2011届高考数学强化复习训练试题40

合集下载

2011届高考数学平面向量综合复习题

2011届高考数学平面向量综合复习题
y=1, x=-1或-3.
∴a=(-1,1)或(-3,1). 15.(2009· 朝阳 4 月)在△ABC 中,角 A、B、C 所对的边分别为 a、b、c.若∠B=45° ,b= 2,a=1, 则∠C 等于________度. 答案:105 asinB 1 解析:由正弦定理得 sinA= = ,A=30° 或 150° (舍去),则∠C=105° ,故填 105. b 2 16.已知△ABC 中,角 A、B、C 所对的边分别为 a、b、c.若 a=1,∠B=45° ,△ABC 的面积 S=2, 那么△ABC 的外接圆的直径等于__________. 答案:5 2
1 1 解析:∵S= acsinB=2,∴ ×1×c×sin45° =2, 2 2 ∴c=4 2, ∴b2=a2+c2-2accosB=1+32-2×1×4 2×cos45° , ∴b2=25,b=5. b 所以△ABC 的外接圆的直径等于 =5 2. sinB 三、解答题(本大题共 6 小题,共 70 分,解答应写出文字说明、演算步骤或证明过程。) 17.(本小题满分 10 分)已知|a|=1,|b|= 2. (1)若 a∥b,求 a· b; (2)若 a,b 的夹角为 135° ,求|a+b|. 解析:(1)∵a∥b, ∴若 a,b 同向,则 a· b=|a||b|= 2; 若 a,b 反向,则 a· b=-|a||b|=- 2. (2)∵a,b 的夹角为 135° , ∴a· b=|a||b|cos135° =-1, ∴|a+b|2=(a+b)2=a2+b2+2a· b=1+2-2=1, ∴|a+b|=1. 18. (2009· 江苏, 15)(本小题满分 12 分)设向量 a=(4cosα, sinα), b=(sinβ, 4cosβ), c=(cosβ, -4sinβ). (1)若 a 与 b-2c 垂直,求 tan(α+β)的值; (2)求|b+c|的最大值; (3)若 tanαtanβ=16.求证 a∥b. 解析:(1)由 a 与 b-2c 垂直 则 a· (b-2c)=a· b-2a· c=0, 即 4sin(α+β)=8cos(α+β),tan(α+β)=2. (2)∵b+c=(sinβ+cosβ,4cosβ-4sinβ), 则|b+c|2=sin2β+2sinβcosβ+cos2β+16cos2β-32cosβsinβ+16sin2β=17-30sinβcosβ=17-15sin2β, 最 大值为 32,所以|b+c|的最大值为 4 2. (3)由 tanαtanβ=16,得 sinαsinβ=16cosαcosβ, 即 4cosα· 4cosβ-sinαsinβ=0,故 a∥b. 19.(2009· 四川,17)(本小题满分 12 分)在△ABC 中,A、B 为锐角,角 A、B、C 所对的边分别为 a、 3 10 b、c,且 cos2A= ,sinB= . 5 10 (1)求 A+B 的值; (2)若 a-b= 2-1,求 a、b、c 的值. 命题意图:本小题主要考查同角三角函数间的关系、两角和差的三角函数、二倍角公式、正弦定理等 基础知识及基本运算能力. 10 解析:(1)∵A、B 为锐角,sinB= , 10 3 10 ∴cosB= 1-sin2B= . 10 3 又 cos2A=1-2sin2A= , 5 5 2 5 ∴sinA= ,cosA= 1-sin2A= . 5 5 ∴cos(A+B)=cosAcosB-sinAsinB=

2011届高考数学冲刺阶段强化练习综合测试题(7)

2011届高考数学冲刺阶段强化练习综合测试题(7)

2011届高考数学冲刺阶段强化练习综合测试题(7)(时间:120分钟 满分:150分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列命题中正确的是( )A .过平面外一点作此平面的垂面是唯一的B .过直线外一点作此直线的垂线是唯一的C .过平面的一条斜线作此平面的垂面是唯一的D .过直线外一点作此直线的平行平面是唯一的 答案:C2.若a ,b ,l 是两两异面的直线,a 与b 所成的角是π3,l 与a ,l 与b 所成的角都是α,则α的取值范围是( )A .[π6,5π6] [π,π]C .[π3,5π6] 答案:D3.三棱锥A —AB =AC ,二面角A —BC —D 为60°,G A.5a C.7a 答案:C4.直三棱柱ABC AB =2,侧棱AA 1=1A .2π C .4π 答案:B5.直线a 、b 条件乙:“b ∥α”,则甲是乙的( )A B .必要不充分条件 C .充要条件D .既不充分也不必要条件 答案:A6.如图,在长方体ABCD —A 1B 1C 1D 1中,AB =2,BC =BB 1=1,P 是AB 的中点,则异面直线BC 1与PD 所成角的度数是( )A .30°B .45°C .60°D .90° 答案:C7.对平面α,β和异面直线l 1,l 2,下面四个命题中正确的是( ) A .若l 1⊂α,则l 2与α相交B .若l 1⊂α,则l 2一定不垂直于αC .若l 1⊥l 2,且l 1与α成45°的角,则l 2与α所成的最大角是45°D .若直线l 1′,l 2′分别是l 1,l 2在α内的射影,则l 1′,l 2′是相交直线 答案:C 8.若正四面体的四个顶点都在一个球面上,且正四面体的高为4,则该球的体积为( ) A .16(12-63π) B .18π C .36π D .64(6-42π) 答案:C9.设球O 的半径是1,A 、B 、C 是球面上三点,已知A 到B 、C 两点的球面距离都是π2,且二面角B —OA —C 的大小为π3,则从A 点沿球面经B 、C 两点再回到A 点的距离是( )A.7π6B.5π4C.4π3D.3π24l l l 1112323AB BCCA l ππππ⨯⨯⨯解析:所求距离= 答案:C10.如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且△ADE 、△BCF 均为正三角形,EF ∥AB ,EF =2,则该多面体的体积为( )A.23B.33C.43D.32解析:过B 作BG ⊥EF 于G ,连结CG ,则CG ⊥EF .已知BF =1,在△BCG 中,BG =32,BC 边上的高为22,而S △BGC =12×1×22=24,所以V F -BCG =13×24×12=224.同理过A 作AH ⊥显然BCG -ADH 则由图可知V ADE -答案:A11.平行六面体11111ACB 1上的射影是△ACB 1的( )A .重心B .外心C .内心D .垂心解析:由已知可知四面体D1ACB1的三组对棱分别互相垂直,即AD1⊥B1C,B1D1⊥AC,D1C⊥AB1,可证明D1在面ACB1上的射影是△ACB1的垂心,应选D.答案:D12.一个正四棱锥的一个对角面与一个侧面的面积比为62:,则其侧面与底面所成的角为()A.15°B.30°C.45°D.60°解析:设此四棱锥高为h,斜高为h′,底面边长为a,则2a·ha·h′=62,∴hh′=32.则sinα=32,∴应选D.答案:D二、填空题:本大题共4小题,每小题4分,共16分,将答案填在题中的横线上.13.三棱锥P—ABC,∠APB=∠BPC=∠CP A=90°,点M在△ABC内,且∠MP A=60°,∠MPB=60°,则∠MPC的度数是________.答案:45°14.如图所示,将正方形ABCD沿对角线AC折成二面角D—AC B,使点B,D的距离等于AB的长,此时直线AB与CD所成的角的大小为________.答案:60°15.正方体ABCD—A1B1C1D1的棱长为2,E为DD1的中点,则截面△AEC的面积为________,截面△AEC将正方体分成两部分,其体积之比为________.解析:如图,△AEC中,AE=EC=CD2+DE2=22+12=5,AC=CD2+AD2=2 2.取AC 中点O ,连结OE ,则OE ⊥AC , OE =EC 2-OC 2=5-2= 3.∴S △ACE =12AC ·OE V E -ACD =13S △ACD ·而V 正方体=23=8,∴V 剩=V 正方体-V E ∴V 剩 V E -ACD =223:答案:6 11:116.如图,正方体上,且AM =13,点P在平面ABCD 的距离的平方的差为1,在xAy 直角坐标系中,动点P 的轨迹方程是________解析:此题为学科内综合题,既考查了立体几何中基本元素之间的关系,又考察了解析几何中的轨迹方程的求解方法,求解虽然不难,但起点较高.设P (x ,y ),则|x |2=(x -13)2+y 2+1,化简即得y 2=23x -109.答案:y 2=23x -109三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)在正方体ABCD —A 1B 1C 1D 1中,棱长为1,M 、N 分别为棱A 1B 1、BB 1的中点.求直线AM 与CN 所成的角θ.解:如图,过N 点作NP ∥AM ,则∠PNC =θ.易知BP =14,连结CP .∴NP = 116+416=54.而NC =52,CP =174,在△CNP 中,cos θNP 2+NC 2-PC 2=516+54-17162·54·52=25.∴θ=arccos 25.18.(本小题满分12分)如图,在四棱锥P —ABCD 中,底面ABCD 是边长为a 的正方形,且PD =a ,P A =PC =2a .(1)求证:直线PD ⊥平面ABCD ; (2)求二面角A —PB —D 的大小.解:(1)证明:在△PDA 中,AD =a ,PD =a ,P A =2a , ∴AD 2+PD 2=P A 2,即PD ⊥AD . 同理,PD ⊥CD .又AD ,CD ⊆平面ABCD ,AD ∩CD =D , ∴直线PD ⊥平面ABCD .(2)如图,连结AC 和BD ,设AC ∩BD =O .由(1)知AC ⊥PD . 又AC ⊥BD ,且PD ,BD ⊆平面PBD ,PD ∩BD =D , ∴直线AC ⊥平面PBD .过点O 作OE ⊥PB ,E 为垂足,连结AE .由三垂线定理知AE⊥PB ,∴∠AEO 为二面角A —PB —D 的平面角.∵AB ⊥AD ,由三垂线定理知AB ⊥P A .∴在△P AB 中,AE =P A ·AB PB =23a ,在△ABD 中,OA =22a ,在△AOE 中,sin ∠AEO =OA AE =22a23a =32,即∠AEO =60°.∴二面角A —PB —D 的大小为60°. 19.(本小题满分12分) 如图,已知四棱锥P —ABCD ,PB ⊥AD ,侧面P AD 是边长等于2的正三角形,底面ABCD 为菱形,侧面P AD 与底面ABCD 所成的二面角为120°.(1)求点P 到平面ABCD 的距离;(2)求面APB 与面CPB 所成二面角的大小.解:(1)如图,作PO ⊥平面ABCD ,垂足为点O ,连结OB ,OA ,OD ,OB 与AD 交于点E ,连结PE .∵AD ⊥PB ,∴AD ⊥OB ,∵P A =PD ,∴OA =OD ,于是OB 平分AD . 点E 为AD 的中点,所以PE ⊥AD .由此知∠PEB 为面P AD 与面ABCD 所成二面角的平面角, ∴∠PEB =120°,∠PEO =60°. 由已知可求得PE =3,∴PO =PE ·sin60°=3×32=32,即点P 到平面ABCD 的距离为32.(2)如图,取PB 的中点G ,PC 的中点F ,连结EG ,AG ,GF , 则AG ⊥PB ,FG ∥BC ,FG =12BC .∵AD ⊥PB ,∴BC ⊥PB ,FG ⊥PB , ∴∠AGF 是所求二面角的平面角, ∵AD ⊥面POB ,∴AD ⊥EG . 又∵PE =BE ,∴EG ⊥PB ,且∠PEG=60°.在Rt△PEG中,EG=PE·cos60°=3 2.在△P AD中,于是tan∠GAE又∠AGF=π-20.(ABC=60°.(1)求证:AB⊥A(2)求二面角A—A1C—B的大小.解:解法一:(1)证明:三棱柱ABC—A1B1C1为直三棱柱,∴AB⊥AA1.在△ABC中,AB=1,AC=3,∠ABC=60°,由正弦定理得∠ACB=30°,∴∠BAC=90°,即AB⊥AC.∴AB⊥平面ACC1A1,又A1C⊆平面ACC1A1,∴AB⊥A1C.(2)如图,作AD⊥A1C交A1C于点D,连结BD,由三垂线定理知BD⊥A1C,∴∠ADB为二面角A—A1C—B的平面角.在Rt △AA 1C 中,AD =AA 1·AC A 1C =3×36=62,在Rt △BAD 中,tan ∠ADB =AB AD =63,∴∠ADB =arctan 63.即二面角A —A 1C —B 的大小为arctan 63.解法二:(1)AB ⊥AC (证明如解法1). 如图,建立空间直角坐标系,则A (0,0,0),B (1,0,0),C (0,3,0),A 1(0,0,3),∴AB =(1,0,0),1AC =(0,3,-3). ∵AB ·1AC =1×0+0×3+0×(-3)=0,∴AB ⊥A 1C .(2)如图,可取m =AB =(1,0,0)为平面AA 1C 的法向量,设平面A 1BC 的法向量为n =(l ,m ,n ).设BC ·n =0,1AC ·n =0,又BC =(-1,3,0),∴⎩⎨⎧-l +3m =0,3m -3n =0.∴l =3m ,n =m , 不妨取m =1,则n =(3,1,1).cos 〈m ,n 〉=m·n |m |·|n |=155, ∴二面角A —A 1C —B 的大小为arccos 155. 21.(本小题满分12分)如图,在一个等腰直角三角形的硬纸片ABC 中,∠ACB =90°,AC =4 cm ,CD 是斜边上的高,沿CD 把△ABC 折成直二面角.(1)如果我手中只有一把能够量长度的直尺,应该如何确定A 、B 的位置,使二面角A —CD —B 是直二面角?证明你的结论;(2)试在平面ABC 上确定一点P ,使DP 与平面ABC 内任意一条直线都垂直,证明你的结论;(3)如果在折成的三棱锥内有一个小球,求出小球半径的最大值.解:(1)用直尺度量折后的AB 长,若AB =4 cm ,则二面角A —CD —B 为直二面角.证明如下:∵△ABC 是等腰直角三角形,∴AD =DB =22(cm).又∵AD ⊥DC ,BD ⊥DC ,∴∠ADB 为二面角A —CD —B 的平面角.∵AD =DB =22,当AB =4 cm 时,有AD 2+DB 2=AB 2,∴∠ADB =90°.(2)取△ABC 的中心P ,连结DP ,则DP 满足条件,∵△ABC 为正三角形,且AD =BD =CD ,∴三棱锥D —ABC 是正三棱锥,由P 为△ABC 的中心,知DP ⊥平面ABC ,∴DP 与平面ABC 内任意一条直线都垂直.(3)当小球半径最大时,此小球与三棱锥的4个面都相切,此时二面角A —CD —B 是直二面角.该小球球心为O ,半径为r ,连结OA 、OB 、OC 、OD ,三棱锥被分为4个小三棱锥,且每个小三棱锥中有一个面上的高都为r ,故有V A -BCD =V O -BCD +V O -ADC +V O -ABD +V O-ABC 代入得r =32-63. 即小球半径最大值为32-63. 22.(本小题满分14分)如图所示,四棱锥P —ABCD 的底面为正方形,P A ⊥平面ABCD ,AB =2,PC 与平面ABCD 成45°角,E ,F 分别为P A ,PB 的中点.(1)求异面直线DE 与AF 所成角的大小;(2)设M 是PC 上的动点,试问:当M 在何处时,AM ⊥平面PBD ?证明你的结论. 解:解法1:(1)如图,建立空间直角坐标系,则A (0,0,0),F (1,0,2),D (0,2,0),E (0,0,2). AF =(1,0,2),DE =(0,-2,2).设AF 与DE 的夹角为θ, 则cos θ=AF DE AF DE=1×0+0×(-2)+2×212+02+(2)2·02+(-2)2+(2)2=23, ∴DE 与AF 所成的角为arccos 23. (2)∵P A ⊥平面ABCD ,∴P A ⊥BD .又ABCD 是正方形,∴BD ⊥AC ,BD ⊥平面P AC ,∴BD ⊥AM .设M 点坐标为(t ,t ,2(2-t )), ∴AM =(t ,t ,2(2-t )).又P (0,0,22),B (2,0,0). ∴PB =(2,0,-22).设AM ⊥PB ,∴AM ·PB =0, 即2t -22×2(2-t )=0. ∴t =43,∴|MC |=43. 又|PC |=4,∴M 在PM MC=2这个位置上时,AM ⊥平面PBD . 解法二:(1)连结CF ,EF ,取CD 的中点G ,连结EG ,AG ,由题意EF ∥12AB ,则EF 綊DG ,∴四边形EDGF 为平行四边形, ∴FG ∥ED .∴∠AFG 即DE 和AF 所成的角(或其补角).又PC 与底面所成角为45°,∴P A =AC =∴ED =6=∴cos ∠AFG ∴DE 与AF (2)连结AC ∴BD ⊥平面欲使AM ⊥在Rt △P AC 又CH CA =CM PM =∴M 在PM MC=2。

2011届高考数学复习配套月考A卷试题新人教版

2011届高考数学复习配套月考A卷试题新人教版
2011 届大纲版高考复习配套月考试题 A 卷数学(二)
适用地区:大纲地区 考查范围:集合与简易逻辑、函数、数列、三角函数 一、选择题 (本大题共 12 小题,每小题 5 分 )
1. (2010 ·银川一中第三次月考 )已知 M={ x|x2> 4} , N
2
x
1 , 则 CRM∩N=
x1
()
A. { x|1< x≤2}
3 D.
3
4.(文 )(2010 ·茂名二模)在等差数列 { an } 中,已知 a1 1,a2 a4 10, an 39, 则 n =
() A. 19
B. 20
C. 21
D . 22
5. (2010·太原五中 5 月月考)在等比数列 { an } 中,前 n 项和为 Sn ,若 S3 7, S6 63 则
4.(文)【答案】 B
【解析】依题意,设公差为
d,则由 a1 1
得 d 2 ,所以 1+2( n-1)=39 ,所以
2a1 4d 10
n=20 ,选择 B . 5【答案】 B
【解析】 依题意, a1 a2 a3 7 ,a1 a2 a3 a4 a5 a6 63 ,所以 a4 a5 a6 56 ,
因此 q3=8,q=2,选择 B 6【答案】 A
13.( 2010·南山中学热身考试) 函数 y
sin x
2cos2
x
的最大值是
.
2
3
3
14( 2010·青岛二摸)已知点 P sin ,cos
4
4
落在角 的终边上,且
[ 0, 2 ) ,则
tan
的值为
;
3
15( 2010·隆尧一中五月模拟)定义:我们把满足 a n a n 1 k ( n 2, k 是常数)的数列

2011年全国各地高考数学试题及解答分类汇编大全(07 数系的扩充与复数的引入)

2011年全国各地高考数学试题及解答分类汇编大全(07 数系的扩充与复数的引入)

2011年全国各地高考数学试题及解答分类汇编大全(07数系的扩充与复数的引入)一、选择题:1. (2011安徽文、理)设 i 是虚数单位,复数ai i1+2-为纯虚数,则实数a 为( ) (A )2 (B) -2 (C) 1-2 (D) 121.A 【解析】本题主要考察复数的乘法运算和复数的概念。

法一:()()()()()ai i ai a a i i i i 1+2+1+2-+2+1==2-2-2+5g 为纯虚数,所以,a a 2-=0=2; 法二:()i a i ai i i-1+=2-2-为纯虚数,所以a =2,答案为A. 法三: 设()ai bi b R i1+∈2-=,则1+(2)2ai bi i b bi =-=+,所以1,2b a ==.故选A. 【技巧点拨】复数运算乘法是本质,除法中的分母“实化”也是乘法,同时注意提取公因式,因式分解等变形技巧的运用。

2. (2011北京文、理)复数212i i-=+ ( ) (A)i (B )i - (C)4355i -- (D)4355i -+ 2.【答案】A2.【解析】:22i 2(i 2)(12i)2242(1)2412i (12i)(12i)1414(1)i i i i i i i ---------+====++----,选A 。

3. (2011福建理) i 是虚数单位,若集合S=}{1.0.1-,则( ) A.i S ∈ B.2i S ∈ C. 3i S ∈ D.2S i ∈ 3.解析:由21i S =-∈得选项B 正确。

4. (2011福建文) i 是虚数单位1+i 3等于( )A.iB.-iC.1+i D .1-i4. 解析:1+i 3=1-I ,答案应选D 。

5.(2011广东文)设复数z 满足1iz =,其中i 为虚数单位,则z =( )A .i -B .iC .1-D .15. 解析:(A ).1()i z i i i i -===-⨯-6.(2011广东理)设复数z 满足(1)2i z +=,其中i 为虚数单位,则z =( )A .1i +B .1i -C .22i +D .22i -解析:(B ).22(1)11(1)(1)i z i i i i -===-++-7. (2011湖北理)i 为虚数单位,则=⎪⎭⎫⎝⎛-+201111i i ( )A.i -B.1-C.iD.17.【答案】A7. 解析:因为()i i i i i =-+=-+221111,所以i i i i i i -====⎪⎭⎫ ⎝⎛-++⨯3350242011201111,故选A .8.(2011湖南文、理)若,,a b R i ∈为虚数单位,且()a i i b i +=+,则( )A.1,1a b == B.1,1a b =-= C.1,1a b ==- D.1,1a b =-=-8.答案:C8. 解析:因()1a i i ai b i +=-+=+,根据复数相等的条件可知1,1a b ==-。

江苏省常州市四星级重点高中2011届高考冲刺数学复习单元卷:函数与不等式 (详细解答)

江苏省常州市四星级重点高中2011届高考冲刺数学复习单元卷:函数与不等式 (详细解答)

江苏省常州市中学2011高考冲刺复习单元卷—函数与不等式一、填空题:(请把答案直接填空在答题卷相应位置上。

)1. 若函数(1)f x +的定义域为[0,1],则(31)f x -的定义域为 ▲ .2. 已知集合10x A x x⎧⎫-=>⎨⎬⎩⎭,13x B y y ⎧⎫⎪⎪⎛⎫==⎨⎬⎪⎝⎭⎪⎪⎩⎭,则=B A ▲ .3. 下列说法错误的是: ▲ (1)命题“若2320x x -+=,则1x =”的逆否命题为:“若1x ≠,则2320x x -+≠”(2)“1x >”是“||1x >”的充分不必要条件; (3)若p 且q 为假命题,则p 、q均为假命题;(4)命题p :“x R ∃∈,使得210x x ++<”,则p ⌝:“x R ∀∈,均有210x x ++≥”4. 下列三个命题中,真命题是: ▲ ①“若1xy =,则,x y 互为倒数”的逆命题; ②“面积相等的三角形全等”的否命题;③“若1m ≤,则方程220x x m -+=有实根”的逆否命题.5.若函数()f x =,则a 的取值范围为 ▲ .6. 已知实数,x y 满足xx y y=-,则x 的取值范围是 ▲ .7. 函数()()y f x x R =∈的图象如图所示,则当01a <<时,函数()(log )a g x f x =的单调减区间是 ▲ .8.已知函数22()1(,)f x x ax b b a R b R =-++-+∈∈,成立,若当[]1,1x ∈-时,()0f x >恒成立,则b 的取值范围是 ▲ .9、已知00(,),(1,1),(5,2)A x y B C ,如果一个线性规划问题为可行域是ABC ∆边界及其内部,线性目标函数z ax by =+,在B 点处取得最小值3,在C 点处取得最大值12,则00ax by + 范围 ▲ .10、设(),()f x gx 均是定义在R 上奇函数,且当0x <时,'()()()'()0,(2)(2)0f xg x f x g x f g +<--=,则不等式()()0f x g x >的解集为 ▲ .11. 若12,x x 是方程1112()2xx-+=的两个实数解,则12x x += ▲ .12、线性目标函数z=2x -y 在线性约束条件{||1||1x y ≤≤下,取最小值的最优解是____ ▲13.若实数x 、y 满足10,0,2,x y x x -+≤⎧⎪>⎨⎪≤⎩则yx 的取值范围是 ▲ .14.已知,,x y z 满足5000x y x x y k -+≥⎧⎪≤⎨⎪++≥⎩,且24z x y =+的最小值为6-,则常数k 的值为 ▲ .二、解答题:(请在指定区域内作答,解答时应写出文字说明、证明过程或演算步骤。

2011届高考数学140分难点突破训练——数列与数学归纳法(含详解)-推荐下载

2011届高考数学140分难点突破训练——数列与数学归纳法(含详解)-推荐下载

12.
设各项为正数的等比数列 an 的首项 a1
210 S30 (210 1)S20 S10 0 。
(Ⅰ)求 an 的通项;
(Ⅱ)求 nSn 的前 n 项和Tn 。
13.
设数列{an} 是首项为
0 的递增数列,( n N
an1] 满足:对于任意的 b [0,1), fn (x) b 总有两个不同的根。
Sn

n n
1lg
(1)求数列 an 的通项公式;
(2)求证数列 bn 是等比数列;
3

1 2
n
n
1 。
(3)设 cn anbn ,试问数列cn有没有最大项?如果有,求出这个最大项,如果没有,
说明理由。
9. 设数列an 前项和为 sn ,且(3 m)sn 2man m 3(n N ), ,其中 m 为常数,m 3.
5. 已知数列{an}中,a1>0, 且 an+1= 3 an , 2
(Ⅰ)试求 a1 的值,使得数列{an}是一个常数数列; (Ⅱ)试求 a1 的取值范围,使得 an+1>an 对任何自然数 n 都成立; (Ⅲ)若 a1 = 2,设 bn = | an+1-an| (n = 1,2,3,…),并以 Sn 表示数列{bn}的前 n
(1 p) Sn p pan (p 为大于 1 的常数),并记
f (n)

(1)求 an ;
1

C
1 n
a1

C
2 n
a2
2n Sn



C
n n
an
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线产中0不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资2负料2,荷试而下卷且高总可中体保资配障料置2试时32卷,3各调需类控要管试在路验最习;大题对限到设度位备内。进来在行确管调保路整机敷使组设其高过在中程正资1常料中工试,况卷要下安加与全强过,看度并25工且52作尽22下可护都能1关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编试技5写、卷术重电保交要气护底设设装。备备置管4高调、动线中试电作敷资高气,设料中课并技3试资件且、术卷料中拒管试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

江苏省常州市四星级重点高中2011届高考冲刺数学复习单元卷:三角与解几 (详细解答)

江苏省常州市中学2011高考冲刺复习单元卷—三角与解几一、填空题:(本题共10个小题,每题4分,共40分)1、已知向量a 与b 的夹角为120°,且5||,2||==,则=⋅-)2( 。

2、函数1312sin)(+-=x x x f π的零点个数为 个。

3、已知函数1()11x f x x -⎧=⎨≥⎩, , <1, 则不等式(1)(1)3x f x x +⋅+≤-的解集为 。

4、设a 、b 、c 分别是△ABC 中∠A 、∠B 、∠C 所对边的边长,则直线sin 0x A ay c ⋅++= 与sin sin 0bx y B C -⋅+=的位置关系是 。

50y +-=截圆224x y +=得的劣弧所对的圆心角是 。

6、若把函数cos y x x =+的图象向右平移(0)m m >个单位后所得图象关于y 轴对称,则m 的最小值为 。

7、已知直线(14)(23)(312)0()k x k y k k R +---+=∈所经过的定点F 恰好是椭圆C 的一个焦点,且椭圆C 上的点到点F 的最大距离为8.则椭圆C 的标准方程为 。

8、已知方程abx x x x b a x a x 则且的两根为,10,,01)2(21212<<<=+++++的取值范围 。

9、设曲线()1x y ax e =-在点()01,A x y 处的切线为1l ,曲线()1xy x e -=-在点()02,B x y 处的切线为2l ,若存在0302x ≤≤,使得12l l ⊥,则实数a 的取值范围是 。

10、已知函数())2f x x π=≤≤,则()f x 的值域为 。

二、解答题:(本题共4大题,共60分)11、在平面直角坐标系中,点21(,cos )2P θ在角α的终边上,点2(sin ,1)Q θ-在角β的终边上,且12OP OQ ⋅=- . (1)求cos 2θ; (2)求sin()αβ+的值.12、设()f x 是定义在[]1,1-上的偶函数, ()()f x g x 与图像关于直线1x =对称,且当[]2,3x ∈时,3()3(2)4(2)g x x x =---。

2011届高考数学一轮复习百大经典例题之算术平均数与几何平均数(新课标)

典型例题一例1 已知R c b a ∈,,,求证.222ca bc ab c b a ++≥++ 证明:∵ ab b a 222≥+, bc c b 222≥+,ca a c 222≥+, 三式相加,得)(2)(2222ca bc ab c b a ++≥++,即.222ca bc ab c b a ++≥++说明:这是一个重要的不等式,要熟练掌握.典型例题二例2 已知c b a 、、是互不相等的正数,求证:abc b a c c a b c b a 6)()()(222222>+++++ 证明:∵0222>>+a bc c b ,, ∴abc c b a 2)(22>+同理可得:abc b a c abc c a b 2)(2)(2222>+>+,. 三个同向不等式相加,得abc b a c c a b c b a 6)()()(222222>+++++ ①说明:此题中c b a 、、互不相等,故应用基本不等式时,等号不成立.特别地,b a =,c b ≠时,所得不等式①仍不取等号.典型例题三例3 求证)(2222222c b a a c c b b a ++≥+++++.分析:此问题的关键是“灵活运用重要基本不等式ab b a 222≥+,并能由)(2c b a ++这一特征,思索如何将ab b a 222≥+进行变形,进行创造”.证明:∵ab b a 222≥+,两边同加22b a +得222)()(2b a b a +≥+.即2)(222b a b a +≥+.∴)(222122b a b a b a +≥+≥+.同理可得:)(2222c b c b +≥+,)(2222a c a c +≥+. 三式相加即得)(2222222c b a a c c b b a ++≥+++++.典型例题四例4 若正数a 、b 满足3++=b a ab ,则ab 的取值范围是 . 解:∵+∈R b a ,, ∴323+≥++=ab b a ab ,令ab y =,得0322≥--y y ,∴3≥y ,或1-≤y (舍去).∴92≥=ab y ,∴ ab 的取值范围是[).,9+∞说明:本题的常见错误有二.一是没有舍去1-≤y ;二是忘了还原,得出[)+∞∈,3ab .前者和后者的问题根源都是对ab 的理解,前者忽视了.0≥ab 后者错误地将2y 视为ab .因此,解题过程中若用换元法,一定要对所设“元”的取值范围有所了解,并注意还原之.典型例题五例5 (1)求41622++=x x y 的最大值. (2)求函数1422++=x x y 的最小值,并求出取得最小值时的x 值. (3)若0,0>>y x ,且2=+y x ,求22y x +的最小值.解:(1)41622++=x x y 13163)1(162222+++=+++=x x x x .3326=≤即y 的最大值为.3当且仅当13122+=+x x 时,即22=x 2±=x 时,取得此最大值.(2)1141142222-+++=++=x x x x y 3142=-⋅≥ ∴ y 的最小值为3,当且仅当11422+=+x x ,即4)1(22=+x ,212=+x ,1±=x 时取得此最小值.(3)∴ xy y x 222≥+ ∴222)()(2y x y x +≥+即2)(222y x y x +≥+∵2=+y x ∴222≥+y x 即22y x +的最小值为2. 当且仅当4==y x 时取得此最小值.说明:解这类最值,要选好常用不等式,特别注意等号成立的条件.典型例题六例6 求函数xx y 321--=的最值. 分析:本例的各小题都可用最值定理求函数的最值,但是应注意满足相应条件.如:0≠x ,应分别对0,0<>x x 两种情况讨论,如果忽视+∈R x 的条件,就会发生如下错误:∵ 6213221)32(1321-=⋅-≤+-=--=xx x x x x y ,.621max -=y 解:当0>x 时,03,02>>x x ,又632=⋅xx , 当且仅当x x 32=,即26=x 时,函数x x 32+有最小值.62 ∴ .621max -=y 当0<x 时,03,02>->-x x ,又6)3()2(=-⋅-xx , 当且仅当x x 32-=-,即26+=x 时,函数)32(x x +-最小值.62 ∴ .621min +=y典型例题七例7 求函数91022++=x x y 的最值.分析:291991)9(2222≥+++=+++=x x x x y .但等号成立时82-=x ,这是矛盾的!于是我们运用函数xx y 1+=在1≥x 时单调递增这一性质,求函数)3(1≥+=t tt y 的最值.解:设392≥+=x t ,∴t t x x y 191022+=++=.当3≥t 时,函数tt y 1+=递增. 故原函数的最小值为310313=+,无最大值.典型例题八例8 求函数4522++=x x y 的最小值.分析:用换元法,设242≥+=x t ,原函数变形为)2(1≥+=t tt y ,再利用函数)2(1≥+=t tt y 的单调性可得结果.或用函数方程思想求解.解:解法一: 设242≥+=x t ,故).2(14522≥+=++=t t t x x y212121212121121)()11()(2t t t t t t t t t t y y t t --=-+-=-≥>,设. 由202121><-t t t t ,,得:0121>-t t ,故:21y y <. ∴函数)2(1≥+=t t t y 为增函数,从而25212=+≥y . 解法二: 设242≥=+t x ,知)2(1≥+=t tt y ,可得关于t 的二次方程012=+-yt t ,由根与系数的关系,得:121=t t .又2≥t ,故有一个根大于或等于2,设函数1)(2+-=yt t t f ,则0)2(≤f ,即0124≤+-y ,故25≥y .说明:本题易出现如下错解:2414452222≥+++=++=x x x x y .要知道,41422+=+x x 无实数解,即2≠y ,所以原函数的最小值不是2.错误原因是忽视了等号成立的条件.当a 、b 为常数,且ab 为定值,b a ≠时,ab ba >+2,不能直接求最大(小)值,可以利用恒等变形ab b a b a 4)(2+-=+,当b a -之差最小时,再求原函数的最大(小)值.典型例题九例9 ,4,0,0=+>>b a b a 求2211⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+b b a a 的最小值.分析:此题出现加的形式和平方,考虑利用重要不等式求最小值. 解:由,4=+b a ,得.2162)(222ab ab b a b a -=-+=+ 又,222ab b a ≥+得ab ab 2216≥-,即4≤ab .21111222⎪⎭⎫ ⎝⎛+++≥⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+∴b b a a b b a a .225244444422=⎪⎭⎫ ⎝⎛+≥⎪⎭⎫ ⎝⎛+=ab 故2211⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+b b a a 的最小值是225.说明:本题易出现如下错解:8441212112222=+=⎪⎪⎭⎫ ⎝⎛⋅+⎪⎪⎭⎫ ⎝⎛⋅≥⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+∴b b a a b b a a ,故2211⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+b b a a 的最小值是8.错误的原因是,在两次用到重要不等式当等号成立时,有1=a 和1=b ,但在4=+b a 的条件下,这两个式子不会同时取等号(31==b a 时,).排除错误的办法是看都取等号时,与题设是否有矛盾.典型例题十例10 已知:+∈R c b a ,,,求证:c b a cab b ac a bc ++≥++. 分析:根据题设,可想到利用重要不等式进行证明.证明:.2,222c bac a bc c ab abc b ac a bc ≥+=≥+即同理:a cab b ac b c ab a bc 2,2≥+≥+ ).(22c b a c ab b ac a bc ++≥⎪⎭⎫⎝⎛++∴.c b a cab b ac a bc ++≥++∴说明:证明本题易出现的思维障碍是:(1)想利用三元重要不等式解决问题;(2)不会利用重要不等式ab ba ≥+2的变式;(3)不熟练证明轮换对称不等式的常用方法.因此,在证明不等式时,应根据求证式两边的结构,合理地选择重要不等式.另外,本题的证明方法在证轮换对称不等式时具有一定的普遍性.典型例题十一例11设R e d c b a ∈、、、、,且8=++++e d c b a ,1622222=++++e d c b a ,求e 的最大值.分析:如何将22b a +与b a +用不等式的形式联系起来,是本题获解的关键.算术平均数与几何平均数定理ab b a 222≥+两边同加22b a +之后得222)(21b a b a +≥+. 解:由222)(21b a b a +≥+,则有 ,)(41])()[(212222222d c b a d c b a d c b a +++≥+++≥+++.5160)8(411622≤≤⇒-≥-∴e e e.51656=时,当最大值e d c b a ====说明:常有以下错解:abcd cd ab d c b a e 4)(21622222≥+≥+++=-, 448abcd d c b a e ≥+++=-.故abcd e abcd e ≥-≥-4222)48(,4)16(. 两式相除且开方得516014)8(1622≤≤⇒≥--e e e .错因是两不等式相除,如211,12>>,相除则有22>. 不等式222)(21b a b a +≥+是解决从“和”到“积”的形式.从“和”到“积”怎么办呢?有以下变形:222)(21b a b a +≥+或)(21222b a b a +≥+.典型例题十二例12 已知:0>y x >,且:1=xy ,求证:2222≥-+yx y x ,并且求等号成立的条件.分析:由已知条件+∈R y x ,,可以考虑使用均值不等式,但所求证的式子中有y x -,无法利用xy y x 2≥+,故猜想先将所求证的式子进行变形,看能否出现)(1)(y x y x -+-型,再行论证.证明:,1.0,0=>-∴>>xy y x y x 又yx xyy x y x y x -+-=-+∴2)(222 yx y x -+-=2)( .22)(2)(2=-⋅-≥y x y x等号成立,当且仅当)(2)(y x y x -=-时..4,2,2)(222=+=-=-∴y x y x y x ,6)(,12=+∴=y x xy.6=+∴y x由以上得226,226-=+=y x 即当226,226-=+=y x 时等号成立.说明:本题是基本题型的变形题.在基本题型中,大量的是整式中直接使用的均值不等式,这容易形成思维定式.本题中是利用条件将所求证的式子化成分式后再使用均值不等式.要注意灵活运用均值不等式.典型例题十三例13 已知00>>y x ,,且302=++xy y x ,求xy 的最大值. 分析:由302=++xy y x ,可得,)300(230<<+-=x xxy , 故)300(2302<<+-=x x x x xy ,令xx x t +-=2302.利用判别式法可求得t (即xy )的最大值,但因为x 有范围300<<x 的限制,还必须综合韦达定理展开讨论.仅用判别式是不够的,因而有一定的麻烦,下面转用基本不等式求解.解法一:由302=++xy y x ,可得,)300(230<<+-=x xxy . xx x x x x xy +-+++-=+-=264)2(34)2(23022⎥⎦⎤⎢⎣⎡+++-=264)2(34x x 注意到16264)2(2264)2(=+⋅+≥+++x x x x . 可得,18≤xy . 当且仅当2642+=+x x ,即6=x 时等号成立,代入302=++xy y x 中得3=y ,故xy 的最大值为18.解法二:+∈R y x , ,xy xy y x ⋅=≥+∴22222, 代入302=++xy y x 中得:3022≤+⋅xy xy 解此不等式得180≤≤xy .下面解法见解法一,下略.说明:解法一的变形是具有通用效能的方法,值得注意:而解法二则是抓住了问题的本质,所以解得更为简捷.典型例题十四例14 若+∈R c b a 、、,且1=++c b a ,求证:8111111≥⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-c b a .分析:不等式右边的数字“8”使我们联想到可能是左边三个因式分别使用基本不等式所得三个“2”连乘而来,而abca cb a a a 2111≥+=-=-. 证明:acb a a a +=-=-111,又0>a ,0>b ,0>c , a bc a c b 2≥+∴,即a bca a 21≥-. 同理b ca b 211≥-,cab c 211≥-, 8111111≥⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-∴c b a .当且仅当31===c b a 时,等号成立. 说明:本题巧妙利用1=++c b a 的条件,同时要注意此不等式是关于c b a 、、的轮换式.典型例题十五例15 设+∈R c b a 、、,求证:)(2222222c b a a c c b b a ++≥+++++.分析:本题的难点在于222222a c c b b a +++、、不易处理,如能找出22b a +与b a +之间的关系,问题可得到解决,注意到:b a b a b a b a ab b a +≥+⇒+≥+⇒≥+)(2)()(222222222,则容易得到证明.证明:2222222)(2)(22b a ab b a b a ab b a +≥++≥+∴≥+, ,于是.)(222222b a b a b a +=+≥+ 同理:)(2222c b c b +≥+,)(2222a c a c +≥+. 三式相加即得:)(2222222c b a a c c b b a ++≥+++++.说明:注意观察所给不等式的结构,此不等式是关于c b a 、、的轮换式.因此只需抓住一个根号进行研究,其余同理可得,然后利用同向不等式的可加性.典型例题十六例16 已知:+∈R b a 、(其中+R 表示正实数)求证:.ba ab b a b a b a 112222222+≥≥⎪⎪⎭⎫ ⎝⎛+≥+≥+ 分析:要证明的这一串不等式非常重要,222b a +称为平方根,2b a +称为算术平均数,ab 称为几何平均数,ba 112+称为调和平均数.证明:().0412222222≥-=⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫⎝⎛+b a b a b a .222222⎪⎭⎫ ⎝⎛+≥⎪⎪⎭⎫ ⎝⎛+∴b a b a +∈R b a 、∴2222ba b a +≥+,当且仅当“b a =”时等号成立. .0)(412222≥-=⎪⎪⎭⎫ ⎝⎛+-+b a b a b a ∴222⎪⎪⎭⎫⎝⎛+≥+b a b a ,等号成立条件是“b a =” ,0)(41222≥-=-⎪⎪⎭⎫ ⎝⎛+b a ab b a ∴ab b a ≥⎪⎪⎭⎫⎝⎛+22,等号成立条件是“b a =”.ba abab b a b a ab ab ba ab +-+=+-=+-2)(2112 .0)()2(2≥+-=+-+=ba b a ab b a ab b a ab∴ba ab 112+≥,等号成立条件是“b a =”.说明:本题可以作为均值不等式推论,熟记以上结论有利于处理某些复杂不等式的证明问题.本例证明过程说明,不等式性质中的比较法是证明不等式的最基本、最重要的方法.典型例题十七例17 设实数1a ,1b ,1c ,2a ,2b ,2c 满足021>a a ,2111b c a ≥,2222b c a ≥,求证2212121)())((b b c c a a +≥++.分析:由条件可得到1a ,2a ,1c , 2c 同号.为方便,不妨都设为正.将求证式子的左边展开后可看出有交叉项21c a 和12c a 无法利用条件,但使用均值不等式变成乘积后,重新搭配,可利用条件求证.证明:同号.2121,,0a a a a ∴>同理,由22222111b c a b c a ≥≥,知1a 与1c 同号,2a 与2c 同号 ∴1a ,1c ,2a ,2c 同号.不妨都设为正.122122112121))((c a c a c a c a c c a a +++=++∴122122212c a c a b b ⋅++≥221122212c a c a b b ⋅++=222122212b b b b ⋅++≥||2212221b b b b ++=221212221)(2b b b b b b +=++≥,即2212121)())((b b c c a a +≥++.说明:本题是根据题意分析得1a ,1c ,2a ,2c 同号,然后利用均值不等式变形得证.换一个角度,由条件的特点我们还会联想到使用二次方程根的判别式,可能会有另一类证法.实际上,由条件可知1a ,1c ,2a ,2c 为同号,不妨设同为正.又∵2111b c a ≥,2222b c a ≥,∴211144b c a ≥,222244b c a ≥.不等式021121≥++c x b x a ,022222≥++c x b x a 对任意实数x 恒成立(根据二次三项式恒为正的充要条件),两式相加得0)()(2)(2121221≥+++++c c x b b x a a ,它对任意实数x 恒成立.同上可得:2212121)())((b b c c a a +≥++.典型例题十八例18 如下图所示,某畜牧基地要围成相同面积的羊圈4间,一面可利用原有的墙壁,其余各面用篱笆围成,篱笆总长为36m .问每间羊圈的长和宽各为多少时,羊圈面积最大?分析:可先设出羊圈的长和宽分别为x ,y ,即求xy 的最大值.注意条件3664=+y x 的利用.解:设每间羊圈的长、宽分别为x ,y ,则有3664=+y x ,即1832=+y x .设xy S =,623223218xy y x y x =⋅≥+=227,227≤≤∴S xy 即 上式当且仅当y x 32=时取“=”.此时⎩⎨⎧===,1832,32y x y x ⎪⎩⎪⎨⎧==∴.3,29y x ∴羊圈长、宽分别为29m ,3m 时面积最大. 说明:(1)首先应设出变量(此处是长和宽),将题中条件数学化(即建立数学模型)才能利用数学知识求解;(2)注意在条件1832=+y x 之下求积xy 的最大值的方法:直接用不等式y x y x 3223218⋅≥+=,即可出现积xy .当然,也可用“减少变量”的方法:22218261)218(261)218(31)218(31⎪⎭⎫ ⎝⎛-+⋅≤-⋅⋅=-⋅==→-=x x x x x x xy S x y ,当且仅当x x 2182-=时取“=”.典型例题十九例19 某单位建造一间地面面积为12m 2的背面靠墙的矩形小房,房屋正面的造价为1200元/m 2,房屋侧面的造价为800 元/m 2,屋顶的造价为5800元.如果墙高为3m ,且不计房屋背面的费用,问怎样设计房屋能使总造价最低,最低总造价是多少元?分析:这是一个求函数最小值的问题,关键的问题是设未知数,建立函数关系.从已知条件看,矩形地面面积为12m 2,但长和宽不知道,故考虑设宽为x m ,则长为x12m ,再设总造价为y .由题意就可以建立函数关系了.解:设矩形地面的正面宽为x m ,则长为x12m ;设房屋的总造价为y .根据题意,可得: 5800280012312003+⨯⋅⋅+⋅=x x y 5800576003600++=xx580016236005800)16(3600+⋅⨯≥++=xx x x )(34600580028800元=+=当xx 16=,即4=x 时,y 有最小值34600元. 因此,当矩形地面宽为4m 时,房屋的总造价最低,最低总造价是34600元.说明:本题是函数最小值的应用题,这类题在我们的日常生活中经常遇到,有求最小值的问题,也有求最大值的问题,这类题都是利用函数式搭桥,用均值不等式解决,解决的关键是等号是否成立,因此,在解这类题时,要注意验证等号的成立.典型例题二十例20 某单位决定投资3200元建一仓库(长方体状),高度恒定,它的后墙利用旧墙不花钱,正面用铁栅,每1m 长造价40元,两侧墙砌砖,每1m 长造价45元,顶部每1m 2造价20元.计算:(1)仓库底面积S的最大允许值是多少?(2)为使S达到最大,而实际投资又不超过预算,那么正面铁栅应设计为多长? 分析:用字母分别表示铁栅长和一堵砖墙长,再由题意翻译数量关系.解:设铁栅长为x m ,一堵砖墙长为y m ,则有xy S =.由题意得(*).32002045240=+⨯+xy y x应用算术平均数与几何平均数定理,得,201202012020904023200S S xy xy xyy x +=+=+⋅≥,1606≤+∴S S即:.0)10)(10(≤--S S,010,016≤-∴>+S S从而:.100≤S因此S 的最大允许值是2100m ,取得此最大值的条件是y x 9040=,而100=xy ,由此求得15=x ,即铁栅的长应是m 15. 说明:本题也可将xSy =代入(*)式,导出关于x 的二次方程,利用判别式法求解. 典型例题二十一例21 甲、乙两地相距km s ,汽车从甲地匀速行驶到乙地,速度不超过km/h c ,已知汽车每小时的运输成本........(以元为单位)由可变部分和固定部分组成:可变部分与速度km/h v 的平方成正比,且比例系数为b ;固定部分为a 元.(1)把全程运输成本y 元表示为速度km/h v 的函数,并指出这个函数的定义域; (2)为了使全程运输成本最小,汽车应以多大速度行驶?分析:这是1997年的全国高考试题,主要考查建立函数关系式、不等式性质(公式)的应用.也是综合应用数学知识、思想和方法解决实际问题的一道优秀试题.解:(1)依题意知汽车从甲地匀速行驶到乙地所用的时间为h vs,全程运输成本为 )(2bv vas v s bv v s a y +=⋅+⋅=.故所求函数为)(bv bas y +=,定义域为)0(c v ,∈.(2)由于v b a s 、、、都为正数,故有bv bas bv v a s ⋅⋅≥+2)(, 即ab s bv va s 2)(≥+.当且仅当bv v a =,即ba v =时上式中等号成立. 若c b a ≤时,则bav =时,全程运输成本y 最小; 当c ba≤,易证c v <<0,函数)()(bv v a s v f y +==单调递减,即c v =时,)(m i n bc cas y +=.综上可知,为使全程运输成本y 最小,在c b a ≤时,行驶速度应为b av =; 在c ba≤时,行驶速度应为c v =.。

(超级精品)2011届高考数学一轮复习精品题集分类汇编之函数(39页)

第2章 函数概念与基本初等函数Ⅰ §2.1.1 函数的概念和图象重难点:在对应的基础上理解函数的概念并能理解符号“y=f (x )”的含义,掌握函数定义域与值域的求法; 函数的三种不同表示的相互间转化,函数的解析式的表示,理解和表示分段函数;函数的作图及如何选点作图,映射的概念的理解.考纲要求:①了解构成函数的要素,会求一些简单函数的定义域和值域;②在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数;③了解简单的分段函数,并能简单应用;经典例题:设函数f (x )的定义域为[0,1],求下列函数的定义域: (1)H (x )=f (x2+1);(2)G (x )=f (x+m )+f (x -m )(m >0).当堂练习:1. 下列四组函数中,表示同一函数的是( ) A.(),()f x x g x ==B.2(),()f x x g x ==C .21(),()11x f x g x x x -==+- D.()()f x g x ==2函数()y f x =的图象与直线x a =交点的个数为( )A .必有一个B .1个或2个C .至多一个D .可能2个以上3.已知函数1()1f x x =+,则函数[()]f f x 的定义域是( )A .{}1x x ≠ B .{}2x x ≠- C .{}1,2xx ≠-- D .{}1,2x x ≠-4.函数1()1(1)f x x x =--的值域是( )A .5[,)4+∞B .5(,4-∞C . 4[,)3+∞D .4(,]3-∞ 5.对某种产品市场产销量情况如图所示,其中:1l 表示产品各年年产量的变化规律;2l 表示产品各年的销售情况.下列叙述: ( ) (1)产品产量、销售量均以直线上升,仍可按原生产计划进行下去;(2)产品已经出现了供大于求的情况,价格将趋跌;(3)产品的库存积压将越来越严重,应压缩产量或扩大销售量;(4)产品的产、销情况均以一定的年增长率递增.你认为较合理的是()A .(1),(2),(3)B .(1),(3),(4)C .(2),(4)D .(2),(3)6.在对应法则,,,x y y x b x R y R→=+∈∈中,若25→,则2-→ , →6.7.函数()f x 对任何x R +∈恒有1212()()()f x x f x f x ⋅=+,已知(8)3f =,则)f = .8.规定记号“∆”表示一种运算,即a b a b a b R+∆=+∈,、. 若13k ∆=,则函数()fx k x =∆的值域是___________.9.已知二次函数f(x)同时满足条件: (1) 对称轴是x=1; (2) f(x)的最大值为15;(3) f(x)的两根立方和等于17.则f(x)的解析式是 .10.函数2522y x x =-+的值域是 .11. 求下列函数的定义域 : (1)()121x f x x =-- (2)(1)()x f x x x+=-12.求函数y x =13.已知f(x)=x2+4x+3,求f(x)在区间[t,t+1]上的最小值g(t)和最大值h(t).14.在边长为2的正方形ABCD 的边上有动点M ,从点B 开始,沿折线BCDA 向A 点运动,设M 点运动的距离为x ,△ABM 的面积为S . (1)求函数S=的解析式、定义域和值域; (2)求f[f(3)]的值.第2章 函数概念与基本初等函数Ⅰ§2.1.2 函数的简单性质重难点:领会函数单调性的实质,明确单调性是一个局部概念,并能利用函数单调性的定义证明具体函数的单调性,领会函数最值的实质,明确它是一个整体概念,学会利用函数的单调性求最值;函数奇偶性概念及函数奇偶性的判定;函数奇偶性与单调性的综合应用和抽象函数的奇偶性、单调性的理解和应用;了解映射概念的理解并能区别函数和映射.考纲要求:①理解函数的单调性、最大(小)值及其几何意义;结合具体函数,了解函数奇偶性的含义;并了解映射的概念;②会运用函数图像理解和研究函数的性质.经典例题:定义在区间(-∞,+∞)上的奇函数f (x )为增函数,偶函数g (x )在[0,+∞ )上图象与f (x )的图象重合.设a >b >0,给出下列不等式,其中成立的是 f (b )-f (-a )>g (a )-g (-b ) ②f (b )-f (-a )<g (a )-g (-b )③f (a )-f (-b )>g (b )-g (-a ) ④f (a )-f (-b )<g (b )-g (-a ) A .①④ B .②③ C .①③ D .②④ 当堂练习:1.已知函数f(x)=2x2-mx+3,当()2,x ∈-+∞时是增函数,当(),2x ∈-∞-时是减函数,则f(1)等于 ( )A .-3B .13C .7D .含有m 的变量2.函数()f x =是( )A . 非奇非偶函数B .既不是奇函数,又不是偶函数奇函数C . 偶函数D . 奇函数3.已知函数(1)()11f x x x =++-,(2)()f x =2()33f x x x =+(4)0()()1()R x Q f x x C Q ∈=∈⎧⎨⎩,其中是偶函数的有( )个A .1B .2C .3D .44.奇函数y=f (x )(x ≠0),当x ∈(0,+∞)时,f (x )=x -1,则函数f (x -1)的图象为 ()5.已知映射f:A →B,其中集合A={-3,-2,-1,1,2,3,4},集合B 中的元素都是A 中元素在映射f 下的象,且对任意的A a ∈,在B 中和它对应的元素是a,则集合B 中元素的个数是( )A .4B .5C .6D .76.函数2()24f x x tx t =-++在区间[0, 1]上的最大值g(t)是 .7. 已知函数f(x)在区间(0,)+∞上是减函数,则2(1)f x x ++与()34f 的大小关系是 .8.已知f(x)是定义域为R 的偶函数,当x<0时, f(x)是增函数,若x1<0,x2>0,且12x x <,则1()f x 和2()f x 的大小关系是 .9.如果函数y=f(x+1)是偶函数,那么函数y=f(x)的图象关于_________对称.10.点(x,y)在映射f作用下的对应点是22,若点A 在f 作用下的对应点是B(2,0),则点A 坐标是 .13. 已知函数2122()x x f x x++=,其中[1,)x ∈+∞,(1)试判断它的单调性;(2)试求它的最小值.14.已知函数2211()a f x aa x+=-,常数0>a 。

2011年全国各地高考数学试题及解答分类汇编大全(16计数原理、二项式定理)

2011年全国各地高考数学试题及解答分类汇编大全(16计数原理、二项式定理)一、选择题:1. (2011福建理) (1+2x)3的展开式中,x 2的系数等于( )A.80B.40C.20D.10解析:(1+2x)5的展开式中含x 2的系数等于2225(2)40C x x =,系数为40.答案选B 。

2. (2011全国大纲卷文)4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法共有( )(A) 12种 (B) 24种 (C) 30种 (D)36种【答案】B【命题意图】本题主要考查两个原理与排列组合知识,考察考生分析问题的能力.【解析】第一步选出2人选修课程甲有246C =种方法,第二步安排剩余两人从乙、丙中各选1门课程有22⨯种选法,根据分步计数原理,有6424⨯=种选法.3. (2011全国大纲卷理)某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友每位朋友1本,则不同的赠送方法共有( )(A)4种 (B)10种 (C)18种 (D)20种【答案】B【命题意图】本题主要考查两个原理与排列组合知识,考察考生分析问题的能力.【解析】分两类:一是取出1本画册,3本集邮册,此时赠送方法有144C =种;二是取出2本画册,2本集邮册,此时赠送方法有246C =种.故赠送方法共有10种.4.(2011全国新课标卷理))512a x x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的展开式中各项系数的和为2,则该展开式中常数项为 ( )(A )-40 (B )-20 (C )20 (D )40解析1.令x=1得a=1.故原式=511()(2)x x x x +-。

511()(2)x x x x+-的通项521552155(2)()(1)2r r r r r r r r T C x x C x ----+=-=-,由5-2r=1得r=2,对应的常数项=80,由5-2r=-1得r=3,对应的常数项=-40,故所求的常数项为40 ,选D解析2.用组合提取法,把原式看做6个因式相乘,若第1个括号提出x,从余下的5个括号中选2个提出x ,选3个提出1x ;若第1个括号提出1x ,从余下的括号中选2个提出1x,选3个提出x. 故常数项=223322335353111(2)()()(2)X C X C C C X X X X ⋅⋅-+⋅-⋅=-40+80=405.(2011陕西理)6(42)x x --(x ∈R )展开式中的常数项是 ( )(A )20- (B )15- (C )15 (D )20【分析】根据二项展开式的通项公式写出通项,再进行整理化简,由x 的指数为0,确定常数项是第几项,最后计算出常数项.【解】选C 62(6)1231666(4)(2)222r x r x r r x r xr r x xr r T C C C -----+==⋅⋅=⋅, 令1230x xr -=,则4r =,所以45615T C ==,故选C .6.(2011天津理)在62x x ⎛⎫- ⎪ ⎪⎝⎭的二项展开式中,2x 的系数为( ) A .154- B .154C .38-D .38【答案】C【解析】由二项式展开式得,()k k k k k k k k x C x x C T ---+-=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=36626612122, 令1=k ,则2x 的系数为()832116612-=⋅--⨯C .7.(2011重庆理)(13)(6)n x n N n +∈其中且≥的展开式中56x x 与的系数相等,则n=( )A .6B .7C .8D .9二、填空题:1.(2011安徽理)设2121221021)1(x a x a x a a x ++++=-Λ,则1110a a += ___ . (12)0【命题意图】本题考查二项展开式.难度中等. 【解析】101110102121(1)a C C =-=-,111011112121(1)a C C =-=,所以a a C C 111010112121+=-=0.2. (2011北京理)用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位数共有__________个。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档