上浮头管壳式甲醇反应器及工艺流程设计说明(精)
管壳外冷-绝热复合式甲醇合成反应器及其应用

中 氮
肥
No 6 .
M— ie t g n u e t ie r g e s S z d Ni o e o s F ri z r o r s r l P
NO . 2 0 V 08
管壳外冷 一 热复合式 甲醇 合成反应器及其应用 绝
应卫 勇 ,张海 涛 ,房 鼎业
c n etr rd cin c p ct e c 0 —3 0 k/ o v r ' p o u t a a i r a h2 0 es o y 5 ta,d u l o v r rc p ct e c O 一6 0 k/ . T e o b ec n e e a a i rah 5 O t y 0 ta h
r c v r d t r d c ta e o ee o p o u e se m.
Ke o d :tb — h l tp f y W t e i ;c n e e ;e g n e ig a p iai n h t n ls n h s s o v r r n ie r p l t t n c o
a du l dn ay hecnrl ad ajs e t rtm e tr fct yt e ses ,tetm ea r n no igi e s,t o t l n dut n f p r ueo a ls b d i ay h e p rt e a s o m e o a a u
产蒸汽 。
[ 关键词 ]管壳式 ;甲醇合成 ;反应器 ;T程应用 [ 中图分类号 ]T 2 . 2 [ Q 2 3 1 1 文献标识码 ]A [ 文章编号 ]10 - 3 (0 8 0 4 0 - 0 49 2 20 ) 63 60 9 0 4
甲醇制氢工艺设计

前言氢气是一种重要的工业产品,它广泛用于石油、化工、建材、冶金、电子、医药、电力、轻工、气象、交通等工业部门和服务部门,由于使用要求的不同,这些部门对氢气的纯度、对所含杂质的种类和含量都有不相同的要求,特别是改革开放以来,随着工业化的进程,大量高精产品的投产,对高纯度的需求量正逐步加大,等等对制氢工艺和装置的效率、经济性、灵活性、安全都提出了更高的要求,同时也促进了新型工艺、高效率装置的开发和投产。
依据原料及工艺路线的不同,目前氢气主要由以下几种方法获得:①电解水法;②氯碱工业中电解食盐水副产氢气;③烃类水蒸气转化法;④烃类部分氧化法;⑤煤气化和煤水蒸气转化法;⑥氨或甲醇催化裂解法;⑦石油炼制与石油化工过程中的各种副产氢;等等。
其中烃类水蒸气转化法是世界上应用最普遍的方法,但该方法适用于化肥及石油化工工业上大规模用氢的场合,工艺路线复杂,流程长,投资大。
随着精细化工的行业的发展,当其氢气用量在200~3000m3/h时,甲醇蒸气转化制氢技术表现出很好的技术经济指标,受到许多国家的重视。
甲醇蒸气转化制氢具有以下特点:(1)与大规模的天然气、轻油蒸气转化制氢或水煤气制氢相比,投资省,能耗低。
(2)与电解水制氢相比,单位氢气成本较低。
(3)所用原料甲醇易得,运输、贮存方便。
(4)可以做成组装式或可移动式的装置,操作方便,搬运灵活。
对于中小规模的用氢场合,在没有工业含氢尾气的情况下,甲醇蒸气转化及变压吸附的制氢路线是一较好的选择。
本设计采用甲醇裂解+吸收法脱二氧化碳+变压吸附工艺,增加吸收法的目的是为了提高氢气的回收率,同时在需要二氧化碳时,也可以方便的得到高纯度的二氧化碳。
目录1.设计任务书 (3)2.甲醇制氢工艺设计 (4)2.1甲醇制氢工艺流程 (4)2.2物料衡算 (4)2.3热量衡算 (6)3.反应器设计 (9)3.1工艺计算 (9)3.2结构设计 (13)4.管道设计………………………………………....…5.自控设计………………………………………....…6.技术经济评价、环境评价………………………7.结束语………………………………………....……8.致谢………………………………………....………9.参考文献………………………………………....…附录:1.反应器装配图,零件图2.管道平面布置图3.设备平面布置图4.管道仪表流程图5.管道空视图6.单参数控制方案图1、设计任务书2、甲醇制氢工艺设计2.1甲醇制氢工艺流程甲醇制氢的物料流程如图1-2。
年产30万吨甲醇工艺设计

甲醇是一种重要的有机化学品,广泛应用于化工、能源、医药、农药等领域。
设计年产30万吨甲醇的工艺需要充分考虑原料、设备、反应条件等多方面的因素。
下面将详细介绍年产30万吨甲醇的工艺设计。
首先,我们需要确定甲醇的生产原料。
甲醇的主要原料是合成气,它由一定比例的一氧化碳和氢气混合而成。
合成气的生产方式有多种,常用的有煤气化和天然气重整。
煤气化将煤炭在高温高压下转化为合成气,天然气重整则通过将天然气进行催化转化来得到合成气。
在选择原料时,需要综合考虑成本、供应稳定性和环境因素等因素。
其次,我们需要确定甲醇的合成反应。
甲醇的合成主要通过低温低压下的催化反应进行。
目前常用的合成甲醇催化剂有铜锌基催化剂和铝酸胶体催化剂。
催化剂的选择需要考虑反应速度、选择性和稳定性等因素。
确定了原料和反应条件之后,我们需要设计甲醇的工艺流程。
一般而言,甲醇的工艺流程包括合成气的制备、催化反应、分离纯化等步骤。
合成气的制备是整个工艺流程的核心环节之一、在煤气化过程中,需要将煤炭进行气化反应,产生合成气。
煤气化反应通常在高温高压下进行,需要合适的催化剂和气化剂。
气化产生的合成气含有大量的杂质,如硫化物、氮气和灰份等。
因此,还需要进行合适的净化处理,以提高合成气的质量。
催化反应是甲醇的合成过程,需要注意反应温度、压力和催化剂的选择。
一般而言,合成甲醇反应温度在200-300摄氏度之间,压力在一定范围内进行调节。
催化剂的选择和工艺条件的优化是提高甲醇合成效率和选择性的关键。
分离纯化是甲醇工艺流程中的重要环节。
合成气反应产生的甲醇需要进行分离和纯化处理,以除去杂质和提高产品纯度。
一般而言,甲醇通过蒸馏、吸附、结晶等分离过程进行纯化。
最后,进行工艺设计时还需要考虑能源消耗和废物处理。
甲醇的生产过程需要消耗大量的能源,需要选择节能的设备和优化工艺条件。
废物处理是环保的重要环节,需要合理处理反应废气和废水,以减少对环境的影响。
以上是年产30万吨甲醇工艺设计的简要介绍,设计过程中需要充分考虑原料、设备、反应条件、能源消耗和废物处理等多方面的因素。
毕业设计说明书-甲醇生产

110kt/a粗甲醇合成、精馏工段工艺设计初步设计阶段摘要本次毕业设计项目为甲醇生产,设计阶段为初步设计,设计内容包括选择设计方案、化工工艺计算、绘图和撰写毕业设计说明书,其中绘图包括甲醇合成、精馏工段物料流程图,甲醇合成工段工艺管道及仪表流程图,粗甲醇精馏工段工艺管道及仪表流程图,甲醇合成工段设备平面布置图,粗甲醇精馏工段设备平面布置图。
化工工艺计算包括合成工段物料衡算和热量衡算,精馏工段物料衡算和热量衡算。
本次设计中采用的甲醇生产方法为天然气制甲醇,使用的是三塔精馏装置。
甲醇是一种重要的有机化工原料,还是一种优良燃料可作能源,甲醇和汽油或其它物质可混合成各种不同用途的工业用或民用的新型燃料。
国内每年进口大量甲醇来满足市场需求,市场价格趋向国际市场化。
近年来,甲醇需求量增加,部份甲醇厂又因为种种原因停产或减产,因此不能满足国内市场的需求。
本次设计的实际意义在于设计出更好的甲醇生产方案,能够投入到生产中,保证生产出更优质量的甲醇,效率更高的甲醇生产装置,以解决供不应求的问题。
关键词:甲醇,合成,精馏,工艺计算110kt / a Crude methanol synthesis, distillation process designpreliminary design stageAuthor:Wang fangTutor:Zhang xian mingAbstractThis graduation project design for methanol production, design stage is the initial design, design elements include the selection of design schemes, chemical process calculation, drawing and writing the graduation design instruction, wherein the drawing, including synthesis of methanol distillation section material flow chart, the methanol synthesis process piping and instrument diagram, the crude methanol distillation process piping and instrument diagram map, methanol synthesis process equipment layout , the crude methanol distillation process equipment layout . Chemical process synthesis process including material balance and heat balance, distillation section material balance and heat balance. This design uses methanol production method for the production of methanol from natural gas, using a three-tower rectification device.Methanol is an important organic chemical raw materials, or an excellent fuel for energy, methanol and gasoline or other substances can be mixed into a variety of different uses of industrial or civil fuel. The annual import large quantities of methanol to meet market demand, the market trend of price of international market. In recent years, increased demand for methanol, methanol plant and in part because of various reasons production or output, thus can not meet the needs of the domestic market. The design of practical significance in designing better methanol production plan, can put into production, ensure the production of better quality and higher efficiency of methanol, methanol production device, in order to solve the problem of short supply.Key words: methanol, synthesis, distillation, process calculation目录1总论 (1)1.1概述 (5)1.1.1甲醇的物化性质 (5)1.1.2甲醇用途 (5)1.1.3甲醇生产方法及特点 (6)1.2甲醇在国内的发展的现状 (6)1.2.1甲醇在国内的市场需求及生产情况 (6)1.2.2甲醇现在的生产试验情况 (7)1.3设计任务的依据 (8)1.4设计产品所需的主要设备 (9)1.5甲醇生产中有害物质排放及处理 (9)2甲醇生产方案确定 (11)2.1甲醇生产方法简介 (11)2.2天然气制甲醇生产工艺简介 (11)3甲醇生产流程简述 (13)3.1合成工艺流程简述 (13)3.2精馏工艺流程简述 (13)4工艺计算 (15)4.1甲醇合成工段物料平衡计算 (15)4.1.1初始条件 (16)4.1.2物料平衡的基本关系式 (18)4.1.3系统中不同气体组成的确定 (22)4.2甲醇合成工段热量平衡计算 (335)4.2.2甲醇水冷器的热量平衡计算 (373)4.3粗甲醇精馏工段物料平衡计算 (36)4.3.1预塔的物料平衡 (37)4.3.2加压塔物料平衡计算 (342)4.3.3常压塔物料平衡计算 (44)4.4粗甲醇精馏工段热量平衡计算 (46)4.4.1预塔全塔热平衡计算 (47)4.4.2预塔精馏段热量平衡计算 (49)4.4.3预塔提馏段热量平衡计算 (46)4.4.4加压塔全塔热平衡计算 (50)4.4.5加压塔精馏段热量平衡计算 (51)4.4.6加压塔提馏段热量平衡计算 (52)4.4.7常压塔全塔热平衡计算 (52)4.4.8常压塔精馏段热量平衡计算 (54)4.4.9常压塔提馏段热量平衡计算 (54)5主要设备介绍 (56)6原材料消耗量 (54)7设备布置论述 (55)7.1 设备布置的原则 (55)7.2甲醇合成、精馏工段设备布置 (57)7.2.1 塔设备的布置 (57)7.2.2 换热器的布置 (57)7.2.3 泵的布置 (58)8环境保护与安全措施 (59)8.1甲醇具有毒性 (59)8.2甲醇的运输风险 (59)8.3化工三废处理 (60)9设计体会和收获 (61)致谢 (62)参考文献 (63)1总论1.1概述甲醇是一种重要的有机化工原料,主要用于生产甲醛。
甲醇制氢反应器工艺计算

前言氢气是一种重要的工业产品,它广泛用于石油、化工、建材、冶金、电子、医药、电力、轻工、气象、交通等工业部门和服务部门,由于使用要求的不同,这些部门对氢气的纯度、对所含杂质的种类和含量都有不相同的要求,特别是改革开放以来,随着工业化的进程,大量高精产品的投产,对高纯度的需求量正逐步加大,等等对制氢工艺和装置的效率、经济性、灵活性、安全都提出了更高的要求,同时也促进了新型工艺、高效率装置的开发和投产。
依据原料及工艺路线的不同,目前氢气主要由以下几种方法获得:①电解水法;②氯碱工业中电解食盐水副产氢气;③烃类水蒸气转化法;④烃类部分氧化法;⑤煤气化和煤水蒸气转化法;⑥氨或甲醇催化裂解法;⑦石油炼制与石油化工过程中的各种副产氢;等等。
其中烃类水蒸气转化法是世界上应用最普遍的方法,但该方法适用于化肥及石油化工工业上大规模用氢的场合,工艺路线复杂,流程长,投资大。
随着精细化工的行业的发展,当其氢气用量在200~3000m3/h时,甲醇蒸气转化制氢技术表现出很好的技术经济指标,受到许多国家的重视。
甲醇蒸气转化制氢具有以下特点:(1)与大规模的天然气、轻油蒸气转化制氢或水煤气制氢相比,投资省,能耗低。
(2)与电解水制氢相比,单位氢气成本较低。
(3)所用原料甲醇易得,运输、贮存方便。
(4)可以做成组装式或可移动式的装置,操作方便,搬运灵活。
对于中小规模的用氢场合,在没有工业含氢尾气的情况下,甲醇蒸气转化及变压吸附的制氢路线是一较好的选择。
本设计采用甲醇裂解+吸收法脱二氧化碳+变压吸附工艺,增加吸收法的目的是为了提高氢气的回收率,同时在需要二氧化碳时,也可以方便的得到高纯度的二氧化碳。
目录1.设计任务书 (3)2.甲醇制氢工艺设计 (4)2.1 甲醇制氢工艺流程 (4)2.2 物料衡算 (4)2.3 热量衡算 (6)3.反应器设计 (9)3.1 工艺计算 (9)3.2 结构设计 (12)4.管道设计5.自控设计6.技术经济评价、环境评价7.结束语8.致谢9.参考文献附录:1.反应器装配图2.零件图3.管道平面布置图4.设备平面布置图5.管道仪表流程图6.管道空视图1、设计任务书2、甲醇制氢工艺设计2.1 甲醇制氢工艺流程甲醇制氢的物料流程如图1-2。
60万吨合成甲醇

60万吨/年合成甲醇工艺设计(一)工艺流程(完成人:白维坤)1.设计原则(1)根据计划任务书规定的产品品种、产量和质量进行设计(2)选择技术先进、经济合理的工艺流程和设备(3)合理考虑机械化、自动化装备水平(4)选择合理原料路线、合理利用资源和各种物料贮备的关系(5)注意保护环境,减少污染2.流程图基本流程主要包括:原料气的采集;甲醇的合成;甲醇的冷凝分离;气体的循环以及新鲜气的补充与惰性气的排放。
甲醇合成工序的基本流程示意图经综合分析本次采用鲁奇低压合成工艺Lurgi低压甲醇合成工艺流程(二)关键设备选型(完成人:白维坤)1. 选型原则(1) 在结构上,要求简单紧凑,高压空间利用率高,触媒装卸方便;(2) 在操作上,要求催化剂床层的温度易控制,调节灵活,合成反应的转化率高,催化剂的生产强度大,能以较高能位回收反应热,床层中气体分布均匀,压降低;(3) 在材料上,要求具有抗羰基化物及抗氢脆的能力;(4) 在制造、维修、运输、安装上要求方便。
2. 关键设备结构性能介绍(1) Lurgi管壳型甲醇合成反应器结构性能介绍:形似列管式换热器,在塔内,列管中装填催化剂,管间为沸腾水;原料气与出塔气换热至230℃左右进入合成塔,反应放出的热经管壁传给管间的沸腾水,产生4MPa左右的饱和蒸汽,用来驱动透平压缩机。
合成塔全系统的温度条件用蒸汽压来控制,从而保证催化剂床层大致为等温。
优点:催化剂床层温差较小、单程转化率较高(可达50%)、催化剂使用寿命较长(4年~5年)、热能利用合理、设备紧凑,开停车方便,合成反应过程中副反应少,甲醇质量高。
缺点:结构复杂、制作较困难、材料要求高、放大较困难。
经典管壳塔的最大生产能力(经济型塔)为1500 t/d。
全世界现有Lurgi 装置37套,甲醇总生产能力达1600万t/a以上。
(2) Linde等温型甲醇合成反应器结构特点:Linde等温型甲醇合成反应器结构与高效螺旋盘管换热器类似,盘管内为沸水,盘管外放置催化剂,反应热通过盘管内沸水移走。
浮头式换热器(过程设备设计课程设计说明书)

目录设计题目及工艺参数---------------------------------------------------1一、换热器的分类及特点---------------------------------------------------2二、结构设计-------------------------------------------------------------51、管径及管长的选择---------------------------------------------------52、初步确定换热管的根数n和管子排列方式-------------------------------53、筒体内径确定-------------------------------------------------------54、浮头管板及钩圈法兰结构设计-----------------------------------------65、管箱法兰、管箱侧壳体法兰和管法兰设计-------------------------------76、外头盖法兰、外头盖侧法兰设计---------------------------------------77、外头盖结构设计-----------------------------------------------------88、接管的选择--------------------------------------------------------------------------------------89、管箱结构设计-------------------------------------------------------810、管箱结构设计------------------------------------------------------811、垫片选择----------------------------------------------------------912、折流板------------------------------------------------------------------------------------------913、支座选取----------------------------------------------------------1014、拉杆的选择--------------------------------------------------------1315、接管高度(伸出长度)确定------------------------------------------1316、防冲板------------------------------------------------------------1317、设备总长的确定----------------------------------------------------1318、浮头法兰---------------------------------------------------------------------------------------1419、浮头管板及钩圈----------------------------------------------------14三、强度计算--------------------------------------------------------------141、筒体壁厚的计算-----------------------------------------------------142、外头盖短节,封头厚度计算-------------------------------------------153、管箱短节、封头厚度计算 --------------------------------------------164、管箱短节开孔补强的核校 --------------------------------------------165、壳体压力试验的应力校核---------------------------------------------166、壳体接管开孔补强校核-----------------------------------------------177、固定管板计算-------------------------------------------------------188、无折边球封头计算 --------------------------------------------------199、管子拉脱力计算-----------------------------------------------------20四、设计汇总-----------------------------------------------------21五、设计体会--------------------------------------------------------------21参考文献--------------------------------------------------------------22设计题目:浮头式换热器工艺参数:管口表:符号公称直径(mm)管口名称a 130 变换气进口b 130 软水出口c 130 变换气出口d 130 软水进口e 50 排尽口设备选择原理及原因:浮头式换热器的结构较复杂,金属材料耗量较大,浮头端出现内泄露不易检查出来,由于管束与壳体间隙较大,影响传热效果。
(完整版)年产30万吨甲醇工艺设计毕业设计

本科毕业设计年产30万吨甲醇工艺设计Process Design of 300 kta Methanol SynthesisSection目录摘要 .......................................................................................................................................... Abstract ..................................................................................................................................引言......................................................................................................................................第一章概述...................................................................................................................1.1甲醇的概述..................................................................................................................1.1.1理化性质...................................................................................................................1.1.2制法...........................................................................................................................1.1.3用途...........................................................................................................................1.2由CO和H2合成甲醇 ...............................................................................................1.2.1高压法.......................................................................................................................1.2.2低压法.......................................................................................................................1.2.3中压法.......................................................................................................................1.3甲醇生产技术的发展趋势 .........................................................................................第二章工艺流程设计.....................................................................................................2.1甲醇合成......................................................................................................................2.1.1反应方程式...............................................................................................................2.1.2合成法反应机理 ......................................................................................................2.1.3甲醇合成塔的选择 ..................................................................................................2.1.4催化剂的选用 ..........................................................................................................2.1.5合成工序工艺操作条件的论证与确定 ..................................... 错误!未定义书2.1.6低压Lurgi甲醇合成工艺.......................................................... 错误!未定义书第三章生产工艺计算........................................................................ 错误!未定义书3.1甲醇生产的物料平衡计算 ............................................................ 错误!未定义书3.1.1合成工段物料衡算 ..................................................................... 错误!未定义书3.2甲醇生产的能量平衡计算 ............................................................ 错误!未定义书3.2.1合成工段能量衡算 ..................................................................... 错误!未定义书3.2.2冷凝器能量计算 ......................................................................... 错误!未定义书第四章主要设备计算及选型.......................................................... 错误!未定义书4.1合成系统主要设备的计算及选型 ................................................ 错误!未定义书4.1.1甲醇合成塔的设计 ..................................................................... 错误!未定义书4.1.2水冷器的工艺设计 ..................................................................... 错误!未定义书4.1.3甲醇分离器...............................................................................................................4.1.4循环压缩机的选型 ..................................................................................................4.2控制仪表的选择 ............................................................................ 错误!未定义书结论......................................................................................................... 错误!未定义书致谢......................................................................................................... 错误!未定义书参考文献.................................................................................................................................附录......................................................................................................................................年产30万吨甲醇合成工段工艺设计摘要:甲醇是一种极重要的有机化工原料,也是一种燃料,是碳化学的基础产品,在国民经济中占有十分重要的地位。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上浮头式管壳式甲醇反应器及系统工艺设计说明王庆新刘芳赵勇孙宏帅(南京敦先化工科技有限公司邮编:2100441、南京敦先化工科技有限公司公司简介南京敦先化工科技有限公司是以王庆新为首创办的高科技股份制企业。
公司主要从事合成氨、甲醇、二甲醚、甲醛、甲缩醛、合成氨原料气体净化以及甲醇下游产品的技术研发和推广工作,目前拥有近二十项专利技术,部分专利技术已经成功转化为工业装置。
公司与部分院校有着紧密的合作关系。
公司下设计研究所、技术经营部、机械设备加工厂,设备加工厂具有10.0MPa以下制造资质,厂房建筑面积10000m2。
自公司成立以来已经为湖北鄂西、河南宝马、河南宝发能源、四川汇丰能源集团、安阳贞元集团等单位提供了合成氨、甲醇、二甲醚等技术和专利产品,部分技术已经超越国内同类技术,节能降耗、环保等方面处于国内领先地位。
公司近两年来主要业绩如下:(1湖北鄂西化工有限公司8万吨/年反应器内件设计及制造;(2河南宝马化肥厂15万吨/年低压甲醇反应器设计及制造;(3河南宝发能源有限公司15万吨/年二甲醚系统软件包及反应器的设计和制造;(4河南宝马化肥厂科技有限公司25万吨/年低压甲醇反应器设计及制造;(5四川汇丰能源有限公司30万吨/年低压甲醇软件包及反应器的设计及制造;(6安阳贞元集团20万吨/年二甲醚装置的软件包、工程、反应器及部分非标设备的设计和制造。
公司主要的业务范围:(111.O~22.0MPa的成套氨合成技术、反应器及分离设备内件的设计和制作;(222.0~31.4MPa的成套氨合成技术、反应器及净化设备内件的设计与制作;(34.5~6.0MPa 的低压联醇、单醇成套合成技术。
并提供低压联醇、单醇反应器及分离设备的设计与制作;(412.0MPa中压联醇系统的成套技术、反应器及分离设备内件的设计与制作;(5合成氨原料气精制的成套技术设计,并提供反应器、附属净化设备反应器及分离设备内件的设计与制作;(6甲醇脱水合成二甲醚技术,并提供甲醇气相脱水合成二甲醚反应器及塔器的设计与制作,或对工程进行总包;(7提供甲醛、甲醛醛全套工艺软件包、工程设计及非标设备的设计和制造,或工程总包。
2、上浮头式管壳式甲醇反应器说明南京敦先化工科技有限公司在日本三菱超转化反应器(SPC基础上开发出一种“上浮头式管壳是甲醇反应器”也称“一种多组空心圆柱床层集合体的反应器,专利号为:ZL 2009 2 0048465.9。
2.1日本三菱甲醇合成超转化率塔(SPC 简要说明日本三菱气体化学公司研制在Lurgi 管壳式甲醇反应器基础上进行改进改进,其结构为:上、下管板仍采用筒体焊接方式,下部增设一个气体隔开冷热气体的内封头冷气体引入内部气管采用软管联接。
单个催化剂床层为双套管结构,催化剂床层外管为φ85×5、内管为φ19×2,催化剂床层厚度为28mm ,催化剂装在内外套管间,冷气通过冷气管与管外催化剂层逆流换热,降低催化剂层底部温度,提高甲醇合成率,管间为沸腾水,副产蒸汽(见上图。
据报道:日产520吨的甲醇合成塔,内径2.4米,内有长15米的双套管462根,外管为85mm ×5mm ,内管为19mm ×1.5mm ,换热面积2123m 2,总重180吨,内外套管间装催化剂28 m 3,操作压力11Mpa ,进塔气先预热到150℃,入塔后分布到各双套管的内管中,吸收管外套管间的反应热,预热至反应温度220℃后进入套管间的催化剂层反应,热点温度250℃左右,反应热同时被内管中冷气和外管外壳程间的沸腾水移走,出催化剂层温度为213℃左右,在11.2MPa ,空速11000Nm 3/h 下。
出塔气中甲醇含量8.6%。
三菱公司认为SPC 有着比Lurgi 等温合成塔低的循环比和比Lurgi 合成塔更高的单程转化率,如果采用两种寿命长、活性高和耐热性好的铜基催化剂,合成塔出口甲醇可高达12%以上。
SPC 双套管内径75mm 比Lurgi 列管合成塔 34或 40大得多,管数少得多,故装卸催化剂容易,SPC 外管受压壁厚,比列管式机械强度好,内管、软管和隔板为不受压部件。
SPC 由于上下管板仍然采用与筒体焊接方式,催化剂床层与壳体之间的热应力没有消除,随着塔高度的增加同样会出现壳体材料疲劳现象、造价较高等缺陷。
2.2上浮头式管壳式反应器结构说明 2.2.1改进部分说明南京敦先化工科技有限公司针对SPC 存在的缺陷进行以下优化设计:(1上部设置一个内封头,内封头与上关板连接,上管板与外部壳体之间留有一定环隙,使内封头、上管、催化剂床层受热后上下自由活动,很好得消除应力;(2上部设置一个DN650的催化剂装填口,在内封头上设置一个φ650×δ催化剂装气水日本三菱化学公司超级合成塔气蒸汽和水温度℃甲醇浓度 m o l %填管,并在个φ650×δ催化剂装填管内部设置一个盲板,在催化剂装填好后采取焊接密封,确保水与气之间密封安全可靠;(3在催化剂床层外管下部设一短节,内部φ19气体管道通过一个900弯头焊接在在下部短节上,很巧妙得解决了冷气体导入φ19×2管内的问题。
2.2.2结构说明上浮头管壳式反应器由上外封头、上内封头、上管板、催化剂床层外管、催化剂床层内管、下管板、下内封头、下外封头、筒体等部件组成。
下管板与筒体、催化剂床层外管及下部外封头连接在一起,设备整体、水和催化剂的重量全部支撑在下管板及外下封头上。
内部上封头与上管板、催化剂床层外管相连接,但与外筒、上部外封头不连接,催化剂床层外管受热后连同上管板、内部上封头一起向上膨胀延伸。
催化剂床层内部设有导气管,导气管与催化剂床层外管之间形成空心圆柱形催化剂床层。
催化剂外管与筒体之间形成水腔体,水腔体内装满移热的水。
下封头设有气体进口a1~2、反应后气体出口b、催化剂自卸口e1~2,筒体下部设有软水进口c1~8、筒体上部及外部上封头设有蒸汽出口d1~ 810。
上封头的上部设有直径为650mm的直筒体及可以移动的封头,催化剂装填由上部装入。
上浮头式甲醇反应器结构示意图及部分部件结构示意图如:单个催化剂床层结构示意图反应器下管板与内封头、催化剂外管和筒体之间结构示意图2.3气体内部工艺流程图说明内部工艺流程:气体由下部封头a1~2口进入,经过下部内封头与外封头之间环隙进入冷气体分布室,在分布室内分别进入催化剂床层内部导气管内,边换热边向上流动,气体由导气管上部出来然后转180º进入到空心圆柱形催化剂床层进行反应,反应放出的热量由催化剂床层外管的水移走,并副产蒸汽。
反应后的气体进入内封头,然后由下部出气管导出甲醇反应器。
2.4上浮头管壳式反应器优点:(1采用水、气同时移热技术,单程转化率高、循环比小、副产蒸汽量大:本反应器催化剂床层为“空心圆柱形”结构,内部采用气体间接移热、外部全部埋在沸腾水中。
同样甲醇生产能力,换热面积是其它水移反应器的1.2~1.38倍,是国内目前移热能力最强的反应器。
副产蒸汽量可以达到1.38t/tCH3OH,比国内其它低压甲醇反应器多副产0.17~ 0.38 t/tCH3OH,循环比控制在3.2~4.0范围;(2单程转化率高:催化剂床层下部1/3的催化剂床层,外部与不饱和水接触、内部与150~160℃的冷气接触,可以是下部1/3部分的催化剂床层温度控制在215~225℃之间,利于CO+H2→CH3OH+Q放、CO2+H2→CH3OH+Q放的化学反应向正反应方向进行,利于提高单程转化率,确保醇净值在6.5%以上。
催化剂床层反应温度与床层高度曲线图如下图:270℃260℃250℃240℃230℃220℃210℃200℃0.5m1.0m1.5m2.0m2.5m3.0m3.5m4.0m4.5m5.0m5.5m6.0m6.5m7.0m7.5m8.0m8.5m(3工程投资低:国内“反Lurgi”反应器由于管或板内走水、管或板外装填催化剂,反应器由内件和壳体组成,造成整台反应器造价高,还需要设置可以起吊反应器内件的框架;由于水侧流动通径小、阻力大,需要将气包设置较高位置;另外,催化剂装填量大、生产费用高。
而本公司开发的上浮头管壳式反应器与“Lurgi”式类似,但在用材上选用国内普通材质:如壳体部分为Q345R、催化剂管为0Cr18Ni9,同规模的设备仅为“Lurgi”式价格的2/3~4/5。
(4很好解决了热应力问题、提高设备使用寿命:上管板、上部内封头是可以向上移动的整体,在催化剂外管受热后向上膨胀时,上管板、内封头也向上移动,产生的应力在上部DN650催化剂装填口处自由向上移动。
避免了管壳式反应器造成筒体裂或管板裂的现象;(5结构简单、不存在技术难题:本反应器催化剂床层是由数个“空心圆柱形”催化剂床组成,如同管壳式反应器采用Φ38、Φ42管子装填催化剂一样,单根成熟,由数根组成的集合体也是成熟的,根本不存在技术难题,很容易实现装置放大。
而本反应器的“空心圆柱形”催化剂床的厚度26~28mm之间,从计算、设计等方面要比“反Lurgi”简单得多,而且非常成熟;(6水与气之间密封最安全:如上部结构示意图,水与气之间采用焊接密封,在催化剂装填好后,将盲板放上,采用焊接密封,确保水与气之间密封安全;下部气与气之间压差仅有0.2MPa的压差,冷热气体之间采用填料密封,非常安全。
(7气体分布均匀、有效提高催化剂利用率:气体出换热管后与其它换热管过来的气体充分混合,在上部较大空间内,气体流速降低,然后返折180º。
因此,对气体分布而言是最好的;(8热水采取自然循环、减少运行费用:热水为自然循环,比现有“反Lurgi”反应器分别节省12.93kwh/tHO3OH、15.61kwh/tHO3OH的动力消耗;(9设备为一整体结构、使用寿命长,降低维修费用:设备结构合理、热应力消除好,材料优于同类型产品,设备为三类压力容器厂家整体制造,便于整台设备质量控制,确保设备在20年内免维修!杜绝了“反Lurgi”单位8年就需要更换一次甲醇反应器内件的现象!主要技术参数如下表(10易于实现装置大型化:我们采用同样φ4100设备内径,分别按照φ38、φ44、φ80(内部采用φ18的导气管的管径来布管:分别得出参数如下表:序号主要参数名称布φ38×2催化剂管布φ44×2催化剂管布φ80×3催化剂管(中心放置φ18×1.5管1 布管数6325 4783 1646 2催化剂床层截面积m25.7396.007 6.6573 催化剂床层有效高度m6.57.08.54 同样阻力状态下催化剂装填量m341.26 46.007 65.665 床层换热面积m24905.54 4625.73 4600.87625万吨床层阻力MPa0.12 0.12 0.12我们从上表可以明显看出:(a同样布管圆,选择大管子作为催化剂管,换热面积下降,但催化剂床层通径截面积增大,可以增加催化剂床层高度来满足换热面积。