初中几何证明公式及经典例题

初中几何证明公式及经典例题
初中几何证明公式及经典例题

初中数学几何图形初步经典测试题及答案解析

初中数学几何图形初步经典测试题及答案解析 一、选择题 1.如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是( ) A .主视图 B .俯视图 C .左视图 D .一样大 【答案】C 【解析】 如图,该几何体主视图是由5个小正方形组成, 左视图是由3个小正方形组成, 俯视图是由5个小正方形组成, 故三种视图面积最小的是左视图, 故选C . 2.如图,一个正六棱柱的表面展开后恰好放入一个矩形内,把其中一部分图形挪动了位置,发现矩形的长留出5cm ,宽留出1,cm 则该六棱柱的侧面积是( ) A .210824(3) cm - B .(2 108123cm - C .(2 54243cm - D .(2 54123cm - 【答案】A 【解析】 【分析】 设正六棱柱的底面边长为acm ,高为hcm ,分别表示出挪动前后所在矩形的长与宽,由题意列出方程求出a =2,h =9?36ah 求解. 【详解】 解:设正六棱柱的底面边长为acm ,高为hcm ,

如图,正六边形边长AB =acm 时,由正六边形的性质可知∠BAD =30°, ∴BD = 12a cm ,AD =32 a cm , ∴AC =2AD =3a cm , ∴挪动前所在矩形的长为(2h +23a )cm ,宽为(4a + 1 2 a )cm , 挪动后所在矩形的长为(h +2a +3a )cm ,宽为4acm , 由题意得:(2h +23a )?(h +2a +3a )=5,(4a +1 2 a )?4a =1, ∴a =2,h =9?23, ∴该六棱柱的侧面积是6ah =6×2×(9?23)=210824(3) cm -; 故选:A . 【点睛】 本题考查了几何体的展开图,正六棱柱的性质,含30度角的直角三角形的性质;能够求出正六棱柱的高与底面边长是解题的关键. 3.将一副三角板如下图放置,使点A 落在DE 上,若BC DE P ,则AFC ∠的度数为( ) A .90° B .75° C .105° D .120° 【答案】B 【解析】 【分析】 根据平行线的性质可得30E BCE ==?∠∠,再根据三角形外角的性质即可求解AFC ∠的度数. 【详解】

初中几何证明题五大经典(含答案)

经典题(一) 1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二) 证明:过点G 作GH ⊥AB 于H ,连接OE ∵EG ⊥CO ,EF ⊥AB ∴∠EGO=90°,∠EFO=90° ∴∠EGO+∠EFO=180° ∴E 、G 、O 、F 四点共圆 ∴∠GEO=∠HFG ∵∠EGO=∠FHG=90° ∴△EGO ∽△FHG ∴ FG EO =HG GO ∵GH ⊥AB ,CD ⊥AB ∴GH ∥CD ∴ CD CO HG GO = ∴CD CO FG EO = ∵EO=CO ∴CD=GF 2、已知:如图,P 是正方形ABCD 内部的一点,∠PAD =∠PDA =15°。 求证:△PBC 是正三角形.(初二) 证明:作正三角形ADM ,连接MP ∵∠MAD=60°,∠PAD=15° ∴∠MAP=∠MAD+∠PAD=75° ∵∠BAD=90°,∠PAD=15° ∴∠BAP=∠BAD-∠PAD=90°-15°=75° ∴∠BAP=∠MAP ∵MA=BA ,AP=AP ∴△MAP ≌△BAP ∴∠BPA=∠MPA ,MP=BP 同理∠CPD=∠MPD ,MP=CP ∵∠PAD =∠PDA =15° ∴PA=PD ,∠BAP=∠CDP=75° ∵BA=CD ∴△BAP ≌∠CDP ∴∠BPA=∠CPD ∵∠BPA=∠MPA ,∠CPD=∠MPD ∴∠MPA=∠MPD=75° ∴∠BPC=360°-75°×4=60° ∵MP=BP ,MP=CP ∴BP=CP ∴△BPC 是正三角形

3、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F . 证明:连接AC ,取AC 的中点G ,连接NG 、MG ∵CN=DN ,CG=DG ∴GN ∥AD ,GN= 2 1AD ∴∠DEN=∠GNM ∵AM=BM ,AG=CG ∴GM ∥BC ,GM= 2 1BC ∴∠F=∠GMN ∵AD=BC ∴GN=GM ∴∠GMN=∠GNM ∴∠DEN=∠F 经典题(二) 1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M . (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二) 证明:(1)延长AD 交圆于F ,连接BF ,过点O 作OG ⊥AD 于G ∵OG ⊥AF ∴AG=FG ∵AB ⌒ =AB ⌒ ∴∠F=∠ACB 又AD ⊥BC ,BE ⊥AC ∴∠BHD+∠DBH=90° ∠ACB+∠DBH=90° ∴∠ACB=∠BHD ∴∠F=∠BHD ∴BH=BF 又AD ⊥BC ∴DH=DF ∴AH=AG+GH=FG+GH=GH+DH+DF+GH=2GH+2DH=2(GH+DH )=2GD 又AD ⊥BC ,OM ⊥BC ,OG ⊥AD ∴四边形OMDG 是矩形 ∴OM=GD ∴AH=2OM (2)连接OB 、OC ∵∠BAC=60∴∠BOC=120° ∵OB=OC ,OM ⊥BC ∴∠BOM= 2 1 ∠BOC=60°∴∠OBM=30° ∴BO=2OM 由(1)知AH=2OM ∴AH=BO=AO

七年级几何证明题训练(含答案)讲解学习

1. 已知:如图11所示,?ABC 中,∠=C 90于E ,且有AC AD CE ==。求证:DE = 1 2 2. 已知:如图 求证:BC =

3. 已知:如图13所示,过?ABC 的顶点A ,在∠A 内任引一射线,过B 、C 作此射线的垂线BP 和CQ 。设M 为BC 的中点。 求证:MP =MQ 4. ?ABC 中,∠=?⊥BAC AD BC 90,于D ,求证:()AD AB AC BC <++1 4

【试题答案】 1. 证明:取 ΘAC AD AF CD AFC =∴⊥∴∠= 又∠+∠=?∠+∠=?14901390, ∴∠=∠=∴?∴=∴=431 2 ΘAC CE ACF CED ASA CF ED DE CD ??() 2. 分析:本题从已知和图形上看好象比较简单,但一时又不知如何下手,那么在证明一条线段等于两条线段之和时,我们经常采用“截长补短”的手法。“截长”即将长的线段截

ΘΘCB CE BCD ECD CD CD CBD CED B E BAC B BAC E =∠=∠=??? ? ?∴?∴∠=∠∠=∠∴∠=∠??22 又∠=∠+∠BAC ADE E ∴∠=∠∴=∴==ADE E AD AE BC CE , 3. 证明:延长PM ΘCQ AP BP BP CQ PBM ⊥∴∴∠=∠,// 又BM CM =, ∴?∴=??BPM CRM PM RM ∴QM 是Rt QPR ?斜边上的中线

ΘAD BC AD AE BC AE AD ⊥∴<∴=>,22 () ΘAB AC BC BC AB AC BC AD AB AC BC AD AB AC BC +>∴<++∴<++∴<++241 4

初一几何证明典型例题

初一几何证明典型例题 1、已知:AB=4,AC=2,D是BC中点,AD是整数,求AD解:延长AD到E,使AD=DE∵D是BC中点∴BD=DC 在△ACD和△BDE中AD=DE∠BDE=∠ADCBD=DC∴△ACD≌△BDE∴AC=BE=2∵在△ABE中AB-BE<AE<AB+BE∵AB=4即4-2<2AD<4+21<AD<3∴AD=2ADBC 2、已知:BC=DE,∠B=∠E,∠C=∠D,F是CD中点,求证:∠1=∠2ABCDEF21证明:连接BF和EF∵ BC=ED,CF=DF,∠BCF=∠EDF∴△BCF≌△EDF (S、 A、S)∴ BF=EF,∠CBF=∠DEF连接BE在△BEF中,BF=EF∴ ∠EBF=∠BEF。∵ ∠ABC=∠AED。∴ ∠ABE=∠AEB。∴ AB=AE。在△ABF和△AEF中 AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF∴△ABF≌△AEF。∴ ∠BAF=∠EAF (∠1=∠2)。 3、已知:∠1=∠2,CD=DE,EF//AB,求证:EF=ACBACDF21E 过C作CG∥EF交AD的延长线于点GCG∥EF,可得,∠EFD=CGDDE =DC∠FDE=∠GDC(对顶角)∴△EFD≌△CGDEF=CG∠CGD= ∠EFD又,EF∥AB∴,∠EFD=∠1∠1=∠2∴∠CGD=∠2∴△AGC 为等腰三角形,AC=CG又 EF=CG∴EF=ACA 4、已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠C证明:延长AB取点E,使AE=AC,连接DE∵AD平分∠BAC∴∠EAD =∠CAD∵AE=AC,AD=AD∴△AED≌△ACD (SAS)∴∠E=

初一几何证明题练习

初一下学期几何证明题练习1、如图,∠B=∠C,AB∥EF,试说明:∠BGF=∠C。(6 解:∵∠B=∠C ∴ AB∥CD( ) 又∵ AB∥EF() ∴ ∥() ∴∠BGF=∠C() 2、如图,在△ABC中,CD⊥AB于D,FG⊥AB于G,ED//BC,试说明 ∠1=∠2,以下是证明过程,请填空:(8分) 解:∵CD⊥AB,FG⊥AB ∴∠CDB=∠=90°( 垂直定义) ∴_____//_____ ( ∴∠2=∠3 ( 又∵DE//BC ∴∠=∠3 ( ∴∠1=∠2 ( ) 3、已知:如图,∠1+∠2=180°, 试判断AB、CD有何位置关系?并说明理由。(8分) 4、如图,AD是∠EAC的平分线,AD∥BC,∠B = 30°,你能算出∠EAD、∠ DAC、∠C的度数吗?(7分) D C B A E D

5、如图,已知EF∥AD,∠1=∠2,∠BAC=70 o,求∠AGD。 解:∵EF∥AD(已知) ∴∠2= () 又∵∠1=∠2(已知) ∴∠1=∠3(等量替换) ∴AB∥() ∴∠BAC+ =180 o () ∵∠BAC=70 o(已知)∴∠AGD= ° 6、如图,已知∠BED=∠B+∠D,试说明AB与CD的位置关系。 解:AB∥CD,理由如下: 过点E作∠BEF=∠B ∴AB∥EF() ∵∠BED=∠B+∠D(已知) 且∠BED=∠BEF+∠FED ∴∠FED=∠D ∴CD∥EF() ∴AB∥CD()7、如图,AD是∠EAC的平分线,AD∥BC,∠B=30 o, 求∠EAD、∠DAC、∠C的度数。(6分) 8、如图,EB∥DC,∠C=∠E,请你说出∠A=∠ADE的理由。(6分)

初一数学几何证明题答案

初一典型几何证明题 1、已知: AB=4,AC=2,D是 BC中点, AD是整数,求 AD 解:延长 AD到 E, 使 AD=DE ∵D是 BC中 点∴ BD=DC 在△ ACD和△ BDE中 A AD=DE ∠BDE=∠ ADC BD=DC ∴△ ACD≌△ BDE ∴AC=BE=2 ∵在△ ABE中 AB-BE<AE< AB+BE ∵AB=4 即4-2 <2AD< 4+2 1<AD<3 ∴AD=2B C D 2、已知: BC=DE,∠ B=∠ E,∠ C=∠ D, F 是 CD中点,求证:∠ 1=∠ 2 A 1 2 B E C F D 证明:连接 BF 和 EF ∵BC=ED,CF=DF,∠ BCF=∠EDF ∴△ BCF≌△ EDF (S.A.S)

∴BF=EF,∠ CBF=∠ DEF 连接 BE 在△ BEF中 ,BF=EF ∴ ∠ EBF=∠ BEF。 ∵ ∠ ABC=∠ AED。 ∴ ∠ ABE=∠ AEB。 ∴AB=AE。 在△ ABF和△ AEF中 AB=AE,BF=EF, ∠ABF=∠ ABE+∠ EBF=∠AEB+∠BEF=∠AEF ∴△ ABF≌△ AEF。 ∴ ∠ BAF=∠ EAF ( ∠1=∠ 2) 。 3、已知:∠ 1=∠2,CD=DE, EF//AB,求证: EF=AC A 12 F C D E B 过C 作 CG∥EF 交 AD的延长线于点 G CG∥EF,可得,∠ EFD= CGD DE=DC ∠FDE=∠ GDC(对顶角) ∴△ EFD≌△ CGD EF=CG ∠CGD=∠ EFD 又, EF∥AB ∴,∠ EFD=∠1 ∠1=∠2 ∴∠ CGD=∠2 ∴△ AGC为等腰三角形, AC=CG 又EF=CG ∴EF=AC 4、已知: AD平分∠ BAC,AC=AB+BD,求证:∠ B=2∠C

初一几何典型例题难题

初一几何典型例题 1、如图,/ AOB=90 , 0M 平分/ AOB ,将直角三角尺的顶点P 在射线0M 上移动,两直角分别与 0A , 0B 相较于C , D 两点, 则PC 与PD 相等吗?试说明理由。 PC=PD 证明:作PE 丄0A 于点 V 0M 是角平分线 ??? PE=PF / EPF=90 V/ CPD=90 ???/ CPE= / DPF V/ PEC= / PFD=90 ???△ PCEPDF ??? PC=PD AF 丄 BE 证明: V CD=CE , CA=CB , / ACD= / BCE=90 ???△ ACD 尢 BCE ???/ CBE= / CAD V/ CBE+ / BEC=90 ???/ EAF+ / AEF=90 ???/ AFE=90 ??? AF 丄 BE E , PF 丄0B 于点F D 在BC 上,连接AD 、BE , AD 的延长线交BE 于点F 。试判断AF 与 0 D 2、如图,把两个含有45°角的三角尺按图所示的方式放置, BE 的位置关系。并说明理由。

3、如图,已知直线11 II 12,且13和11、12分别交于A、B两点,点P在直线AB上。 (1)如果点P在A、B两点之间运动,试求出/ 1、/ 2、/ 3之间的关系,并说明理由; (2)如果点P在A、B两点外侧运动时(点P与A、B不重合),试探究/ 1、/ 2、/ 3之间的关系,请画出图形,并说明理由。解:(1)/ 1 + / 2= / 3; 理由:过点P作11的平行线PQ, V 11 // 12, ???11 // 12 / PQ, ? / 1 = / 4,/ 2= / 5. V/ 4+/ 5= / 3,(2)同理:理由:当点? / 1 + / 2= / 3; / 1-/2= / 3 或/2- / 1 = / 3. P在下侧时,过点P作11的平行线PQ, V 11 // 12 ? 11 // 12 / PQ, ?/ 2=/ 4,/ 1= / 3+/ 4, ?/ 1-/2= / 3; 当点P在上侧时,同理可得/ 2- / 1 = / 3 ? 4、D、E是三角形^ ABC内的两点,连接BD、DE、EC,求证AB+AC > BD+DE+EC 解答:延长DE分别交AB、AC于F、G。 由于FB+FD>BD AF+AG>FG EG+GOEC 所以FB+FD+FA+AG+EG+GOBD+FG+EC

精选初中数学几何证明经典试题(含答案)

初中几何证明题 1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二) 2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形.(初二) 4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F . 1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M . (1)求证:AH =2OM ; (2)若∠BAC =600 ,求证:AH =AO .(初二) 2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E ,直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二) 3、如果上题把直线MN 设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE 求证:AP =AQ .(初二) A P C D B A F G C E B O D N

F 4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC ,点P 是EF 的中点. 求证:点P 到边AB 的距离等于AB 的一半. 经典题(三) 1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F . 求证:CE =CF .(初二) 2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线 求证:AE =AF .(初二) 3、设P 是正方形ABCD 一边BC 上的任一点,PF ⊥AP ,CF 求证:PA =PF .(初二) 4、如图,PC 切圆O 于 C ,AC 为圆的直径,PEF 为圆的割线,AE 、AF 与直线PO 相交于B 、 D .求证:AB = DC ,BC =AD .(初三) 经典题(四) 1、已知:△ABC 是正三角形,P 是三角形内一点,PA =3,PB =4,求:∠APB 的度数.(初二) 2、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA . 求证:∠PAB =∠PCB .(初二) 4、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且 AE =CF .求证:∠DPA =∠DPC .(初二) D

初一几何典型例题

初一几何典型例题 1、如图,∠AOB=90°,OM平分∠AOB,将直角三角尺的顶点P在射线OM上移动,两直角分别与OA,OB相较于C,D两点,则PC与PD相等吗?试说明理由。 PC=PD 证明:作PE⊥OA于点E,PF⊥OB于点F ∵OM是角平分线 ∴PE=PF ∠EPF=90° ∵∠CPD=90° ∴∠CPE=∠DPF ∵∠PEC=∠PFD=90° ∴△PCE≌△PDF ∴PC=PD 2、如图,把两个含有45°角的三角尺按图所示的方式放置,D在BC上,连接AD、BE,AD的延长线交BE于点F。试判断AF与BE的位置关系。并说明理由。 AF⊥BE 证明: ∵CD=CE,CA=CB,∠ACD=∠BCE=90° ∴△ACD≌△BCE

∵∠CBE+∠BEC=90° ∴∠EAF+∠AEF=90° ∴∠AFE=90° ∴AF⊥BE 3、如图,已知直线l1‖l2,且l3和l1、l2分别交于A、B两点,点P在直线AB上。 (1)如果点P在A、B两点之间运动,试求出∠1、∠2、∠3之间的关系,并说明理由; (2)如果点P在A、B两点外侧运动时(点P与A、B不重合),试探究∠1、∠2、∠3之间的关系,请画出图形,并说明理由。解:(1)∠1+∠2=∠3; 理由:过点P作l1的平行线PQ, ∵l1∥l2,∴l1∥l2∥PQ, ∴∠1=∠4,∠2=∠5. ∵∠4+∠5=∠3,∴∠1+∠2=∠3; (2)同理:∠1-∠2=∠3或∠2-∠1=∠3. 理由:当点P在下侧时,过点P作l1的平行线PQ, ∵l1∥l2 ∴l1∥l2∥PQ, ∴∠2=∠4,∠1=∠3+∠4,

当点P在上侧时,同理可得∠2-∠1=∠3. 4、D、E是三角形△ABC内的两点,连接BD、DE、EC,求证AB+AC>BD+DE+EC 解答:延长DE分别交AB、AC于F、G。 由于FB+FD>BD AF+AG>FG EG+GC>EC 所以 FB+FD+FA+AG+EG+GC>BD+FG+EC 即AB+AC+FD+EG>BD+FD+EG+DE+EC 所以AB+AC>BD+DE+EC 5、D为等边△ABC的边BC上任意一点,延长BC至G。作∠ADE=60°(E.C在AD同侧)与∠ACG的角平分线相交于E,连AE。求证:ADE为等边三角形。 解:如图,作DF‖AC交AB于F. ∵DF‖AC.等边△ABC. ∴等边△BFD.

七年级下几何证明题

1.填空完成推理过程: 如图,∵AB ∥EF ( 已知 ) ∴∠A + =1800 ( ) ∵DE ∥BC ( 已知 ) ∴∠DEF= ( ) ∠ADE= ( ) 2.已知:如图,∠ADE =∠B ,∠DEC =115°. 求∠C 的度数. 3. 已知:如图,AD ∥BC ,∠D =100°,AC 平分∠BCD , 求∠DAC 的度数. 4.已知AB ∥CD ,∠1=70°则∠2=_______,∠3=______,∠4=______ 43 2 1A C D B 5. 已知:如图4, AB ∥CD ,直线EF 分别交AB 、CD 于点E 、F ,∠BEF 的平分线与∠DEF 的平分线相交于点P .求∠P 的度数 A C D E F B D E B C A

H G 2 1 F E D C B A 6.直线AB 、CD 相交于O ,OE 平分∠AOC ,∠EOA :∠AOD=1:4,求∠EOB 的度数. 7.如图,AB∥CD,EF分别交AB、CD于M、N,∠EMB=50°,MG平分∠BMF,MG交CD于G,求∠1的度数. 8.如图,AB ∥CD ,AE 交CD 于点C ,DE ⊥AE ,垂足为E ,∠A =37o,求∠D 的度数. 9.如图,已知:21∠∠=, 50=D ∠,求B ∠的度数。 10.已知:如图,AB∥CD,∠B=400 ,∠E=300 ,求∠D的度数 A B C D E E B A

E D B A C 2 1 F E D B A C 11.如图所示,∠1=72°,∠2=72°,∠3=60°,求∠4的度数. b a 341 2 12.已知等腰三角形的周长是16cm . (1)若其中一边长为4cm ,求另外两边的长; (2)若其中一边长为6cm ,求另外两边长; (3)若三边长都是整数,求三角形各边的长. 13.如图,AB//CD ,AE 交CD 于点C ,DE ⊥AE ,垂足为E ,∠A=370, 求∠D 的度数. 14.AB//CD,EF ⊥AB 于点E ,EF 交CD 于点F , 已知∠1=600 .求∠2的度数.

初一几何证明典型例题

初一几何证明典型例题 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

戴氏教育达州西外校区名校冲刺 戴氏教育温馨提醒: 暑假两个月是学习的最好时机,可以在两个月里,复习旧知识,学习新知识,承上,还能启下。在这个炎热的假期,祝你学习轻松愉快。 初一典型几何证明题 1、已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 解:延长AD 到E,使AD=DE ∵D 是BC 中点 ∴BD=DC 在△ACD 和△BDE 中 AD=DE ∠BDE=∠ADC BD=DC ∴△ACD ≌△BDE ∴AC=BE=2 ∵在△ABE 中 AB-BE <AE <AB+BE ∵AB=4 即4-2<2AD <4+2 1<AD <3 ∴AD=2 2、已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2 3、 4、证明:连接BF 和EF A B C D E F 2 1 A D B C

∵ BC=ED,CF=DF,∠BCF=∠EDF ∴△BCF≌△

∴ BF=EF,∠CBF=∠DEF 连接BE 在△BEF 中,BF=EF ∴ ∠EBF=∠BEF 。 ∵ ∠ABC=∠AED 。 ∴ ∠ABE=∠AEB 。 ∴ AB=AE 。 在△ABF 和△AEF 中 AB=AE,BF=EF, ∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF ∴△ABF ≌△AEF 。 ∴ ∠BAF=∠EAF (∠1=∠2)。 已知:∠1=∠2,CD=DE , EF P 是∠BAC 平 分线AD 上一点,AC>AB ,求证:PC-PB

初中数学几何证明经典题(含答案)

初中几何证明题 经典题(一) 1、已知:如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO. 求证:CD=GF.(初二) .如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG, 即△GHF∽△OGE,可得EO GF = GO GH = CO CD ,又CO=EO,所以CD=GF得证。 2、已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=150. 求证:△PBC是正三角形.(初二) .如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG, 即△GHF∽△OGE,可得EO GF = GO GH = CO CD ,又CO=EO,所以CD=GF得证。 .如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG, 即△GHF∽△OGE,可得EO GF = GO GH = CO CD ,又CO=EO,所以CD=GF得证。 A P C D B A F G C E B O D

3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、 CC 1、DD 1的中点. 求证:四边形A 2B 2C 2D 2是正方形.(初二) 4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F . 经典题(二) 1、已知:△ABC 中,H 为垂心(各边高线的交点),O (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二) D 2 C 2 B 2 A 2 D 1 C 1 B 1 C B D A A 1 B

初一下册几何证明题(多篇)

初一下册几何证明题(精选多篇) 初一下册几何证明题 1.已知在三角形abc中,be,cf分别是角平分线,d是ef中点, 若d到三角形三边bc,ab,ac的距离分别为x,y,z,求证:x=y+z 证明;过e点分别作ab,bc上的高交ab,bc于m,n点. 过f点分别作ac,bc上的高交于p,q点. 根据角平分线上的点到角的2边距离相等可以知道fq=fp,em=en. 过d点做bc上的高交bc于o点. 过d点作ab上的高交ab于h点,过d点作ab上的高交ac于j点. 则( )x=do,y=hy,z=dj. 因为d是中点,角ane=角ahd=90度.所以hd平行me,me=2hd 同理可证fp=2dj。 又因为fq=fp,em=en. fq=2dj,en=2hd。 又因为角fqc,doc,enc都是90度,所以四边形fqne是直角梯形,而d是中点,所以2do=fq+en 又因为 fq=2dj,en=2hd。所以do=hd+jd。 因为x=do,y=hy,z=dj.所以x=y+z。 2.在正五边形abcde中,m、n分别是de、ea上的点,bm与相交于点o,若∠bon=108°,请问结论bm=是否成立?若成立,请给予证明;若不成立,请说明理由。

当∠bon=108°时。bm=还成立 证明;如图5连结bd、ce. 在△bci)和△cde中 ∵bc=cd,∠bcd=∠cde=108°,cd=de ∴δbcd≌δcde ∴bd=ce,∠bdc=∠ced,∠dbc=∠cen ∵∠cde=∠dec=108°,∴∠bdm=∠cen ∵∠obc+∠ecd=108°,∠ocb+∠ocd=108° ∴∠mbc=∠ncd 又∵∠dbc=∠ecd=36°,∴∠dbm=∠e ∴δbdm≌δe∴bm= 3.三角形abc中,ab=ac,角a=58°,ab的垂直平分线交ac与n,则角nbc=() 3° 因为ab=ac,∠a=58°,所以∠b=61°,∠c=61°。 因为ab的垂直平分线交ac于n,设交ab于点d,一个角相等,两个边相等。所以,rt△adn全等于rt△bdn 所以∠nbd=58°,所以∠nbc=61°-58°=3° 4.在正方形abcd中,p,q分别为bc,cd边上的点。且角paq=45°,求证:pq=pb+dq 延长cb到m,使bm=dq,连接ma ∵mb=dqab=ad∠abm=∠d=rt∠

(完整版)初一上册几何练习题50道

.选择题 1. 如果三角形的一个角的度数等于另两个角的度数之和,那么这个三角形一定是( ) (A)锐角三角形(B)直角三角形(C)钝角三角形(D)等腰三角形 2. 下列给出的各组线段中,能构成三角形的是( ) (A)5 , 12 , 13 (B)5 , 12 , 7 (C)8 , 18 , 7 (D)3 , 4, 8 3 .一个三角形的三边长分别是15 , 20和25 ,则它的最大边上的高为( ) (A) 12 (B) 10 (C) 8 (D) 5 4. 两条边长分别为2和8 ,第三边长是整数的三角形一共有( ) (A)3个(B)4个(C)5个(D)无数个 5. 下列图形中,不是轴对称图形的是( ) (A)线段MN (B)等边三角形(C)直角三角形(D) 钝角ZAOB 6. 直角三角形两锐角的平分线相交所夹的钝角为( ) (A)125 0(B)135 0(C)145 °(D)150 0 7. 已知Z a , Z 3是某两条平行线被第三条直线所截得的同旁内角,若Za= 50°,则Z。葡) A . 40 ° B. 50 ° C. 130 ° D . 140 ° 8. 如图,下列推理中正确的是(

A. 若Z 1 = Z2,贝U AD //BC B. 若Z 1 = Z2 ,贝U AB //DC C. 若Z A = Z3,贝U AD //BC D. 若Z3 = Z4,贝U AB // DC 9. 下列图形中,可以折成长方体的是( D. 10. 一个几何体的三视图如图所示,那么这个几何体是( ) A. B. C_ D 11. 如图1,在AABC中,AB = AC,点D在AC边上,且BD = BC = AD,则Z A的度数为( ) A . 30 ° B . 36 ° C . 45 ° D . 70 ° 12. 、如图2 , AB II CD , AC ± BC于C,贝U图中与/ CAB互余的角有()

初中数学几何证明试题含答案

十二周培优精选1、已知:如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB, 求证:CD=GF. 2、已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=150. 求证:△PBC是正三角形. 4、已知:如图,在四边形ABCD中,AD=BC,M、N分别是AB、 MN于E、F. 求证:∠DEN=∠F. 1、如图,四边形ABCD为正方形,DE∥AC,AE=AC,AE与CD 求证:CE=CF.(初二) 2、如图,四边形ABCD为正方形,DE∥AC,且CE=CA,直线EC 求证:AE=AF.(初二) 3、设P是正方形ABCD一边BC上的任一点,PF⊥AP,CF平分∠ 求证:PA=PF.(初二) 经典题4 1、已知:△ABC是正三角形,P是三角形内一点,PA=3,PB=4, 求:∠APB的度数.(初二) 2、设P是平行四边形ABCD内部的一点,且∠PBA=∠PDA. 求证:∠PAB=∠PCB. 4、平行四边形ABCD中,设E、F分别是BC、AB上的一点,AE与 AE=CF.求证:∠DPA=∠DPC.( 经典题(一) 1.如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH EO GF = GO GH = CO CD ,又CO=EO,所以CD=GF得证。

2. 如下图做△DGC 使与△ADP 全等,可得△PDG 为等边△,从而可得 △DGC ≌△APD ≌△CGP,得出PC=AD=DC,和∠DCG=∠PCG =150 所以∠DCP=300 ,从而得出△PBC 是正三角形 4.如下图连接AC 并取其中点Q ,连接QN 和QM ,所以可得∠QMF=∠F ,∠QNM=∠DEN 和∠QMN=∠QNM ,从而得出∠DEN =∠F 。 经典题(二) 1.(1)延长AD 到F 连BF ,做OG ⊥AF, 又∠F=∠ACB=∠BHD , 可得BH=BF,从而可得HD=DF , 又AH=GF+HG=GH+HD+DF+HG=2(GH+HD)=2OM (2)连接OB ,OC,既得∠BOC=1200, 从而可得∠BOM=600, 所以可得OB=2OM=AH=AO, 得证。 3.作OF ⊥CD ,OG ⊥BE ,连接OP ,OA ,OF ,AF ,OG ,AG ,OQ 。 由于22AD AC CD FD FD AB AE BE BG BG , 由此可得△ADF ≌△ABG ,从而可得∠AFC=∠AGE 。 又因为PFOA 与QGOA 四点共圆,可得∠AFC=∠AOP 和∠AGE=∠AOQ , ∠AOP=∠AOQ ,从而可得AP=AQ 。 4.过E,C,F 点分别作AB 所在直线的高EG ,CI ,FH 。可得PQ= 2 EG FH 。 由△EGA ≌△AIC ,可得EG=AI ,由△BFH ≌△CBI ,可得FH=BI 。 从而可得PQ= 2 AI BI = 2 AB ,从而得证。 经典题(三) 1.顺时针旋转△ADE ,到△ABG ,连接CG. 由于∠ABG=∠ADE=900+450=1350 从而可得B ,G ,D 在一条直线上,可得△AGB ≌△CGB 。 推出AE=AG=AC=GC ,可得△AGC 为等边三角形。 ∠AGB=300,既得∠EAC=300,从而可得∠A EC=750。 又∠EFC=∠DFA=450+300=750. 可证:CE=CF 。 2.连接BD 作CH ⊥DE ,可得四边形CGDH 是正方形。 由AC=CE=2GC=2CH , 可得∠CEH=300,所以∠CAE=∠CEA=∠AED=150, 又∠FAE=900+450+150=1500, 从而可知道∠F=150,从而得出AE=AF 。 3.作FG ⊥CD ,FE ⊥BE ,可以得出GFEC 为正方形。 令AB=Y ,BP=X ,CE=Z ,可得PC=Y-X 。

初中几何证明题的三种思考和四种方法

初中几何证明题的三种思考和四种方法 发表时间:2013-05-24T10:06:25.373Z 来源:《科教新时代》2013年5月供稿作者:常见山 [导读] 学校应积极构建以校为本的研究机制,引领教师专业成长,反之又以教师的专业成长来推动学校发展,提升学校的办学水平。 山东省诸城市教育局招生办公室常见山 【中图分类号】G552.04 【文章标识码】A 【文章编号】1326-3587(2013)05-0064-02 众所周知,几何证明是初等数学学习的难点之一,其难就难在如何寻找证明思路,追根究底还是因为几何证明题的本质不易把握。为此,在初等几何的学习中融入数学思想方式,具有重要意义,而且切实可行。通过平时的学习、探索和积累,笔者发现其中的“结构思想”,即“数学是一个有机的整体,观察数学问题要着眼于结构的整体性。从宏观上对数学问题进行整体研究,抓住问题的框架结构和本质关系,把一些貌似独立而实质又紧密联系的特征视为系统中的整体”对探寻几何的证明思路,把握问题的本质,培养观察能力有一定的指导意义。新一轮课程改革立足于“改变课程过于注重知识传授的倾向,强调形成积极主动的学习态度,使获得基础知识与基本技能的过程同时成为学会学习和形成正确价值观的过程。”在这样的指导思想下,初中几何发生了较大的变化。 初中几何一直就是中学数学的重要内容,秉承“深化教育改革,全面推进素质教育”的指导思想,在这次新课程改革中,初中几何部分有了较大的调整。对比新课程改革后初中几何的变化,深入理解教改的初衷,全面贯彻教改的思想,不但有利于更好地完成教改的任务,而且有利于利用新教材创造性地提高学生的数学素养。考题:如图,在Rt△ABC中∠C=90°以AC为直接径,作⊙O,交AB于D,过O作OE∥AB,交BC于E,连接ED。 ⑴求证:ED是⊙O的切线。 ⑵E为BC的中点,如果⊙O的半径为1.5, ED=2,求AB的长。 这是某市九年级人教版秋季学期一道期考试题,从题型看这是一道再普通不过的圆有关证明和计算的几何考题,而我校作为一所比较有名的初中,全校九年级约500个考生的答卷中,第(2)问“求AB的长”尚有80%左右的考生能正确的解答出来,而第(1)“求证:ED是⊙O的切线”只有约10%的考生能正确地写出证明解答过程。究其原因何在?笔者认为,其主要原因是教师在平时的课堂教学中,对几何证明的指导不到位、引导方式不够灵活,措施不到位造成的直接后果。 怎样指导学生对几何证明题进行有效正确的证明分析解答,并简单地写出证明过程,笔者通过对本考题学生答卷出现的各种错误情况,结合本校使用新课改教材突出的特点,归纳总结出以下三种思考和四种方法,进行指导,收到良好的效果。三种思考方式:(1)正向思维。对于一般简单的题目,我们正向思考,轻而易举可以做出,这里就不详细讲述了。 (2)逆向思维。顾名思义,就是从相反的方向思考问题。运用逆向思维解题,能使学生从不同角度,不同方向思考问题,探索解题方法,从而拓宽学生的解题思路。这种方法是推荐学生一定要掌握的。在初中数学中,逆向思维是非常重要的思维方式,在证明题中体现的更加明显,数学这门学科知识点很少,关键是怎样运用,对于初中几何证明题,最好用的方法就是用逆向思维法。如果你已经上初三了,几何学的不好,做题没有思路,那你一定要注意了:从现在开始,总结做题方法。同学们认真读完一道题的题干后,不知道从何入手,建议你从结论出发。例如:可以有这样的思考过程:要证明某两条边相等,那么结合图形可以看出,只要证出某两个三角形相等即可;要证三角形全等,结合所给的条件,看还缺少什么条件需要证明,证明这个条件又需要怎样做辅助线,这样思考下去……这样我们就找到了解题的思路,然后把过程正着写出来就可以了。这是非常好用的方法,同学们一定要试一试。 (3)正逆结合。对于从结论很难分析出思路的题目,同学们可以结合结论和已知条件认真的分析,初中数学中,一般所给的已知条件都是解题过程中要用到的,所以可以从已知条件中寻找思路,比如给我们三角形某边中点,我们就要想到是否要连出中位线,或者是否要用到中点倍长法。给我们梯形,我们就要想到是否要做高,或平移腰,或平移对角线,或补形等等。正逆结合,战无不胜。四种方法: 1.读。读就是阅读题目和题图的过程中,做到逐个条件,逐个问题地对号入座地进行审题、读图。 2.记。记就是在“读”的过程中,对题目中给出的条件和问题作简要的浓缩并作划记,并用①、②……和“?”作标记。如本考题问可作标记为:已知①∠C=90°;②AC为直径;③OE∥AB求证ED是⊙O的切线? 3.选。“选”就是选定解题思路,确定解题方式,即根据读题和标记的结果,结合自己所掌握的数学知识。选定解题思路,最终确定解题方式,并写出简要解答过程。如本题中,要证明DE为⊙O的切线,得作辅助线:连结OD,则点D就是⊙O的外端,只须再证明OD⊥DE(即∠ODE=90°)就可以了,从而选定证明∠ODE=90°;而要达到这个∠ODE=90°这个结果,只有通过证明△EOC≌△EOD从而也就确定了解题方式。 4.返。就是选定了解题思路、确定了解题方式,并写出解答的过程中,特别是遇到解答的过程受诅时,不断地返回到题目中已作的标记和题图的标记和已知条件中去,检查是否漏用或误用已知条件,及时调整解题方案。可以看出,“读、记、选、返”四个步骤通俗易董、浅显具体,只要始终坚持渗透课程数学课堂教学之中,并要求学生始终运用到式时的练习之中,善于积累,逐渐养成“见其型,通其路,套其法”的良候彀惯,就能很好距淆学生不良的解题思维习惯和学习习惯! 初中数学,我们早已使用人教版的教材,课改的新理念、新思维、新评价如风暴袭来,我们有过欣喜和期盼,教学实践中,没有石头照样过河。评价考试后,我们充满困惑与无奈,却不知路在何方。长期以来,我们数学课堂教学关注的是大量繁杂的公式,陷入了题的海洋。中学数学课堂教学最应该关注什么?既不是单纯的方式总结,也不是数学知识技能的简单积聚。数学教育的发展方向应与教育发展的大方向相一致,数学教育更应该关注思考:上完一节数学课,在学生颔首的同时还是有那么多的学生仍在质疑,到底学到了什么?他们对自己在数学学科上付出那么多的时间和精力感到惋惜,对自己在数学上的天赋和能力产生怀疑与反思。而教师本身是否也反省过自己,一节课下来我们到底教给了学生什么?方式、过程,还是答案?所谓“点石成金”我们到底教给学生“点石”的手指还是“点成”的金子?我们不能武断地归结于学生的不努力,我们的数学教育有没有问题。就目前的状况,中学数学教育仍旧可以用“纸上谈兵”这句成语简单概括之。 课堂是教师演练阵容的战场,解题成为操起的刀戈,忽略了解题思路、解题方式,一味追求解题结果,将会逐渐迷失自我,丧失自我思考的能力!我们是否思考过:路就在自己的脚下,路就在自己的每一节课中,让校本科研走进我们每一个数学教师的每一节课中吧!当今世界,反思意识已成为学术界的重要特征。要使基础教育课程改革向纵深推进,就必须提高教师的素质,尤其是提高教师的反思特质。

七年级重要几何典型题

七年级重要几何典型题 一.选择题(共23小题) 1.(2013?江阳区模拟)如图,面积为12cm 2的△ABC 沿BC 方向平移到△DEF 的位置,平移的距离是边BC 长的2 倍,则图中四边形ACED 的面积为( ) . C D . 14.如图,AC ⊥BC ,CD ⊥AB ,DE ⊥BC ,垂足分别为C ,D ,E ,则下列说法不正确的是( )

.C D. 18.(2010?西藏)已知如图,△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于() 24.(2003?河北)两根木棒的长分别为7cm和10cm,要选择第三根木棒,将它们钉成一个三角形框架,那么第三根木棒长xcm的范围是_________. 25.一个三角形的两边长分别为2厘米和9厘米,若第三边的长为奇数,则第三边的长为_________厘米.26.(2002?吉林)工人师傅在做完门框后,为防止变形,经常如图所示钉上两条斜拉的木条(即图中的AB、CD两根木条),这样做根据的数学知识是_________. 27.如图,AD是△ABC的中线,如果△ABC的面积是18cm2,则△ADC的面积是_________cm2.28.(2009?安顺)如图,AB∥CD,AC⊥BC,∠BAC=65°,则∠BCD=_________度. 29.(2007?江西)如图,在△ABC中,点D是BC上一点,∠BAD=80°,AB=AD=DC,则∠C=_________度.

参考答案与试题解析 一.选择题(共23小题) 1.(2013?江阳区模拟)如图,面积为12cm2的△ABC沿BC方向平移到△DEF的位置,平移的距离是边BC长的2倍,则图中四边形ACED的面积为()

七年级数学典型几何证明50题

初一典型几何证明题 1、已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 解:延长AD 到E,使AD=DE ∵D 是BC 中点 ∴BD=DC 在△ACD 和△BDE 中 AD=DE ∠BDE=∠ADC BD=DC ∴△ACD ≌△BDE ∴AC=BE=2 ∵在△ABE 中 AB-BE <AE <AB+BE ∵AB=4 即4-2<2AD <4+2 1<AD <3 ∴AD=2 2、已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2 证明:连接BF 和EF ∵ BC=ED,CF=DF,∠BCF=∠EDF ∴△BCF ≌△EDF (S.A.S) A B C D E F 2 1 A D B C

∴ BF=EF,∠CBF=∠DEF 连接BE 在△BEF 中,BF=EF ∴ ∠EBF=∠BEF 。 ∵ ∠ABC=∠AED 。 ∴ ∠ABE=∠AEB 。 ∴ AB=AE 。 在△ABF 和△AEF 中 AB=AE,BF=EF, ∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF ∴△ABF ≌△AEF 。 ∴ ∠BAF=∠EAF (∠1=∠2)。 3、已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC 过C 作CG∥EF 交AD 的延长线于点G CG∥EF,可得,∠EFD=CGD DE =DC ∠FDE=∠GDC(对顶角) ∴△EFD≌△CGD EF =CG ∠CGD=∠EFD 又,EF∥AB ∴,∠EFD=∠1 ∠1=∠2 ∴∠CGD=∠2 ∴△AGC 为等腰三角形, AC =CG 又 EF =CG ∴EF =AC 4、已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C B A C D F 2 1 E A

相关文档
最新文档