直流微电网
直流微电网的效率和经济性

直流微电网的效率和经济性直流微电网是一种以直流电为主要输电方式、具备多种分布式能源和储能设备的小型电力系统。
与传统的交流电网相比,直流微电网具有更高的效率和经济性,因为其运行更稳定、能源利用更高效、成本更低廉。
本文将从效率和经济性两个方面对直流微电网进行详细分析。
一、效率1.1 电能传输效率高直流微电网采用直流输电方式,相对于交流电来说,在电能传输方面具有更高的效率。
在直流输电系统中,电能的传输过程中不存在交流电致的电流、电压的变化,减小了能量的损失。
而在传统的交流输电系统中,由于存在电压的频率、相位和幅值的波动,会导致电能损耗增加。
直流微电网在电能传输方面效率更高。
1.2 能源利用效率高直流微电网通常结合多种分布式能源和储能设备,能够更加高效地利用能源资源。
由于分布式能源和储能设备采用直流发电和储能方式,避免了交流电转换损耗和能量损失,使得能源的利用效率大大提高。
直流微电网中的分布式能源和储能设备能够更加灵活地进行配电和储能,提高了系统的能源利用效率。
1.3 系统运行稳定性高直流微电网的运行稳定性也比传统的交流电网更高。
在直流微电网系统中,由于直流电的特性,系统分布式能源和储能设备能够更加灵活地进行协调和控制,能够更好地应对系统故障和不稳定性情况,提升了系统的稳定性,减少了系统的故障率。
相对于交流电网,在系统运行过程中,直流微电网具有更高的稳定性。
二、经济性2.1 成本更低廉直流微电网的建设和运行成本相对于传统的交流电网来说更低廉。
由于直流微电网采用直流输电方式,避免了交流输电系统中的许多设备和设施,减少了建设和运行成本。
直流微电网中的分布式能源和储能设备具有更长的寿命和更低的维护成本,使得系统的整体成本更低。
直流微电网的经济性更好。
2.2 经济收益更高直流微电网由于采用直流输电方式、结合多种分布式能源和储能设备,能够更加高效地利用能源资源,提高了系统的经济收益。
通过系统的灵活调度和控制,能够更好地实现能源的自我消纳、自我消耗和自我交易,提高了系统的经济效益。
直流微电网的效率和经济性

直流微电网的效率和经济性直流微电网是一个以直流电为基础的分布式能源系统,其优点在于能够提高能源利用率、减少能源损耗、减少环境污染、提高电网运行的稳定性等。
直流微电网的效率和经济性备受关注。
直流微电网的效率方面。
相比于交流微电网,直流微电网具有更高的传输效率。
传统的交流输电系统存在着输电损耗大、电能损耗严重的问题,特别是在长距离输电的过程中,交流电能的损失更加明显。
而直流微电网的特点是能够减少线路上的电能损耗,因为直流电能传输时的线损更小,电能损耗更低。
直流微电网的能源转换效率更高。
由于直流微电网系统内的各种设备,如太阳能电池板、风力发电机等都是以直流电为输入,所以不需要进行交流电转直流电的操作,因此能够提高能源转换的效率。
直流微电网还具有较高的电能存储效率。
传统的交流微电网在进行电能存储时需要进行电能的转换和反转换,从而会造成能量的浪费。
而在直流微电网中,直接将太阳能或者风能转化为直流电存储在电池中会更加高效,减少电能转换过程中的能量损耗。
直流微电网的经济性方面。
直流微电网在建设和运营成本上更加经济。
在建设方面,直流微电网所需的设备更加简单、小型化,相比于传统的交流微电网,建设成本更低。
且在维护和运营上也更加节省成本。
在能源定价和管理上,直流微电网也更加经济。
由于直流微电网系统中的各种能源设备都是通过直流电连接,因此可以更加容易地实现对能源的定价和管理。
这样一来能够更好地控制系统内的能源利用和分配,提高了能源的利用效率和经济效益。
直流微电网的投资回报周期也更短。
相较于传统的交流微电网,直流微电网的建设和运营成本更少,因此投资回报周期更短,更有利于资金的回笼。
直流微电网的效率和经济性明显优于传统的交流微电网。
由于直流微电网能够减少能源损耗、提高能源转换效率、降低系统建设和运行成本,因此更加适合于解决当今能源资源供应和环境保护的问题。
要实现直流微电网的效率和经济性,还需要进一步研究和探索。
比如在直流微电网的设计和优化上还需要对发电、储能、负荷、传输等多方面进行深入研究,从而保证其在实际应用中的效率和经济性。
直流微电网的优化设计与控制研究

直流微电网的优化设计与控制研究随着能源需求的不断增长和环境问题的严重加剧,新能源技术的应用越来越受到人们的关注。
而微电网作为一种新兴的电力系统,可以很好地满足分布式电源接入、提高供电可靠性以及发电削峰填谷等需求。
本文将重点介绍直流微电网的优化设计和控制研究。
一、直流微电网的基本结构直流微电网主要由分布式电源、负载、直流汇流箱、电池组、逆变器、配电网等组成。
其中,分布式电源和电池组是微电网系统的重要组成部分,可以实现各种能源的输入和输出。
直流汇流箱则是微电网系统中的中心枢纽装置,可以实现各种设备的连接和互联,同时还可以实现负载功率的调节和能量的存储。
逆变器是将直流电转换成交流电的重要装置,其主要功能是将电池组所储存的能量转化为交流电提供给负载使用。
二、直流微电网的优化设计为了提高微电网系统的效率和可靠性,需要对微电网系统进行优化设计。
直流微电网的优化设计主要包括三方面:电源优化、逆变器优化和存储优化。
1. 电源优化电源优化是指通过优化电源系统的结构和参数,使其适应微电网系统的运行需求。
其中,太阳能、风能等可再生能源的接入是微电网系统的一大特色。
针对这一特色,可以通过多线路多端子的设计方式,实现各种电源的输入和输出。
同时,通过对电源转换器的参数进行优化,可以提高系统的充电效率,减少能量损失,实现对电源系统的优化设计。
2. 逆变器优化逆变器作为微电网系统中重要的装置之一,其优化设计尤为重要。
优化逆变器的输出电压、电流、波形等参数,可以提高微电网的稳定性和安全性。
同时,通过合理控制逆变器的输出功率和频率,可以实现对负载的精确定时,提高微电网系统的效率和可靠性。
3. 存储优化电池组作为微电网中能量的主要存储装置,其优化设计可以实现对微电网能量的有效利用。
通过对电池组的数量和容量进行优化,可以提高微电网系统的存储效率和安全性。
同时,通过对电池组的运行控制,可以实现对能量的精准调节,提高微电网系统的能量利用效率。
直流微电网计算结果分析

直流微电网计算结果分析直流微电网是一种新型的电力分布系统,能够通过多种可再生能源发电装置并且与传输和配电网相连,形成一个相对独立的电力系统。
它具有能源高效性、环境友好性和可靠性等优点,因此在国际上得到了广泛的关注和研究。
本文将对直流微电网计算结果进行分析。
首先,需要分析微电网内电源的功率输出情况。
直流微电网通常包括太阳能光伏电池、风力发电机和储能设备等多种能源装置。
通过分析电源的功率输出情况,可以了解微电网的电力供应能力,以及能源装置的发电效率和可靠性等方面的问题。
对于光伏电池和风力发电机来说,其功率输出与天气条件和环境因素有很大关系,需要掌握其功率曲线和相关参数,并且与实际测量结果进行对比,以准确评估其发电能力和稳定性。
其次,需要分析负荷的功率需求情况。
直流微电网中的负荷包括街道照明、家庭用电和工业设备等多种类型。
通过分析负荷的功率需求,可以评估微电网的用电负荷特征和变化情况,为电池储能设备的容量选择和负荷管理提供参考。
第三,需要分析直流微电网中的电力损耗情况。
直流输电和配电的特点决定了电力损耗会比交流电网更小。
但是,由于直流微电网中存在输电线路、开关设备和转换装置等元件,这些设备的电阻和损耗会导致一定的能量损耗。
通过分析微电网中各个环节的电力损耗情况,可以评估直流微电网的输配电效率和能量利用效率。
另外,需要分析直流微电网中电压与电流的波动情况。
直流微电网由于采用直流输电和配电,电压和电流的波动情况比较突出。
通过分析电压与电流的波动情况,可以了解微电网中各个节点和线路的电能质量和稳定性,为稳压和调频装置的设计和运行提供依据。
最后,还需要综合以上分析结果,对直流微电网的性能进行评估。
通过计算结果的分析,可以评估微电网的电力供应能力、能量利用效率和电能质量等方面的问题。
尤其是与实际测量结果进行对比,以验证和校正计算模型和算法,提高分析结果的准确性和可靠性。
总之,直流微电网计算结果的分析是评估微电网性能和运行状况的重要方法之一、通过对电源和负荷的功率、电力损耗和电压电流波动等指标的分析,可以了解微电网的性能特点和存在问题,并为优化和改进提供参考。
直流微电网关键技术研究综述

直流微电网关键技术研究综述一、本文概述随着可再生能源的快速发展和微电网技术的不断进步,直流微电网作为一种新型的电力系统架构,逐渐受到了广泛关注。
直流微电网以其高效、灵活、可靠的特点,在分布式能源接入、能源互联网构建以及智能电网发展等方面展现出巨大的应用潜力。
本文旨在对直流微电网的关键技术进行深入研究和综述,以期为相关领域的学术研究和实践应用提供有益的参考。
本文首先介绍了直流微电网的基本概念、特点及其在国内外的发展现状,明确了研究直流微电网关键技术的重要性和紧迫性。
随后,文章重点围绕直流微电网的拓扑结构、控制策略、能量管理、保护技术、稳定性分析及优化运行等方面进行了详细阐述。
在拓扑结构方面,介绍了不同拓扑结构的优缺点及适用场景;在控制策略方面,探讨了集中式控制、分布式控制及混合控制等策略的优缺点;在能量管理方面,分析了能量调度、储能系统优化配置等关键问题的解决方法;在保护技术方面,研究了直流微电网故障特性及保护策略;在稳定性分析及优化运行方面,提出了提高直流微电网稳定性和运行效率的有效措施。
通过对直流微电网关键技术的综合分析和评价,本文总结了当前研究的成果和不足,指出了未来研究的方向和重点。
本文还结合实际案例,探讨了直流微电网在实际应用中的效果及前景。
希望本文能为直流微电网技术的进一步发展和应用提供有益的启示和借鉴。
二、直流微电网关键技术研究现状随着可再生能源的快速发展和分布式发电系统的广泛应用,直流微电网作为一种新兴的电力供应模式,受到了广泛的关注和研究。
直流微电网以其高效、灵活、可靠的特点,成为未来智能电网的重要组成部分。
目前,关于直流微电网的关键技术研究主要集中在以下几个方面。
直流微电网的拓扑结构设计是直流微电网稳定运行的基础。
目前,常见的直流微电网拓扑结构有放射式、环式、网状等。
研究者们通过对不同拓扑结构的特性进行分析,提出了多种适用于不同应用场景的拓扑结构设计方案。
这些方案旨在提高直流微电网的供电可靠性、经济性以及运行灵活性。
低压直流微电网的设计与实现

低压直流微电网的设计与实现随着科技的不断进步,低压直流微电网的应用逐渐被广泛关注和应用。
低压直流微电网是一种新型的电力系统,其主要特点就是能将电源、负载、储能等各种电力设备通过直流母线进行有机结合,从而实现整个电力系统的灵活性和高效性。
利用低压直流微电网,人们可以轻松地实现电力的分布式管理,实现最大限度地减少能源浪费和追求可持续化的目标。
一、低压直流微电网的优势和特点低压直流微电网相比于传统的交流电网,具有很多优势和特点。
首先,采用低压直流微电网可以大大提高电力系统的节能能力,从而实现更加高效的能源利用。
其次,低压直流微电网可以实现为各种负载和电源提供精确而稳定的电力供应,从而可以更加精准地掌控电力系统的运行情况。
其实低压直流微电网的最大优势在于其更加灵活和可靠的运行方式。
由于低压直流微电网采用了独特的直流母线结构,各个电力设备之间的互连性大大增强,从而可以实现更加精确和灵活的电力配置。
这样一来,我们就可以轻松地实现电力的分布式管理,无论是灯光、电动车、或者是家电设备,只要能够被嵌入直流母线中,都可以被实现智能化的控制和运营。
二、低压直流微电网设计的技术难点当然,低压直流微电网的设计也存在一些与之相关的技术难点。
其中最具挑战性的就是直流母线的设计与运行。
由于直流母线存在一些特定的电力特性,使得其不同于普通的交流电网,因此需要进行专门的设计和优化才能够正常运行。
除此之外,低压直流微电网还需要解决诸如电压、电流、功率传输等方面的技术问题,从而实现更加安全可靠的运行和高效的能源利用。
为了克服这些技术难点,需要对低压直流微电网进行全面深入的研究。
首先,需要了解低压直流微电网的各个组成部分之间的协调性和配合性,确保各个设备之间的电力供应和传输都可以实现无缝衔接。
其次,需要考虑如何利用新型的能源管理技术,以保证不同时间段的电力需求都可以得到满足。
最后,则需要进行实验和模拟验证,以验证低压直流微电网的设计与实现方案的可行性和实用性。
直流微电网的效率和经济性

直流微电网的效率和经济性1. 引言1.1 直流微电网的效率和经济性概述直流微电网是一种新型的电力系统,与传统交流电网相比,具有更高的效率和更好的经济性。
直流微电网通过直流电源供电,可以减少能量转换过程中的能量损耗,提高系统的能效。
直流微电网在能量管理方面更加灵活,可以更好地适应不同负荷需求,降低能量浪费。
直流微电网在提高能效和节约能源方面具有明显的优势。
在经济性方面,直流微电网的建设和运行成本相对较低。
由于直流设备比交流设备更简单,更容易维护和管理,直流微电网的运营成本较低。
直流微电网还能更好地应用可再生能源,如太阳能和风能,降低能源供应的成本。
直流微电网不仅有助于提高能效,还能在降低能源成本方面发挥积极作用。
直流微电网的效率和经济性优势使其成为未来能源领域的发展趋势。
通过进一步研究和推广直流微电网技术,我们可以更好地利用可再生能源,提高能源利用效率,降低能源生产和消耗的成本,实现可持续发展的目标。
2. 正文2.1 直流微电网的组成和运行原理对效率和经济性的影响直流微电网采用直流电源供电,避免了直流-交流-直流的能量转换过程,减少了能量损耗,提高了效率。
直流电池组、太阳能电池、风力发电机等直流电源可以直接接入直流微电网,减少了能源转换的损耗,降低了能源成本。
直流微电网中的直流负载也是为了提高效率和经济性而选择的。
直流负载的使用可以避免交流-直流-交流的能量转换,减少了损耗,并且可以根据电力需求来灵活调节负载,提高了电力利用率。
直流微电网中的直流配电网也采用了低压直流配电,减少了电能损耗,提高了电网效率。
直流微网中采用了智能电子设备来监控和控制电能流动,进一步提高了系统的效率和经济性。
直流微电网的组成和运行原理对效率和经济性有着明显的积极影响,通过降低能量转换损耗、优化负载管理和采用智能控制技术,可以提高系统的整体效率和经济性。
这也是直流微电网被认为是未来能源系统发展的一个重要方向的原因之一。
2.2 直流微电网与传统交流电网效率和经济性的比较直流微电网和传统交流电网在效率和经济性方面有许多不同之处。
直流微电网的设计与运行优化

直流微电网的设计与运行优化引言随着能源需求的不断增加和环境问题的日益突出,可再生能源越来越受到关注。
直流微电网作为能源转型的一种重要形式,在能源供应和利用方面具有很大的潜力。
本文将探讨直流微电网的设计和运行优化相关问题。
一、直流微电网的概念和特点直流微电网是一种以直流为主要电力传输方式的小型电力系统,通常由可再生能源发电装置、能量存储设备和电力负载组成。
与传统交流电力系统相比,直流微电网具有以下几个特点:1. 高效性:直流微电网采用直流输电,减少了电能的传输损失,能够提高电力系统的能源利用效率。
2. 稳定性:直流微电网具备分布式电源和能量存储设备,能够在电网中实现能量的灵活调度和平衡,提高电网的稳定性。
3. 可靠性:直流微电网采用分布式电源系统,能够实现小范围的自主供电,避免了故障对全局电网的影响。
二、直流微电网的设计原则直流微电网设计的目标是实现能源的高效利用和电网的可靠运行。
以下是设计直流微电网时需要考虑的几个原则:1. 适当规模:根据实际需求确定直流微电网的规模,需要综合考虑发电容量、储能容量和负载需求等因素。
2. 优化布局:合理选择直流微电网中的发电装置和储能设备的布局,以最大程度地减少输电损耗,并提高供电可靠性。
3. 多源供能:利用可再生能源和传统能源结合的方式,多样化直流微电网的能源供应,以保证能源供给的可靠性和稳定性。
4. 智能调度:利用智能电网控制技术,实现对直流微电网的能源调度和优化控制,以最大化能源利用效率和供电可靠性。
三、直流微电网的运行优化直流微电网的运行优化主要包括以下几个方面的内容:1. 能源管理:通过智能电网技术,实现对各种能源的管理和控制,以实现能源的高效利用和供电的可靠性。
2. 负荷调度:根据负载需求和能源供应情况,合理安排负荷的使用时段和负荷的优化调度,以减少对传统电力系统的依赖。
3. 储能设备优化:对于能量存储设备,通过合理的充放电策略进行优化控制,使其在供电过程中发挥最大的作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 国内外直流微电网发展
目前国内外在直流微电网领域的相关技术研究和实 验系统、示范工程已经逐步开展。
美国 日本 欧洲 中国
示范 工程
直流
微电网
发展
研究
现状
机构
2.1 美国直流微电网发展
微电网的概念最早是在2002年由美国电力可靠性 技术解决方案学会(CERTS)提出的。
表2.1.1 CERTS组成
过微网运行控制以提高系统满足峰荷能力和改善可靠性。
链接到400V低压网络的天然气站电网,具有80kW MT,多余电力可 送往10kV中压网,或提供当地低压农村电网,可以联网与孤岛运行。
荷兰 中国
共4条380V馈线,以光伏发电为主,共装335kW光伏发电单元。可以 联网与孤网运行,主要用于含有储能系统的微网孤网运行性能的测试。
①交流型微电网
按配电方式划分为 ②直流型微电网
③交直混合型微电网
1 直流微电网的含义
交流母线
PCC 并网和孤岛模式切换
图1.1 交流型微电网
1 直流微电网的含义
PCC 直流母线
图1.2 直流型微电网
1 直流微电网的含义
直流母线
交流母线
PCC 图1.3 交直混合型微电网
1 直流微电网的含义
交流微电网
●广东电网已成功完成我国首例直流微网系统测试,这次测试填补了行业内相关领域的空白,为微网技术标准制 定提供了可靠数据和实践依据。
2015
●由浙江省电力公司承担的国家863项目“高密度分布式能源接入交直流混合微电网关键技术”正式启动,项目 主要围绕高密度分布式可再生能源接入,重点攻克交直流混合微电网系统的网架配置优化、稳定控制等理论与技 术难点。
●2012年,由德国、荷兰等国的 高效和企业联合开展一项为期3 年的名为“DC Components and Grid”(DCC+G)的研究项 目,旨在通过高效的半导体和电 力电子技术,设计和发展380V 直流配用电系统的高能效建筑。
2.4 中国直流微电网发展
2013
●由深圳供电局承担的国家863项目“基于柔性直流的智能配电关键技术研究与应用”正式启动,研究重点集中 在以直流微电网为核心的低压直流配电网方面。
2014
●中丹联合研究国家政府间国际科技合作专项《智能直流微电网设计与实证》第一次中丹双方技术交流会在北京 召开。该项目中方由中国电科院、华北电力大学和丹方团队奥尔堡大学组成,旨在推动智能直流微电网技术在未 来住宅和工业园区等方面的发展和应用。
●厦门大学建立全国首个光伏发电/直流微电网珠海东澳岛微电网项目。
●国家863课题项目--绍兴上虞交直流混合微电网示范工程完成可研评审。该项目研究在国网公司系统内属先例, 其难点在于交直流混合系统的优化协调运行、大型电力电子变压器研发以及微电网高级能量管理技术。
2.5 直流微电网示范工程
直流微网示范工程
Boston Bar IPP
CERTS 试验基地
Mad River 公园 Hachinohe 计划
质量分析。
西班牙 希腊 葡萄牙
单相PV,2.18MJ超级电容,1120Ah和1925Ah蓄电池储能;55kW 和150kW电阻负荷,2个36kVA电感负荷。用于测试联网运行时集中
和分散控制策略及电力市场中的能量交易。
提供12户岛上居民用电,400V配网,包含6台光伏发电单元,共 11kW,1座5kW柴油机,1台3.3kW/50kWh蓄电池/逆变器系统。通
德国
包含6台光伏发电单元,共40kW,将对基于代理器的分散控制 进行测试,并进行社会、经济效益评估
2.3 直流微电网示范工程
CESIRCER CA 试验公司
LABEN 微网中心 Kythnos 孤网
EDP 微型电力公司 MV/LV 电力公司 厦门大学光伏建筑一体化
直流微网
意大利
具有PV,MT、柴油机、MCFC等微电源,并配有蓄电池、飞轮等储能 方式,可组成不同的拓扑结构,进行稳态、暂态运行过程测试和电能
变换装置连接蓄电池、光伏发电装置和直流负荷
首个采用集中直流母线的智能孤岛型微电网项目,主要配备3台 200kW变桨距风电机组和光伏发电,组成总容量为1MW的发电单元, 并辅以“储能系统、能量调度和管理系统、智能监控系统、安全系统”
等
广东电网直流微网
中国
首例针对直流微网系统的测试,此次测试填补了行业内相关领域的空 白,为微网技术标准制定提供了可靠的数据和实践依据
2003年,NEDO与日本经 济、贸易和工业部共同着手于 可再生能源和本地配电网之间 互联的3个微电网测试平台。 微电网项目选址在八户、青森、 爱知和京都四地,主要的成果 是开发了最佳的运行和控制系 统。
2.2 日本直流微电网发展
日本对直流微电网的研究主要集中于家庭领域。
2004
日本东京工业大学、大阪大学等机构提出了一 种双极结构的直流微电网配电系统构想,并实 现了一套10kW直流配电系统样机。
动态特性。
6个商业和工业厂区,12个居民区,280kW、100kW发电机, 30kWMT,PV。接入7.2kW配网。既可孤网运行,也可联网运
行。
污水处理厂配有3个170kW燃气轮机,50kW PV,发出电力通过 5km的配线输送到学校及市政办公楼,控制性能能过满足6min
内供需不平衡控制在3%以内
Manheim
2006
日本开始了对直流生态住宅的研究,夏普公 司在日本电子展中两次展示“直流生态住宅” 技术和产品。
2008
日本经济产业省宣布开展制定直流生态住 宅(DC eco-house)补贴政策的政策咨询, 正式启动了DC eco-house开发项目。
2.3 欧洲直流微电网发展
●自2008年以来,欧盟开展一 项名为UNIFLEX (Universal and Flexible Power Management)的研究项目, 研究通过新型功率变换技术适 应未来有大量分布式电源接入 的欧洲电网的功率流动管理。
蓄电池使用特性最大化延长使用寿命的运行策略。
3 直流微电网的关键技术
母线结构 运行控制 保护技术
3.1
母线结构
母线结构
单母线结构 双层式母线结构
双母线结构 冗余式母线结构
3.1.1
单母线结构
(a)
(b) 图3.1.1 单母线结构
单母线结构:是指直流微 电网中仅有1个直流母线 电压等级。
特点: ①形式简单 ②组网较容易 ③容易与现有的交流设备 兼容。 ④由于直流用电设备的电 压规格不同,需要设备电 源适配器,即直流电压降 压器(DC/DC)。经转 换为较低电压等级后再为 其供电。
2014
美国EMerge Alliance 公司与当地组织合作,开始向东 南亚推广直流微电网。
2.2 日本直流微电网发展
日本在国内能源日益紧缺、负荷日益增长的背景下、也展开了微电 网研究、但其发展目标主要定位于能源供给多样化、减少污染、满足用 户的个性化电力需求。
日本政府专门成立了新能源与工业技术发展组织(NEDO)来较好 利用新能源,它负责统一协调国内高校、企业与国家重点实验室对新能 源及其应用的研究。
3.1.3
双母线结构
(a)
(b) 图3.1.3 双母线结构
双母线结构:是指直流微 电网采用双极性的供电制 式,相应的直流母线有正、 负2条线。
特点: 可根据负荷端对供电
电压的不同需求灵活供电, 既可取单极与大地之间的 电压,又可取正负极之间 的电压,能够实现较高的 电力输送
虽然交流微电网是微电 网的主要形式,但其不 足之处逐渐凸显,如电 能转换环节多、网络损 耗大、电网运行控制复 杂,这些都与用户期望 的高效、可靠和高电能 质量的供电服务存在矛 盾。
发展
直流微电网
与交流电网相比,其主 要优势体现在:分布式 电源与直流母线的链接 形式更简便、易于实现 分布式电源间的协调控 制、线路成本和损耗低、 没有无功功率平衡和稳 定问题,电网运行可靠 性更高。
提出了别具一格的直流微电网系统构架,该系统主要包含AC/DC整流、 太阳能控制器及储能单元,电动车充电单元,系统监控单元和能耗测
量单元,系统配电、检测及保护单元,以及其他直流应用单元
2.3 直流微电网示范工程
昆明云电科技园直流微电 网
海装风电直流母线智能孤 岛微电网
中国 中国
共两根电压等级为600V的直流母线,通过直流变换设备与微网内DC、 储能装置、直流负荷等连接起来,实现能量的传递与交换。母线上方 为50kW逆变器,通过它将直流母线与外部380V交流电网相连,实 现直流微电网与外部电网的互联。母线下方一次通过不同的DC/DC
机构 名称
橡树岭国家 实验室
(ORNL)
实圣验地室亚(哥S国DN家L)西(北家P太实N平验NL洋室)国
劳伦斯伯克利 国家实验室 (LBNL)
电力系统工程 研究中心
(PSERC)
内容 研究
故障检测与保护技术
储能技术
经பைடு நூலகம்性能
控制技术
自主研发了基于电网
健康实时监测的 GridEye技术,实现 对美国三大主电网互 联及不同能源品种发 电状态的广域可视化 监测GridEye技术, 实现对美国三大主电 网互联及不同能源品 种发电状态的广域可
3.1.2 双层式母线结构
(a) (b)
图3.1.2 双层式母线结构
双层式母线结构:是指直 流微电网中含有2个直流母 线电压等级。用变换器将 高压直流母线电压转换为 较低电压。
特点: ①可以提高低压设备供电 的安全性 ②减小电源适配器的体积 ③相比单母线结构适用于 用电设备电压等级相对单 一的场合,对于具有多种 电压等级用电设备的情况, 双层式母线结构更为合适。
自主研发了一种微电网 设计方法。主电网发生 停电时,微电网与主电 网断开,但是微电网中 可再生电源可持续发电 且不会产生安全危害。