曾试生产此纤维,定名为芳纶14(芳纶I)。芳纶I的拉伸强度比芳纶II低约20%,但拉伸模量却高出50%以上。芳纶I热老化性能好,这些性能用作某些复合材料的增强剂是很有利的。 3、芳纶共聚纤维 采用新的二胺或第三单体合成新的芳纶是提高芳纶纤维性能的重要途径。 (1)对位芳酰胺共聚纤维它是由对苯二甲酰氯与对苯二胺及第三单体3,4'-二氨基二苯醚在N,N'-二甲基乙酰胺等溶剂中低温缩聚而成的。共聚物溶液中和后直接进行湿法纺丝和后处理而得的各种产品。 (2)聚对芳酰胺苯并咪唑纤维一般认为它们是在原PPTA的基础上引入对亚苯基苯并咪唑类杂环二胺,经低温缩聚而成的三元构聚芳酰胺体系,纺丝后再经高温热拉伸而成。 ◆芳纶纤维的应用 1、先进复合材料:(1)航空航天领域;(2)舰船中的应用;(3)汽车工业。 2、防弹制品:(1)硬质防弹装甲板;(2)软质防弹背心。

复合材料研究及其应用

郑州华信学院毕业论文 课题名称:复合材料研究及其应用 系部:机电工程学院 班级:09机电班 姓名: 指导老师: 时间:2012年3月28日

复合材料研究及其应用 摘要 复合材料是指除机械性能以外而提供其他物理性能的复合材料。如:导电、超导、半导、磁性、压电、阻尼、吸波、透波、磨擦、屏蔽、阻燃、防热、吸声、隔热等凸显某一功能。统称为功能复合材料。功能复合材料主要由功能体和增强体及基体组成。功能体可由一种或以上功能材料组成。多元功能体的复合材料、可以具有多种功能。同时,还有可能由于复合效应而产生新的功能。多功能复合材料是功能复合材料的发展方向。 一、全球复合材料发展概况 复合材料是指由两种或两种以上不同物质以不同方式组合而成的材料,它可以发挥各种材料的优点,克服单一材料的缺陷,扩大材料的应用范围。由于复合材料具有重量轻、强度高、加工成型方便、弹性优良、耐化学腐蚀和耐候性好等特点,已逐步取代木材及金属合金,广泛应用于航空航天、汽车、电子电气、建筑、健身器材等领域,在近几年更是得到了飞速发展。 随着科技的发展,树脂与玻璃纤维在技术上不断进步,生产厂家的制造能力普遍提高,使得玻纤增强复合材料的价格成本已被许多行业接受,但玻纤增强复合材料的强度尚不足以和金属匹敌。因此,碳纤维、硼纤维等增强复合材料相继

问世,使高分子复合材料家族更加完备,已经成为众多产业的必备材料。目前全世界复合材料的年产量已达550多万吨,年产值达1300亿美元以上,若将欧、美的军事航空航天的高价值产品计入,其产值将更为惊人。从全球范围看,世界复合材料的生产主要集中在欧美和东亚地区。近几年欧美复合材料产需均持续增长,而亚洲的日本则因经济不景气,发展较为缓慢,但中国尤其是中国内地的市场发展迅速。据世界主要复合材料生产商PPG公司统计,2000年欧洲的复合材料全球占有率约为32%,年产量约200万吨。与此同时,美国复合材料在20世纪90年代年均增长率约为美国GDP增长率的2倍,达到4%~6%。2000年,美国复合材料的年产量达170万吨左右。特别是汽车用复合材料的迅速增加使得美国汽车在全球市场上重新崛起。亚洲近几年复合材料的发展情况与政治经济的整体变化密切相关,各国的占有率变化很大。总体而言,亚洲的复合材料仍将继续增长,2000年的总产量约为145万吨,预计2005年总产量将达180万吨。 从应用上看,复合材料在美国和欧洲主要用于航空航天、汽车等行业。2000年美国汽车零件的复合材料用量达14.8万吨,欧洲汽车复合材料用量到2003年估计可达10.5万吨。而在日本,复合材料主要用于住宅建设,如卫浴设备等,此类产品在2000年的用量达7.5万吨,汽车等领域的用量仅为2.4万吨。不过从全球范围看,汽车工业是复合材料最大的用户,今后发展潜力仍十分巨大,目前还有许多新技术正在开发中。例如,为降低发动机噪声,增加轿车的舒适性,正着力开发两层冷轧板间粘附热塑性树脂的减振钢板;为满足发动机向高速、增压、高负荷方向发展的要求,发动机活塞、连杆、轴瓦已开始应用金属基复合材料。为满足汽车轻量化要求,必将会有越来越多的新型复合材料将被应用到汽车

芳纶纤维

芳纶纤维 摘要:芳纶纤维是一种新型高科技合成纤维,是由美国杜邦公司在2O世纪60年代成功开发并率先产业化的纤维产品。芳纶纤维的问世被认为是材料界发展的一个重要里程碑。由于芳纶纤维具有优良的性能,在我国的航空航天,体育用材料,轮胎,高强绳索等材料中有广泛的应用,因此受到了普遍的关注。本文介绍了芳纶纤维的结构、性能、用途及生产方法,分析了芳纶纤维的国内外发展现状,并对我国发展高性能芳纶纤维提出了几点建议。 关键词:芳纶纤维;结构;性能;用途;生产技术;发展建议 芳纶纤维主要分为对位芳纶纤维(芳纶1414)和间位芳纶纤维(芳纶1313)。芳纶纤维是一种高性能合成纤维,具有超高强度、高模量和耐高温、耐酸耐碱、重量轻等优良性能,其强度是钢丝的5~6倍,模量为钢丝或玻璃纤维的2~3倍,韧性是钢丝的2倍,而重量仅为钢丝的0.2倍左右。此外,芳纶纤维还具有良好的绝缘性和抗老化性能,其应用领域十分广泛。对位芳纶纤维主要用于橡胶增强制品、防弹织物、复合结构材料、线缆材料、隔热隔声、防辐射结构板等。间位芳纶纤维主要用于电器绝缘纸、阻燃织物、隔热隔声、防辐射结构板、飞行器承力结构材料、烟尘过滤袋等。 1、芳纶纤维结构 芳纶纤维的全称是芳香族聚酰胺纤维, 是一种高强度、高模量、低密度和高耐磨性的有机合成纤维。芳纶分为对位芳纶纤维(PPTA)和间位芳纶纤维( PMIA)两种。聚对苯二甲酰对苯二胺纤维是PPTA最有代表性的一种, 英文全称 AramidFiber ,其化学结构式如下图: 关于芳纶纤维的微观结构,颇具代表性的主要有皮、芯层结构模型,Morgan 等人认为,每一根单纤均具有可区分的皮、芯特征,皮层和芯层具有不同的结构和性能。皮层厚度在0.1-lμm,且表现出类似小云母片的结构形态,在长度方向上则保持结构一致性,而芯层却没有这种结构。阿克苏·诺贝尔公司的科学家van A

芳纶布的种类及特性

芳纶布的种类及特性 芳纶布,即凯芙拉布,芳纶纤维布,芳纶织物。 主要有以下几种 1、芳纶纤维无捻粗纱织物,主要用芳纶1414长丝,无捻粗纱是由平行原丝或平行单丝集束而成的。生产粗纱所用芳纶纤维的单丝直径从5~15μm不等。无捻粗纱的号数从100号到8000号(tex)。无捻粗纱可直接用于某些复合材料工艺成型方法中,如特种纺织、片材预浸、管道缠绕、型材拉挤等工艺,无捻度的纱线因其张力均匀,可织成无捻粗纱布和特种芳纶织物,用于航天、国防、军工等特种行业。 2、芳纶无纺布,毡片,芳纶纸,用于绝缘保温 3、芳纶纤维加捻细纱布,芳纶织物,芳纶面料,主要用芳纶1313或少量1414短纤 (1)芳纶纤维加捻细纱布主要是指用芳纶1313或少量1414短纤维纱线加捻后织造的各种织物。主要用于防火阻燃等领域。织物的特性由纤维性能、经纬密度、纱线结构和织纹所决定。经纬密度又由纱结构和织纹决定。经纬密加上纱结构,就决定了织物的物理性质,如重量、厚度和断裂强度等。有五种基本的织纹:平纹、斜纹、缎纹、罗纹和席纹。 (2)芳纶加捻织带,分为有织边带(光边带)和无织边带(毛边带)主要织法是平纹。用于制造高强度、介电性能好的电气设备零部件以及汽车胶管等。 (3)芳纶帘子布,即加捻的芳纶单向织物浸胶而成,其特点是在经纱0度或者纬纱90度方向上具有高强度。其中经向单向织物是一种粗经纱和细纬纱织成的四经破缎纹或长轴缎纹织物,用于飞机轮胎和高级汽车轮胎。 (4)立体织,立体织物是相对平面织物而言,其结构特征从一维二维发展到了三维,从而使以此为增强体的复合材料具有良好的整体性和仿形性,大大提高了复合材料的层间剪切强度和抗损伤容限。它是随着航天、航空、兵器、船舶等部门的特殊需求发展起来的,目前其应用已拓展至汽车、体育运动器材、医疗器械等部门。主要有五类:机织三维织物、针织三维织物、正交及非正交非织造三维织物、三维编织织物和其它形式的三维织物。立体织物的形状有块状、柱状、管状、空心截锥体及变厚度异形截面等。 (5)异形织物,异形织物的形状和它所要增强的制品的形状非常相似,必须在专用的织机上织造。对称形状的异形织物有:圆盖、锥体、帽、哑铃形织物等,还可以制成箱、船壳等不对称形状。 (6)槽芯织物,槽芯织物是由两层平行的织物,用纵向的竖条连接起来所组成的织物,其横截面形状可以是三角形或矩形。 (7)缝编织物,亦称为针织毡或编织毡,它既不同于普通的织物,也不同于通常意义的毡。最典型的缝编织物是一层经纱与一层纬纱重叠在一起,通过缝编将经纱与纬纱编织在一起成为织物。 3、组合芳纶布 即把芳纶毡、芳纶无捻粗纱织物和芳纶无捻粗纱等,按一定的顺序组合起来的芳纶复合布。 青岛新天成纺织有限公司创立于1976年(原青岛第十三棉纺织厂)至今已有37年历史。公司占地60余亩,职工300多名,拥有纱锭37000枚,倍捻锭2000枚,织布机100台,主要生产各种规格芳纶线,阻燃线,芳纶缝纫线,芳纶布,纱线,丙纶纱线和面料,阻燃缝纫线,芳纶纱线和面料,及其它芳纶类产品下面就由青岛新天成纺织来给大家介绍下苏伦布的特性。 1、良好的机械特性间位芳纶是一种柔性高分子,断裂强度高于普通涤纶、棉、尼龙等,伸长率较大,手感柔软,可纺性好,可生产成不同纤度、长度的短纤维和长丝,在一般纺织机械制成不同纱支织成面料、无纺布,经过后整理,满足不同领域的防护服装的要求。

芳纶纤维增强的先进复合材料制品说明

芳纶纤维增强的先进复合材料制品

目录 1 芳纶纤维增强的先进复合材料的应用 (1) 1.1 概况 (1) 1.2 芳纶品种及性能 (1) 1.3 芳纶纤维产品形态及复合材料的成型方法 (3) 1.4 芳纶纤维复合材料的应用 (3) 2 原材料 (5) 2.1 聚氨酯树脂 (5) 2.2 芳纶纤维 (7) 3 制作工艺 (8) 3.1成形方法的选择 (8) 3.2 芳纶1313 (10) 4 修补及性能检测 (10) 4.1 缺陷 (10) 4.2 芳纶表面改性 (10) 5 参考文献 (13)

1 芳纶纤维增强的先进复合材料的应用 1.1 概况 目前,先进复合材料的增强材料主要是S高强玻璃纤维非碳纤维和芳纶纤维。前两者介绍文章较多,本文主要针对芳纶复合材料及应用情况作概括介绍。 芳纶纤维是芳香族聚酰胺类纤维的通称。它是一种强度高、模量高、低密度、耐折、耐磨性好的人工合成的有机纤维。据了解,现在美国、荷兰、日本、德国、法国和俄罗斯等国都在开发芳纶纤维。我国也进行了这方面研制并取得了一定成绩。 美国杜邦公司开发的芳纷纤维,商品名“凯芙拉”(K velar)有多种规格出售,年产量已达2t。荷兰阿克苏(AKZO)公司研制的芳纶纤维,商品名“特瓦纶”(Twaron),年产量在5000t以上。日本帝人公司开发的共聚芳纶纤维,商品名“太库诺拉”,年产量为500t以上。德国赫斯特公司(HOECHST)生产芳纶纤维年产量为150t。我国1981年研制成功芳纶I,1985年研制成功芳纶Ⅱ,1994年北京燕山石化公司研究院研制成功溶致液晶全芳香族聚酰胺(PPTA),通过专家鉴定,为今后中石、工业化生产开辟了途径。 在世界范围内,芳纶纤维正以年增长率20%左右的速度发展,并从单一军用向民用转移。芳纶纤维用于汽车及防护用品方面占68%,用于造船业达21%,其余为航空、航天及军用。 1.2 芳纶品种及性能 芳纶纤维,因选择原料的不同及合成工艺不同,又可分为间位芳香族聚酰胺纤维,商品名为“欧梅克斯”(Nomex)对位芳香族聚酰胺纤维,商品名“凯芙拉”(Kevlar)和芳香族聚酰胺共聚纤维,商品名“太库诺拉”等。表1将具有代表性的“凯芙拉”纤维和我国研制的芳纶I、芳纶Ⅱ主要性能列出,同时与S高强玻璃纤维及碳纤维进行比较。 从表1中可以发现芳纶纤维密度最小,拉伸强度与S2玻璃纤维和碳纤维接近,拉伸模量居中。此外,芳纶纤维的热稳定性好,可在180℃下长期使用,短期可耐300℃,对强度无大的影响。在-170℃下也不会变脆,仍保持其性能。芳纶纤维的力学性能在有机纤维中是非常突出的,与无机纤维比也不逊色,芳纶纤维除强酸、强碱外,几乎不受有机溶剂、油类影响。但芳纶纤维对紫外线敏感, 若长期暴露在阳光下,其强度会有很大的损失,因此,在使用中应加保护层。

芳纶纤维布力学性能

芳纶纤维布力学性能 一、芳纶纤维布加固修复混凝土结构概述 芳纶纤维复合材料加固混凝土工法是指使用芳纶布配套树脂把芳纶布粘贴在混凝土结构表面与原有构件共同受力的加固方法。芳纶布与混凝土的粘结程度将直接影响加固效果。 芳纶布加固方法主要有三种基本方法,抗剪加固、延性加固和抗弯加固。抗剪加固和延性加固是将芳纶布沿与构件轴线垂直的方向粘贴在构件表面,与构件内的钢筋共同承担剪力,提高构件的抗剪能力和延性;抗弯加固,是将芳纶布沿与构件轴线平行的方向粘贴在构件表面,与构件内的钢筋共同承受拉力,提高整个构件的抗弯能力。 芳纶布加固主要材料为芳纶布及配套环氧树脂。 二、卡本芳纶纤维布加固优点 1、抗冲击性:芳纶纤维的弹性模量为110GPa,具有良好的延性,延伸率为 2.0%。它的破坏形式为塑性破坏,相比之下碳纤维的破坏形式为脆性破坏。因此,芳纶材料广泛应用于航天航空领域、军事装备、防爆设施、桥梁墩柱加固等。 2、抗动载抗疲劳性能:碳纤维具有很高的抗拉强度,但由于它是一种脆性材料,只能承受长期的静荷载。而芳纶纤维对于抗动载抗疲劳性能要求比较高的领域有着独特的优势。同时,芳纶纤维的抗剪切性能是所有FRP材料中最强的,在进行抗剪加固时应考虑用芳纶纤维复合材料。 3、耐腐蚀性:芳纶复合材料具有良好的耐酸、耐强碱腐蚀性能,海水中氯离子对混凝土结构有很强的腐蚀性,可导致混凝土碳化钢筋锈蚀。所以,在一些海港码头工程的结构加固及防护工程中较为普遍采用芳纶纤维复合材料进行加固。 4、不导电性:非磁化性芳纶纤维是一种不导电的材料。因此,在对绝缘性要求很高的加固工程中芳纶纤维复合材料比较适和。 三、芳纶纤维布特点 1、外观均一整齐,无夹杂,无破洞。 2、无缺纬、脱纬,无断经现象。 3、纤维排列平直均匀,无歪斜、起皱现象。

芳纶纤维(kevlar)

芳纶纤维(kevlar) Aramid fiber Aramid fiber is called "p-polyphenyl two benzoyl two of benzene amine, English Aramid fiber (DuPont Co brand name Kevlar Kevlar), is a new type of high-tech synthetic fiber, has excellent properties of ultra high strength, high modulus and high temperature resistance, acid resistance and alkali resistance, light weight, the strength of steel wire 5 ~ 6 times the modulus of steel wire or glass fiber is 2 ~ 3 times, 2 times the toughness of steel wire, steel wire and the weight is only about 1/5, does not decompose at a temperature of 560 degrees, and does not melt. It has good insulation and anti-aging properties, and has a long life cycle. The discovery of aramid fiber is considered as a very important historical process in the field of materials. 1. introduction Aramid fiber is an important material for national defense, in order to meet the needs of modern war, at present, the developed countries such as the US and Britain's bulletproof vests are made of Kevlar aramid fiber, lightweight body armor, helmets, effectively improve the army's rapid response capability and lethality. In the Gulf War, American and French aircraft made extensive use of Kevlar composites. In addition to military applications, it has been widely used in many fields, such as aerospace, aviation, mechanical and electrical, construction, automobile, sporting goods and other aspects of the national economy. In aviation, aerospace, aramid due to light weight and high strength, saving fuel amount, according to foreign

芳纶纤维介绍资料讲解

芳纶纤维介绍

芳纶纤维全称为"聚对苯二甲酰对苯二胺",英文为Aramid fiber(杜邦公司的商品名为Kevlar),是一种新型高科技合成纤维,具有超高强度、高模量和耐高温、耐酸耐碱、重量轻等优良性能,其强度是钢丝的 5~6倍,模量为钢丝或玻璃纤维的2~3倍,韧性是钢丝的2倍,而重量仅为钢丝的1/5左右,在560度的温度下,不分解,不融化。它具有良好的绝缘性和抗老化性能,具有很长的生命周期。芳纶的发现,被认为是材料界一个非常重要的历史进程。 芳纶纤维是重要的国防军工材料,为了适应现代战争的需要,目前,美、英等发达国家的防弹衣均为芳纶材质,芳纶防弹衣、头盔的轻量化,有效提高了军队的快速反应能力和杀伤力。在海湾战争中,美、法飞机大量使用了芳纶复合材料。除了军事上的应用外,现已作为一种高技术含量的纤维材料被广泛应用于航天航空、机电、建筑、汽车、体育用品等国民经济的各个方面。在航空、航天方面,芳纶由于质量轻而强度高,节省了大量的动力燃料,据国外资料显示,在宇宙飞船的发射过程中,每减轻1公斤的重量,意味着降低100万美元的成本。除此之外,科技的迅猛发展正在为芳纶开辟着更多新的民用空间。据报道,目前,芳纶产品用于防弹衣、头盔等约占7~8%,航空航天材料、体育用材料大约占40%;轮胎骨架材料、传送带材料等方面大约占20%左右,还有高强绳索等方面大约占 13%。 芳纶主要分为两种,对位芳酰胺纤维(PPTA)和间位芳酰胺纤维(PMI A),自20世纪60年代由美国杜邦(DuPont)公司成功地开发出芳纶纤维并率先产业化后,在30多年的时间里,芳纶纤维走过了由军用战略物资向民用物资过渡的历程,价格也降低了将近一半。现在国外芳纶无论是研发水

芳纶纤维

芳纶纤维 芳纶是一种高强度、高模量、低密度和耐磨性好的有机合成的高科技纤维。它的全称是芳香族聚酰胺纤维。1974年,美国贸易联合会( U.S,Federal Trade Commission,FTC)将它们命名为“aramid fibers”,我国称为芳纶。其定义是:至少有85%的酰胺链(-CONH-)直接与两苯环相连接。根据此定义,可把主要化学链和环链脂肪基的一般聚酰胺聚合物和其清楚的分开。 20世纪60年代初,美国杜邦公司首先开发出具有优良热稳定性的间位芳给-HF-1,即Nomex纤维;1966年,公司又生产出了对位芳纶即Kevlar纤维;1972年日本帝人公司生产出对位芳纶Conex纤维;1986年荷兰Akzo公司生产出Twaron纤维;1987年日本帝人公司生产出Technora纤维。而我国于1972年开始进行芳纶的研制工作,并于1981年通过芳纶14的鉴定,1985年又通过芳纶1414的鉴定,它们分别相当于美国杜邦公司的Kevlar 29和Kevlar 49。 芳纶可分为邻位、间位及对位3种,而邻位无商业价值。对位芳纶主要有Kevlar(杜邦)、Technora(帝人)、Twaron(原AkzoNobel,现并人帝人)等;J司位芳纶主要有杜邦的Nomex、帝人的Conex等。 对位芳纶的主链结构具有高度的规则性,大分子是以十分伸展的状态存在,它具有耐高温、防火、耐化学腐蚀及高的力学性能和抗疲劳性。它的强度为钢的3倍,为强度较高的涤纶工业丝的4倍,它的初始模量为涤纶工业丝的4—10倍,聚酰胺纤维的10倍以上。它的稳定性好,在150℃温度下收缩率为0。它在高温下仍能保持较高的强度,如在260℃温度下仍可保持原强度的65%。 间位芳纶的大分子链呈锯齿状,它具有优良的物理力学性能,如强度、断后延伸率等。同时还拥有极佳的耐火和耐氧化性。它在260℃温度连续使用lOOOh后,其强度仍能保持原强度的65%;在300℃高温下使用7cf,仍能保持原强度的50%;它的0强度约为500℃;在火焰中难以燃烧,离开火焰后具有自熄性;它在酸、碱、漂白剂、还原剂及有机溶剂中的稳定性很好。同时还具有良好的抗辐射性能。纤维主要性能见表2-17。 表2-17世界各国生产的主要芳纶的性能比较商品名密度/(g/cm3)抗拉强度/GPa抗拉模慑/GPa断裂伸长率/%Kevlar-29Kevlar-49Kcvlar-l49NomexTwa ronTechnora劳纶14141. 441. 451. 471. 57144-1. 451. 391. 432. 92. 82. 30. 342. 83. 42. 98721301446. 080-12572103巭3.6巭2.4巭1.531巭3.3-2.O巭4.6巭2.7由于芳纶其独特的物理性能和化学性能,使得其广泛用于国防、航空、航天、造船、体育器材、汽车、建筑等工业,例如:在建筑业可以作增强混凝土构件、汽车业可替代石棉来制造刹车片、离合器、整流器等,以降低石棉对环境及人体健康的伤害。还可以用来制作防护服装,如宇航服、消防服等;耐热制品如芳纶增强的橡胶传送带;以及高性能的绳索等。 间位芳纶

芳纶纤维的研究现状及其发展

芳纶纤维的研究现状及其发展展望 摘要 芳纶纤维是芳香族聚酰胺类纤维的通称,国外商品牌号叫凯芙拉(Kevlar)纤维,我国命名为芳纶纤维。 芳香族聚酰胺纤维最早开发于20世纪60年代初,1962年美国杜邦公司率先研制出商品名为“Nomex”的间位芳纶,并于1967年开始工业化生产;1966年又研制出商品名为“Kevlar”的高性能芳纶,并于1971年开始工业化生产。目前全球从事芳纶1414生产的厂家主要有美国杜邦公司(Kevlar)、日本帝人公(Twaron、Technora)、俄罗斯耐热公司(Pycap)等。 我国芳香族聚酰胺纤维的研制始于20世纪70年代。从上世纪80年代开始,我国还进行了芳纶I(芳纶14)和芳纶Ⅲ(一种新型芳香族共聚酰胺纤维)的研究,但仅限于小试和中试阶段,未能实现规模化生产。多年来,我国一直致力于高性能芳纶国产化、规模化的技术开发。 芳纶纤维是综合性能优异,性价比理想的有机耐高温纤维,在先进复合材料、防弹制品、建材、特种防护服装、电子设备等领域具有广阔的应用前景。芳纶纤维产业将迎来大发展,将成为世界上应用量最大、用途最广的高性能纤维。 关键词:芳纶,生产工艺,市场分析,前景

The Present Situation and The Outlook of Aramid Fiber ABSTRACT Aromatic polyamide fiber is of aramid fiber collectively, foreign goods brand called kay fulla (Kevlar) fiber, our country named aramid fiber. Aromatic polyamide fiber the earliest development in the early 1960s, in 1962 the United States dupont takes the lead in developing a commodity, called "Nomex" between a aramid, and in 1967 started to industrial production; 1966 years and developed the goods, called "Kevlar" high performance of aramid, and in 1971 started to industrial production. Now engaged in the production of aramid 1414 global manufacturer mainly American dupont (Kevlar), Japanese emperor people male (Twaron, Technora), Russia (Pycap) heat. The development of aromatic polyamide fiber in our country the development began in the 1970s. Since the 1980s, China is still the aramid I (aramid 14) and aramid Ⅲ (a new type of aromatic polyamide fiber), but only for small and pilot phase, failed to realize large-scale production. For many years, our country has been committed to the localization of high performance, large scale aramid fiber technology development. Aramid fiber is variety performance is excellent, price ideal organic high temperature resistant fiber, in advanced composite materials, bulletproof products, building materials, special protective clothing, electronic equipment etc has wide application prospects. Aramid fiber industry will have big development, will become the world's largest application , use is the most extensive high performance fibers. KEY WORDS: Aramid, Production process, Market analysis, Prospects

相关文档
最新文档