两个变量的相关关系

两个变量的相关关系
两个变量的相关关系

两个变量间的相关关系

变量间的相互关系有两种:一类是确定性的函数关系,如正方形的边长和面积的关系;另一类是变量间确实存在关系,但又不具备函数关系所要求的确定性,它们的关系是带有随机性的.例如,学生的总成绩和他的单科成绩,一般说来“总成绩高者,单科成绩也高”,我们说总成绩和单科成绩具有相关关系.相关关系又分为两种:(1)正相关:两个变量具有相同的变化趋势.(2)负相关:两个变量具有相反的变化趋势.

对相关关系的理解可以从下面三个角度把握:

相关关系的概念:自变量取值一定时,因变量的取值带有一定的随机性,则两个变量之间的关系叫做相关关系.

对相关关系的理解应当注意以下几点:

其一是相关关系与函数关系不同.因为函数关系是一种非常确定的关系,而相关关系是一种非确定性关系,即相关关系是非随机变量与随机变量之间的关系.而函数关系可以看成是两个非随机变量之间的关系.因此,不能把相关关系等同于函数关系.

相关关系与函数关系的异同点为:

相同点:均是指两个变量的关系.

不同点:函数关系是一种确定的关系;而相关关系是一种非确定关系.函数关系是自变量与函数值之间的关系,这种关系是两个非随机变量的关系;而相关关系是非随机变量与随机变量的关系.

其二是函数关系是一种因果关系,而相关关系不一定是因果关系,也可能是伴随关系.例如,有人发现,对于在校儿童,鞋的大小与阅读能力有很强的相关关系.然而,学会新词并不能使脚变大,而是涉及到第三个因素——年龄.当儿童长大一些,他们的阅读能力会提高而且由于长大脚也变大.

其三是在现实生活中存在着大量的相关关系,如何判断和描述相关关系,统计学发挥着非常重要的作用.变量之间的相关关系带有不确定性,这需要通过收集大量的数据,对数据进行统计分析,发现规律,才能作出科学的判断.

我们再来认识生活中的确定两个变量间的相关关系的两个例子:

【例1】“名师出高徒”可以解释为教师的水平越高,学生的水平也越高.那么,教师的水平与学生的水平成什么相关关系?你能举出更多的描述生活中的两个变量的相关关系的成语吗?

解析:“名师出高徒”的意思是说有名的教师一定能教出高明的徒弟,通常情况下,高水平的教师有很大的趋势教出高水平的学生.所以,教师的水平与学生的水平成正相关关系.生活中这样的成语很多,如“龙生龙,凤生凤,老鼠的孩子会打洞”.

【例2】历史上,有人认为人们的着装与经济好坏有关系,着装越鲜艳,经济越景气.你认为着装与经济真的有这种相关关系吗?

解析:人们的着装只能反映个人的爱好以及个人心情状况,与经济的好坏没有任何关系,并不能反映经济的景气与否.所以,着装与经济并没有“着装越鲜艳,经济越景气”这种相关关系.

相关性分析(相关系数)

相关系数是变量之间相关程度的指标。样本相关系数用r表示,总体相关系数用ρ表示,相关系数的取值一般介于-1~1之间。相关系数不是等距度量值,而只是一个顺序数据。计算相关系数一般需大样本. 相关系数又称皮(尔生)氏积矩相关系数,说明两个现象之间相关关系密切程度的统计分析指标。 相关系数用希腊字母γ表示,γ值的范围在-1和+1之间。 γ>0为正相关,γ<0为负相关。γ=0表示不相关; γ的绝对值越大,相关程度越高。 两个现象之间的相关程度,一般划分为四级: 如两者呈正相关,r呈正值,r=1时为完全正相关;如两者呈负相关则r呈负值,而r=-1时为完全负相关。完全正相关或负相关时,所有图点都在直线回归线上;点子的分布在直线回归线上下越离散,r的绝对值越小。当例数相等时,相关系数的绝对值越接近1,相关越密切;越接近于0,相关越不密切。当r=0时,说明X和Y两个变量之间无直线关系。 相关系数的计算公式为<见参考资料>. 其中xi为自变量的标志值;i=1,2,…n;■为自变量的平均值, 为因变量数列的标志值;■为因变量数列的平均值。 为自变量数列的项数。对于单变量分组表的资料,相关系数的计算公式<见参考资料>. 其中fi为权数,即自变量每组的次数。在使用具有统计功能的电子计算机时,可以用一种简捷的方法计算相关系数,其公式<见参考资料>. 使用这种计算方法时,当计算机在输入x、y数据之后,可以直接得出n、■、∑xi、∑yi、∑■、∑xiy1、γ等数值,不必再列计算表。 简单相关系数: 又叫相关系数或线性相关系数。它一般用字母r 表示。它是用来度量定量变量间的线性相关关系。 复相关系数: 又叫多重相关系数

变量之间的关系(含答案)

变量之间的关系 试卷简介:变量的相关概念,用表格、关系式、图象表示变量之间的关系 一、单选题(共12道,每道7分) 1.在一次实验中,小明把一根弹簧的上端固定,在其下端悬挂物体.下面是测得的弹簧长度y与所挂物体质量x的一组对应值: 下列有关表格的分析中,不正确的是( ) A.表格中两个变量是所挂物体质量和弹簧长度 B.自变量是所挂物体质量 C.在允许范围内,所挂物体质量越大,弹簧长度就越长 D.所挂物体质量随弹簧长度的变化而变化 答案:D 解题思路:所挂物体质量x是自变量,弹簧长度y是因变量,弹簧长度y随着所挂物体质量的变化而变化,故正确选项是D 试题难度:三颗星知识点:变量之间的关系 2.中国电信公司电话收费标准:前3分钟(不足3分钟按3分钟计算)为0.2元,3分钟后每分钟收0.1元,则通话时间x分钟(x>3)与通话费用y之间的函数关系是( ) A.y=0.1x+0.2 B.y=0.1x C.y=0.1x-0.1 D.y=0.1x+0.5 答案:C 解题思路:当通话时间超过3分钟时,计费分为两段,第一段是前3分钟话费为0.2元,第二段是超过3分钟的部分,超出部分时间为(x-3),超出部分的话费为0.1(x-3),故总的话费为y=0.2+0.1(x-3),化简的结果为y=0.1x-0.1,故正确选项为C 试题难度:三颗星知识点:变量之间的关系 3.如图,当输入数值x为-2时,输出数值y是( )

A.4 B.6 C.8 D.10 答案:B 解题思路:输入-2,-2<1则代入y=-0.5x+5=-0.5×(-2)+5=6,故正确选项是B 试题难度:三颗星知识点:变量之间的关系 4.一天,小军和爸爸去登山,已知山脚到山顶的路程为200米,小军先走了一段路程,爸爸才开始出发,图中两条线段分别表示小军和爸爸离开山脚登山的路程s(米)与登山所用的时间t(分钟)的图象关系(从爸爸开始登山时计时).根据图象,下列说法错误的是( ) A.爸爸开始登山时,小军已走了50米 B.爸爸走了5分钟,小军仍在爸爸的前面 C.小军比爸爸晚到山顶 D.10分钟以后小军还在爸爸的前面 答案:D 解题思路:横轴表示时间,纵轴表示小军和爸爸离开山脚登山的路程,由于小军先出发,所以当时小军先出发,10分钟时2人相遇,之前小军在爸爸前面,之后爸爸赶超小军先到达山顶. 试题难度:三颗星知识点:变量之间的关系 5.如图所示的图象描述了某汽车在行驶过程中速度与时间的变化关系,下列说法中错误的是( )

2020-2021学年人教A版高中数学必修3:2.3.1变量间的相关关系2.3.2两个变量的线性相关

课时分层作业(十四)变量间的相关关 系 (建议用时:60分钟 ) 一、选择题 1.有几组变量:①汽车的重量和汽车每消耗1升汽油所行驶的平均路程;②平均日学习时间和平均学习成绩;③立方体的棱长和体积.其中两个变量成正相关的是() A.①③B.②③ C.②D.③ C[①是负相关;②是正相关;③不是相关关系.] 2.由一组样本数据(x1,y1),(x2,y2),…,(x n,y n)得到的回归直线方程为y^=b^x+a^,那么下面说法不正确的是() A.直线y^=b^x+a^必经过点(x,y) B.直线y^=b^x+a^至少经过点(x1,y1),(x2,y2),…,(x n,y n)中的一个点 C.直线y^=b^x+a^的斜率为∑ i=1 n x i y i-n x y ∑ i=1 n x2i-n x2 D.直线y^=b^x+a^是最接近y与x之间真实关系的一条直线 B[回归直线一定经过样本点的中心,故A正确;直线y^=b^x+a^可以不经过样本点中的任何一点,故B错误.由回归方程的系数可知C正确;在直角坐标系中,直线y ^=b^x+a^与所有样本点的偏差的平方和最小,故D正确;] 3.四名同学根据各自的样本数据研究变量x,y之间的相关关系,并求得回归直线方程,分别得到以下四个结论: ①y与x负相关且y ^=2.347x-6.423;②y与x负相关且y^=-3.476x+5.648;

③y与x正相关且y ^=5.437x+8.493;④y与x正相关且y^=-4.326x-4.578. 其中一定不正确的结论的序号是() A.①②B.②③ C.③④D.①④ D[由正负相关的定义知①④一定不正确.] 4.为了解儿子身高与其父亲身高的关系,随机抽取5对父子身高数据如下: 则y对x A.y=x-1 B.y=x+1 C.y=88+1 2x D.y=176 C[x=174+176+176+176+178 5=176,y= 175+175+176+177+177 5= 176.根据回归直线过样本中心点(x、y)验证知C符合.] 5.某产品的广告费用x与销售额y的统计数据如下表: 根据上表可得回归方程y=b x+a中的b为9.4,据此模型预报广告费用为6万元时,销售额为() A.63.6万元B.65.5万元 C.67.7万元D.72.0万元 B[x=1 4(4+2+3+5)=3.5,y= 1 4(49+26+39+54)=42,所以a ^=y-b^ x=42-9.4×3.5=9.1.所以回归方程为y^=9.4x+9.1.令x=6,得y^=65.5(万元).] 二、填空题 6.若回归直线y^=b^x+a^的斜率估值为1.23,样本中心点为(4,5),当x=2时,估计y的值为________. 2.54[因为回归直线y^=b^x+a^的斜率估值为1.23,所以b^=1.23,y^=1.23x+a^.

变量间的相互关系(一)、(二)

2.3变量间的相互关系(一)、(二) 问题提出 1. 函数是研究两个变量之间的依存关系的一种数量形式.对于两个变量,如果当一个变量的取值一定时,另一个变量的取值被惟一确定,则这两个变量之间的关系就是一个函数关系. 2. 在中学校园里,有这样一种说法:“如果你的数学成绩好,那么你的物理学习就不会有什么大问题.”按照这种说法,似乎学生的物理成绩与数学成绩之间存在着某种关系,我们把数学成绩和物理成绩看成是两个变量,那么这两个变量之间的关系是函数关系吗? 3. 这两个变量是有一定关系的,它们之间是一种不确定性的关系.类似于这样的两个变量之间的关系,有必要从理论上作些探讨,如果能通过数学成绩对物理成绩进行合理估计,将有着非常重要的现实意义. 知识探究(一):变量之间的相关关系 思考1:考察下列问题中两个变量之间的关系,想一想这些问题中两个变量之间的关系是函数关系吗? (1)商品销售收入与广告支出经费; (2)粮食产量与施肥量; (3)人体内的脂肪含量与年龄. 思考2:“名师出高徒”可以解释为教师的水平越高,学生的水平就越高,那么学生的学业成绩与教师的教学水平之间的关系是函数关系吗? 你能举出类似的描述生活中两个变量之间的这种关系的成语吗? 思考3:上述两个变量之间的关系是一种非确定性关系,称之为相关关系,那么相关关系的含义如何? 自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系,叫做相关关系.思考4:函数关系与相关关系之间的区别与联系. 函数关系中的两个变量间是一种确定性关系;相关关系是一种非确定性关系. 函数关系是一种因果关系而相关关系不一定是因果关系,也可能是伴随关系. 3. 函数关系与相关关系之间有着密切联系,在一定条件下可以互相转化. 例1 在下列两个变量的关系中,哪些是相关关系? ①正方形边长与面积之间的关系; ②作文水平与课外阅读量之间的关系; ③人的身高与年龄之间的关系; ④降雪量与交通事故的发生率之间的关系. 练习 1.已知下列变量,它们之间的关系是函数关系的有①,是相关关系的有②③. ①已知二次函数y=ax2+bx+c,其中a、c是已知常数,取b为自变量,因变量是这个函数的判别式△=b2-4ac; ②光照时间和果树亩产量; ③每亩施用肥料量和粮食产量.

讲义+第16课时变量之间的相关关系两个变量的线性相关最新

课时提升作业15变量之间的相关关系两个变量的线性相关 1.对变量x,y有观测数据(x i ,y i)(i=1,2,…,10),得散点图(1);对变量u,v有观测数据 2.已知回归直线的斜率的估计值是 1.23,样本点中心(即(,))为(4,5),则回归直线的方程是( ) A.网=1.23x+4 B.壯1.23X+5 C. =1.23x+0.08 D』;:I=0.08x+1.23 3.在下列各图中,两个变量具有较强正相关关系的散点图是( ) A.(1) B.(2) C.(3) D.(4) 4.对有线性相关关系的两个变量建立的回归直线 方程」=:,+ ' x中,回归系数'( ) 5.某商品销售量y(件)与销售价格x(元/件)负相关,则其回归方程可能是( ) 6.四名同学根据各自的样本数据研究变量x,y之间的相关关系,并求得回归方程,分别得到以下四个 结论:①y与x负相关且 =2.347x-6.423; ②y与x负相关且「=-3.476x+5.648; ③y 与 x 正相关且?’ =5.437x+8.493;④y 与 x 正相关且?’ =-4.326x-4.578. 其中一定不正确的结论的序号是( ) A.①② B.②③ C.③④ D.①④ 7.设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据 (X i,y i)(i=1,2,…,n),用最小二乘法建立的回归方程为=0.85x-85.71,则下列结论中不正确的是 A.y与x具有正的线性相关关系 B.回归直线过样本点的中心(,) (U i,V i)(i=1,2,…,10),得散点图(2).由这两个散点图可以判断 A.变量x与y正相关,u与v正相关 B. 变量x与y正相关,u 与v负 相关 C.变量x与y负相关,u与v正相关 D. 变量x与y负相关,u 与v负 相关 A.不能小于0 B.不能大于0 C.不能等于0 D.只能小于0 A. =-10x+200 B. =10x+200 C. =-10x-200 D. =10x-200 0 1 25 4 5 67 J

线性回归方程中的相关系数r

线性回归方程中的相关系数r r=∑(Xi-X的平均数)(Yi-Y平均数)/根号下[∑(Xi-X平均数)^2*∑(Yi-Y平均数)^2]

R2就是相关系数的平方, R在一元线性方程就直接是因变量自变量的相关系数,多元则是复相关系数 判定系数R^2 也叫拟合优度、可决系数。表达式是: R^2=ESS/TSS=1-RSS/TSS 该统计量越接近于1,模型的拟合优度越高。 问题:在应用过程中发现,如果在模型中增加一个解释变量,R2往往增大 这就给人一个错觉:要使得模型拟合得好,只要增加解释变量即可。 ——但是,现实情况往往是,由增加解释变量个数引起的R2的增大与拟合好坏无关,R2需调整。 这就有了调整的拟合优度: R1^2=1-(RSS/(n-k-1))/(TSS/(n-1)) 在样本容量一定的情况下,增加解释变量必定使得自由度减少,所以调整的思路是:将残差平方和与总离差平方和分别除以各自的自由度,以剔除变量个数对拟合优度的影响: 其中:n-k-1为残差平方和的自由度,n-1为总体平方和的自由度。 总是来说,调整的判定系数比起判定系数,除去了因为变量个数增加对判定结果的影响。R = R接近于1表明Y与X1,X2 ,…,Xk之间的线性关系程度密切; R接近于0表明Y与X1,X2 ,…,Xk之间的线性关系程度不密切 相关系数就是线性相关度的大小,1为(100%)绝对正相关,0为0%,-1为(100%)绝对负相关 相关系数绝对值越靠近1,线性相关性质越好,根据数据描点画出来的函数-自变量图线越趋近于一条平直线,拟合的直线与描点所得图线也更相近。 如果其绝对值越靠近0,那么就说明线性相关性越差,根据数据点描出的图线和拟合曲线相差越远(当相关系数太小时,本来拟合就已经没有意义,如果强行拟合一条直线,再把数据点在同一坐标纸上画出来,可以发现大部分的点偏离这条直线很远,所以用这个直线来拟合是会出现很大误差的或者说是根本错误的)。 分为一元线性回归和多元线性回归 线性回归方程中,回归系数的含义 一元: Y^=bX+a b表示X每变动(增加或减少)1个单位,Y平均变动(增加或减少)b各单位多元: Y^=b1X1+b2X2+b3X3+a 在其他变量不变的情况下,某变量变动1单位,引起y平均变动量 以b2为例:b2表示在X1、X3(在其他变量不变的情况下)不变得情况下,X2每变动1单位,y平均变动b2单位 就一个reg来说y=a+bx+e a+bx的误差称为explained sum of square e的误差是不能解释的是residual sum of square

变量之间的关系

3.2用关系式表示的变量间关系 1.理解两个变量之间的关系可以用关系式表示,能在一个关系式中指出自变量和因变量; 2.能够在具体的情境中列出表示变量关系的关系式.(重点,难点) 一、情境导入 汽车以60km/h的速度匀速行驶,行驶里程为s km,行驶时间为t h. 先填写下表: 在以上这个过程中,t的式子表示s:________. 二、合作探究 探究点:用关系式表示变量间关系 【类型一】列关系式表示变量之间的关系 一个小球由静止开始沿一个斜坡向下滚动,通过仪器观察得到小球滚动的距离s(m)与时间t(s) 的数据如下表: 写出用t表示s的关系式:________. 解析:观察表中给出的t与s的对应值,再进行分析,归纳得出关系式.t=1时,s=2×12;t=2时,s=2×22;t=3时,s=2×32;t=4时,s=2×42,…所以s与t的关系式为s=2t2,其中t≥0.故答案为s =2t2(t≥0). 方法总结:本题以关系式法表示时间t与距离s之间的关系,认真观察分析s随t的变化而变化的规律是列出关系式的关键. 变式训练:见《学练优》本课时练习“课堂达标训练”第1题 【类型二】用关系式表示图形的变化规律 图中的圆点是有规律地从里到外逐层排列的.设y为第n层(n为正整数)圆点的个数,则下列函 数关系中正确的是() A.y=4n-4 B.y=4n C.y=4n+4 D.y=n2

解析:由图可知n=1时,圆点有4个,即y=4;n=2时,圆点有8个,即y=8;n=3时,圆点有12个,即y=12,∴y=4n.故选B. 变式训练:见《学练优》本课时练习“课堂达标训练”第9题 【类型三】列关系式并求值 已知水池中有800立方米的水,每小时抽50立方米. (1)写出剩余水的体积Q(立方米)与时间t(小时)之间的函数关系式; (2)6小时后池中还有多少水? (3)几小时后,池中还有200立方米的水? 解析:(1)根据“抽水时间×抽水速度=抽水量”,“蓄水量-抽水量=剩余水量”解题即可;(2)根据自变量与因变量的关系式,可得自变量相应的值;(3)根据自变量与因变量的关系式,可得相应自变量的值. 解:(1)Q=800-50t(0≤t≤16); (2)当t=6时,Q=800-50×6=500(立方米). 答:6小时后,池中还剩500立方米的水; (3)当Q=200时,800-50t=200,解得t=12. 答:12小时后,池中还有200立方米的水. 方法总结:利用关系式,根据任何一个自变量的值求出相应因变量的值,其实质是代数式求值,根据因变量的值求出相应自变量的值,其实质是解方程. 变式训练:见《学练优》本课时练习“课后巩固提升”第6题 【类型四】关系式与表格的综合 一辆加满汽油的汽车在匀速行驶中,油箱中的剩余油量Q(L)与行驶的时间t(h)的关系如下表所 示: (1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量? (2)随着行驶时间的不断增加,油箱中剩余油量的变化趋势是怎样的? (3)请直接写出Q与t的关系式,并求出这辆汽车在连续行驶6h后,油箱中的剩余油量; (4)这辆车在中途不加油的情况下,最多能连续行驶的时间是多少? 解析:(1)认真分析表中数据可知,油箱中剩余油量Q(L)与行驶时间t(h)的变量关系,再根据自变量、因变量的定义找出自变量和因变量;(2)由表中数据可知随着行驶时间的不断增加,油箱中剩余油量的变化趋势;(3)由分析表中数据可知,每行驶1h消耗油量为7.5L.然后根据此关系写出油箱中剩余油量Q(L)与行驶时间t(h)的代数式;(4)根据图表可知汽车行驶每小时耗油7.5L,油箱原有汽油54L,即可求出油箱中原有汽油可以供汽车行驶多少小时. 解:(1)表中反映的是油箱中剩余油量Q(L)与行驶时间t(h)的变量关系,时间t是自变量,油箱中剩余

变量间的相关关系同步练习题

变量间的相关关系同步练习题 1. 下列两个变量具有相关关系的是( ) A. 正方体的体积与边长 B. 人的身高与体重 C. 匀速行驶车辆的行驶距离与时间 D. 球的半径与体积 2. 两个变量成负相关关系时,散点图的特征是( ) A. 点散布在从左下角到右上角的区域内 B. 点散布在某带形区域内 C. 点散布在某圆形区域内 D. 点散布在从左上角到右下角的区域内 3. 由一组样本数据(1x ,1y ),(2x ,2y ),…,(n x ,n y ),得到回归方程a bx y +=∧ ,那么下面说法不正确的是( ) A. 直线a bx y +=∧ 必经过点(x ,y ) B. 直线a bx y +=∧至少经过点(1x ,1y ),(2x ,2y ),…,(n x ,n y )中的一个点 C. 直线a bx y +=∧的斜率为 ∑∑==--n 1 i 2 2i n 1 i i i x n x y x n y x D. 直线a bx y +=∧ 和各点(1x ,1y ),(2x ,2y ),…,(n x ,n y )的偏差 ()[]∑=+-n 1 i 2 i i a bx y 是该坐标平面上所有直线与这些点的偏差中最小的直线 4. 若施化肥量x (单位:kg )与水稻产量y (单位:kg )的回归方程为250x 5y +=∧ ,则当施化肥量为80kg 时,预计水稻产量为___________。 5. 相关关系与函数关系的区别是___________。 (1)作出这些数据的散点图; (2)通过观察这两个变量的散点图,你能得出什么结论? 7. 某化工厂为预测某产品的回收率y ,需要研究回收率y 和原料有效成分含量x 之间的相关关系,现取了8对观察值,计算得: ∑==8 1 i i 52x , ∑==8 1 i i 228y , ∑=8 1 i 2 i x 478=, ∑==8 1 i i i 1849y x ,则y 与x 的回归方程是( ) A. x 62.247.11y +=∧ B. x 62.247.11y +-=∧ C. x 47.2262.2y +=∧ D. x 62.247.11y -=∧

变量间的相关关系与统计案例教案(绝对经典)

第3节变量间的相关关系与统计案例 【最新考纲】 1.会作两个有关联变量的数据的散点图,会利用散点图认识变量间的相关关系;2.了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程(线性回归方程系数公式不要求记忆);3.了解独立性检验(只要求2×2列联表)的基本思想、方法及其简单应用;4.了解回归分析的基本思想、方法及其简单应用. 【高考会这样考】考查回归分析、独立性检验的基本思想和简单应用. 要点梳理 1.相关关系与回归分析 回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法;判断相关性的常用统计图是:散点图;统计量有相关系数与相关指数. (1)在散点图中,点散布在从左下角到右上角的区域,对于两个变量的这种相关关系,我们将它称为正相关. (2)在散点图中,点散布在从左上角到右下角的区域,两个变量的这种相关关系称为负相关. (3)如果散点图中点的分布从整体上看大致在一条直线附近,称两个变量具有线性相关关系. 2.线性回归方程 (1)最小二乘法:使得样本数据的点到回归直线的距离的平方和最小的方法叫做最小二乘法. (2)回归方程:两个具有线性相关关系的变量的一组数据:(x1,y1),(x2,y2),…,(x n,y n), 其回归方程为y^=b^x+a^__,则b^=∑ n i=1 (x i-x-)(y i-y-) ∑ n i=1 (x i-x-)2 = ∑ n i=1 x i y i-nx-y- ∑ n i=1 x2i-nx-2 ,a^=y--b^x-.其中, b^是回归方程的斜率,a^是在y轴上的截距. 回归直线一定过样本点的中心(x-,y-). 3.回归分析 (1)定义:对具有相关关系的两个变量进行统计分析的一种常用方法.

6.示范教案(2.3.2--两个变量的线性相关)

变量间的相关关系 2.3.1 变量之间的相关关系 2.3.2 两个变量的线性相关 整体设计 教学分析 变量之间的关系是人们感兴趣的问题.教科书通过思考栏目“物理成绩与数学成绩之间的关系”,引导学生考察变量之间的关系.在教师的引导下,可使学生认识到在现实世界中存在不能用函数模型描述的变量关系,从而体会研究变量之间的相关关系的重要性.随后,通过探究人体脂肪百分比和年龄之间的关系,引入描述两个变量之间关系的线性回归方程(模型).教科书在探索用多种方法确定线性回归直线的过程中,向学生展示创造性思维的过程,帮助学生理解最小二乘法的思想.通过气温与饮料销售量的例子及随后的思考,使学生了解利用线性回归方程解决实际问题的全过程,体会线性回归方程作出的预测结果的随机性,并且可能犯的错误.进一步,教师可以利用计算机模拟和多媒体技术,直观形象地展示预测结果的随机性和规律性. 三维目标 1.通过收集现实问题中两个有关联变量的数据认识变量间的相关关系. ) 2.明确事物间的相互联系.认识现实生活中变量间除了存在确定的关系外,仍存在大量的非确定性的相关关系,并利用散点图直观体会这种相关关系. 3.经历用不同估算方法描述两个变量线性相关的过程.知道最小二乘法的思想,能根据给出的线性回归方程的系数公式建立线性回归方程. 重点难点 教学重点:通过收集现实问题中两个有关联变量的数据直观认识变量间的相关关系;利用散点图直观认识两个变量之间的线性关系;根据给出的线性回归方程的系数公式建立线性回归方程. 教学难点:变量之间相关关系的理解;作散点图和理解两个变量的正相关和负相关;理解最小二乘法的思想. 课时安排 2课时 教学过程 、 第1课时 导入新课 思路1 在学校里,老师对学生经常这样说:“如果你的数学成绩好,那么你的物理学习就不会有什么大问题.”按照这种说法,似乎学生的物理成绩与数学成绩之间存在着一种相关关系.这种说法有没有根据呢 学生讨论:我们可以发现自己的数学成绩和物理成绩存在某种关系.(似乎就是数学好

三种常用的不同变量之间相关系数的计算方法

三种常用的不同变量之间相关系数的计算方法 1.定类变量之间的相关系数. 定类变量之间的相关系数,只能以变量值的次数来计算,常用λ系数法, 其计算公式为: (3.2.12) 式中,为每一类x中y分布的众数次数;为变量y各分类次数的众数次数;n为总次数。一般来说,λ系数在0~1之间取值,值越大表明相关程度越高。 例如,性别与对吸烟的态度资料见表3—2。 表3—2 性别与对吸烟态度 态度y 性别x 男女合计(Fy) 容忍反对37 15 8 42 45 57 合计(Fx)52 50 102 从y的分布来看,对吸烟的态度众数是“反对”,众数次数为57,即=57。再从x的每 一个分组(男、女)中y的次数分布来看,男性中y的分布众数是“容忍”,次数为37(f1m);女性中y的分布众数是“反对”,次数为42(f2m);总次数为102(n)。于是, 从计算结果可知,性别与对吸烟态度的相关程度为0.49,属于中等相关。 2.定序变量之间的相关系数

定序变量之间的相关测量常用Gamma系数法和Spearman系数法。Gamma系数法计算公式为: (3.2.13) 式中,G为系数;Ns为同序对数目;Nd为异序对数目。 所谓序对是指表明高低位次的两两配对,如果一对个案在变量x,y的分类表现位次一致,则为同序对;如果位次相反,则为异序对。 G系数取值在—1--十1之间。G=1,表示完全正相关;G=-1,表示完全负相关;G=0,表示完全不相关;-1

SPSS 3种相关系数的区别

3种相关系数的区别 在SPSS软件相关分析中,pearson(皮尔逊), kendall(肯德尔)和spearman(斯伯曼/斯皮尔曼)三种相关分析方法有什么异同两个连续变量间呈线性相关时,使用Pearson积差相关系数,不满足积差相关分析的适用条件时,使用Spearman秩相关系数来描述. Spearman相关系数又称秩相关系数,是利用两变量的秩次大小作线性相关分析,对原始变量的分布不作要求,属于非参数统计方法,适用范围要广些。对于服从Pearson相关系数的数据亦可计算Spearman相关系数,但统计效能要低一些。Pearson相关系数的计算公式可以完全套用Spearman相关系数计算公式,但公式中的x和y用相应的秩次代替即可。 Kendall's tau-b等级相关系数:用于反映分类变量相关性的指标,适用于两个分类变量均为有序分类的情况。对相关的有序变量进行非参数相关检验;取值范围在-1-1之间,此检验适合于正方形表格; 计算积距pearson相关系数,连续性变量才可采用;计算Spearman秩相关系数,适合于定序变量或不满足正态分布假设的等间隔数据; 计算Kendall秩相关系数,适合于定序变量或不满足正态分布假设的等间隔数据。 计算相关系数:当资料不服从双变量正态分布或总体分布未知,或原始数据用等级表示时,宜用spearman或kendall相关 Pearson 相关复选项积差相关计算连续变量或是等间距测度的变量间的相关分析 Kendall 复选项等级相关计算分类变量间的秩相关,适用于合并等级资料 Spearman 复选项等级相关计算斯皮尔曼相关,适用于连续等级资料 注: 1若非等间距测度的连续变量因为分布不明-可用等级相关/也可用Pearson 相关,对于完全等级离散变量必用等级相关 2当资料不服从双变量正态分布或总体分布型未知或原始数据是用等级表示时,宜用Spearman 或Kendall相关。 3 若不恰当用了Kendall 等级相关分析则可能得出相关系数偏小的结论。则若不恰当使用,可能得相关系数偏小或偏大结论而考察不到不同变量间存在的密切关系。对一般情况默认数据服从正态分布的,故用Pearson分析方法。 在SPSS里进入Correlate-》Bivariate,在变量下面Correlation Coefficients复选框组里有3个选项: Pearson Kendall's tau-b Spearman:Spearman spearman(斯伯曼/斯皮尔曼)相关系数 斯皮尔曼等级相关是根据等级资料研究两个变量间相关关系的方法。它是依据两列成对等级的各对等级数之差来进行计算的,所以又称为“等级差数法” 斯皮尔曼等级相关对数据条件的要求没有积差相关系数严格,只要两个变量的观测值是成对的等级评定资料,或者是由连续变量观测资料转化得到的等级资料,不论两个变量的总体分布形态、样本容量的大小如何,都可以用斯皮尔曼等级相关来进行研究 Kendall's相关系数 肯德尔(Kendall)W系数又称和谐系数,是表示多列等级变量相关程度的一种方法。适用这种方法的数据资料一般是采用等级评定的

《变量间的相关关系》教案

变量间的相关关系的教学设计 本节教学设计主要是使用TI92图形计算器,对普通高中课程标准实验教科书数学③第二章《统计》中的“两个变量的线性相关”进行有益的教与学探究。学生通过对 TI图形计算器的操作,具体形象地利用散点图等直观图形认识变量之间的相关关系,同时,经历描述两个变量的相关关系的过程。学生亲自体验了发现数学、领悟数学的全过程。与此同时,教师在落实新课程标准的相关理念上作了一些有益的探讨。 教学设计与实践: [教学目标]: 1、明确事物间的相互联系。认识现实生活中变量间除了存在确定的关系外,仍存在大量的非确定性的相关关系,并利用散点图直观体会这种相关关系。 2、通过TI技术探究用不同的估算方法描述两个变量的线性相关关系的过程,学会用数学的有关变量来描述现实关系。 3、知道最小二乘法思想,了解其公式的推导。会用TI图形计算器来求回归方程,相关系数。 [教学用具]: 学生每人一台TI图形计算器、多媒体展示台、幻灯 [教学实践情况]: 一、问题引出:请同学们如实填写下表(在空格中打“√” ) 然后回答如下问题:①“你的数学成绩对你的物理成绩有无影响?”②“ 如果你的数学成绩好,那么你的物理成绩也不会太差,如果你的数学成绩差,那么你的物理成绩也不会太好。”对你来说,是这样吗?同意这种说法的同学请举手。 根据同学们回答的结果,让学生讨论:我们可以发现自己的数学成绩和物理成绩存在某种关系。(似乎就是数学好的,物理也好;数学差的,物理也差,但又不全对。)教师总结如下:

物理成绩和数学成绩是两个变量,从经验看,由于物理学习要用到比较多的数学知识和数学方法。数学成绩的高低对物理成绩的高低是有一定影响的。但决非唯一因素,还有其它因素,如图所示(幻灯片给出): (影响你的物理成绩的关系图) 因此,不能通过一个人的数学成绩是多少就准确地断定他的物理成绩能达到多少。但这两个变量是有一定关系的,它们之间是一种不确定性的关系。如何通过数学成绩的结果对物理成绩进行合理估计有非常重要的现实意义。 二、引出相关关系的概念 教师提问:“像刚才这种情况在现实生活中是否还有?” 学生甲:粮食产量与施肥用量的关系; 学生乙:人的体重与食肉数量的关系。 …… 从而得出:两个变量之间的关系可能是确定的关系(如:函数关系),或非确定性关系。当自变量取值一定时,因变量也确定,则为确定关系;当自变量取值一定时,因变量带有随机性,这种变量之间的关系称为相关关系。相关关系是一种非确定性关系。 三、探究线性相关关系和其他相关关系 问题:在一次对人体脂肪和年龄关系的研究中,研究人员获得了一组样本数据: 人体的脂肪百分比和年龄

人教版高中数学-两个变量的线性相关

《2.3.2两个变量的线性相关》 一、内容和内容解析 本节课是人教A版高中数学必修三2.3.2两个变量的线性相关的第二课时。上节课通过大量的生活实例,学生已经初步认识两个变量间的相关关系,并可以借助散点图呈现收集的数据。通过对单变量样本数据中“平均数的几何意义”(切合学生的认知需要)的介绍,为本节课的内容做了铺垫。本节课的主要内容是用最小二乘法求线性回归方程,基础知识是回归直线的概念,也是本节课的核心概念;基本思想是“最小二乘法”思想;根据线性回归方程的系数公式求回归直线是本节课的基本技能. 就统计学科而言,对不同的数据处理方法进行“优劣评价”是“假设检验”的萌芽,而后者是统计学学科研究的另一重要领域.了解“最小二乘法”思想,比较各种“估算方法”,体会它的科学性,既是统计学教学发展的需要,又在体会此思想的过程中促进学生对核心概念的进一步理解.“样本估计总体”是本节课的上位思想也是整个第二章的核心思想,而“最小二乘法思想”作为本节课的核心思想,由此得以体现.回归思想和贯穿统计学科中的随机思想,也在本节课中有所渗透. 本节课通过引导学生经历“收集数据——整理数据(作散点图)——探究并确定回归直线的数学意义——求回归直线方程——应用”完整的回归分析的过程,鼓励学生独立思考、自主探究、合作交流和计算机操作等方式展开学习,从而发挥本节课的育人价值。整个学习过程渗透了数据分析和数学建模的核心素养。通过引导学生对散点图中的点大致分布在一条直线附近的观察,渗透直观想象的核心素养;通过尝试提出找回归直线的想法、用自己的语言描述对这条直线的初步认识到探究从数学的角度定义回归直线的过程,渗透数学抽象和逻辑推理的核心素养;最后,根据回归直线方程的系数公式,引导学生先求出公式中的基本统计量,再代入公式的过程和指导学生利用Excel电子表格求回归方程的过程,提升数学运算的核心素养。 基于上述内容分析,本节课的教学重点为:了解最小二乘法思想,并能根据给出的线性回归方程的系数公式,建立线性回归方程 二、目标和目标设置 基于对本节课教学内容的解析,结合《普通高中数学课程标准(2017年版)》的要求,制定本节课的教学目标如下: 1.了解一元线性回归模型的含义: (1)能根据散点图解释两个相关变量的线性相关关系; (2)能用自己的语言解释回归直线的统计意义; 2.了解最小二乘原理: (1)经历用不同方法确定回归直线的过程,能认识到回归直线是“从整体上看,各点与此直线上的点的距离最小”的直线; (2)能用数学符号刻画“从整体上看,各点与此直线上的点的距离最小”的表达方式; (3)通过对表达方式的转化(距离最小到偏差平方和最小),体会最小二乘法原理,并能用自己的语言表述; 3. 针对实际应用问题,能根据给出的线性回归方程系数公式建立线性回归方程; 4. 在经历完整的线性回归分析的过程中,重点提升数据分析和数学建模核心素养; 5. 针对实际应用问题,会用一元线性回归模型进行预测.

双变量关联性分析

第十三章双变量关联性分析 在医学研究中,常会观察到两个变量之间在数量上存在某种协同变化的关系,例如随着体内凝血酶浓度的升高,其凝血时间随之降低等。这类关系在统计学上称为两个随机变量之间的关联性。如何判断两变量间的关联性是否确实存在,以及如何描述关联的方向与密切程度是本章所要介绍的内容。需要指出的是,关联性只反映变量间数量上的关系,但数量上的关联并不表示专业上的因果关系,其是否反映了变量间的因果关系还需其他手段加以确认。本章介绍两个定量变量间的直线相关和两个分类变量间关联性的统计分析方法。 第一节直线相关 一、直线相关的概念及其统计描述 例13.1 某医师测量了15名正常成年人的体重(kg)与CT双肾体积(ml)大小,数据如表13.1所示。据此回答两变量是否有关联?其方向与密切程度如何? 表13.1 15名正常成年人体重和双肾体积的测量值 编号体重(kg) 双肾体积(ml) 1 43 217.22 2 74 316.18 3 51 231.11 4 58 220.96 5 50 254.70 6 65 293.84 7 54 263.28 8 57 271.73 9 67 263.46 10 69 276.53 11 80 341.15 12 48 261.00 13 38 213.20 14 85 315.12 15 54 252.08 初步判断两变量间关系最直观有效的方法就是在平面直角坐标系中绘图,其中一个变量用x表示,另一变量用y表示,在平面直角坐标系中可绘制这些实测

点的分布情况,称为散点图(scatter plot),如图13.1所示。 体重(kg) x 图13.115名正常成年人体重和双肾体积的散点图 由上图可见,两变量的散点分布大致呈直线趋势,其数量变化的方向相同。在统计学上两个随机变量之间呈直线趋势的关系被称为直线相关(linear correlation),又称简单相关(simple correlation),其性质可由图13.2所示散点图作直观说明。 (a) (b) (c) (d) 图13.2 常见的散点图 图13.2(a)、(b)中散点近似呈椭圆形分布,其变化趋势接近一直线,其中图13.2(a)中两变量同时增大或减小,变化趋势同向,称为正相关(positive correlation)。图13.2(b)中一个变量随着另一个变量的增大而减小,变化趋势相反,称为负相关(negative correlation)。如全部数据点恰好散布在一条直线上,称为完全相关,这种特殊情况在实际医学研究中并不存在。图13.2(c)中各点总的趋势杂乱无章或大致呈圆形散布,则该两变量间无相关,也称零相关(zero correlation)。图13.2(d)中各点散布也非直线趋势,亦属无相关,由于统计学中提到的相关通常是指直线相关,故无相关是指无直线关系,但可能存在非直线相关。 二、相关系数的意义及计算 双 肾 体 积 ( m l ) y

两个变量的相关关系

两个变量间的相关关系 变量间的相互关系有两种:一类是确定性的函数关系,如正方形的边长和面积的关系;另一类是变量间确实存在关系,但又不具备函数关系所要求的确定性,它们的关系是带有随机性的.例如,学生的总成绩和他的单科成绩,一般说来“总成绩高者,单科成绩也高”,我们说总成绩和单科成绩具有相关关系.相关关系又分为两种:(1)正相关:两个变量具有相同的变化趋势.(2)负相关:两个变量具有相反的变化趋势. 对相关关系的理解可以从下面三个角度把握: 相关关系的概念:自变量取值一定时,因变量的取值带有一定的随机性,则两个变量之间的关系叫做相关关系. 对相关关系的理解应当注意以下几点: 其一是相关关系与函数关系不同.因为函数关系是一种非常确定的关系,而相关关系是一种非确定性关系,即相关关系是非随机变量与随机变量之间的关系.而函数关系可以看成是两个非随机变量之间的关系.因此,不能把相关关系等同于函数关系. 相关关系与函数关系的异同点为: 相同点:均是指两个变量的关系. 不同点:函数关系是一种确定的关系;而相关关系是一种非确定关系.函数关系是自变量与函数值之间的关系,这种关系是两个非随机变量的关系;而相关关系是非随机变量与随机变量的关系. 其二是函数关系是一种因果关系,而相关关系不一定是因果关系,也可能是伴随关系.例如,有人发现,对于在校儿童,鞋的大小与阅读能力有很强的相关关系.然而,学会新词并不能使脚变大,而是涉及到第三个因素——年龄.当儿童长大一些,他们的阅读能力会提高而且由于长大脚也变大. 其三是在现实生活中存在着大量的相关关系,如何判断和描述相关关系,统计学发挥着非常重要的作用.变量之间的相关关系带有不确定性,这需要通过收集大量的数据,对数据进行统计分析,发现规律,才能作出科学的判断. 我们再来认识生活中的确定两个变量间的相关关系的两个例子: 【例1】“名师出高徒”可以解释为教师的水平越高,学生的水平也越高.那么,教师的水平与学生的水平成什么相关关系?你能举出更多的描述生活中的两个变量的相关关系的成语吗? 解析:“名师出高徒”的意思是说有名的教师一定能教出高明的徒弟,通常情况下,高水平的教师有很大的趋势教出高水平的学生.所以,教师的水平与学生的水平成正相关关系.生活中这样的成语很多,如“龙生龙,凤生凤,老鼠的孩子会打洞”. 【例2】历史上,有人认为人们的着装与经济好坏有关系,着装越鲜艳,经济越景气.你认为着装与经济真的有这种相关关系吗? 解析:人们的着装只能反映个人的爱好以及个人心情状况,与经济的好坏没有任何关系,并不能反映经济的景气与否.所以,着装与经济并没有“着装越鲜艳,经济越景气”这种相关关系.

相关性分析(相关系数)

简单相关系数: 又叫相关系数或线性相关系数。它一般用字母r 表示。它是用来度量定量变量间的线性相关关系。 复相关系数: 又叫多重相关系数 复相关是指因变量与多个自变量之间的相关关系。例如,某种商品的需求量与其价格水平、职工收入水平等现象之间呈现复相关关系。 偏相关系数: 又叫部分相关系数:部分相关系数反映校正其它变量后某一变量与另一变量的相关关系,校正的意思可以理解为假定其它变量都取值为均数。偏相关系数的假设检验等同于偏回归系数的t检验。复相关系数的假设检验等同于回归方程的方差分析。 典型相关系数:是先对原来各组变量进行主成分分析,得到新的线性无关的综合指标.再用两组之间的综合指标的直线相关系敷来研究原两组变量间相关关系 可决系数是相关系数的平方。 意义:可决系数越大,自变量对因变量的解释程度越高,自变量引起的变动占总变动的百分比高。观察点在回归直线附近越密集。 相关系数(correlation coefficient) 相关系数是表示两个变量(X,Y)之间线性关系密切程度的指标,用r表示,其值在-1至+1间。如两者呈正相关,r呈正值,r=1时为完全正相关;如两者呈负相关则r呈负值,而r=-1时为完全负相关。完全正相关或负相关时,所有图点都在直线回归线上;点子的分布在直线回归线上下越离散,r 的绝对值越小。当例数相等时,相关系数的绝对值越接近1,相关越密切;越接近于0,相关越不密切。当r=0时,说明X和Y两个变量之间无直线关系。计算相关系数的公式为: 定义与说明

相关系数,或称线性相关系数、皮氏积矩相关系数(Pearson product-moment correlation coefficient, PPCC)等,是衡量两个随机变量之间线性相关程度的指标。它由卡尔·皮尔森(Karl Pearson)在1880年代提出[1],现已广泛地应用于科学的各个领域。 相关系数计算公式 相关系数(r)的定义如右图所示,取值范围为[-1,1],r>0表示正相关,r<0表示负相关,|r|表示了变量之间相关程度的高低。特殊地,r=1称为完全正相关,r=-1称为完全负相关,r=0称为不相关。通常|r|大于时,认为两个变量有很强的线性相关性。[2] 样本相关系数常用r表示,而总体相关系数常用ρ表示。 在线性关系不显著时,还可以考虑采用秩相关系数(rank correlation),如斯皮尔曼秩相关系数(Spearman's rank correlation coefficient)等。 相关性质 (1)对称性:X与Y的相关系数(rXY)和Y与X之间的相关系数(rYX)相等; (2)相关系数与原点和尺度无关; (3)若X与Y统计上独立,则它们之间的相关系数为零;但r=0不等于说两个变量是独立的。即零相关并不一定意味着独立性; (4)相关系数是线性关联或线性相依的一个度量,它不能用于描述非线性关系;(5)相关系数只是两个变量之间线性关联的一个度量,不一定有因果关系的含义。 Pearson相关系数

相关文档
最新文档