19春华南理工《离散数学》随堂练习问题详解

19春华南理工《离散数学》随堂练习问题详解
19春华南理工《离散数学》随堂练习问题详解

第一章命题逻辑·第一节命题与联结词

当前页有10题,你已做10题,已提交10题,其中答对10题。1.(单选题) 在下面句子中,是命题的是( )

A.明年“五一”是晴天。 B.这朵花多好看呀!。

C.这个男孩真勇敢啊! D.明天下午有会吗?

参考答案:A

2.(单选题) 在下面句子中,是命题的是( )

A.1+101=110 B.中国人民是伟大的。

C.这朵花多好看呀! D.计算机机房有空位吗?

参考答案:B

3.(单选题) 在下面句子中( )是命题

A.如果天气好,那么我去散步。 B.天气多好呀!

C.x=3。 D.明天下午有会吗?

参考答案:A

4.(单选题) 下面的命题不是简单命题的是( )

A.3是素数或4是素数 B.2018年元旦下大雪

C.刘宏与魏新是同学 D.圆的面积等于半径的平方与之积

参考答案:A

5.(单选题) 下面的表述与众不一致的一个是( )

A.P :广州是一个大城市 B.:广州是一个不大的城市

C.:广州是一个很不小的城市 D.:广州不是一个大城市

参考答案:C

6.(单选题) 设,P:他聪明;Q:他用功。在命题逻辑中,命题:“他既聪明又用功。”可符号化为:( )

参考答案:A

7.(单选题) 设:P :刘平聪明。Q:刘平用功。在命题逻辑中,命题:

“刘平不但聪明,而且用功”可符号化为:( )

参考答案:A

8.(单选题) 设:P:他聪明;Q:他用功。则命题“他虽聪明但不用功。”

在命题逻辑中可符号化为( )

参考答案:D

9.(单选题) 设:P:我们划船。Q:我们跑步。在命题逻辑中,命题:

“我们不能既划船又跑步。”可符号化为:( )

参考答案:B

10.(单选题) 设:P:王强身体很好;Q:王强成绩很好。命题“王强身体很好,成绩也很好。”在命题逻辑中可符号化为( )

参考答案:D

11.(单选题) 设:P:你努力;Q:你失败。则命题“除非你努力,否则你将失败。”

在命题逻辑中可符号化为( )

参考答案:C

12.(单选题) 设:p:派小王去开会。q:派小李去开会。则命题:

“派小王或小李中的一人去开会”可符号化为:()

参考答案:B

13.(单选题) 设:P:天下雪。Q:他走路上班。则命题“只有天下雪,他才走路上班。”可符号化为()。

参考答案:B

14.(单选题) 设:P:天下大雨,Q:他才乘班车上班。则命题“只有天下大雨,他才乘班车上班。”可符号化为()。

参考答案:B

15.(单选题) 设:P:天下大雨,Q:他才乘班车上班。则命题“除非天下大雨,否则他不乘班车上班。”可符号化为()。

参考答案:D

16.(单选题) 设:P:天下大雨。Q:他乘公共汽车上班。则命题“如果天下大雨,他就乘公共汽车上班。”可符号化为( )

参考答案:A

17.(单选题) 设:P:天气好。Q:他去郊游。则命题“如果天气好,他就去郊游。”

可符号化为( B )

参考答案:B

18.(单选题) P:下雪路滑,Q:他迟到了。下雪路滑,他迟到了。可符号化为( )

参考答案:D

19.(单选题) 设,p:经一事;q:长一智。在命题逻辑中,命题:

“不经一事,不长一智。”可符号化为:( )

参考答案:C

20.(单选题) 下面“”的等价说法中,不正确的为( )

A.p是q的充分条件 B. q是p的必要条件

C.q仅当p D.只有q才p

参考答案:C

第二章谓词逻辑·第一节谓词逻辑的基本概念

当前页有10题,你已做10题,已提交10题,其中答对8题。

1.(单选题) 设F(x):x是人,G(x):x早晨吃米饭。命题“有些人早晨吃米饭”在谓词逻辑中的符号化公式是( )

参考答案:D

2.(单选题) 设F(x):x是火车,G(x):x是汽车,H(x,y):x比y快。命题“某些汽车比所有火车慢”的符号化公式是( B )

参考答案:B

3.(单选题) 设F(x):x是火车,G(x):x是汽车,H(x,y):x比y快。命题“说有的火车比所有汽车都快是正确的”的符号化公式是( )

参考答案:D

4.(单选题) 设Q(x):x 是有理数,R(x):x是实数。命题“每一个有理数是实数”在谓词逻辑中的符号化公式是( )

参考答案:A

5.(单选题) 设S(x):x是运动员,J(y):y是教练员,L(x,y):x钦佩y。命题“所有运动员都钦佩一些教练员”的符号化公式是( )

参考答案:C

6.(单选题) 设S(x):x是大学生,L(y):y是运动员,A(x,y):x钦佩y。命题“有些大学生不佩服运动员”的符号化公式是( )

参考答案:A

7.(单选题) 设C(x):x是国家选手,L(y):y是运动员,O(x):x是老的。命题“所有老的国家选手都是运动员”的符号化公式是( )

参考答案:B

8.(单选题) 设J(y):y是教练员,j:金教练,O(x):x是老的,V(y):y是健壮的。命题“金教练既不老,但也不健壮”的符号化公式是( )

参考答案:B

9.(单选题) 设R(x):x是实数,B(y,x):x大于y。命题“对于每一个实数x,存在一个更大的实数”利用谓词公式翻译这个命题( )

参考答案:A

10.(单选题) 设L(x):x是有限个数的乘积,N(x):x为零,E(x,y):x是y的因子。命题“如果有限个数的乘积为零,那么至少有一个因子等于零”利用谓词公式翻译这个命题( )

参考答案:B

第三章集合·第一节集合的基本概念

1.(单选题) 判断选项错误的是( )

参考答案:B

2.(单选题) 下列命题是真的是( )

参考答案:D

3.(单选题) 设,则S的幂集P(S)有( )个元素

A.3 B.6 C.7 D.8

参考答案:D

第四章二元关系与函数·第一节二元关系的基本概念

1.(单选题) 设R是X到Y上的关系,则一定有( )

参考答案:A

2.(单选题) 设到的关系为,则domR和ranR为( )

A.和 B.和

C.和 D.和

参考答案:C

3.(单选题) 设,则的恒等关系为( )

参考答案:D

4.(单选题) 设A为非空集合,则A上的空关系不具有( )

A.反自反性 B.自反性 C.对称性 D.传递性

参考答案:B

5.(单选题) 下述说法不正确的是( )

参考答案:C

6.(单选题) 下述说法不正确的是( )

A.关系矩阵主对角线元素全是1,则该关系具有自反性质

B.关系矩阵主对角线元素全是0,则该关系具有反自反性质 C.关系矩阵是对称阵,则该关系具有对称性质

D.关系矩阵主对角线元素有些是0,则该关系具有反自反性质参考答案:D

7.(单选题) 下述说法不正确的是( )

A.关系图每个顶点都有环,则该关系具有自反性质

B.关系图每个顶点都没有环,则该关系具有反自反性质

C.关系图没有单向边,则该关系具有对称性质

D.关系图有些单向边,则该关系具有反对称性质

参考答案:D

8.(单选题) 设 A = {a, b, c},要使关系具有对称性,则( ) 参考答案:B

9.(单选题) ,要使关系具有对称性,则( )

参考答案:D

10.(单选题) A = {a, b, c, d}, A 上的关系R = {, , ,

d>},则它的对称闭包为( )

A.R = {, , , , , , }

B.R = {, , , , }

C.R = {, , , , , }

D.R = {, , , , , }

参考答案:C

11.(单选题) 下列关系运算原有五个性质保留情况的说法错误的是( )

A.逆关系与关系的交保持全部五个性质不变

B.关系的并不保持反对称性和传递的

C.关系的差不保持自反性和传递性

D.复合关系仅仅不保持自反性

参考答案:D

12.(单选题) 设R为定义在集合A上的一个关系,若R是( ),则R为偏序关系。 A.反自反的,对称的和传递的 B.自反的,对称的和传递的

C.自反的,反对称的和传递的 D.对称的,反对称的和传递的

参考答案:C

第五章图论简介·第一节有向图及无向图

1.(单选题) 下列说法不对的是()

A.简单图不含平行边和环

B.每个图中,度数为奇数的节点数为偶数

C.有向图中节点的入度等于出度

D.完全图的边数为

参考答案:C

2.(单选题) 设G是有个结点,条边的简单有向图。若G是连通的,则的下界是()参考答案:B

3.(单选题) 下列说法不对的是()

A.每个图中节点的度数之和等于边数的两倍

B.有向图的所有节点入度之和等于所有节点的出度之和

C.每一个环,度数增加2

D.一个图的图形表示是唯一的

参考答案:D

4.(单选题) 下列说法不对的是()

A.两个图同构要求他们的节点和边分别存在一一对应的关系,且保持关联

B.图同构的充分条件是节点数目相同、边数相等,度数相同的节点数相等

C.补图是相对同阶完全图而言的图,阶数一样但变为补充进来的新边。

D.一个完全图的任何两个顶点都有边连接

参考答案:B

5.(单选题) 下列说法不对的是()

A.零图含零个节点

B.边数为零的图为零图

C.平凡图只有一个节点

D.环或自回路可以作为有向边,也可以作为无向边

参考答案:A

6.(单选题) 下列各图是简单图的是( )。

参考答案:C

7.(单选题) 设无向图G有12条边,已知G中3度顶点有6个,其余顶点的度数都小于3,则该图至少有( )个顶点。

A.6 B.8 C.9 D.12

参考答案:C

8.(单选题) 设阶图G中有条边,每个结点的度不是就是。若G中有个度结点,个度结点,则=()

参考答案:C

9.(单选题) 称图为图的生成子图是指( )

参考答案:C

第六章特殊的图类·第一节二部图

1.(单选题) 下列说法不对的是()

A.欧拉图可以一笔画成,图要一笔画成则一定要是欧拉图

B.欧拉路经过每条边一次且仅有一次,经过的节点可多次

C.汉密尔顿路经过每个节点一次且仅一次,经过的边可多次

D.当且仅当简单图的闭包是汉密顿图时,这个简单图是汉密顿图

参考答案:A

2.(单选题) 下列说法不对的是()

A.无向图为欧拉路则其奇数度节点可以是一个

B.一个图是欧拉图当且仅当它连通且均为偶数度节点

C.当一个图每一对节点的度数之和都大于或等于节点数减一,就有汉密尔顿路

D.若一个图,G含有汉密尔顿路,则

参考答案:A

3.(单选题) 下列为欧拉图的是( )

参考答案:D

4.(单选题) 在下列关于图论的命题中,为真的命题是( )

A.完全二部图Kn, m (n 31, m 31)是欧拉图

B.欧拉图一定是哈密尔顿图

C.无向完全图Kn(n33)都是欧拉图

D.无向完全图Kn(n33)都是哈密尔顿图

参考答案:D

5.(单选题) 在下列关于图论的命题中,为假的命题是( )

A.完全二部图Kn, m (n , m为非零正偶数)是欧拉图

B.哈密尔顿图一定是欧拉图

C.有向完全图Kn(n32)都是欧拉图

D.无向完全图Kn(n33且为奇数)都是欧拉图

参考答案:B

6.(单选题) 在下列关于图论的命题中,为假的命题是( )

A.n =m且大于1时,完全二部图Kn, m 是哈密尔顿图

B.强连通的有向图都是哈密尔顿图

C.完全二部图Kn, m (n , m为非零正偶数)的欧拉回路含mn条边D.无向完全图(n32)至少加n条边才能成为欧拉图

参考答案:B

《离散数学》-教案.doc

《离散数学》教案 第一章集合与关系 集合是数学中最基本的概念,又是数学各分支、自然科学及社会科学各领域的最普 遍采用的描述工具。集合论是离散数学的重要组成部分,是现代数学中占有独特地位的 一个分支。 G. Cantor( 康脱 ) 是作为数学分支的集合论的奠基人。1870 年前后,他关于无穷序列的研究导致集合论的系统发展。 1874 年他发表了关于实数集合不能与自然数集合建立 一一对应的有名的证明。 1878 年,他引进了两个集合具有相等的“势”的概念。然 而,朴素集合论中包含着悖论。第一个悖论是布拉利 - 福尔蒂的最大序数悖论。 1901 年罗素发现了有名的罗素悖论。 1932 年康脱也发表了关于最大基数的悖论。集合论的现代公理化开始于1908 年策梅罗所发表的一组公理,经过弗兰克尔的加工,这个系统称 为策梅罗 - 弗兰克尔集合论( ZF),其中包括 1904 年策梅罗引入的选择公理。另外一种系 统是冯·诺伊曼 - 伯奈斯 - 哥德尔集合论。公理集合论中一个有名的猜想是连续统假设(CH)。哥德尔证明了连续统假设与策梅罗 - 弗兰克尔集合论的相容性,科恩证明了连续统假设与策梅罗 - 弗兰克尔集合论的独立性。现在把策梅罗 - 弗兰克尔集合论与选择公理一起称为 ZFC系统。 一、学习目的与要求 本章目的是介绍集合的基本概念,讲授集合运算的基本理论,关系的定义与运算。 通过本章的学习,使学生了解集合是数学的基本语言,掌握主要的集合运算方法和关系运 算方法,为学习后续章节打下良好基础。 二、知识点 1.集合的基本概念与表示方法; 2.集合的运算; 3.序偶与笛卡尔积; 4.关系及其表示、关系矩阵、关系图; 5.关系的性质,符合关系、逆关系; 6.关系的闭包运算; 7.集合的划分与覆盖、等价关系与等价类;相容关系; 8.序关系、偏序集、哈斯图。

离散数学试题与答案

试卷二试题与参考答案 一、填空 1、 P:您努力,Q:您失败。 2、 “除非您努力,否则您将失败”符号化为 ; “虽然您努力了,但还就是失败了”符号化为 。 2、论域D={1,2},指定谓词P P (1,1) P (1,2) P (2,1) P (2,2) T T F F 则公式x ??真值为 。 3设A={2,3,4,5,6}上的二元关系}|,{是质数x y x y x R ∨<><=,则 R= (列举法)。 R 的关系矩阵M R = 。 4、设A={1,2,3},则A 上既不就是对称的又不就是反对称的关系 R= ;A 上既就是对称的又就是反对称的关系R= 。 5、设代数系统,其中A={a,b,c}, 则幺元就是 ;就是否有幂等 性 ;就是否有对称性 。 6、4阶群必就是 群或 群。 7、下面偏序格就是分配格的就是 。 8、n 个结点的无向完全图K n 的边数为 ,欧拉图的充要条件就是 。 * a b c a b c a b c b b c c c b

二、选择 1、在下述公式中就是重言式为( ) A.)()(Q P Q P ∨→∧; B.))()(()(P Q Q P Q P →∧→??; C.Q Q P ∧→?)(; D.)(Q P P ∨→。 2、命题公式 )()(P Q Q P ∨?→→? 中极小项的个数为( ),成真赋值的个数为 ( )。 A.0; B.1; C.2; D.3 。 3、设}}2,1{},1{,{Φ=S ,则 S 2 有( )个元素。 A.3; B.6; C.7; D.8 。 4、设} 3 ,2 ,1 {=S ,定义S S ?上的等价关系 },,,, | ,,,{c b d a S S d c S S b a d c b a R +=+?>∈∈<><><<=则由 R 产 生的S S ?上一个划分共有( )个分块。 A.4; B.5; C.6; D.9 。 5、设} 3 ,2 ,1 {=S ,S 上关系R 的关系图为 则R 具有( )性质。 A.自反性、对称性、传递性; B.反自反性、反对称性; C.反自反性、反对称性、传递性; D.自反性 。 6、设 ο,+ 为普通加法与乘法,则( )>+<ο,,S 就是域。 A.},,3|{Q b a b a x x S ∈+== B.},,2|{Z b a n x x S ∈== C.},12|{Z n n x x S ∈+== D.}0|{≥∧∈=x Z x x S = N 。 7、下面偏序集( )能构成格。

离散数学考试题详细答案

离散数学考试题(后附详细答案) 一、命题符号化(共6小题,每小题3分,共计18分) 1.用命题逻辑把下列命题符号化 a)假如上午不下雨,我去看电影,否则就在家里读书或看报。 设P表示命题“上午下雨”,Q表示命题“我去看电影”,R表示命题“在家里读书”,S表示命题“在家看报”,命题符号化为:(PQ)(PRS) b)我今天进城,除非下雨。 设P表示命题“我今天进城”,Q表示命题“天下雨”,命题符号化为:Q→P或P→Q c)仅当你走,我将留下。 设P表示命题“你走”,Q表示命题“我留下”,命题符号化为:Q→P 2.用谓词逻辑把下列命题符号化 a)有些实数不是有理数 设R(x)表示“x是实数”,Q(x)表示“x是有理数”,命题符号化为: x(R(x) Q(x)) 或x(R(x) →Q(x)) b)对于所有非零实数x,总存在y使得xy=1。 设R(x)表示“x是实数”,E(x,y)表示“x=y”,f(x,y)=xy, 命题符号化为: x(R(x) E(x,0) →y(R(y) E(f(x,y),1)))) c) f 是从A到B的函数当且仅当对于每个a∈A存在唯一的b∈B,使得f(a)=b. 设F(f)表示“f是从A到B的函数”, A(x)表示“x∈A”, B(x)表示“x∈B”,E(x,y)表示“x=y”, 命题符号化为:F(f)a(A(a)→b(B(b) E(f(a),b) c(S(c) E(f(a),c) →E(a,b)))) 二、简答题(共6道题,共32分) 1.求命题公式(P→(Q→R))(R→(Q→P))的主析取范式、主合取范式,并写出所有成真赋值。 (5分) (P→(Q→R))(R→(Q→P))(PQR)(PQR) ((PQR)→(PQR)) ((PQR) →(PQR)). ((PQR)(PQR)) ((PQR) (PQR)) (PQR)(PQR) 这是主合取范式 公式的所有成真赋值为000,001,010,100,101,111,故主析取范式为 (PQR(PQR(PQR(PQR(PQR(PQR 2.设个体域为{1,2,3},求下列命题的真值(4分) a)xy(x+y=4) b)yx (x+y=4) a) T b) F 3.求x(F(x)→G(x))→(xF(x)→xG(x))的前束范式。(4分) x(F(x)→G(x))→(xF(x)→xG(x)) x(F(x)→G(x))→(yF(y)→zG(z)) x(F(x)→G(x))→yz(F(y)→G(z)) xyz((F(x)→G(x))→(F(y)→G(z))) 4.判断下面命题的真假,并说明原因。(每小题2分,共4分)

离散数学期末试题及答案完整版

离散数学期末试题及答 案 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

326《离散数学》期末考试题(B ) 一、填空题(每小题3分,共15分) 1.设,,},,{{b a b a A =?},则-A ? = ( ),-A {?} = ( ), )(A P 中的元素个数=|)(|A P ( ). 2.设集合A 中有3个元素,则A 上的二元关系有( )个,其中有( )个是A 到A 的函数. 3.谓词公式))()(())()((y P y Q y x Q x P x ?∧?∧→?中量词x ?的辖域为( ), 量词y ?的辖域为( ). 4.设}24,12,8,6,4,3,2,1{24=D ,对于其上的整除关系“|”,元素( )不存在补元. 5.当n ( )时,n 阶完全无向图n K 是平面图,当当n 为( )时,n K 是欧拉图. 二.1. 若n B m A ==||,||,则=?||B A ( ),A 到B 的2元关系共有( )个,A 上的2元关系共有( )个. 2. 设A = {1, 2, 3}, f = {(1,1), (2,1), (3, 1)}, g = {(1, 1), (2, 3), (3, 2)}和h = {(1, 3), (2, 1), (3, 1)},则( )是单射,( )是满射,( )是双射. 3. 下列5个命题公式中,是永真式的有( )(选择正确答案的番号). (1)q q p p →→∧)(; (2))(q p p ∨→; (3))(q p p ∧→; (4)q q p p →∨∧?)(; (5)q q p →→)(. 4. 设D 24是24的所有正因数组成的集合,“|”是其上的整除关系,则3的补元( ),4的补元( ),6的补元( ).

(完整版)离散数学试卷及答案

离散数学试题(A卷答案) 一、(10分)求(P↓Q)→(P∧?(Q∨?R))的主析取范式 解:(P↓Q)→(P∧?(Q∨?R))??(?( P∨Q))∨(P∧?Q∧R)) ?(P∨Q)∨(P∧?Q∧R)) ?(P∨Q∨P)∧(P∨Q∨?Q)∧(P∨Q∨R) ?(P∨Q)∧(P∨Q∨R) ?(P∨Q∨(R∧?R))∧(P∨Q∨R) ?(P∨Q∨R)∧(P∨Q∨?R)∧(P∨Q∨R) ? M∧1M ? m∨3m∨4m∨5m∨6m∨7m 2 二、(10分)在某次研讨会的休息时间,3名与会者根据王教授的口音分别作出下述判断: 甲说:王教授不是苏州人,是上海人。 乙说:王教授不是上海人,是苏州人。 丙说:王教授既不是上海人,也不是杭州人。 王教授听后说:你们3人中有一个全说对了,有一人全说错了,还有一个人对错各一半。试判断王教授是哪里人? 解设设P:王教授是苏州人;Q:王教授是上海人;R:王教授是杭州人。则根据题意应有: 甲:?P∧Q 乙:?Q∧P 丙:?Q∧?R 王教授只可能是其中一个城市的人或者3个城市都不是。所以,丙至少说对了一半。因此,可得甲或乙必有一人全错了。又因为,若甲全错了,则有?Q ∧P,因此,乙全对。同理,乙全错则甲全对。所以丙必是一对一错。故王教授的话符号化为:

((?P ∧Q )∧((Q ∧?R )∨(?Q ∧R )))∨((?Q ∧P )∧(?Q ∧R )) ?(?P ∧Q ∧Q ∧?R )∨(?P ∧Q ∧?Q ∧R )∨(?Q ∧P ∧?Q ∧R ) ?(?P ∧Q ∧?R )∨(P ∧?Q ∧R ) ??P ∧Q ∧?R ?T 因此,王教授是上海人。 三、(10分)证明tsr (R )是包含R 的且具有自反性、对称性和传递性的最小关系。 证明 设R 是非空集合A 上的二元关系,则由定理4.19知,tsr (R )是包含R 的且具有自反性、对称性和传递性的关系。 若'R 是包含R 的且具有自反性、对称性和传递性的任意关系,则由闭包的定义知r (R )?'R 。由定理4.15和由定理4.16得sr (R )?s ('R )='R ,进而有tsr (R )?t ('R )='R 。 综上可知,tsr (R )是包含R 的且具有自反性、对称性和传递性的最小关系。 四、(15分)集合A ={a ,b ,c ,d ,e }上的二元关系R 为R ={}, (1)写出R 的关系矩阵。 (2)判断R 是不是偏序关系,为什么? 解 (1) R 的关系矩阵为: ??? ??? ? ? ? ?=100001100010100 10110 11111 )(R M (2)由关系矩阵可知,对角线上所有元素全为1,故R 是自反的;ij r +ji r ≤1,故R 是反对称的;可计算对应的关系矩阵为:

离散数学教案

学习目标: 1.深刻理解序偶、笛卡尔积、关系、集合的划分与覆盖、等价关系、等价类、商集、相容关系、(最大)相容类、偏序关系、极大元、极小元、上(下)界、上(下)确界、最大(小)元、全序关系、良序关系等概念; 2.掌握集合的交、并、差、补、对称差的运算及其运算规律; 3.掌握关系的交、并、逆、复合运算、闭包运算及其性质; 4.掌握关系的矩阵表示与关系图; 5.深刻理解关系的自反性、反自反性、对称性、反对称性与传递性,掌握其判别方法; 6.掌握集合的覆盖与划分的联系与区别; 7.掌握偏序关系的判别及其哈斯图的画法;会求偏序集中给定集合的极大元、极小元、上(下)界、上(下)确界、最大(小)元。 主要内容: 1.集合的基本概念及其运算 2.序偶与笛卡尔积 3.关系及其表示 4.关系的性质及其判定方法 5.复合关系与逆关系 6.关系的闭包运算 7.等价关系与相容关系 8.偏序关系 重点: 1.关系的性质及其判别; 2.关系的复合运算及其性质; 3.等价关系与等价类、等价关系与集合的划分的联系; 4.偏序关系判别及其哈斯图的画法、偏序集中特异位置元素的理解。 难点: 1.关系的传递性及其判别; 2.等价关系的特性; 3.偏序关系的哈斯图的画法;偏序集中特异位置元素的求法。 教学手段: 通过多个实例的精讲帮助同学理解重点与难点的内容,并通过大量的练习使同学们巩固与掌握关系的性质及其判别、关系的复合运算及其性质、等价关系的特性、偏序关系的哈斯图的画法及偏序集中特异位置元素的求法。 习题: 习题3、1:4,6;习题3、2:3(8),4(12),6(m);习题3、4:1 (2)、(4),3;习题3、5:1,4;习题3、6:2,5,6;习题3、7:2,5,6;习题3、8:1(1)-(6);习题3、9:3(2)、(4),4(3);习题3、10:1 ,4,5。

《离散数学》及答案

《离散数学》+答案 一、选择或填空: 1、下列哪些公式为永真蕴含式?( ) (1)?Q=>Q→P (2)?Q=>P→Q (3)P=>P→Q (4)?P∧(P∨Q)=>?P 答:在第三章里面有公式(1)是附加律,(4)可以由第二章的蕴含等值式求出(注意与吸收律区别) 2、下列公式中哪些是永真式?( ) (1)(┐P∧Q)→(Q→?R) (2)P→(Q→Q) (3)(P∧Q)→P (4)P→(P∨Q) 答:(2),(3),(4)可用蕴含等值式证明 3、设有下列公式,请问哪几个是永真蕴涵式?( ) (1)P=>P∧Q (2) P∧Q=>P (3) P∧Q=>P∨Q (4)P∧(P→Q)=>Q (5) ?(P→Q)=>P (6) ?P∧(P∨Q)=>?P 答:(2)是第三章的化简律,(3)类似附加律,(4)是假言推理,(3),(5),(6)都可以用蕴含等值式来证明出是永真蕴含式 4、公式?x((A(x)→B(y,x))∧?z C(y,z))→D(x)中,自由变元是( ),约束变元是( )。 答:x,y, x,z(考察定义在公式?x A和?x A中,称x为指导变元,A为量词的辖域。在?x A和?x A的辖域中,x的所有出现都称为约束出现,即称x为约束变元,A中不是约束出现的其他变项则称为自由变元。于是A(x)、B(y,x)和?z C(y,z)中y为自由变元,x和z为约束变元,在D(x)中x为自由变元) 5、判断下列语句是不是命题。若是,给出命题的真值。( ) (1)北京是中华人民共和国的首都。 (2) 陕西师大是一座工厂。 (3) 你喜欢唱歌吗? (4) 若7+8>18,则三角形有4条边。 (5) 前进! (6) 给我一杯水吧! 答:(1)是,T (2)是,F (3)不是(4)是,T (5)不是(6) 44

离散数学试题及解答

离散数学 2^m*n 一、选择题(2*10) 1.令P:今天下雨了,Q:我没带伞,则命题“虽然今天下雨了,但是我没带伞”可符号化为()。 (A)P→?Q (B)P∨?Q (C)P∧Q (D)P∧?Q 2.下列命题公式为永真蕴含式的是()。 (A)Q→(P∧Q)(B)P→(P∧Q) (C)(P∧Q)→P (D)(P∨Q)→Q 3、命题“存在一些人是大学生”的否定是(A),而命题“所有的人都是要死的”的否定 是()。 (A)所有人都不是大学生,有些人不会死 (B)所有人不都是大学生,所有人都不会死 (C)存在一些人不是大学生,有些人不会死 (D)所有人都不是大学生,所有人都不会死 4、永真式的否定是()。

(A)永真式(B)永假式(C)可满足式(D)以上均有可能 5、以下选项中正确的是()。 (A)0= ? (B)0 ? (C)0∈? (D)0?? 6、以下哪个不是集合A上的等价关系的性质?() )。 (A)2 (B)4 (C)3 (D)5 10.连通图G是一棵树,当且仅当G中()。 (A)有些边不是割边(B)每条边都是割边 (C)无割边集(D)每条边都不是割边

二、填空题(2*10) 1、命题“2是偶数或-3是负数”的否定是________。 2、设全体域D是正整数集合,则命题?x?y(xy=y)的真值是______。 3、令R(x):x是实数,Q(x):x是有理数。则命题“并非每个实数都是有理数”的符号化表示为 4 5 6、设 7 8 (1)若A去,则C和D中要去1个人; (2)B和C不能都去; (3)若C去,则D留下 五、(15分)设A={1,2,3},写出下列图示关系的关系矩阵,并讨论它们的性质:

离散数学试卷及答案一

一、单项选择题(本大题共15小题,每小题1分,共15分)在每小题列出的四个选项中只有 一个选项是符合题目要求的,请将正确选项前的字母填在题后的括号内。 1.一个连通的无向图G,如果它的所有结点的度数都是偶数,那么它具有一条( ) A.汉密尔顿回路 B.欧拉回路 C.汉密尔顿通路 D.初级回路 2.设G是连通简单平面图,G中有11个顶点5个面,则G中的边是( ) A.10 B.12 C.16 D.14 3.在布尔代数L中,表达式(a∧b)∨(a∧b∧c)∨(b∧c)的等价式是( ) A.b∧(a∨c) B.(a∧b)∨(a’∧b) C.(a∨b)∧(a∨b∨c)∧(b∨c) D.(b∨c)∧(a∨c) 4.设i是虚数,·是复数乘法运算,则G=<{1,-1,i,-i},·>是群,下列是G的子群是( ) A.<{1},·> B.〈{-1},·〉 C.〈{i},·〉 D.〈{-i},·〉 5.设Z为整数集,A为集合,A的幂集为P(A),+、-、/为数的加、减、除运算,∩为集合的交 运算,下列系统中是代数系统的有( ) A.〈Z,+,/〉 B.〈Z,/〉 C.〈Z,-,/〉 D.〈P(A),∩〉 6.下列各代数系统中不含有零元素的是( ) A.〈Q,*〉Q是全体有理数集,*是数的乘法运算 B.〈Mn(R),*〉,Mn(R)是全体n阶实矩阵集合,*是矩阵乘法运算 C.〈Z,ο〉,Z是整数集,ο定义为xοxy=xy,?x,y∈Z D.〈Z,+〉,Z是整数集,+是数的加法运算 7.设A={1,2,3},A上二元关系R的关系图如下: R具有的性质是 A.自反性 B.对称性 C.传递性 D.反自反性 8.设A={a,b,c},A上二元关系R={〈a,a〉,〈b,b〉,〈a,c〉},则关系R的对称闭包S(R)是( ) A.R∪I A B.R C.R∪{〈c,a〉} D.R∩I A 9.设X={a,b,c},Ix是X上恒等关系,要使Ix∪{〈a,b〉,〈b,c〉,〈c,a〉,〈b,a〉}∪R为X上的 等价关系,R应取( ) A.{〈c,a〉,〈a,c〉} B.{〈c,b〉,〈b,a〉} C.{〈c,a〉,〈b,a〉} D.{〈a,c〉,〈c,b〉} 10.下列式子正确的是( ) A. ?∈? B.??? C.{?}?? D.{?}∈? 11.设解释R如下:论域D为实数集,a=0,f(x,y)=x-y,A(x,y):x

离散数学教案

学习目标: 1.深刻理解序偶、笛卡尔积、关系、集合的划分与覆盖、等价关系、等价类、商集、相容关系、(最大)相容类、偏序关系、极大元、极小元、上(下)界、上(下)确界、最大(小)元、全序关系、良序关系等概念; 2.掌握集合的交、并、差、补、对称差的运算及其运算规律; 3.掌握关系的交、并、逆、复合运算、闭包运算及其性质; 4.掌握关系的矩阵表示和关系图; 5.深刻理解关系的自反性、反自反性、对称性、反对称性和传递性,掌握其判别方法; 6.掌握集合的覆盖与划分的联系与区别; 7.掌握偏序关系的判别及其哈斯图的画法;会求偏序集中给定集合的极大元、极小元、上(下)界、上(下)确界、最大(小)元。 主要内容: 1.集合的基本概念及其运算 2.序偶与笛卡尔积 3.关系及其表示 4.关系的性质及其判定方法 5.复合关系和逆关系 6.关系的闭包运算 7.等价关系与相容关系 8.偏序关系 重点: 1.关系的性质及其判别; 2.关系的复合运算及其性质; 3.等价关系与等价类、等价关系与集合的划分的联系; 4.偏序关系判别及其哈斯图的画法、偏序集中特异位置元素的理解。 难点: 1.关系的传递性及其判别; 2.等价关系的特性; 3.偏序关系的哈斯图的画法;偏序集中特异位置元素的求法。 教学手段: 通过多个实例的精讲帮助同学理解重点和难点的内容,并通过大量的练习使同学们巩固和掌握关系的性质及其判别、关系的复合运算及其性质、等价关系的特性、偏序关系的哈斯图的画法及偏序集中特异位置元素的求法。 习题:

习题 3.1:4,6;习题 3.2:3(8),4(12),6(m );习题 3.4:1 (2)、 (4),3;习题 3.5:1,4;习题 3.6:2,5,6;习题 3.7:2,5,6;习题 3.8:1(1)-(6);习题3.9:3(2)、(4),4(3);习题3.10:1 ,4,5。 3.1 集合的基本概念 集合(set)(或称为集)是数学中的一个最基本的概念。所谓集合,就是指具有共同性质的或适合一定条件的事物的全体,组成集合的这些“事物”称为集合的元素。 集合常用大写字母表示,集合的元素常用小写字母表示。若A 是集合,a 是A 的元素,则称a 属于A ,记作a A ∈;若a 不是A 的元素,则称a 不属于A ,记作。若组成集合的元素个数是有限的,则称该集合为有限集(Finite Set),否则称为无限集(Infinite Set)。 常见集合专用字符的约定: N —自然数集合(非负整数 集) I (或Z )—整数集合(I +,I -) Q —有理数集合(Q +,Q -) R —实数集合(R +,R -) F —分数集合(F +,F -) 脚标+和-是对正、负的区分 C —复数集合 P —素数集合 O —奇数集合 E —偶数集合 幂集 定义 3.1.1 对于每一个集合A ,由A 的所有子集组成的集合,称为集合A 的幂集(Power Set),记为 ()P A 或2A .即(){}P A B B A =?。 例如:{,,}A a b c =, (){,{},{},{},{,},{,},{,},{,,}}P A a b c a b b c a c a b c φ=。 定理3.1.1 如果有限集A 有n 个元素,则其幂集()P A 有2n 个元素。 证明 A 的所有由k 个元素组成的子集数为从n 个元素中取k 个的组合数。 (1)(2)(1)! k n n n n n k C k ---+= L 另外,因A φ?,故()P A 的元素个数N 可表示为 1 201n k n k n n n n n k N C C C C C ==++++++=∑L L 又因 0()n n k k n k n k x y C x y -=+= ∑ 令 1x y == 得 02n n k n k C ==∑ 故()P A 的元素个数是2n 。 人们常常给有限集A 的子集编码,用以表示A 的幂集的各个元素。具体方法是: 设12{,,,}n A a a a =L ,则A 子集B 按照含i a 记1、不含i a 记0(1,2,,)i n =L 的规定

离散数学作业答案

第一章 1.假定A是ECNU二年级的学生集合,B是ECNU必须学离散数学的学生的集合。请用A 和B表示ECNU不必学习离散数学的二年级的学生的集合。 2.试求: (1)P(φ) (2)P(P(φ)) (3)P(P(P(φ))) 3.在1~200的正整数中,能被3或5整除,但不能被15整除的正整数共有多少个? 能被5整除的有40个, 能被15整除的有13个, ∴能被3或5整除,但不能被15整除的正整数共有 66-13+40-13=80个。 第三章 1.下列语句是命题吗? (1)2是正数吗? (2)x2+x+1=0。 (3)我要上学。 (4)明年2月1日下雨。 (5)如果股票涨了,那么我就赚钱。 2.请用自然语言表达命题(p?→r)∨(q?→r),其中p、q、r为如下命题: p:你得流感了 q:你错过了最后的考试

3.通过真值表求p→(p∧(q→p))的主析取范式和主合取范式。 4.给出p→(q→s),q,p∨?r?r→s的形式证明。 第四章 1.将?x(C(x)∨?y(C(y)∧F(x,y)))翻译成汉语,其中C(x)表示x有电脑,F(x,y) 表示x和y是同 班同学,个体域是学校全体学生的集合。 解: 学校的全体学生要么自己有电脑,要么其同班同学有电脑。 2.构造?x(P(x)∨Q(x)),?x(Q(x)→?R(x)),?xR(x)??xP(x)的形式证明。 解: ①?xR(x) 前提引入 ②R(e) ①US规则 ③?x(Q(x)→?R(x)) 前提引入 ④Q(e) →?R(e) ③US规则 ⑤?Q (e) ②④析取三段论 ⑥?x(P(x)∨Q(x)) 前提引入 ⑦P(e) ∨Q(e) ⑥US规则 ⑧P(e) ⑤⑦析取三段论 ⑨?x (P(x)) ⑧EG规则 第五章

离散数学试卷及答案(2)

一、填空 20% (每小题2分) 1、 P :你努力,Q :你失败。“除非你努力,否则你将失败”的翻译为 ;“虽然你努力了,但还是失败了”的翻译为 。 2、论域D={1,2},指定谓词P 则公式),(x y yP x ??真值为 。 2、 设S={a 1 ,a 2 ,…,a 8},B i 是S 的子集,则由B 31所表达的子集是 。 3、 设A={2,3,4,5,6}上的二元关系}|,{是质数x y x y x R ∨<><=,则R= (列举法)。 R 的关系矩阵M R = 。 5、设A={1,2,3},则A 上既不是对称的又不是反对称的关系R= ; A 上既是对称的又是反对称的关系R= 。 6、设代数系统,其中A={a ,b ,c}, 则幺元是 ;是否有幂等 性 ;是否有对称性 。 7、4阶群必是 群或 群。 8、下面偏序格是分配格的是 。

9、n 个结点的无向完全图K n 的边数为 ,欧拉图的充要条件是 。 10、公式R Q P Q P P ?∧∨?∧∧?∨)(())(( 的根树表示为 。 二、选择 20% (每小题2分) 1、在下述公式中是重言式为( ) A .)()(Q P Q P ∨→∧; B .))()(()(P Q Q P Q P →∧→??; C .Q Q P ∧→?)(; D .)(Q P P ∨→ 。 2、命题公式 )()(P Q Q P ∨?→→? 中极小项的个数为( ),成真赋值的个数为( )。 A .0; B .1; C .2; D .3 。 3、设}}2,1{},1{,{Φ=S ,则 S 2 有( )个元素。 A .3; B .6; C .7; D .8 。 4、 设} 3 ,2 ,1 {=S ,定义S S ?上的等价关系 },,,, | ,,,{c b d a S S d c S S b a d c b a R +=+?>∈∈<><><<=则由 R 产 生的S S ?上一个划分共有( )个分块。 A .4; B .5; C .6; D .9 。 5、设} 3 ,2 ,1 {=S ,S 上关系R 的关系图为

离散数学课后答案

离散数学课后答案 习题一 6.将下列命题符号化。 (1)小丽只能从框里那一个苹果或一个梨. (2)这学期,刘晓月只能选学英语或日语中的一门外语课. 答: (1)(p Λ?q )ν(?pΛq)其中p:小丽拿一个苹果,q:小丽拿一个梨(2)(p Λ?q )ν(?pΛq)其中p:刘晓月选学英语,q:刘晓月选学日语 14.将下列命题符号化. (1) 刘晓月跑得快, 跳得高. (2)老王是山东人或河北人. (3)因为天气冷, 所以我穿了羽绒服. (4)王欢与李乐组成一个小组. (5)李辛与李末是兄弟. (6)王强与刘威都学过法语. (7)他一面吃饭, 一面听音乐. (8)如果天下大雨, 他就乘班车上班. (9)只有天下大雨, 他才乘班车上班. (10)除非天下大雨, 他才乘班车上班. (11)下雪路滑, 他迟到了. (12)2与4都是素数, 这是不对的. (13)“2或4是素数, 这是不对的”是不对的. 答: (1)p∧q, 其中, p: 刘晓月跑得快, q: 刘晓月跳得高. (2)p∨q, 其中, p: 老王是山东人, q: 老王是河北人. (3)p→q, 其中, p: 天气冷, q: 我穿了羽绒服. (4)p, 其中, p: 王欢与李乐组成一个小组, 是简单命题. (5)p, 其中, p: 李辛与李末是兄弟. (6)p∧q, 其中, p: 王强学过法语, q: 刘威学过法语. (7)p∧q, 其中, p: 他吃饭, q: 他听音乐. (8)p→q, 其中, p: 天下大雨, q: 他乘班车上班. (9)p→q, 其中, p: 他乘班车上班, q: 天下大雨. (10)p→q, 其中, p: 他乘班车上班, q: 天下大雨. (11)p→q, 其中, p: 下雪路滑, q: 他迟到了. (12) ? (p∧q)或?p∨?q, 其中, p: 2是素数, q: 4是素数. (13) ? ? (p∨q)或p∨q, 其中, p: 2是素数, q: 4是素数. 16. 19.用真值表判断下列公式的类型: (1)p→ (p∨q∨r) (2)(p→?q) →?q

离散数学试题及解答

精品文档 离散数学 10.设仃限集丸 B. |A|■申 p|p |p(AxB)| = 带伞”可符号化为( ) (C ) P A Q (D ) P A Q 2 ?下列命题公式为永真蕴含式的是( ) (A ) C H( P A Q ) ( B ) P -( P A Q ) (C ) (P A Q — P ( D (P V Q)— Q 3、 命题“存在一些人是大学生”的否定是(A),而命题“所有的人都是要死 的”的否定是( )。 (A) 所有人都不是大学生,有些人不会死 (B) 所有人不都是大学生,所有人都不会死 (C) 存在一些人不是大学生,有些人不会死 (D) 所有人都不是大学生,所有人都不会死 4、 永真式的否定是()。 (A )永真式 (B )永假式 (C )可满足式 (D )以上均有可能 5、以下选项中正确的是()。 (A ) 0= ? (B ) 0 ? (C 0€ ? (D ) 0?? 6、以下哪个不是集合A 上的等价关系的性质?( ) (A )自反性 (B )有限性 (C )对称性 (D ) 传递性 7、集合 A={1,2,…;10}上的关系 R={|x+y=10,x,y € A},贝U R 的性质为 ()。 (A )自反的 (B )对称的 (C )传递的,对称的 (D )传递的 8?设 D=为有向图,V={a, b, c, d, e, f}, E={, , , , } 是()。 选择题(2*10) 1 ?■令P :今天下雨 了, Q:我没带伞,则命题“虽然今天下雨了,但是我没 2A m*n (A) P - Q (B ) P V Q

离散数学全部试卷

离散数学试题与答案试卷一 一、填空 20% (每小题2分) 1.设 }7|{)},5()(|{<∈=<∈=+ x E x x B x N x x A 且且(N :自然数集,E + 正偶数) 则 =?B A 。 2.A ,B ,C 表示三个集合,文图中阴影部分的集合表达式为 。 3.设P ,Q 的真值为0,R ,S 的真值为1,则 )()))(((S R P R Q P ?∨→?∧→∨?的真值= 。 4.公式P R S R P ?∨∧∨∧)()(的主合取范式为 。 5.若解释I 的论域D 仅包含一个元素,则 )()(x xP x xP ?→? 在I 下真值为 。 6.设A={1,2,3,4},A 上关系图为 则 R 2 = 。 8.图的补图为 。 二、选择 20% (每小题 2分) 1、下列是真命题的有( ) A . }}{{}{a a ?; B .}}{,{}}{{ΦΦ∈Φ; C . }},{{ΦΦ∈Φ; D . }}{{}{Φ∈Φ。 2、下列集合中相等的有( ) A B C

?;B.{Φ,3,4};C.{4,Φ,3,3};D.{3,4}。 A.{4,3}Φ 3、设A={1,2,3},则A上的二元关系有()个。 A.23 ;B.32 ;C.332?;D.223?。 4、设R,S是集合A上的关系,则下列说法正确的是() Rο是自反的; A.若R,S 是自反的,则S Rο是反自反的; B.若R,S 是反自反的,则S Rο是对称的; C.若R,S 是对称的,则S Rο是传递的。 D.若R,S 是传递的,则S 5、设A={1,2,3,4},P(A)(A的幂集)上规定二元系如下 t s t s p A R= ∧ =则P(A)/ R=() < > ∈ s (| || |} {t ) , ( | , A.A ;B.P(A) ;C.{{{1}},{{1,2}},{{1,2,3}},{{1,2,3,4}}};D.{{Φ},{2},{2,3},{{2,3,4}},{A}} 7、下列函数是双射的为() A.f : I→E , f (x) = 2x ;B.f : N→N?N, f (n) = ; C.f : R→I , f (x) = [x] ;D.f :I→N, f (x) = | x | 。 (注:I—整数集,E—偶数集,N—自然数集,R—实数集) 8、图中从v1到v3长度为3 的通路有()条。 A.0;B.1;C.2;D.3。 9、下图中既不是Eular图,也不是Hamilton图的图是() 10、在一棵树中有7片树叶,3个3度结点,其余都是4度结点则该树有()个4 度结点。 A.1;B.2;C.3;D.4 。

离散数学试卷及答案(17)

一、判断正误20% (每小题2分) 1、设A.B. C是任意三个集合。 (1)若A∈B且B?C,则A?C。() (2)若A?B且B∈C,则A?C。() (3)若A?B且B∈C,则A?C。() (4)A) ( ) ( ) (C A B A C B ⊕ = ⊕。() (5)(A–B)?C=(A?C)-(B?C)。() 2、可能有某种关系,既不是自反的,也不是反自反的。() 3、若两图结点数相同,边数相等,度数相同的结点数目相等,则两图是同构的。() 4、一个图是平面图,当且仅当它包含与K 3, 3 或K 5 在2度结点内同构的子图。() 5、代数系统中一个元素的左逆元并一定等于该元素的右逆元。() 6、群是每个元素都有逆元的半群。() 二、8% 将谓词公式)) , ( ) ( ) ( ) (( )) , ( ) ( )( (z y Q z y P y y x Q x P x? ∧ ? → → ?化为前束析取范式与前束合取范式。 三、8% 设集合A={a,b,c,d}上的关系R={,,,}写出它的关系矩阵和关系图,并用矩阵运算方法求出R的传递闭包。 四、9% 1、画一个有一条欧拉回路和一条汉密尔顿回路的图。 2、画一个有一条欧拉回路,但没有一条汉密尔顿回路的图。 3、画一个有一条欧拉回路,但有一条汉密尔顿回路的图。

五、10% 证明:若图G是不连通的,则G的补图G 是连通的。 六、10% 证明:循环群的任何子群必定也是循环群。 七、12% 用CP规则证明: 1.F A F E D D C B A →?→∨∧→∨,。 2.?∨??∨?(()()())()()((x P x x Q x P x )()x Q x 。 八、10% 用推理规则证明下式: 前提: ))()()(()),()()(())()()(((y W y M y y W y M y x S x F x ?∧?→?→∧? 结论:?→?)()((x F x S ))(x 九、13% 若集合X={(1,2),(3,4),(5,6),……} }|,,,{12212211y x y x y x y x R +=+>><><<= 1、证明R 是X 上的等价关系。 2、求出X 关于R 的商集。 一、 填空 20%(每小题2分)

离散数学教案范本

《离散数学》教案 课目:第一章命题逻辑 教师:熊建英 学时: 12课时

Ⅰ教学提要 一、教学对象(人数) 学生:信息安全专业本科二年级学生50人 二、教学目标(任务) 各小结中知识点掌握程度(* 理解;** 基本掌握;***熟练掌握) 三、教学要求 (一)学生:着重知识点的学习,积极思考,参与提问。 (二)教官:严格纪律,严密组织、保持良好教学秩序,确保教学效果。 四、教官分工 主讲教师1名:负责教案编写,课堂的组织教学,教学总结编写。

五、本章重点 1、利用联接词构造复合命题公式 2、真值表的构建 3、等值演算 4、复合命题公式转化为主析取范式、主合取范式的方法 5、推理证明 六、本章难点 1、利用命题公式演算、真值表进行等值判断和公式类型判断 2、利用命题公式演算、真值表转化主析取范式、主合取范式 3、将现实背景下的条件约束构造为命题公式 七、教学方法 采用课堂教授,主要使用多媒体课件,部分内容及例题用黑板解释。 八、课时分配 1.1 命题及联接词2课时; 1.2 命题公式及其赋值2课时; 1.3 等值式2课时; 1.4 析取范式与合取范式2课时; 1.5 推理理论与消解法2课时; 1.6 命题逻辑应用案例2课时; 九、场地器材 多媒体教室 十、参考书目 1、杨圣洪、张英杰、陈义明:《离散数学》,科学出版社,2011年。 2、屈婉玲、耿素云、张立昂:《离散数学》,高等教育出版社,2008年。 3、屈婉玲、耿素云、张立昂:《离散数学学习指导与习题解析》,高等教育出版社,2008年。

Ⅱ教学进程 1.1 命题及联接词(2课时) 一、教学内容 1、命题的概念表示与分类 2、五种基本的联接词的逻辑关系 3、复合命题的符号化 4、复合命题的真值判断 二、课程时间安排 1、首先介绍本课程的性质,任务和教学安排,对学生明确提出教学上的要求(10分钟) 2、介绍离散数学学科的发展历史(20分钟) 3、命题与真值、命题的分类、简单命题符号化(15分钟) 4、联结词与复合命题(35分钟) 5、本次课小结(10分钟) 三、教学实施 (一)创设意境、导入课程(10分钟) 目的 体会离散数学理论在现实生活中的应用、是计算机专业多门核心课程的基础,让学生明白“离散数学”课程作用和意义。 1、从生活应用中理解逻辑推理作用,及离散数学学习意义; 如:犯罪推理、电路设计、人事安排的最优方案、网络中最优路径等; (1)逻辑推理问题范例(PPT展示一个犯罪推理案例) (2)离散数学是一门可以对逻辑推理规律建立相应的符号运算系统,解决此类问题的科学。 2、离散数学与其他专业课程的联系; (1) 涉及多门计算机专业中很多专业课程,如:编程语言、数据结构、操作系统、数据数据加密。

离散数学答案

02任务_000 1 试卷总分:100 测试时间:0 单项选择题 一、单项选择题(共10 道试题,共100 分。) 1. 设集合A = {1, a },则P(A) = ( ). A. {{1}, {a}} B. {,{1}, {a}} C. {{1}, {a}, {1, a }} D. {,{1}, {a}, {1, a }} 2. 集合A={1, 2, 3, 4}上的关系R={|x=y且x, y A},则R的性质为(). A. 不是自反的 B. 不是对称的 C. 传递的 D. 反自反 3. 若集合A={ a,{a},{1,2}},则下列表述正确的是( ). A. {a,{a}}A B. {1,2}A C. {a}A D. A 4. 设集合A ={1 , 2, 3}上的函数分别为:f = {<1, 2>,<2, 1>,<3, 3>},g = {<1, 3>,<2, 2>,<3, 2>},h = {<1, 3>,<2, 1>,<3, 1>}, 则h =(). A. f?g B. g?f C. f?f D. g?g

5. 设集合A={1 , 2 , 3 , 4}上的二元关系R={<1, 1>,<2, 2>,<2, 3>,<4, 4>},S={<1, 1>,<2, 2>,<2, 3>,<3, 2>,<4, 4>},则S是R的()闭包. A. 自反 B. 传递 C. 对称 D. 自反和传递 6. 若集合A={1,2},B={1,2,{1,2}},则下列表述正确的是( ). A. A B,且A B B. B A,且A B C. A B,且A B D. A B,且A B 7. 设集合A={1,2,3,4,5},偏序关系≤是A上的整除关系,则偏序集上的元素5 是集合A的(). A. 最大元 B. 最小元 C. 极大元 D. 极小元 8. 若集合A的元素个数为10,则其幂集的元素个数为(). A. 1024 B. 10 C. 100 D. 1 9. 如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有()个. A. 0 B. 2 C. 1

最新离散数学试卷及答案 (1)

离散数学试题(A卷答案) 一、证明题(10分) 1) (P∧Q∧A→C)∧(A→P∨Q∨C)? (A∧(P?Q))→C。 证明: (P∧Q∧A→C)∧(A→P∨Q∨C) ?(?P∨?Q∨?A∨C)∧(?A∨P∨Q∨C) ?(?P∨?Q∨?A∨C)∧(?A∨P∨Q∨C) ?((?P∨?Q∨?A)∧(?A∨P∨Q))∨C ??((P∧Q∧A)∨(A∧?P∧?Q))∨C ??( A∧((P∧Q)∨(?P∧?Q)))∨C ??( A∧(P?Q))∨C

?(A∧(P?Q))→C 2) ?(P↑Q)??P↓?Q。 证明:?(P↑Q)??(?(P∧Q))??(?P∨?Q))??P↓?Q。 二、分别用真值表法和公式法求(P→(Q∨R))∧(?P∨(Q?R))的主析取范式与主合取范式,并写出其相应的成真赋值和成假赋值(15分)。 证明: 公式法:因为(P→(Q∨R))∧(?P∨(Q?R)) ?(?P∨Q∨R)∧(?P∨(Q∧R)∨(?Q∧?R)) ?(?P∨Q∨R)∧(((?P∨Q)∧(?P∨R))∨(?Q∧?R))

?(?P∨Q∨R)∧(?P∨Q∨?Q)∧(?P∨Q∨?R)∧(?P∨R∨?Q)∧(?P∨R∨?R) ?(?P∨Q∨R)∧(?P∨Q∨?R)∧(?P∨?Q∨R) ? M∧5M∧6M 4 ? m∨1m∨2m∨3m∨7m 所以,公式(P→(Q∨R))∧(?P∨(Q?R))为可满足式,其相应的成真赋值为000、001、010、011、111:成假赋值为:100、101、110。 真值表法:

式,其相应的成真赋值为000、001、010、011、111:成假赋值为:100、101、110。 三、推理证明题(10分) 1)?P∨Q,?Q∨R,R→S P→S。 证明:(1)P附加前提