上海蒙山中学必修第二册第二单元《复数》测试卷(有答案解析)

合集下载

上海怀少学校必修第二册第二单元《复数》检测(答案解析)

上海怀少学校必修第二册第二单元《复数》检测(答案解析)

一、选择题 1.12i12i+=- A .43i 55--B .43i 55-+C .34i 55--D .34i 55-+2.已知12,z z C ∈,121z z ==,12z z +=12z z -=( )A .0B .1C D .23.已知复数z 满足:21z -=,则1i z -+的最大值为( )A .2B 1C 1D .34.复数z 满足5(3)2i z i ⋅+=-,则z 的虚部是( ) A .12B .12-C .12i -D .12i 5.若复数z 满足12z i i •=+,则z 的共轭复数的虚部为( ) A .i B .i -C .1-D .16.如果复数z 满足|||i 2|i z z ++-=,那么|1|z i ++的最小值是( )A .1 BC .2D7.“1x >”是“复数2(1)()z x x x i x R =-+-∈在复平面内对应的点在第一象限”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件8.若复数(1)(1)z m m m i =-+-是纯虚数,其中m 是实数,则1z=( ) A .i B .i -C .2iD .2i -9.“复数3iia z -=在复平面内对应的点在第三象限”是“0a ≥”的 A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件10.若复数z 满足()11z i i --⋅=+,则z =( )A BC .D .311.设复数z 满足()1i i z +=,则z =( )A .2B .12C D .212.复数11ii+-的实部和虚部分别为a ,b ,则a b +=( ) A .1B .2C .3D .4二、填空题13.已知复数1510z i =+ ,234z i =-,复数z 满足12111z z z =+,则z =_____________.14.已知1i z z -=-+,则复数z =______.15.复数2018|(3)|z i i i =-+(i 为虚数单位),则||z =________.16.若132i ω=+(i 为虚数单位),则3ω=_______. 17.已知复数z 满足(12)43i z i +=+,则z = _________________;18.关于x 的不等式mx 2-nx+p>0(m ,n ,p ∈R)的解集为(-1,2),则复数m+p i 所对应的点位于复平面内的第____象限.19.若复数z 满足12i z i ⋅=+,其中i 是虚数单位,则z 的实部为________.20.如果复数z 的模不大于1,而z 的虚部的绝对值不小于,则复平面内复数z 的对应点组成图形的面积是___.三、解答题21.(1)计算:()()432-23i i (i 为虚数单位);(2)已知z 是一个复数,求解关于z 的方程,313z z i z i ⋅-⋅=+(i 为虚数单位). 22.(1)在复数范围内解方程()232iz z z i i-++=+(i 为虚数单位) (2)设z 是虚数,1z zω=+是实数,且12ω-<< (i )求z 的值及z 的实部的取值范围; (ii )设11zzμ-=+,求证:μ为纯虚数; (iii )在(ii )的条件下求2ωμ-的最小值.23.设复数12i z a =+(其中a R ∈),234z i =-. (Ⅰ)若12z z +是实数,求12z z ⋅的值;(Ⅱ)若12z z 是纯虚数,求1z .24.已知复数()()()121z m m m i =-++- (m R ∈,i 为虚数单位) (1)若z 是纯虚数,求实数m 的值; (2)若2m =,设1z ia bi z +=+- (,ab ∈R ),试求+a b . 25.已知复数z 使得2z i R +∈,2zR i∈-,其中i 是虚数单位. (1)求复数z 的共轭复数z ;(2)若复数()2z mi +在复平面上对应的点在第四象限,求实数m 的取值范围. 26.已知关于x 的方程()()2690x i x ai a -+++=∈R 有实数根b .(1)求实数a ,b 的值;(2)若复数满足20z a bi z ---=,求z 的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】分析:根据复数除法法则化简复数,即得结果.详解:212(12)341255i i ii ++-+==∴-选D.点睛:本题考查复数除法法则,考查学生基本运算能力.2.B解析:B 【分析】利用复数加法、减法和模的运算化简已知条件,由此求得12z z -. 【详解】设12,z a bi z c di =+=+,则()()12z z a c b d i +=+++,()()12z z a c b d i -=-+-. 依题意得:22221,1a b c d +=+=,12z z +=⇒()()223a c b d +++=⇒()222223a b c d ac bd +++++=⇒()21ac bd +=.所以12z z -==1==.故选:B【点睛】本小题主要考查复数运算,属于中档题.3.B解析:B 【分析】复数方程|2|1z -=转化成实数方程()2221x y -+=,再由复数模定义|1|z i -+表示(1,1)-与圆上任一点(,)x y 间距离.【详解】解:设z x yi =+,由|2|1z -=得圆的方程()2221x y -+=,又|1|z i -+(1,1)-与圆上任一点(,)x y 间距离.则由几何意义得x ma |1|11z i -+==,故选:B . 【点睛】本题主要考查复数模的计算和几何意义,属于中档题.4.A解析:A 【解析】 【分析】通过5(3)2i z i ⋅+=-计算出z ,从而得到z ,根据虚部的概念即可得结果. 【详解】∵5(3)2i z i ⋅+=-,∴()()()()5232211333322i i i i z i i i i i ----====-+++-, ∴1122z i =+,即z 的虚部是12,故选A. 【点睛】本题主要考查了复数除法的运算,共轭复数的概念,复数的分类等,属于基础题.5.D解析:D 【解析】 【分析】利用复数的运算法则、共轭复数的定义、虚部的定义即可得出. 【详解】12iz i =+,()12i iz i i ∴-⋅=-+,2z i =-+则z 的共轭复数2z i =+的虚部为1. 故选D . 【点睛】本题考查了复数的运算法则、共轭复数的定义、虚部的定义,考查了推理能力与计算能力,属于基础题.6.A解析:A 【分析】直接利用复数模的几何意义求出z 的轨迹.然后利用点到直线的距离公式求解即可. 【详解】:∵|z +i|+|z -i|=2∴点Z 到点A (0,-1)与到点B (0,1)的距离之和为2. ∴点Z 的轨迹为线段AB .而|z +1+i|表示为点Z 到点(-1,-1)的距离. 数形结合,得最小距离为1 故选A . 【点睛】本题只要弄清楚复数模的几何意义,就能够得到解答.7.C解析:C 【分析】根据充分必要条件的定义结合复数与复平面内点的对应关系,从而得到答案. 【详解】若复数()()21z x x x i x R =-+-∈在复平面内对应的点在第一象限,则20,10x x x ⎧->⎨->⎩解得1x >,故“1x >”是“复数()()21z x x x i x R =-+-∈在复平面内对应的点在第一象限”的充要条件. 故选C. 【点睛】本题考查了充分必要条件,考查了复数的与复平面内点的对应关系,是一道基础题.8.A解析:A 【解析】因为复数()()11z m m m i =-+-是纯虚数,所以()1010m m m ⎧-=⎨-≠⎩,则m =0,所以z i =-,则11i z i==-. 9.A解析:A 【详解】因为33aiz a i i-==--,所以由题设可得00a a -<⇒>,因此0a >是0a ≥的充分不必要条件,故应选答案A .10.A解析:A 【分析】把已知等式变形,利用复数代数形式的乘除运算化简,再由复数模的计算公式求解. 【详解】由()11z i i --⋅=+,得()()21111i i i z i i i+-+--===--,则2z i =-+,∴z ==故选:A 【点睛】本题主要考查了复数的除法运算,复数的模的运算,属于中档题.11.A解析:A 【解析】由()1i z i +=,得()()()i 1i i 11i 1i 1i 1i 22z -=+++-==,2z ∴==故选A . 12.A解析:A 【分析】利用两个复数代数形式的除法运算性质,把复数化为最简形式,得到其实部和虚部的值,进而求得结果. 【详解】21(1)21(1)(1)2i i ii i i i ++===--+, 所以0,1a b ==, 所以1a b +=, 故选:A. 【点睛】思路点睛:该题考查的是有关复数的问题,解题思路如下:(1)利用复数除法运算法则先化简复数11ii+-; (2)确定出复数的实部和虚部各是多事;(3)进而求得a b +的值.二、填空题13.【分析】根据复数的四则运算公式求得再结合复数的模的计算公式即可求解【详解】由题意复数则所以所以故答案为:【点睛】本题主要考查了复数的四则运算以及复数模的计算其中解答中熟记复数的四则运算公式以及复数模【分析】根据复数的四则运算公式,求得552z i =-,再结合复数的模的计算公式,即可求解. 【详解】由题意,复数1510z i =+ ,234z i =-, 则()()()()1211111510344251034510510343425i i i z z z i i i i i i -++=+=+=+=+-+--+, 所以()()()254225554242422i z i i i i ⨯-===-++-,所以z ==.故答案为:2. 【点睛】本题主要考查了复数的四则运算,以及复数模的计算,其中解答中熟记复数的四则运算公式,以及复数模的计算公式,准确运算是解答的关键,着重考查推理与运算能力.14.【分析】设根据得到再利用复数相等的条件列出方程组求得的值即可求解【详解】设则因为所以即根据复数相等的条件得解得所以所以故答案为:【点睛】本题主要考查了复数相等的条件以及复数的模的计算公式的应用其中解 解析:i -【分析】设()i ,z x y x y =+∈R ,根据1i z z -=-+,得到(i 1i x y +=-+,再利用复数相等的条件列出方程组,求得,x y 的值,即可求解. 【详解】设()i ,z x y x y =+∈R,则z =因为1i z z -=-+,所以i 1i x y +=-+,即(i 1i x y +=-+,根据复数相等的条件得11x y ⎧⎪-=-⎨=⎪⎩,解得01x y =⎧⎨=⎩,所以i z =,所以i z =-.故答案为:i - 【点睛】本题主要考查了复数相等的条件,以及复数的模的计算公式的应用,其中解答中熟记复数模的计算公式和复数相等的条件,列出方程组求解是解答的关键,着重考查了推理与计算能力,属于基础题.15.1【分析】由复数模的求法及虚数单位的性质化简求值【详解】解:由题得故答案为:1【点睛】本题考查复数模的求法考查虚数单位的性质是基础题解析:1 【分析】由复数模的求法及虚数单位i 的性质化简求值. 【详解】解:由题得2|1|1211z i =+==-=,||1z ∴=.故答案为:1. 【点睛】本题考查复数模的求法考查虚数单位i 的性质,是基础题.16.-1【分析】先把转化为复数的三角形式再利用复数三角形式乘法运算法则进行解题即可【详解】解:复数对应的点在第一象限则所以所以所以故答案为:-1【点睛】本题主要考查由复数的代数形式转化为复数三角形式以及解析:-1 【分析】先把12ω=+转化为复数的三角形式,再利用复数三角形式乘法运算法则进行解题即可. 【详解】解:复数12ω=对应的点在第一象限,则1r ==,1cos 2θ=, 所以arg 3z π=,所以1cos isin 233ππω=+=+, 所以33cos sincos isin 133333333i ππππππππω⎛⎫⎛⎫⎛⎫=+=+++++=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 故答案为:-1. 【点睛】本题主要考查由复数的代数形式转化为复数三角形式以及复数三角形式的乘法运算法则,属于基础题.17.【分析】先根据复数除法得再根据共轭复数概念得【详解】因为所以即【点睛】本题重点考查复数的概念与复数相等属于基本题复数的实部为虚部为模为对应点为共轭为 解析:2i +【分析】先根据复数除法得z ,再根据共轭复数概念得z . 【详解】因为()1243i z i +=+,所以43212iz i i+==-+,即2.z i =+ 【点睛】本题重点考查复数的概念与复数相等,属于基本题.复数(,)a bi a b R +∈的实部为a 、虚部为b(,)a b 、共轭为.-a bi18.二【解析】分析:先根据x 的不等式mx2-nx+p>0(mnp ∈R)的解集为(-12)得到再分析出m<0p>0再确定复数m+pi 所对应的点位于复平面内的第二象限详解:∵mx2-nx+p>0(mnp ∈R解析:二. 【解析】分析:先根据x 的不等式mx 2-nx+p>0(m,n,p ∈R)的解集为(-1,2)得到0,n -12,m p -12,m m ⎧⎪<⎪⎪+=⎨⎪⎪⨯=⎪⎩()()再分析出m<0,p>0,再确定复数m+pi 所对应的点位于复平面内的第二象限. 详解:∵mx 2-nx+p>0(m,n,p ∈R)的解集为(-1,2),0,n (-1)2,m p (-1)2,m m ⎧⎪<⎪⎪∴+=⎨⎪⎪⨯=⎪⎩即m<0,p>0.故复数m+pi 所对应的点位于复平面内的第二象限. 故答案为二.点睛:(1)本题主要考查复数的几何意义和一元二次不等式的解法,意在考查学生对这些知识的掌握水平.(2)已知一元二次不等式的解集,一般要想到韦达定理.19.2【解析】分析:先根据复数的除法运算进行化简再根据复数实部概念求结果详解:因为则则的实部为点睛:本题重点考查复数相关基本概念如复数的实部为虚部为模为对应点为共轭复数为解析:2 【解析】分析:先根据复数的除法运算进行化简,再根据复数实部概念求结果.详解:因为12i z i ⋅=+,则12i2i iz +==-,则z 的实部为2. 点睛:本题重点考查复数相关基本概念,如复数+i(,)a b a b ∈R 的实部为a 、虚部为b 、模为22a b +、对应点为(,)a b 、共轭复数为i a b -.20.【解析】分析:先根据复数的模以及复数的虚部列不等式再根据扇形面积减去三角形面积得弓形面积详解:设则如图因此复平面内复数z 的对应点组成图形为两个弓形其面积为扇形面积减去三角形面积是点睛:本题重点考查复 解析:23-3π 【解析】分析:先根据复数的模以及复数的虚部列不等式,再根据扇形面积减去三角形面积得弓形面积.详解:设(,)z x yi x y R =+∈,则2211,2x y y +≤≥,如图,2.3AOB π∠=因此复平面内复数z 的对应点组成图形为两个弓形,其面积为扇形面积减去三角形面积是21212232(111sin )232332πππ⨯⋅-⨯⨯⨯=-点睛:本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如()()()(),(,,.)++=-++∈a bi c di ac bd ad bc i a b c d R . 其次要熟悉复数相关基本概念,如复数(,)a bi a b R +∈的实部为a 、虚部为b 22a b +(,)a b 、共轭为.-a bi 三、解答题21.(1)8;(2)13z i =-+或1z =-【分析】(1)()()()()()()4222232-22-22-2i i i =即可化简得值;(2)设,,z a bi a b R =+∈,建立等式()()()313a bi a bi i a bi i +---=+,列方程组求解.【详解】(1)()()()()()()4222232-22-22-286488i i i i --===-; (2)设,,z a bi a b R =+∈,313z z i z i ⋅-⋅=+,即()()()313a bi a bi i a bi i +---=+, 223313a b b ai i +--=+,所以2231,33a b b a +-=-=,解得13a b =-⎧⎨=⎩或10a b =-⎧⎨=⎩, 所以13z i =-+或1z =-.故答案为:13z i =-+或1z =-【点睛】此题考查复数的运算,关键在于根据题意利用复数的运算法则,准确计算求解. 22.(1)12z =-±;(2)(i )1z =;1,12a ⎛⎫∈- ⎪⎝⎭(ii )证明见解析;(iii )1 【分析】(1)利用待定系数法,结合复数相等构造方程组来进行求解;(2)(i )采用待定系数法,根据实数的定义构造方程即可解得z 和ω,利用ω的范围求得a 的范围;(ii )利用复数的运算进行整理,根据纯虚数的定义证得结论;(iii )将2ωμ-整理为123t t ⎛⎫+- ⎪⎝⎭,1,22t ⎛⎫∈ ⎪⎝⎭,利用基本不等式求得最小值. 【详解】 (1)()()()()()23235512225i i i i z z z i i i i i ----++====-++- 设(),z x yi x y R =+∈,则2221x y xi i ++=-22121x yx ⎧+=∴⎨=-⎩,解得:12x y ⎧=-⎪⎪⎨⎪=⎪⎩122z ∴=-± (2)(i )设z a bi =+(,a b R ∈且)0b ≠2222221a bi a b a bi a bi a b i a bi a b a b a b ω-⎛⎫⎛⎫∴=++=++=++- ⎪ ⎪++++⎝⎭⎝⎭ω为实数 220b b a b∴-=+,整理可得:221a b += 即1z = ()21,2a ω∴=∈- 1,12a ⎛⎫∴∈- ⎪⎝⎭(ii )()()()()()222211111211111a bi a bi z a bi a b bi z a bi a bi a bi a b μ--+-------====++++++-++ 由(i )知:221a b +=,则1b i a μ=-+ 1,12a ⎛⎫∈- ⎪⎝⎭且0b ≠ 01b a ∴-≠+ μ∴是纯虚数(iii )()()22222211212221111b a a a a a a a a a a a ωμ--++-=+=+=+=++++ 令1a t +=,则1,22t ⎛⎫∈ ⎪⎝⎭,1a t =- ()2222111232123t t t t t t t t ωμ-+-+-+⎛⎫∴-===+- ⎪⎝⎭12t t+≥(当且仅当1t =时取等号) 2431ωμ∴-≥-= 即2ωμ-的最小值为:1【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,利用待定系数法结合复数相等的条件进行转化是解决本题的关键.运算量较大,综合性较强. 23.(Ⅰ)22+4i (Ⅱ)152z =【分析】(Ⅰ)利用复数z 1+z 2是实数,求得a =4,之后应用复数乘法运算法则即可得出结果; (Ⅱ)利用复数的除法运算法则,求得12z z ,利用复数是纯虚数的条件求得a 的值,之后应用复数模的公式求得结果【详解】(Ⅰ)∵z 1+z 2=5+(a -4)i 是实数,∴a =4,z 1=2+4i ,∴z 1z 2=(2+4i )(3-4i )=22+4i ;(Ⅱ)∵()()12643823425a a i z ai z i -+++==-是纯虚数, ∴133,222a z i ==+, 故195442z =+=. 【点睛】 该题考查的是有关复数的问题,涉及到的知识点有复数是实数的条件,复数的乘法运算法则,复数的除法运算,复数的模,属于简单题目.24.(1)2m =-;(2)85 【解析】分析:(Ⅰ)先把复数 整理成z a bi =+的形式,由虚部等于0得到实数m 的值; (Ⅱ)把复数z i z i+-整理成a bi +的形式,根据复数相等的条件得到a b 、的值进而求出a b +.详解:(Ⅰ)若z 是纯虚数,则()()m 1m 2010m ⎧-+=⎨-≠⎩,()()m 1m 20,10,m ⎧-+=⎨-≠⎩解得m 2=-.(Ⅱ)若m 2=,则z 4i =+.∴()()()()42i 3i 4i i 42i 71a bi i 4i 13i 3i 3i 55+-++++====++-++- ()()()()42i 3i 4i i 42i a bi 4i 13i 3i 3i +-++++====+-++- 71 i 55+, ∴7a 5=,1b 5=,∴8a b 5+=. 点睛:本题考查纯虚数和复数相等的概念,以及复数的四则运算.对于复数要掌握常规运算技巧和常规思路,其次要熟记复数的实部、虚部、模、几何意义、共轭复数等知识点.25.(1)42i +;(2)()2,2-.【分析】(1)根据2z i R +∈、2z R i∈-,结合复数的加法、除法运算即可求出z ,进而由共轭复数的概念求得z ;(2) 复数()2z mi +在复平面上对应的点在第四象限,即对应复数的实部、虚部都小于0,解不等式即可求得m 的范围【详解】(1)设(),z x yi x y R =+∈,则()22z i x y i +=++∵2z i R +∈∴2y =- 又22242255z x i x x i R i i -+-==+∈--, ∴4x = 综上,有42z i =- ∴42z i =+(2)∵m 为实数,且()()()()2224212482z mi m i m m m i +=+-=+-+-⎡⎤⎣⎦ ∴由题意得()21240820m m m ⎧+->⎪⎨-<⎪⎩,解得22m -<< 故,实数m 的取值范围是()2,2-【点睛】本题考查了复数,利用复数的四则运算及共轭复数的概念求复数,另外依据复数所处的象限求参数范围26.(1)3a b ==;(2.【分析】(1)复数方程有实根,方程化简为0(a bi a +=、)b R ∈,利用复数相等,即00a b =⎧⎨=⎩解方程组即可.(2)先把a 、b 代入方程,同时设复数z x yi =+,化简方程,根据表达式的几何意义,方程表示圆,再数形结合,求出z ,得到||z .【详解】解:(1)b 是方程2(6)90()x i x ai a R -+++=∈的实根,2(69)()0b b a b i ∴-++-=,∴2690b b a b⎧-+=⎨=⎩解得3a b ==. (2)设(,)z x yi x y R =+∈,由|33|2||z i z --=,得2222(3)(3)4()x y x y -++=+,即22(1)(1)8x y ++-=, z ∴点的轨迹是以1(1,1)O -为圆心,当z 点在1OO 的连线上时,||z 有最大值或最小值,1||2OO = 半径22r =∴当1z i =-时.||z 有最小值且||2min z =【点睛】本题(1)考查复数相等;(2)考查复数和它的共轭复数,复数的模,复数的几何意义,数形结合的思想方法.属于中档题.。

上海崇明县实验中学必修第二册第二单元《复数》测试卷(包含答案解析)

上海崇明县实验中学必修第二册第二单元《复数》测试卷(包含答案解析)

一、选择题1.213(1)i i +=+( ) A .3122i - B .3122i + C .3122i -- D .3122i -+ 2.若复数(1a i z i i +=-是虚数单位)为纯虚数,则实数a 的值为( ) A .-2 B .-1C .1D .2 3.已知方程()()2440x i x ai a R ++++=∈有实根b ,且z a bi =+,则复数z 等于( )A .22i -B .22i +C .22i -+D .22i -- 4.已知集合,()(){}221,3156M m m m m i =--+--,{}1,3N =,{}1,3M N ⋂=,则实数m 的值为 ( )A .4B .-1C .4或-1D .1或6 5.若复数z 满足()11z i i --⋅=+,则z =( )A B C .D .36.已知复数z 满足()()()1212i z i i -=++,则z 的共轭复数为( )A .1i --B .1i +C .55i +D .55i - 7.已知复数z 满足()15i z i -+=,则z =( )A .23i +B .23i -C .32i +D .32i - 8.已知复数 1cos isin z αα=+ 和复数2cos isin z ββ=+,则复数12z z ⋅的实部是( ) A .()sin αβ- B .()sin αβ+C .()cos αβ-D .()cos αβ+ 9.已知复数z 满足()211i i z+=-(i 为虚数单位),则复数z =( ) A .1i +B .1i -+C .1i -D .1i -- 10.设复数11i zi ,那么在复平面内复数1z -对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限11.若i 为虚数单位,复数z 满足z i ≤,则2z i -的最大值为( )A .2B .3C .D .12.若复数z 满足(12)5z i +=,则它的共轭复数z 在复平面内对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限二、填空题13.若复数z 满足0z z z z ⋅++=,则复数33z i --的最大值与最小值的乘积为___________.14.棣莫弗公式()cos sin cos sin nx i x nx i nx +=+(i 为虚数单位)是由法国数学家棣莫弗(1667~1754)发现的,根据棣莫弗公式可知,复数6cos sin 77i ππ⎛⎫+ ⎪⎝⎭在复平面内所对应的点位于第______象限.15.复数31+i i 1i+-的值是______. 16.设复数z ,满足11z =,22z =,12z z i +=,则12z z -=____________.17.复数2021111i z i +⎛⎫=-+ ⎪-⎝⎭的辐角主值为________.18.复数1cos z i θ=+,2sin z i θ=-,则复数12z z -的模的最大值为________. 19.复数1z 、2z 分别对应复平面内的点1M 、2M ,且1212z z z z +=-,线段12M M 的中点M 对应的复数为43i +(i 是虚数单位),则2212z z +=________.20.在复平面内,三点A 、B 、C 分别对应复数A z 、B z 、C z ,若413B AC A z z i z z -=+-,则ABC ∆的三边长之比为________三、解答题21.已知方程20x x p ++=有两个根1x ,2x ,p R ∈.(1)若123x x -=,求实数p 的值;(2)若123x x +=,求实数p 的值.22.已知复数z满足||z =2z 的虚部为2.(1)求复数z ;(2)设复数z 、2z 、2z z -在复平面上对应点分别为A 、B 、C ,求()OA OB OC +⋅的值.23.(1)已知z C ∈,解关于z 的方程(3)13z i z i -⋅=+;(2)已知32i +是关于x 的方程220x ax b ++=在复数集内的一个根,求实数a ,b 的值. 24.已知12z z 、是实系数一元二次方程的两个虚根,它们满足方程()122195z i z i +-=+,求2212z z +. 25.已知复数z 满足|3+4i|+z=1+3i.(1)求z ;(2)求()()2134i i z++的值. 26.已知1(3)(?4)z x y y x i =++-,2(42)(53)(,)z y x x y i x y R =--+∈,设12z z z =-,且132z i =+,求复数1z ,2z .【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】首先计算2(1)i +,之后应用复数的除法运算法则,求得结果.【详解】()21313312221ii i i i ++==-+, 故选A.【点睛】该题考查的是有关复数的运算,属于简单题目.2.C解析:C【分析】 利用复数代数形式的除法运算化简复数1a i z i+=-,再根据实部为0且虚部不为0求解即可. 【详解】 ()()()()i 1i i 11i 1i 1i 1i 22a a a a z +++-+===+-+-为纯虚数, 1010a a +≠⎧∴⎨-=⎩,即1a =,故选C. 【点睛】本题考查复数代数形式的除法运算,考查复数的基本概念,是基础题. 复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数、复数的模这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.3.A【解析】【详解】由b 是方程()()2440x i x ai a R ++++=∈的根可得()2440b i b ai ++++=, 整理可得:()()2440b a i b b ++++=, 所以20440b a b b +=⎧⎨++=⎩,解得22a b =⎧⎨=-⎩,所以22z i =-,故选A . 4.B解析:B【分析】根据交集的定义可得()()2231563m m m m i --+--=,由复数相等的性质列方程求解即可.【详解】因为()(){}221,3156M m m m m i =--+--,{}1,3N =,{}1,3M N ⋂=, 所以()()2231563m m m m i --+--=, 可得223131560m m m m m ⎧--=⇒=-⎨--=⎩,故选B. 【点睛】复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算.5.A解析:A【分析】把已知等式变形,利用复数代数形式的乘除运算化简,再由复数模的计算公式求解.【详解】由()11z i i --⋅=+,得()()21111i i i z i i i +-+--===--,则2z i =-+,∴z ==故选:A【点睛】本题主要考查了复数的除法运算,复数的模的运算,属于中档题. 6.A解析:A【分析】化简得到1z i =-+,再计算共轭复数得到答案.()()()1212i z i i -=++,故()()()()()()()()()121212131211212125i i i i i i i z i i i i +++++++====-+--+,故1z i =--. 故选:A .【点睛】本题考查了复数的化简,共轭复数,意在考查学生的计算能力.7.B解析:B【解析】【分析】根据复数的运算法则计算即可.【详解】()15i z i -+=,()()()()51523111i i i z i i i i +-+∴===+++-, 2 3.z i ∴=-故选B.【点睛】本题考查了复数的运算法则和共轭复数的概念,属于基础题8.D解析:D【解析】分析:利用复数乘法运算法则化简复数,结合两角和的正弦公式、两角和的余弦公式求解即可.详解:()()12cos cos cos cos z z isin isin ααββαβ⋅=++=()()2cos cos cos i sin isin i sin sin isin αβαβαβαβαβ+++=+++,∴实部为()cos αβ+,故选D.点睛:本题主要考查的是复数的乘法,属于中档题.解题时一定要注意21i =-和()()()()a bi c di ac bd ad bc i ++=-++运算的准确性,否则很容易出现错误. 9.B 解析:B【解析】因为()211i i z +=-,所以22(1)112i i z i i i ==+=-- ,选B.解析:C【分析】先求出z i =-,11z i -=--,即得解.【详解】 由题得21(1)21(1)(1)2i i i z i i i i ---====-++-, 所以11z i -=--,它对应的点的坐标为(1,1)--,所以在复平面内复数1z -对应的点位于第三象限.故选:C11.D解析:D【分析】先根据33z i ++≤分析出复数z 对应的点在复平面内的轨迹,然后将2z i -的最大值转化为圆外一点到圆上一点的距离最大值问题并完成求解.【详解】 因为33z i ++≤表示以点()3,1M --为圆心,半径3R =的圆及其内部, 又2z i -表示复平面内的点到()0,2N 的距离,据此作出如下示意图:所以()()()()22max20321333z i MN R -=+=--+--= 故选:D.【点睛】 结论点睛:常见的复数与轨迹的结论:(1)()00z z r r -=>:表示以0z 为圆心,半径为r 的圆;(2)(1220z z z z a a -+-=>且)122a z z =:表示以12,z z 为端点的线段; (3)(1220z z z z a a -+-=>且)122a z z >:表示以12,z z 为焦点的椭圆; (4)(1220z z z z a a ---=>且)1202a z z <<:表示以12,z z 为焦点的双曲线.解析:A【分析】根据复数的除法运算法则,可得12z i =-,求得12z i =+,结合复数的几何意义,即可求解.【详解】由题意,复数z 满足(12)5z i +=,可得51212z i i==-+, 所以12z i =+,它在复平面内对应的点为(1,2)在第一象限. 故选:A.【点睛】本题主要考查了复数的除法运算法则,以及共轭复数的概念和复数的几何意义,其中解答中熟记复数的除法的运算法则,准确化简、运算是解答的关键,着重考查推理与运算能力.二、填空题13.24【分析】设()结合条件得在复平面内对应点的轨迹再由的几何意义求解即可【详解】设()则由得即复数在复平面内对应点的轨迹是以为圆心以1为半径的圆表示复数在复平面内对应点到点的距离所以最大值为最小值为 解析:24【分析】设z a bi =+,(,a b ∈R ),结合条件0z z z z ⋅++=得z 在复平面内对应点的轨迹,再由33z i --的几何意义求解即可.【详解】设z a bi =+,(,a b ∈R )则由0z z z z ⋅++=,得2220a b a ++=,即()2211a b ++=.复数z 在复平面内对应点的轨迹是以(1,0)A -为圆心,以1为半径的圆,33z i =--z 在复平面内对应点到点(3,3)P 的距离所以33z i --最大值为||116PA +==.最小值为||114PA -==故最大值与最小值的乘积为2446=⨯故答案为:24【点睛】本题考查复平面内复数对应的点的轨迹问题,复数模长的几何意义,是中档题. 14.二【分析】先根据棣莫弗公式得再根据三角函数确定符号根据复数集合意义得答案【详解】由得∵∴∴复数在复平面内所对应的点位于第二象限故答案为:二【点睛】本题考查复数的几何意义三角函数符号的判断是中档题 解析:二【分析】 先根据棣莫弗公式得666cos sin cos sin 7777i i ππππ⎛⎫++ ⎪=⎝⎭,再根据三角函数确定符号,根据复数集合意义得答案.【详解】由()cos sin cos sin n x i x nx i nx +=+,得666cos sin cos sin 7777i i ππππ⎛⎫++ ⎪=⎝⎭, ∵627πππ<<,∴6cos 07π<,6sin 07π>, ∴复数6cos sin 77i ππ⎛⎫+ ⎪⎝⎭在复平面内所对应的点位于第二象限. 故答案为:二.【点睛】本题考查复数的几何意义,三角函数符号的判断,是中档题.15.0【分析】先利用复数的除法运算计算再计算相加即得解【详解】【点睛】本题考查了复数的四则运算考查了学生数学运算能力属于基础题解析:0【分析】 先利用复数的除法运算计算1+i 1i-,再计算3 i ,相加即得解. 【详解】 ()()()231i 1i 2i i i i 01i 1i 1i 2+++=-=-=--+. 【点睛】本题考查了复数的四则运算,考查了学生数学运算能力,属于基础题. 16.【分析】根据复数的几何意义得到对应向量的表示再结合向量的平行四边形法则以及余弦定理求解出的值【详解】设在复平面中对应的向量为对应的向量为如下图所示:因为所以所以又因为所以所以所以又故答案为:【点睛】【分析】根据复数的几何意义得到对应向量的表示,再结合向量的平行四边形法则以及余弦定理求解出12z z -的值.【详解】设12,z z 在复平面中对应的向量为12,OZ OZ ,12z z +对应的向量为3OZ ,如下图所示:因为123z z i +,所以12312z z =+=+,所以222131221cos 1224OZ Z +-∠==⨯⨯, 又因为1312180OZ Z Z OZ ∠+∠=︒,所以12131cos cos 4Z OZ OZ Z ∠=-∠=-, 所以222211212122cos 1416Z Z OZ OZ OZ OZ Z OZ =+-⋅⋅∠=++=, 所以216Z Z =,又12216z z Z Z -==,6.【点睛】结论点睛:复数的几何意义:(1)复数(),z a bi a b R =+∈←−−−→一一对应复平面内的点()(),,Z a b a b R ∈;(2)复数(),z a bi a b R =+∈ ←−−−→一一对应平面向量OZ .17.【分析】先化简再根据辐角主值的定义求解即可【详解】因为所以所以所以复数z 的辐角主值为故答案为:【点睛】本题主要考查了复数的基本运算与辐角主值的辨析属于基础题解析:34π 【分析】 先化简2021111i z i +⎛⎫=-+ ⎪-⎝⎭再根据辐角主值的定义求解即可.【详解】 因为11i i i +=-,所以2021202111i i i i +⎛⎫== ⎪-⎝⎭所以3312cos sin 44z i i ππ⎫=-+=+⎪⎭,所以复数z 的辐角主值为34π. 故答案为:34π 【点睛】 本题主要考查了复数的基本运算与辐角主值的辨析,属于基础题.18.【分析】先求再求模将其转化为角度的函数从而求最大值【详解】由题意可得因为故的最大值为故答案为:【点睛】考查向量的减法模的计算以及函数的最大值属综合基础题【分析】先求12z z -,再求模,将其转化为角度的函数,从而求最大值.【详解】由题意可得12cos sin 2z z i θθ-=-+,12z z -==,因为45sin 26θ-,故12z z -..【点睛】考查向量的减法、模的计算以及函数的最大值.属综合基础题.19.【解析】【分析】设为坐标原点根据可知以线段为邻边的平行四边形是矩形且线段的中点为由此可计算出的值【详解】设为坐标原点由知以线段为邻边的平行四边形是矩形即为直角又是斜边的中点且所以所以故答案为:【点睛 解析:100【解析】【分析】设O 为坐标原点,根据1212z z z z +=-可知以线段1OM 、2OM 为邻边的平行四边形是矩形,且线段12M M 的中点为()4,3M ,由此可计算出2212z z +的值. 【详解】设O 为坐标原点,由1212z z z z +=-知,以线段1OM 、2OM 为邻边的平行四边形是矩形,即12M OM ∠为直角,又M 是斜边12M M 的中点,且245OM ==,所以12210M M OM ==, 所以22222121212100z z OM OM M M =+=+=.故答案为:100.【点睛】本题考查复数的几何意义,涉及复数模的计算,解题的关键就是要分析出以线段1OM 、2OM 为邻边的平行四边形的形状,考查分析问题和解决问题的能力,属于中等题. 20.3:4:5【分析】设对应的复数计算对应的复数从而得出再根据与的比值得出答案【详解】设表示的复数为表示的复数为则所以所以表示的复数为所以所以又所以又则所以的三边长之比为:故答案为:【点睛】本题考查了复 解析:3:4:5【分析】设AB 、AC 对应的复数,计算BC 对应的复数,从而得出AC BC ⊥,再根据AB 与AC 的比值得出答案.【详解】设AB 表示的复数为a bi +,AC 表示的复数为i c d +, 则444()(1)()()333a bi c di i c d d c i +=++=-++, 所以43a c d =-,43b dc =+, 所以BC 表示的复数为44()()33AC AB c a bd i d ci -=-+-=-, 所以44(,)(,)033AC BC c d d c ⋅=⋅-=, 所以AC BC ⊥, 又B A C A z z AB AC z z -=-,所以45133AB i AC =+==, 又AC BC ⊥,则433BC AC ==, 所以ABC ∆的三边长之比为:3:4:5,故答案为:3:4:5.【点睛】本题考查了复数的运算,重点考查了复数模的运算,考查了推理能力,属中档题.三、解答题21.(1)52p =或2-;(2)2p =-或94. 【分析】(1)根据韦达定理,得出12121,x x x x p +=-=,22121212()4x x x x x x -=+-,则可求出实数p 的值;(2)根据题意,对两根12,x x 进行分类讨论,一是两实根,二是一对共轭虚根,分别根据韦达定理求出实数p 的值.【详解】解:(1)方程20x x p ++=有两个根1x ,2x , 则由韦达定理知:12121,x x x x p +=-=,22121212()4149x x x x x x p ∴-=+-=-=,52p ∴=或2-; (2)①当1x ,2x 为两个实根,140p =-≥,即14p ≤时, ()()2222121212121212222x x x x x x x x x x x x +=++=+-+, 1229p p ∴-+=,则2p =-,②当1x ,2x 为一对共轭虚根,140p =-<,即14p >时, 由123x x +=,12x x =,得132x =, 由韦达定理可得2194p x ==, 综上所述,2p =-或94. 【点睛】关键点点睛:本题的关键是利用韦达定理,列出对应关系式,其中要注意对根的虚实情况进行讨论.22.(1)1i z =+或1i z =--;(2)2-【分析】 (1)设出z a bi =+,根据题意可得22222a b ab ⎧+=⎨=⎩,求解即可; (2)由(1)作分类讨论,根据题意计算即可【详解】(1)设z a bi =+,由题,可得z ==,()()22222z a bi a b abi =+=-+, 2z 的虚部为2则22222a b ab ⎧+=⎨=⎩ 11a b =⎧∴⎨=⎩或11a b =-⎧⎨=-⎩ 故1z i =+或1i z =--(2)由(1)可知22z i =,即B 为()0,2,()0,2OB ∴=当1z i =+时,即A 为()1,1,()1,1OA ∴=,此时21z z i -=-,即C 为()1,1-,()1,1OC ∴=- ()1,3OA OB ∴+=∴()()11+312OA OB OC +⋅=⨯⨯-=-当1i z =--时,即A 为()1,1--,()1,1OA ∴=--,此时213z z i -=--,即C 为()1,3--,()1,3OC ∴=--()1,1OA OB ∴+=-∴()()()()11+132OA OB OC +⋅=-⨯-⨯-=-综上, ()2OA OB OC +⋅=-【点睛】本题考查复数的运算,考查复平面,考查数量积,考查分类讨论的思想,考查运算能力 23.(1)1z =-或13i -+;(2)12,26a b =-=.【分析】(1)设,z a bi z a bi =+=-,代入(3)13z i z i -⋅=+,化简后利用向量相等的知识列方程组,解方程组求得,a b 的值,由此求得z .(2)根据虚根成对以及根与系数关系列方程组,解方程组求得,a b 的值.【详解】(1)设z a bi =+,则(3)()13a bi i a bi i +--=+,即223313a b b ai i +--=+ ∴223133a b b a ⎧+-=⎨-=⎩,解得10a b =-⎧⎨=⎩,或13a b =-⎧⎨=⎩∴1z =-或13i -+; (2)由题知方程在复数集内另一根为32i -,故323262(32)(32)132a i ib i i ⎧-=++-=⎪⎪⎨⎪=+-=⎪⎩, 即12,26a b =-=.【点睛】本小题主要考查复数运算,考查复数相等的概念,属于中档题.24.-190【分析】根据12z z 、是实系数一元二次方程的两个虚根,可知12,z z 互为共轭复数,由此设出12,z z 的表达式,代入()122195z i z i +-=+,由此求得12,z z ,进而求得2212z z +的值.【详解】由于12z z 、是实系数一元二次方程的两个虚根,所以12,z z 互为共轭复数,设12,,(,)z a bi z a bi a b R =+=-∈,代入()122195z i z i +-=+得()()()2195a bi i a bi i ++--=+,化简得()395a b b a i i -+-=+,所以395a b b a -=⎧⎨-=⎩,解得7,12a b ==.所以()()2222122249144190z z a b +=-=-=-. 【点睛】本小题主要考查实系数一元二次方程虚根成对,考查复数相等的概念,考查复数乘方运算,考查方程的思想,属于基础题.25.(1)43i --;(2)2【分析】(1)先求出为34i 5+= ,即可求出z ,再根据共轭复数的定义即可求出z ;(2)根据复数的运算法则计算即可得出结论.【详解】(1)因为|3+4i|=5,所以z=1+3i-5=-4+3i,所以=-4-3i.(2)===2.【点睛】复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分. 26.1z =59,i -287.z i =--【分析】明确复数1z ,2z 的实部与虚部,结合加减法的运算规则,即可求出复数z ,从而用,x y 表示出z ,接下来根据复数相等的充要条件列出关于,x y 的方程组求解,即可得出1z ,2z .【详解】∵12z z z =- ()()()()344253x y y x i y x x y i =++---++ ()()342x y y x ⎡⎤=+--⎣⎦ ()()453y x x y i ⎡⎤+-++⎣⎦ ()()534x y x y i =-++.∴()()534z x y x y i =--+.又∵132z i =+∴531342x y x y -=⎧⎨+=-⎩ ∴21x y =⎧⎨=-⎩ ∴()()1321142z i =⨯-+--⨯ 59,i =-∴()()24122523187.z i i ⎡⎤⎡⎤=⨯--⨯-⨯+⨯-=--⎣⎦⎣⎦【点睛】本题主要考查复数代数形式的加减运算、共轭复数的定义以及复数相等的充要条件,属于中档题.复数相等的性质是:若两复数相等则它们的实部与虚部分别对应相等.。

上海民办迅行中学必修第二册第二单元《复数》测试卷(包含答案解析)

上海民办迅行中学必修第二册第二单元《复数》测试卷(包含答案解析)

一、选择题1.在复平面内与复数21i z i =+所对应的点关于虚轴对称的点为A ,则A 对应的复数为( )A .1i --B .1i -C .1i +D .1i -+ 2.已知复数z 满足2||230z z --=的复数z 的对应点的轨迹是( ) A .1个圆B .线段C .2个点D .2个圆 3.213(1)i i +=+( ) A .3122i - B .3122i + C .3122i -- D .3122i -+ 4.已知方程()()2440x i x ai a R ++++=∈有实根b ,且z a bi =+,则复数z 等于( )A .22i -B .22i +C .22i -+D .22i -- 5.已知复数z 满足33z -=,则4z i -(i 为虚数单位)的取值范围为( )A .[]28,B .3⎤⎦C .[]1,9D .[]3,8 6.已知复数z 满足()()()1212i z i i -=++,则z 的共轭复数为( )A .1i --B .1i +CD - 7.已知复数Z 满足()13Z i i +=+,则Z 的共轭复数为( )A .2i +B .2i -C .2i -+D .2i -- 8.已知下列三个命题:①若复数z 1,z 2的模相等,则z 1,z 2是共轭复数;②z 1,z 2都是复数,若z 1+z 2是虚数,则z 1不是z 2的共轭复数;③复数z 是实数的充要条件是z z =.则其中正确命题的个数为( )A .0个B .1个C .2个D .3个 9.若实系数一元二次方程20z z m ++=有两虚数根αβ、,且3αβ=-,那么实数m 的值是( )A .52B .1C .1-D .52-10.若i 为虚数单位,复数z 满足z i ≤,则2z i -的最大值为( )A .2B .3C .D .11.已知复数1z i =+,z 为z 的共轭复数,则1z z+=( )A .32i +B .132i +C .332i +D .12i + 12.若复数z 满足(12)5z i +=,则它的共轭复数z 在复平面内对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限二、填空题13.已知复数1510z i =+ ,234z i =-,复数z 满足12111z z z =+,则z =_____________.14.如果复数212bi i-+的实部和虚部互为相反数,那么实数b 的值为__ 15.已知23i i z z +-=,i z C ∈,1,2i =,122z z -=,则12z z +的最大值为______. 16.设复数z ,满足11z =,22z =,12z z i +=,则12z z -=____________. 17.已知11z i --=,则z i +的取值范围是_____________;18.若复数(3)(12)z i i =--,则z 的共轭复数z 的虚部为_____19.已知复数z 满足43(z i i i+=为虚数单位),则z 的共轭复数z =____. 20.已知复数z 满足等式1i 1z --=,则3z -的最大值为______三、解答题21.设复数(,0)z a bi a b R b =+∈≠且,且1z zω=+,12ω-<<. (1)求复数z 的模;(2)求复数z 实部的取值范围;(3)设11z u z-=+,求证:u 为纯虚数. 22.已知复数z 满足|3+4i|+z=1+3i. (1)求z ;(2)求()()2134i i z++的值. 23.已知复数z =22761a a a -+-2(56)i a a +--,a R ∈. (1)若复数z 为实数,求实数a 的值;(2)若复数z 为虚数,求实数a 的取值范围;(3)是否存在实数a ,使得复数z 为纯虚数? 24.已知复数1cos sin z i αα=+,2cos sin z i ββ=-,且125121313z z i -=+,其中i 为虚数单位,求cos()αβ+的值.参考答案25.已知1(3)(?4)z x y y x i =++-,2(42)(53)(,)z y x x y i x y R =--+∈,设12z z z =-,且132z i =+,求复数1z ,2z .26.复数z 满足||1z =,且2120z z z++<.求z .【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据复数的运算法则求出1z i =+,即可得到其对应点关于虚轴对称点的坐标,写出复数.【详解】 由题()()()2122211112i i i i z i i i i -+====+++-,在复平面对应的点为(1,1), 关于虚轴对称点为(-1,1),所以其对应的复数为1i -+.故选:D【点睛】此题考查复数的几何意义,关键在于根据复数的乘法除法运算准确求解,熟练掌握复数的几何意义.2.A解析:A【详解】 因为2||230z z --=,所以3z =,3z = (负舍)因此复数z 的对应点的轨迹是以原点为圆心以3为半径的圆,选A.3.A解析:A【分析】首先计算2(1)i +,之后应用复数的除法运算法则,求得结果.【详解】 ()21313312221ii i i i ++==-+, 故选A.该题考查的是有关复数的运算,属于简单题目.4.A解析:A【解析】【详解】由b 是方程()()2440x i x ai a R ++++=∈的根可得()2440b i b ai ++++=, 整理可得:()()2440b a i b b ++++=, 所以20440b a b b +=⎧⎨++=⎩,解得22a b =⎧⎨=-⎩,所以22z i =-,故选A . 5.A解析:A【分析】 利用复数模长的三角不等式可求得4z i -的取值范围.【详解】()()4334z i z i -=-+-, 由复数模长的三角不等式可得()()334334334z i z i z i ---≤-+-≤-+-, 即35435z i -≤-≤+,即248z i ≤-≤,因此,4z i -的取值范围是[]28,.故选:A.【点睛】本题考查复数模长的取值范围的计算,考查三角不等式的应用,考查计算能力,属于中等题.6.A解析:A【分析】化简得到1z i =-+,再计算共轭复数得到答案.【详解】()()()1212i z i i -=++,故()()()()()()()()()121212131211212125i i i i i i i z i i i i +++++++====-+--+,故1z i =--. 故选:A .【点睛】本题考查了复数的化简,共轭复数,意在考查学生的计算能力.7.A【分析】根据复数的运算法则得()()()()31242112i i i Z i i i +--===-+--,即可求得其共轭复数. 【详解】由题:()13Z i i +=+,所以()()()()31242112i i i Z i i i +--===-+--, 所以Z 的共轭复数为2i +.故选:A【点睛】此题考查求复数的共轭复数,关键在于准确求出复数Z ,需要熟练掌握复数的运算法则,准确求解.8.C解析:C【分析】运用复数的模、共轭复数、虚数等知识对命题进行判断.【详解】对于①中复数1z 和2z 的模相等,例如1=1+z i ,2z ,则1z 和2z 是共轭复数是错误的;对于②1z 和2z 都是复数,若12+z z 是虚数,则其实部互为相反数,则1z 不是2z 的共轭复数,所以②是正确的;对于③复数z 是实数,令z a =,则z a =所以z z =,反之当z z =时,亦有复数z 是实数,故复数z 是实数的充要条件是z z =是正确的.综上正确命题的个数是2个.故选C【点睛】本题考查了复数的基本概念,判断命题是否正确需要熟练掌握基础知识,并能运用举例的方法进行判断,本题较为基础.9.A解析:A【分析】根据实系数方程有两虚数根,利用求根公式解得:12z -±=,由此可得αβ-的m 表示形式,根据3αβ-=即可求得m 的值.【详解】因为20z z m ++=,所以z =,又因为3αβ-=,所以3=,所以419m -=,解得:52m =.【点睛】实系数一元二次方程()200++=≠ax bx c a ,有两虚根为,αβ,注意此时的240b ac ∆=-<,因此在写方程根时应写成:24b ac b i x -±-=而不能写成了24b b aci x -±-=. 10.D解析:D 【分析】 先根据33z i ++≤分析出复数z 对应的点在复平面内的轨迹,然后将2z i -的最大值转化为圆外一点到圆上一点的距离最大值问题并完成求解.【详解】 因为33z i ++≤表示以点()3,1M --为圆心,半径3R =的圆及其内部, 又2z i -表示复平面内的点到()0,2N 的距离,据此作出如下示意图:所以()()()()22max20321333z i MN R -=+=--+--= 故选:D.【点睛】 结论点睛:常见的复数与轨迹的结论: (1)()00z z r r -=>:表示以0z 为圆心,半径为r 的圆;(2)(1220z z z z a a -+-=>且)122a z z =:表示以12,z z 为端点的线段; (3)(1220z z z z a a -+-=>且)122a z z >:表示以12,z z 为焦点的椭圆; (4)(1220z z z z a a ---=>且)1202a z z <<:表示以12,z z 为焦点的双曲线. 11.B解析:B由复数1z i =+,得到1z i =-,进而得到121z i z i++=-,根据复数的除法运算法则,即可求解.【详解】 由题意,复数1z i =+,可得1z i =-,则()()()()2112131112i i z i i z i i i +++++===--+. 故选:B.【点睛】本题主要考查了复数的除法运算,以及共轭复数的概念及应用,其中解答中熟练应用复数的除法运算的法则,以及熟记复数的共轭复数的概念是解答的关键,着重考查运算与求解能力.12.A解析:A【分析】根据复数的除法运算法则,可得12z i =-,求得12z i =+,结合复数的几何意义,即可求解.【详解】由题意,复数z 满足(12)5z i +=,可得51212z i i==-+, 所以12z i =+,它在复平面内对应的点为(1,2)在第一象限. 故选:A.【点睛】本题主要考查了复数的除法运算法则,以及共轭复数的概念和复数的几何意义,其中解答中熟记复数的除法的运算法则,准确化简、运算是解答的关键,着重考查推理与运算能力.二、填空题13.【分析】根据复数的四则运算公式求得再结合复数的模的计算公式即可求解【详解】由题意复数则所以所以故答案为:【点睛】本题主要考查了复数的四则运算以及复数模的计算其中解答中熟记复数的四则运算公式以及复数模【分析】 根据复数的四则运算公式,求得552z i =-,再结合复数的模的计算公式,即可求解. 【详解】由题意,复数1510z i =+ ,234z i =-,则()()()()1211111510344251034510510343425i i i z z z i i i i i i -++=+=+=+=+-+--+, 所以()()()254225554242422i z i i i i ⨯-===-++-,所以2z ==.. 【点睛】本题主要考查了复数的四则运算,以及复数模的计算,其中解答中熟记复数的四则运算公式,以及复数模的计算公式,准确运算是解答的关键,着重考查推理与运算能力. 14.【分析】先化简再解方程即得解【详解】由题得因为复数的实部和虚部互为相反数所以故答案为:【点睛】本题主要考查复数的除法运算考查复数实部虚部的概念意在考查学生对这些知识的理解掌握水平 解析:23- 【分析】 先化简222(4)125bi b b i i ---+=+,再解方程224+055b b ---=即得解. 【详解】 由题得2(2)(12)22(4)12(12)(12)5bi bi i b b i i i i -----+==++-, 因为复数212bi i-+的实部和虚部互为相反数, 所以2242+0,553b b b ---=∴=-. 故答案为:23- 【点睛】 本题主要考查复数的除法运算,考查复数实部虚部的概念,意在考查学生对这些知识的理解掌握水平.15.4【分析】本题先将分别代入然后相加再运用复数模的三角不等式可计算出的最大值【详解】由题意可知则当与对应的向量反向共线时等号成立故的最大值为4故答案为:4【点睛】本题主要考查复数的模的计算以及复数模的 解析:4【分析】本题先将1z ,2z 分别代入23i i z z +-=,然后相加,再运用复数模的三角不等式可计算出12z z +的最大值.【详解】由题意,可知 1123z z +-=,2223z z +-=, 则12121212126222z z z z z z z z z z =++-+-≥++-=++,当12z -与22z -对应的向量反向共线时,等号成立.124z z ∴+≤.故12z z +的最大值为4.故答案为:4.【点睛】本题主要考查复数的模的计算,以及复数模的三角不等式的运用,不等式的计算能力.本题属基础题.16.【分析】根据复数的几何意义得到对应向量的表示再结合向量的平行四边形法则以及余弦定理求解出的值【详解】设在复平面中对应的向量为对应的向量为如下图所示:因为所以所以又因为所以所以所以又故答案为:【点睛】 解析:6【分析】根据复数的几何意义得到对应向量的表示,再结合向量的平行四边形法则以及余弦定理求解出12z z -的值.【详解】设12,z z 在复平面中对应的向量为12,OZ OZ ,12z z +对应的向量为3OZ ,如下图所示:因为123z z i +,所以12312z z =+=+,所以222131221cos 1224OZ Z +-∠==⨯⨯, 又因为1312180OZ Z Z OZ ∠+∠=︒,所以12131cos cos 4Z OZ OZ Z ∠=-∠=-, 所以222211212122cos 1416Z Z OZ OZ OZ OZ Z OZ =+-⋅⋅∠=++=, 所以216Z Z =,又12216z z Z Z -==,6.【点睛】结论点睛:复数的几何意义:(1)复数(),z a bi a b R =+∈←−−−→一一对应复平面内的点()(),,Z a b a b R ∈;(2)复数(),z a bi a b R =+∈ ←−−−→一一对应平面向量OZ .17.【分析】利用复数的几何意义求解表示复平面内到点距离为1的所有复数对应的点表示复平面内到点的距离结合两点间距离公式可求范围【详解】因为在复平面内表示复平面内到点距离为1的所有复数对应的点即复数对应的点解析:1]【分析】 利用复数的几何意义求解,11z i --=表示复平面内到点(1,1)距离为1的所有复数对应的点,z i +表示复平面内到点(0,1)-的距离,结合两点间距离公式可求范围.【详解】 因为在复平面内,11z i --=表示复平面内到点(1,1)距离为1的所有复数对应的点,即复数z 对应的点都在以(1,1)为圆心,半径为1的圆上;z i +表示复平面内的点到点(0,1)-11=,11=,所以z i +的取值范围是1].故答案为:1]-.【点睛】 结论点睛:本题考查复数的模,复数的几何意义,复数的几何意义是复平面内两点之间的距离公式,若z x yi =+,则z a bi --表示复平面内点(,)x y 与点(,)a b 之间的距离,z a bi r --=表示以(,)a b 为圆心,以r 为半径的圆上的点.18.7【分析】利用复数乘法运算化简为的形式由此求得共轭复数进而求得共轭复数的虚部【详解】故虚部为【点睛】本小题主要考查复数乘法运算考查共轭复数的概念考查复数虚部的知识解析:7【分析】利用复数乘法运算化简z 为a bi +的形式,由此求得共轭复数,进而求得共轭复数的虚部.【详解】()()31217z i i i =--=-,17z i =+,故虚部为7.【点睛】本小题主要考查复数乘法运算,考查共轭复数的概念,考查复数虚部的知识. 19.【分析】利用复数的运算法则共轭复数的定义即可得出结果【详解】由可得即所以故答案是:【点睛】该题考查的是有关复数的问题涉及到的知识点有复数的运算法则以及共轭复数的概念属于简单题目解析:34i -+【分析】利用复数的运算法则、共轭复数的定义即可得出结果.【详解】 由43z i i +=可得34z i i=-,即23434z i i i =-=--, 所以34z i =-+,故答案是:34i -+. 【点睛】该题考查的是有关复数的问题,涉及到的知识点有复数的运算法则以及共轭复数的概念,属于简单题目.20.【分析】由题意画出图形数形结合得答案【详解】|z ﹣1﹣i|=1的几何意义为复平面内动点到定点(11)距离为1的点的轨迹如图:|z ﹣3|可以看作圆上的点到点(30)的距离由图可知|z ﹣3|的最大值为故解析:51+【分析】由题意画出图形,数形结合得答案.【详解】|z ﹣1﹣i |=1的几何意义为复平面内动点到定点(1,1)距离为1的点的轨迹, 如图:|z ﹣3|可以看作圆上的点到点(3,0)的距离.由图可知,|z ﹣3|22(31)(01)151-+-=.51.【点睛】本题考查复数模的求法,考查数形结合的解题思想方法,是基础题.三、解答题21.(1)1;(2)1,12⎛⎫-⎪⎝⎭;(3)见解析 【解析】分析:(1)由222211a b z a bi a b i z a bi a b a b ω⎛⎫⎛⎫=+=++=++- ⎪ ⎪+++⎝⎭⎝⎭,由12ω-<<得R ω∈,从而虚部为0,得221a b +=,进而可得解;(2)由(1)知()21,2a ω=∈-,从而求a 范围即可;(3)化简()()2222121a b bi u a b ---=++,由(1)知221a b +=,则()22211b b u i i aa b =-=-+++,从而得证. 详解:(1)22222211a bi a b z a bi a bi a b i z a bi a b a b a b ω-⎛⎫⎛⎫=+=++=++=++- ⎪ ⎪++++⎝⎭⎝⎭, 由12ω-<<得R ω∈, 则220b b a b -=+, 由0b ≠,解得221a b +=,所以1z ==,(2)由(1)知()21,2a ω=∈-,所以1,12a ⎛⎫∈-⎪⎝⎭, 即复数z 的实部的取值范围是1,12⎛⎫- ⎪⎝⎭. (3)()()()()()()()()222212*********a b bi a bi a bi a bi z u z a bi a bi a bi a b ---⎡⎤⎡⎤--+----⎣⎦⎣⎦====+++⎡⎤⎡⎤+++-++⎣⎦⎣⎦, 由(1)知221a b +=,则()22211b b u i i aa b =-=-+++, 应为0b ≠,所以u 为纯虚数.点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.22.(1)43i --;(2)2【分析】(1)先求出为34i 5+= ,即可求出z ,再根据共轭复数的定义即可求出z ;(2)根据复数的运算法则计算即可得出结论.【详解】(1)因为|3+4i|=5,所以z=1+3i-5=-4+3i,所以=-4-3i. (2)===2. 【点睛】复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.23.(1)6;(2)(,1)(1,1)(1,6)(6,)-∞--+∞;(3)不存在实数a 使得复数z为纯虚数.【分析】根据z a bi =+为实数、虚数和纯虚数的条件,列方程,解方程求得a 的值.【详解】由于210a -≠,所以1a ≠±.(1)当z 为实数时,2560a a --=,解得6a =.(2)当z 为虚数时2560a a --≠,结合1a ≠±可知,a 的取值范围是()()()(),11,11,66,-∞-⋃-⋃⋃+∞.(3)当z 为纯虚数时,2227601560a a a a a ⎧-+=⎪-⎨⎪--≠⎩,方程227601a a a -+=-解得6a =,2560a a --≠解得1a ≠-且6a ≠,两者没有公共元素,故不存在实数a 使得复数z 为纯虚数.【点睛】本小题主要考查复数z a bi =+是实数、虚数和纯虚数的条件,属于基础题.24.12【分析】将复数12,z z 代入等式125121313z z i -=+中,得22cos()1αβ-+=,即可得答案; 【详解】因为复数1cos sin z i αα=+,2cos sin z ββ=-, 12512(cos cos )(sin sin )1313z z i i αβαβ-=-++=+ 所以5cos cos 13αβ-=,12sin sin 13αβ+=, 所以2222512(cos cos )(sin sin )11313αβαβ⎛⎫⎛⎫-++=+= ⎪ ⎪⎝⎭⎝⎭,即22cos()1αβ-+=, 所以1cos()2αβ+=. 【点睛】本题考查复数与三角函数知识同角三角函数的基本关系,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.25.1z =59,i -287.z i =--【分析】明确复数1z ,2z 的实部与虚部,结合加减法的运算规则,即可求出复数z ,从而用,x y 表示出z ,接下来根据复数相等的充要条件列出关于,x y 的方程组求解,即可得出1z ,2z .【详解】∵12z z z =- ()()()()344253x y y x i y x x y i =++---++ ()()342x y y x ⎡⎤=+--⎣⎦ ()()453y x x y i ⎡⎤+-++⎣⎦ ()()534x y x y i =-++. ∴()()534z x y x y i =--+.又∵132z i =+∴531342x y x y -=⎧⎨+=-⎩∴21x y =⎧⎨=-⎩∴()()1321142z i =⨯-+--⨯ 59,i =-∴()()24122523187.z i i ⎡⎤⎡⎤=⨯--⨯-⨯+⨯-=--⎣⎦⎣⎦【点睛】本题主要考查复数代数形式的加减运算、共轭复数的定义以及复数相等的充要条件,属于中档题.复数相等的性质是:若两复数相等则它们的实部与虚部分别对应相等.26.1z =-或122z =-± 【分析】由题意可知设复数cos sin z i αα=+,计算出2z ,2z ,1z ,代入2120z z z++<中可得cos 23cos 02sin cos sin 0ααααα+<⎧⎨+=⎩可求得复数z . 【详解】由题意可知:cos sin z i αα=+,则222cos sin 2sin cos z i αααα=-+,22cos 2sin z i αα=+,1cos sin i zαα=-, ∴212(cos23cos )(2sin cos sin )0z z i zααααα++=+++<, ∴cos 23cos 02sin cos sin 0ααααα+<⎧⎨+=⎩,即()cos 23cos 0sin 2cos 10αααα+<⎧⎨+=⎩, 若sin 0α=,则cos21α=,由cos23cos 0αα+<得cos 1α=-,所以1z =-,若1cos 2α=-,则1cos 2cos 23cos 02ααα=-+<,,得122z =-±,∴1z =-或122z =-±. 【点睛】本题考查复数的计算,关键在于设出复数z 的三角形式进行运算,理解复数小于零的含义,属于中档题.。

上海东门中学必修第二册第二单元《复数》检测(含答案解析)

上海东门中学必修第二册第二单元《复数》检测(含答案解析)

一、选择题1.能使得复数()32z a ai a R =-+∈位于第三象限的是( )A .212a i -+为纯虚数B .12ai +模长为3C .3ai +与32i +互为共轭复数D .0a >2.复数z 满足5(3)2i z i ⋅+=-,则z 的虚部是( ) A .12B .12-C .12i -D .12i 3.213(1)ii +=+( ) A .3122i - B .3122i + C .3122i -- D .3122i -+ 4.已知方程()()2440x i x ai a R ++++=∈有实根b ,且z a bi =+,则复数z 等于( ) A .22i -B .22i +C .22i -+D .22i --5.若复数z 满足(1)|1|z i i i -=-+,则z 的实部为( )A .12B 1C .1D .126.已知i 为虚数单位,复数32i2iz +=-,则以下命题为真命题的是( ) A .z 的共轭复数为74i 55- B .z 的虚部为75-C .3z =D .z 在复平面内对应的点在第一象限7.设复数()()2cos sin z a a i θθ=+++(i 为虚数单位).若对任意实数θ,2z ≤,则实数a 的取值范围为( )A .10,5⎡⎤⎢⎥⎣⎦B .[]1,1-C .55⎡-⎢⎣⎦D .11,55⎡⎤-⎢⎥⎣⎦8.已知复数Z 满足()13Z i i +=+,则Z 的共轭复数为( ) A .2i +B .2i -C .2i -+D .2i --9.下列命题中,正确的命题是( ) A .若1212,0z z C z z ∈->、,则12z z > B .若z R ∈,则2||z z z ⋅=不成立 C .1212,,0z z C z z ∈⋅=,则10z =或20z =D .221212,0z z C z z ∈+=、,则10z =且20z =10.i 为虚数单位,复平面内表示复数2iz i-=+的点在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限11.已知复数z 满足()2z i i i -=+,则z =( )A BC D12.对于给定的复数0z ,若满足042z i z z -+-=的复数z 对应的点的轨迹是椭圆,则01z -的取值范围是( )A .)2 B .)1C .)2-D .)1-二、填空题13.设z 为复数,且1z =,当23413z z z z ++++取得最小值时,则此时复数z =______.14.若z a bi =+,21zR z∈+,则实数a ,b 应满足的条件为________. 15.从集合{}0,1,2,3,4,5,6中任取两个互不相等的数a ,b ,组成复数i a b +,其中虚数有______个.16.已知(1,1)OP =,将OP 按逆时针方向旋转3π得到OZ ,则Z 点对应的复数为________. 17.已知复数342iz i-=-(i 是虚数单位),则复数z 在复平面内对应的点位于第_____象限.18.若复数z 满足0z z z z ⋅++=,则复数12z i --的最大值为______. 19.已知复数1z =,i 为虚数单位,则34z i -+的最小值为_________.20.已知复数z 满足|z 2-2i||z|+=(i 为虚数单位),则z 在复平面内对应的点的坐标(x ,y )的轨迹方程为__________.三、解答题21.(1)已知21i -(i 是虚数单位)是关于x 的方程10mx n +-=的根,m 、n ∈R ,求m n +的值;(2)已知21i -(i 是虚数单位)是关于x 的方程210x mx n ++-=的一个根,m 、n ∈R ,求m n +的值.22.已知复数1z mi =+(i 是虚数单位,m R ∈),且(3)z i ⋅+为纯虚数(z 是z 的共轭复数).(1)设复数121m iz i+=-,求1z ; (2)设复数20172a i z z-=,且复数2z 所对应的点在第一象限,求实数a 的取值范围.23.已知复数12,z z 在平面内对应的点分别为(2,1)A -,(,3)B a ,(a R ∈). (1)若125z z +≤,求a 的值;(2)若复数12·z z 对应的点在二、四象限的角平分线上,求a 的值. 24.已知复数1z mi =+(m R ∈,i 为虚数单位),且()1i z -为实数. (1)求复数z ;(2)设复数1z x yi =+(x ,y R ∈)满足11z z -=,求1z 的最小值. 25.已知复数1cos sin z i αα=+,2cos sin z i ββ=-,且125121313z z i -=+,其中i 为虚数单位,求cos()αβ+的值.参考答案26.已知复数()()21,,z a i bi a b R =+-∈,其中i 是虚数单位. (1)若5z i =-,求a ,b 的值;(2)若z 的实部为2,且0a >,0b >,求证:214a b+≥.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】分析四个选项中的参数a ,判断是否能满足复数()32z a ai a R =-+∈是第三象限的点.【详解】322z a ai a ai =-+=--由题意可知,若复数在第三象限, 需满足200a a -<⎧⎨-<⎩,解得:02a <<,A.212z a i =-+是纯虚数,则12a =,满足条件;B.123z ai =+==,解得:a =a =C. 3ai +与32i +互为共轭复数,则2a =-,不满足条件;D.0a >不能满足复数z 在第三象限,不满足条件. 故选:A 【点睛】本题考查复数的运算和几何意义,主要考查基本概念和计算,属于基础题型.2.A解析:A 【解析】 【分析】通过5(3)2i z i ⋅+=-计算出z ,从而得到z ,根据虚部的概念即可得结果. 【详解】∵5(3)2i z i ⋅+=-,∴()()()()5232211333322i i i i z i i i i i ----====-+++-, ∴1122z i =+,即z 的虚部是12,故选A. 【点睛】本题主要考查了复数除法的运算,共轭复数的概念,复数的分类等,属于基础题.3.A解析:A 【分析】首先计算2(1)i +,之后应用复数的除法运算法则,求得结果. 【详解】()21313312221ii i i i ++==-+, 故选A. 【点睛】该题考查的是有关复数的运算,属于简单题目.4.A解析:A 【解析】 【详解】由b 是方程()()2440x i x ai a R ++++=∈的根可得()2440b i b ai ++++=,整理可得:()()2440b a i b b ++++=,所以20440b a b b +=⎧⎨++=⎩,解得22a b =⎧⎨=-⎩,所以22z i =-,故选A .5.A解析:A 【解析】 【详解】∵()11z i i i i -=-+,∴)()()()11111122i i iz i ii i +===+--+,则z的实部为12,故选A. 6.D解析:D 【分析】利用复数的除法运算,化简32i2iz +=-,利用共轭复数,虚部,模长的概念,运算求解,进行判断即可. 【详解】()()()()32i 2i 32i 47i 2i 2i 2i 55z +++===+--+,z ∴的共扼复数为47i 55-,z 的虚部为75,z ==,z 在复平面内对应的点为47,55⎛⎫ ⎪⎝⎭,在第一象限. 故选:D. 【点睛】本题考查了复数的四则运算,共轭复数,虚部,模长等概念,考查了学生概念理解,数学运算的能力,属于基础题.7.C解析:C 【分析】由1212z z z z +≤+可知()()cos sin 2cos sin 2i a ai i a ai θθθθ+++≤+++,令max2z≤,即可求出a 的范围.【详解】因为对任意θ,2z ≤,则max2z≤,()()cos sin 2cos sin 21z i a ai i aai θθθθ=+++≤+++=,12∴≤,解得55a -≤≤.故选:C. 【点睛】本题考查向量模的大小关系,以及不等式的恒成立问题,属于中档题.8.A解析:A 【分析】根据复数的运算法则得()()()()31242112i i i Z ii i +--===-+--,即可求得其共轭复数.【详解】由题:()13Z i i +=+,所以()()()()31242112i i i Z ii i +--===-+--,所以Z 的共轭复数为2i +. 故选:A 【点睛】此题考查求复数的共轭复数,关键在于准确求出复数Z ,需要熟练掌握复数的运算法则,准确求解.9.C解析:C 【分析】A .根据复数虚部相同,实部不同时,举例可判断结论是否正确;B .根据实数的共轭复数还是其本身判断2||z zz ⋅=是否成立;C .根据复数乘法的运算法则可知是否正确;D .考虑特殊情况:12,1z i z ==,由此判断是否正确. 【详解】A .当122,1i z z i =+=+时,1210z z -=>,此时12,z z 无法比较大小,故错误;B .当0z =时,0z z ==,所以20z z z ⋅==,所以此时2||z z z ⋅=成立,故错误;C .根据复数乘法的运算法则可知:10z =或20z =,故正确;D .当12,1z i z ==时,2212110z z +=-+=,此时10z ≠且20z ≠,故错误.故选:C. 【点睛】本题考查复数的概念以及复数的运算性质的综合,难度一般.(1)注意实数集是复数集的子集,因此实数是复数;(2)若z C ∈,则有2z z z ⋅=.10.C解析:C 【解析】(2)21122(2)(2)555i i i i z i i i i -----====--++-.故选C 11.A解析:A 【分析】首先求得复数z ,然后求解其共轭复数并确定模即可. 【详解】 由题意可得:2211iz i i i i i+=+=-++=-, 则1,2z i z =+=.故选A . 【点睛】本题主要考查复数的运算法则,复数的模的计算等知识,意在考查学生的转化能力和计算求解能力.12.A解析:A 【分析】根据条件可得042z i -<,即复数0z 对应的点在以()0,4为圆心,2为半径的圆内部.01z -表示复数0z 对应的点到()1,0的距离,由圆的性质可得答案.【详解】因为042z i z z -+-=的复数z 对应的点的轨迹是椭圆, 所以042z i -<由复数的几何意义可知042z i -<表示复数0z 对应的点到()0,4的距离小于2. 即复数0z 对应的点在以()0,4为圆心,2为半径的圆内部.01z -表示复数0z 对应的点到()1,0的距离.如图,设()0,4C ,1,0A 221417AC =+=则0212AC z AC -<-<+,即01721172z -<-<+ 故选:A【点睛】本题考查椭圆的定义的应用,考查复数的几何意义的应用和利用圆的性质求范围,属于中档题.二、填空题13.【分析】设复数的辐角为将用表示出来再利用二倍角公式二次函数性质求最小值可得与的值即可得复数【详解】设复数的辐角为所以所以故答案为:【点睛】本题主要考查了复数的三角形形式涉及三角恒等变换及二次函数性质解析:14-±【分析】设复数z 的辐角为θ,将23413z z z z ++++用θ表示出来,再利用二倍角公式,二次函数性质求最小值,可得cos θ与sin θ的值,即可得复数z . 【详解】设复数z 的辐角为θ,23413z z z z ++++==2cos22cos 3θθ=++ 24cos 2cos 1θθ=++ 21334cos 444θ⎛⎫=++≥ ⎪⎝⎭所以1cos 4θ=-,sin4θ=± 所以144z=-±, 故答案为:144i -± 【点睛】本题主要考查了复数的三角形形式,涉及三角恒等变换及二次函数性质,属于中档题.14.或【分析】根据复数的运算得出再由复数是实数的条件得出实数应满足的条件【详解】因为故有所以或即或是ab 应满足的条件故答案为:或【点睛】本题考查复数的运算和复数的概念属于中档题解析:0b =或221a b += 【分析】根据复数的运算得出21+zz()()()222222222212114a a b ab b b a iaba b+-++--=+--,再由复数是实数的条件得出实数a ,b 应满足的条件.()22222211()1212z a bi a bi a biz a bi a abi b a b abi +++===+++++-+-+()()222222212()14ab abia bi ab a b+--=++--()()()22222222222112214a a b b a b i a bi ab a b a b+-++--+=+--()()()2222322222212214a a b ab b a b b a b i a b a b+-+++--=+--()()()222222222212114a a b ab b b a i a b a b+-++--=+--因为21z R z∈+,故有()2210b b a --=,所以0b =或2210b a --=, 即0b =或221a b +=是a ,b 应满足的条件. 故答案为:0b =或221a b +=. 【点睛】本题考查复数的运算和复数的概念,属于中档题.15.36【分析】若复数为虚数则分两种情况讨论即得解【详解】从集合中任取两个互不相等的数组成复数当时对应的有6个值;当取123456时对应的只有5个值所以虚数有(个)故答案为:36【点睛】本题考查了虚数的解析:36 【分析】若复数i a b +为虚数,则0,0a b =≠,分0,0a a =≠两种情况讨论即得解. 【详解】从集合{}0,1,2,3,4,5,6中任取两个互不相等的数a ,b ,组成复数i a b +,当0a =时,对应的b 有6个值;当a 取1,2,3,4,5,6时,对应的b 只有5个值.所以虚数有66536+⨯=(个).故答案为:36. 【点睛】本题考查了虚数的定义,考查了学生概念理解,数学运算,分类讨论的能力,属于基础题.16.【分析】写出P 点对应的复数为根据复数乘法的几何意义可写出Z 点对应的复数【详解】解:由题意得P 点对应的复数为由复数乘法的几何意义得:故填故答案为:【点睛】本题主要考查复数三角形式的几何意义属于基础题写出P 点对应的复数为1i +,根据复数乘法的几何意义可写出Z 点对应的复数. 【详解】解:由题意得,P 点对应的复数为1i +, 由复数乘法的几何意义得:11(1)cos sin 3322z i i ππ+⎛⎫=+⋅+=+ ⎪⎝⎭,.. 【点睛】本题主要考查复数三角形式的几何意义,属于基础题.17.一【分析】化简得到得到复数对应象限【详解】复数在复平面内对应的点的坐标为(21)故复数在复平面内对应的点位于第一象限故答案为:一【点睛】本题考查了复数的模复数除法复数对应象限意在考查学生对于复数知识解析:一 【分析】化简得到2z i =+,得到复数对应象限. 【详解】()()()3452522222i i z i i i i i -+====+---+,复数z 在复平面内对应的点的坐标为(2,1), 故复数z 在复平面内对应的点位于第一象限. 故答案为:一. 【点睛】本题考查了复数的模,复数除法,复数对应象限,意在考查学生对于复数知识的综合应用.18.【分析】设()结合条件得在复平面内对应点的轨迹再由的几何意义求解即可【详解】解:设()则由得即复数在复平面内对应点的轨迹是以为圆心以1为半径的圆如图:表示复数在复平面内对应点到点的距离所以最大值为故解析:1【分析】设z a bi =+,(,a b ∈R ),结合条件0z z z z ⋅++=得z 在复平面内对应点的轨迹,再由12z i --的几何意义求解即可. 【详解】解:设z a bi =+,(,a b ∈R )则由0z z z z ⋅++=, 得2220a b a ++=,即()2211a b ++=.复数z 在复平面内对应点的轨迹是以(1,0)A -为圆心,以1为半径的圆,如图:2212(1)(2)z i a b --=-+-z 在复平面内对应点到点(1,2)P 的距离 所以12z i --最大值为22||1(11)(02)1212PA +=--+-=. 故答案为:221.【点睛】本题考查复平面内复数对应的点的轨迹问题,复数模长的几何意义,是中档题.19.4【分析】利用复数的几何意义转化求解即可【详解】解:复数z 满足为虚数单位复数z 表示:复平面上的点到(00)的距离为1的圆的几何意义是圆上的点与的距离所以其最小值为:故答案为:4【点睛】本题考查复数的解析:4【分析】利用复数的几何意义,转化求解即可.【详解】解:复数z 满足1z =,i 为虚数单位, 复数z 表示:复平面上的点到(0,0)的距离为1的圆. 34z i -+的几何意义是圆上的点与()34-,的距离, 223(4)14+--= .故答案为:4.【点睛】本题考查复数的几何意义,复数的模的求法,考查转化思想以及计算能力,属于中档题. 20.【分析】设复数根据模的计算公式得到化简即可求解【详解】设复数则所以整理得即在复平面内对应的点的坐标的轨迹方程为故答案为:【点睛】本题主要考查了复数的模的运算以及复数的表示及应用其中解答中熟记复数的模 解析:20x y -+=【分析】设复数(,)z x yi x y R =+∈2222(2)(2)x y x y +=++-简即可求解.【详解】设复数(,)z x yi x y R =+∈,则z =22(2)(2)z i x y i +-=++-==20x y -+=,即z 在复平面内对应的点的坐标(,)x y 的轨迹方程为20x y -+=.故答案为:20x y -+=.【点睛】本题主要考查了复数的模的运算,以及复数的表示及应用,其中解答中熟记复数的模的运算公式,准确运算是解答的关键,着重考查了计算能力.三、解答题21.(1)1;(2)8.【分析】(1)将21x i =-代入方程10mx n +-=,将等式左边的复数化为一般形式, 利用复数的虚部和实部均为零得出关于m 、n 的方程组,解出这两个未知数,即可求出m n +的值; (2)解法一:将21x i =-代入方程210x mx n ++-=,将等式左边的复数化为一般形式, 利用复数的虚部和实部均为零得出关于m 、n 的方程组,解出这两个未知数,即可求出m n +的值;解法二:由题意可知,关于x 的二次方程210x mx n ++-=的两根分别为21i -和21i --,利用韦达定理可求出m 、n 的值,由此可计算出m n +的值.【详解】(1)由已知得()2110m i n -+-=,()120n m mi ∴--+=,1020n m m --=⎧∴⎨=⎩,解得10n m =⎧⎨=⎩,1m n ∴+=; (2)解法一:由已知得()()2212110i m i n -+-+-=,()()4240n m m i ∴--+-=, 40240n m m --=⎧∴⎨-=⎩,62n m =⎧∴⎨=⎩,8m n ∴+=; 解法二:21i -是实系数方程21=0x mx n ++-的根,–12i ∴-也是此方程的根,因此()()()()121212121i i m i i n ⎧-++--=-⎪⎨-+--=-⎪⎩,解得26m n =⎧⎨=⎩,8m n ∴+=. 【点睛】本题考查虚根与方程之间的关系求参数,一般将虚根代入方程,利用虚数相等列方程组求解是解题的关键,考查计算能力,属于中等题.22.(1)12z =;(2)13a > 【分析】(1)先根据条件得到13z i =-,进而得到15122z i =--,由复数的模的求法得到结果;(2)由第一问得到2(3)(31)10a a i z ++-=,根据复数对应的点在第一象限得到不等式30310a a +>⎧⎨->⎩,进而求解. 【详解】∵1z mi =+,∴1z mi =-.∴(3)(1)(3)(3)(13)z i mi i m m i ⋅+=-+=++-.又∵(3)z i ⋅+为纯虚数,∴30130m m +=⎧⎨-≠⎩,解得3m =-.∴13z i =-.(1)13251122i z i i -+==---,∴12z =; (2)∵13z i =-,∴2(3)(31)1310a i a a i z i -++-==-, 又∵复数2z 所对应的点在第一象限,∴30310a a +>⎧⎨->⎩,解得:13a >. 【点睛】如果Z 是复平面内表示复数z a bi =+(),a b ∈R 的点,则①当0a >,0b >时,点Z 位于第一象限;当0a <,0b >时,点Z 位于第二象限;当0a <,0b <时,点Z 位于第三象限;当0a >,0b <时,点Z 位于第四象限;②当0b >时,点Z 位于实轴上方的半平面内;当0b <时,点Z 位于实轴下方的半平面内.23.(1)15a -≤≤;(2)1a =-.【解析】分析:(1)由已知复数12,z z 在平面内对应的点分别为()2,1A -,(),3B a ,写出复数12z z ,的代数形式,通过复数的模125z z +≤,列出不等式即可求出a 的范围; (2)利用复数的运算法则和几何意义即可得出结果.详解:1)由题意可知12z i =-+,23z a i =+∴()1224z z a i +=-+ ∴()2212216z z a +=-+ ∴()221625a -+≤即()()510a a -+≤ ∴15a -≤≤ 由12z i =-- ∴()()()()12·23326z z i a i a a i =--+=--+由12·z z z =对应的点在二、四象限的角分线上可知()()3260a a --+=∴1a =-点睛:本题考查了复数的几何意义和模的计算公式、复数的运算法则,先由已知复数12,z z 在平面内对应的点分别为()2,1A -,(),3B a ,写出复数12z i =-+,23z a i =+求出a 的范围,再借助12·z z 的积,然后运用题设建立方程求解.24.(1)1z i ∴=+;(21【分析】(1)设复数1z mi =+,化简()1i z -, 由复数的相等求解.(2) 设1z x yi =+(x ,y R ∈),由11z z -=得()()11x yi i +--=,可得,x y 的关系,从而解出答案.【详解】解:(1)由1z mi =+(m R ∈),得()()()()()11111i z i mi m m i -=-+=++-,()1i z -为实数,10m ∴-=,1m ∴=.1z i ∴=+(2)设1z x yi =+(x ,y R ∈),1z i =-,11z z -=, ()()11x yi i ∴+--=,即()()111x y i -++=,()()22111x y ∴-++=,即复数1z 在复平面内对应的点的轨迹是以()1,1-为圆心,以1为半径的圆.1z ∴11=. 【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,考查复数的代数表示法及其几何意义,是基础题.25.12【分析】 将复数12,z z 代入等式125121313z z i -=+中,得22cos()1αβ-+=,即可得答案; 【详解】因为复数1cos sin z i αα=+,2cos sin z ββ=-,12512(cos cos )(sin sin )1313z z i i αβαβ-=-++=+ 所以5cos cos 13αβ-=,12sin sin 13αβ+=, 所以2222512(cos cos )(sin sin )11313αβαβ⎛⎫⎛⎫-++=+= ⎪ ⎪⎝⎭⎝⎭,即22cos()1αβ-+=, 所以1cos()2αβ+=. 【点睛】本题考查复数与三角函数知识同角三角函数的基本关系,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力. 26.(1)31a b =⎧⎨=⎩或232a b =⎧⎪⎨=⎪⎩;(2)见解析. 【分析】(1)由复数的乘法可得()22z a b ab i =+--,由5z i =-可知2521a b ab +=⎧⎨-=⎩,从而可求出a ,b 的值;(2)由z 的实部为2可得22a b +=,结合“1”的代换可知211442a b a b b a ⎛⎫+=++ ⎪⎝⎭,由基本不等式可证明214a b+≥. 【详解】 (1)解:由()()()21225z a i bi a b ab i i =+-=+--=-,则2521a b ab +=⎧⎨-=⎩, 解得31a b =⎧⎨=⎩或232a b =⎧⎪⎨=⎪⎩(2)证明:由题意知,22a b +=,所以()21121142422a b a b a b a b b a ⎛⎫⎛⎫+=++=++ ⎪ ⎪⎝⎭⎝⎭, 因为0a >,0b >,所以44a b b a +≥=, 当且仅当4a b b a =,即11,2a b == 时等号成立,则()2114442a b +≥⨯+=. 【点睛】本题考查了复数的乘法运算,考查了基本不等式,考查了复数的定义.运用基本不等式求最值时,注意一正二定三相等.。

上海浦东模范中学必修第二册第二单元《复数》测试题(有答案解析)

上海浦东模范中学必修第二册第二单元《复数》测试题(有答案解析)

一、选择题1.满足条件34z i i -=+的复数z 在复平面上对应点的轨迹是( )A .一条直线B .两条直线C .圆D .椭圆2.12i 12i+=- A .43i 55-- B .43i 55-+ C .34i 55-- D .34i 55-+ 3.能使得复数()32z a aia R =-+∈位于第三象限的是( ) A .212a i -+为纯虚数 B .12ai +模长为3C .3ai +与32i +互为共轭复数D .0a > 4.已知复数23i -是方程220x px q ++=的一个根,则实数p ,q 的值分别是( ) A .12,26 B .24,26 C .12,0 D .6,85.,A B 分别是复数12,z z 在复平面内对应的点,O 是原点,若1212z z z z +=-,则OAB ∆一定是A .等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形 6.已知集合,()(){}221,3156M m m m m i =--+--,{}1,3N =,{}1,3M N ⋂=,则实数m 的值为 ( )A .4B .-1C .4或-1D .1或6 7.若复数z 满足22iz i =-(i 为虚数单位),则z 的共轭复数z 在复平面内对应的点所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 8.已知(,)a bi a b R +∈是11i i +-的共轭复数,则a b +=( ) A .1- B .12- C .12 D .19.复数252i +i z =的共轭复数z 在复平面上对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限 10.已知复数1223,z i z a bi =+=+(,R,0a b b 且∈≠),其中i 为虚数单位,若12z z 为实数,则a b 的值为( ) A .32- B .23-C .23D .32 11.已知复数z 满足()211i i z+=-(i 为虚数单位),则复数z =( ) A .1i + B .1i -+C .1i -D .1i --12.已知复数z 满足|z |=1,则|z +1-2i |的最小值为( )A .51-B .5C .3D .2二、填空题13.若z a bi =+,21z R z∈+,则实数a ,b 应满足的条件为________. 14.在复变函数中,自变量z 可以写成(cos sin )i z r i r e θθθ=⨯+=⨯,其中||r z =,θ是z 的辐角.点(),x y 绕原点逆时针旋转θ后的位置可利用复数推导,点()2,3A 绕原点逆时针旋转3arcsin 5得A '_______;复变函数ln (,0)z z C z ω=∈≠,i ωπ=,z =_______. 15.化简2012222117i⎛⎫+= ⎪-⎝⎭________.点集{||13|1,}D z z i z C =++=∈,则||z 的最小值_____和最大值________.16.若复数z 满足53z z i +=+,则复数z =________________.17.已知复数[(1)]z a ai i =++(i 是虚数单位)是虚数,且||1z =,则实数a 的值是______18.在复平面内,三点A 、B 、C 分别对应复数A z 、B z 、C z ,若413B A C A z z i z z -=+-,则ABC ∆的三边长之比为________19.如果复数z 的模不大于1,而z 的虚部的绝对值不小于,则复平面内复数z 的对应点组成图形的面积是___.20.若|z -2|=|z +2|,则|z -1|的最小值是________.参考答案三、解答题21.化简下列复数(1)()()6532i i -++(2)()()()56234i i i -+---+22.计算下列各式:(1)32322323i i i i+-+-+; (2)()31131i i i i ++-+-; 23.已知复数z 满足2z =,2z 的虚部为2,(1)求复数z ;(2)设22,,z z z z -在复平面上对应点分别为,,A B C ,求ABC ∆的面积.24.在复平面内,A B C ,,分别对应复数1231i 5i 33i z z z =+=+=+,,,以AB,AC 为邻边作一个平行四边形ABCD ,求D 点对应的复数4z 及AD 的长.25.已知1(3)(?4)z x y y x i =++-,2(42)(53)(,)z y x x y i x y R =--+∈,设12z z z =-,且132z i =+,求复数1z ,2z .26.已知复数12i z m =-,复数21i z n =-,其中i 是虚数单位,m ,n 为实数. (1)若1m =,1n =-,求12z z +的值;(2)若212z z =,求m ,n 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】 因为34z i i -=+,所以5z i -=,22(1)25,x y +-= 因此复数z 在复平面上对应点的轨迹是圆,选C.2.D解析:D【解析】分析:根据复数除法法则化简复数,即得结果. 详解:212(12)341255i i i i ++-+==∴-选D. 点睛:本题考查复数除法法则,考查学生基本运算能力.3.A解析:A【分析】分析四个选项中的参数a ,判断是否能满足复数()32z a aia R =-+∈是第三象限的点.【详解】 322z a ai a ai =-+=--由题意可知,若复数在第三象限,需满足200a a -<⎧⎨-<⎩,解得:02a <<,A.212z a i =-+是纯虚数,则12a =,满足条件;B.123z ai =+==,解得:a =a =C. 3ai +与32i +互为共轭复数,则2a =-,不满足条件;D.0a >不能满足复数z 在第三象限,不满足条件.故选:A【点睛】本题考查复数的运算和几何意义,主要考查基本概念和计算,属于基础题型.4.A解析:A【分析】复数23i -是方程的根,代入方程,整理后利用复数的相等即可求出p,q 的值.【详解】因为23i -是方程220x px q ++=的一个根,所以22(23)(23)0i p i q -+-+=, 即(224)3100p i p q --++=,所以22403100p p q -=⎧⎨-++=⎩,解得12,26p q ==,故选A. 【点睛】本题主要考查了复数方程及复数相等的概念,属于中档题. 5.C解析:C【解析】 因为1212z z z z +=-,所以22||OA OB OA OB OA OB OA OB +=-∴+=- , 因此0OA OB OA OB ⋅=∴⊥ ,即OAB 一定是直角三角形,选C. 6.B解析:B【分析】根据交集的定义可得()()2231563m m m m i --+--=,由复数相等的性质列方程求解即可.【详解】因为()(){}221,3156M m m m m i =--+--,{}1,3N =,{}1,3M N ⋂=, 所以()()2231563m m m m i --+--=, 可得223131560m m m m m ⎧--=⇒=-⎨--=⎩,故选B. 【点睛】复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算.7.B解析:B【解析】分析:直接利用复数代数形式的乘除运算化简复数,然后求z 的共轭复数,即可得到z 在复平面内对应的点所在的象限. 详解:由题意,()()()222222,i i i z i i i i -⋅--===--⋅- 22,z i ∴=-+ 则z 的共轭复数z 对应的点在第二象限.故选B.点睛:本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题. 8.A解析:A【解析】【分析】 先利用复数的除法运算法则求出11i i+-的值,再利用共轭复数的定义求出a +bi ,从而确定a ,b 的值,求出a +b .【详解】 ()()21(1)21112i i i i i i ++===-+-i , ∴a +bi =﹣i ,∴a =0,b =﹣1,∴a +b =﹣1,故选:A .【点睛】本题主要考查了复数代数形式的乘除运算,考查了共轭复数的概念,是基础题. 9.C解析:C【解析】【分析】根据复数的运算求得2i z =-+,得到z 2i =--,再根据复数的表示,即可求解,得到答案.【详解】由题意,根据复数的运算可得复数252i +i 2i z ==-+,则z 2i =--,所以z 对应点(2,1)--在第三象限,故选C .【点睛】本题主要考查了复数的运算,以及复数的表示,其中解答中熟记复数的运算法则,以及复数的表示是解答的关键,着重考查了推理与运算能力,属于基础题.10.B解析:B【分析】先根据复数乘法计算,再根据复数概念求a,b 比值.【详解】因为()1223(z z i a bi =++)()23(32a b a b =-++) i , 所以320a b +=,因为0b ≠,所以23a b =-,选B. 【点睛】本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如()()()(),(,,.)++=-++∈a bi c di ac bd ad bc i a b c d R . 其次要熟悉复数相关基本概念,如复数(,)a bi a b R +∈的实部为a 、虚部为b 、模为(,)a b 、共轭为.-a bi11.B解析:B【解析】因为()211i i z+=-,所以22(1)112i i z i i i ==+=-- ,选B. 12.A解析:A【分析】 根据1z =分析出z 在复平面内的轨迹方程,再根据12z i +-的几何意义以及圆外一点到圆上点的距离最小值求法求解出结果.【详解】因为|||i |1z x y =+==,所以221x y +=,即z 在复平面内表示圆O :221x y +=上的点;又|12i ||(1)(2)i |z x y +-=++-,所以|12i |z +-表示圆O 上的动点到定点(12)A -,的距离,所以min |12i |z +-为||1OA r -=,故选:A .【点睛】 关键点点睛:解答本题的关键是理解1z =对应的轨迹方程以及掌握12z i +-的几何意义,将复数模的最值问题转化为点到点的距离最值问题.二、填空题13.或【分析】根据复数的运算得出再由复数是实数的条件得出实数应满足的条件【详解】因为故有所以或即或是ab 应满足的条件故答案为:或【点睛】本题考查复数的运算和复数的概念属于中档题解析:0b =或221a b +=【分析】 根据复数的运算得出21+z z ()()()222222222212114a a b ab b b a i a b a b+-++--=+--,再由复数是实数的条件得出实数a ,b 应满足的条件.【详解】()22222211()1212z a bi a bi a bi z a bi a abi b a b abi +++===+++++-+-+()()222222212()14a b abi a bi a b a b+--=++--()()()22222222222112214a a b b a b i a bi ab a b a b+-++--+=+-- ()()()2222322222212214a a b ab b a b b a b i a b a b+-+++--=+-- ()()()222222222212114a a b ab b b a i a b a b +-++--=+-- 因为21z R z ∈+,故有()2210b b a --=,所以0b =或2210b a --=, 即0b =或221a b +=是a ,b 应满足的条件.故答案为:0b =或221a b +=.【点睛】本题考查复数的运算和复数的概念,属于中档题.14.【分析】点对应的复数其中则对应的复数其中利用两角和差公式求得的坐标;由则化简可得【详解】点对应的复数其中则对应的复数其中则则故的坐标为;由则得故答案为:;【点睛】本题考查了复数的运算结合考查了两角和 解析:118(,)55-1- 【分析】点A对应的复数sin )z i αα=+,其中cos ,sin 1313αα==,则A '对应的复数)sin()]z i αβαβ'=+++,其中34sin ,cos 55ββ==,利用两角和差公式求得A '的坐标;由ln (,0)z z C z ω=∈≠,i ωπ=,则i z e π=cos sin i ππ=+,化简可得z .【详解】点A对应的复数sin )z i αα=+,其中cos αα== 则A '对应的复数)sin()]z i αβαβ'=+++,其中34sin ,cos 55ββ==,则cos()cos cos sin sin 65αβαβαβ+=-=-,sin()sin cos cos sin 65αβαβαβ+=+=,则118)55z i '=+=-+,故A '的坐标为118(,)55-; 由ln (,0)z z C z ω=∈≠,i ωπ=,则i z e π=cos sin i ππ=+,得1z =-. 故答案为:118(,)55-;1- 【点睛】本题考查了复数的运算,结合考查了两角和的正弦、余弦公式,还考查了学生阅读理解能力,分析能力,运算能力,属于中档题. 15.13【分析】根据复数的代数形式的除法乘方运算法则计算可得根据复数的几何意义得到的轨迹即可得到的最值;【详解】解:设因为即根据复数的几何意义可知表示以为圆心为半径的圆上的点集则故答案为:;;【点睛】本 解析:1- 1 3【分析】根据复数的代数形式的除法、乘方运算法则计算可得,根据复数的几何意义得到z 的轨迹,即可得到||z 的最值;【详解】解:2012221i ⎛⎫+ ⎪ ⎪+⎝⎭)()()201222111i i i ⎡⎤-=⎢⎥+-⎢⎥⎣⎦20120⎫=+⎪⎪⎝⎭ 2012022⎛⎫=-+ ⎪ ⎪⎝⎭1006222⎡⎤⎛⎫⎢⎥=- ⎪ ⎪⎢⎥⎝⎭⎣⎦()100610062514221i i i i ⨯+=-====-设(),z x yi x y R =+∈,因为{||1|1,}D z z z C =++=∈即11x yi +++=根据复数的几何意义可知{||1|1,}D z z z C =+=∈表示以(1,-为圆心,1为半径的圆上的点集,则max 13z ==,min 11z ==,故答案为:1-;1;3. 【点睛】本题考查了复数代数形式的乘除运算,也考查了复数模的求法与几何意义,是中档题. 16.【分析】由一定为实数由题可知的虚部为设进而求解即可【详解】因为所以的虚部为设则解得所以故答案为:【点睛】本题考查相等复数考查复数的模的应用解析:115【分析】由z 一定为实数,由题可知z 设()a a R z =∈,进而求解即可【详解】因为5z z +=+,所以z设()a a R z =∈,则5a =,解得115a =,所以115z =,故答案为:115【点睛】本题考查相等复数,考查复数的模的应用 17.【解析】【分析】计算复数根据结合模长公式即可解出实数的值【详解】由题:复数是虚数则即解得或(舍)所以故答案为:【点睛】此题考查复数的运算和模长的计算并求参数取值注意概念辨析一个复数是虚数则虚部不为零 解析:0【解析】【分析】计算复数2[(1)](1)(1)z a ai i a i ai a a i =++=++=-++,根据||1z =,结合模长公式即可解出实数a 的值.【详解】由题:复数2[(1)](1)(1)z a ai i a i ai a a i =++=++=-++,是虚数,则10a +≠,||1z ==,即2220a a +=,解得0a =或1a =-(舍)所以0a =.故答案为:0【点睛】此题考查复数的运算和模长的计算并求参数取值,注意概念辨析,一个复数是虚数,则虚部不为零,此题的易错点在于漏掉考虑为虚数的限制条件.18.3:4:5【分析】设对应的复数计算对应的复数从而得出再根据与的比值得出答案【详解】设表示的复数为表示的复数为则所以所以表示的复数为所以所以又所以又则所以的三边长之比为:故答案为:【点睛】本题考查了复 解析:3:4:5【分析】设AB 、AC 对应的复数,计算BC 对应的复数,从而得出AC BC ⊥,再根据AB 与AC 的比值得出答案.【详解】设AB 表示的复数为a bi +,AC 表示的复数为i c d +, 则444()(1)()()333a bi c di i c d d c i +=++=-++, 所以43a c d =-,43b dc =+, 所以BC 表示的复数为44()()33AC AB c a bd i d ci -=-+-=-, 所以44(,)(,)033AC BC c d d c ⋅=⋅-=, 所以AC BC ⊥, 又B A C A z z AB AC z z -=-,所以45133AB i AC =+==,又AC BC ⊥,则2253433BC AC -==, 所以ABC ∆的三边长之比为:3:4:5,故答案为:3:4:5.【点睛】本题考查了复数的运算,重点考查了复数模的运算,考查了推理能力,属中档题.19.【解析】分析:先根据复数的模以及复数的虚部列不等式再根据扇形面积减去三角形面积得弓形面积详解:设则如图因此复平面内复数z 的对应点组成图形为两个弓形其面积为扇形面积减去三角形面积是点睛:本题重点考查复 解析:23-32π 【解析】分析:先根据复数的模以及复数的虚部列不等式,再根据扇形面积减去三角形面积得弓形面积.详解:设(,)z x yi x y R =+∈,则2211,2x y y +≤≥ ,如图,2.3AOB π∠=因此复平面内复数z 的对应点组成图形为两个弓形,其面积为扇形面积减去三角形面积是21212232(111sin )23233πππ⨯⋅-⨯⨯⨯=- 点睛:本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如()()()(),(,,.)++=-++∈a bi c di ac bd ad bc i a b c d R . 其次要熟悉复数相关基本概念,如复数(,)a bi a b R +∈的实部为a 、虚部为b 22a b +(,)a b 、共轭为.-a bi20.1【解析】由|z -2|=|z +2|知z 对应点的轨迹是到(20)与到(-20)距离相等的点即虚轴|z -1|表示z 对应的点与(10)的距离∴|z -1|min =1点睛:要熟悉复数相关基本概念如复数的实部为解析:1【解析】由|z -2|=|z +2|,知z 对应点的轨迹是到(2,0)与到(-2,0)距离相等的点,即虚轴. |z -1|表示z 对应的点与(1,0)的距离.∴|z -1|min =1.点睛:要熟悉复数相关基本概念,如复数(,)a bi a b R +∈的实部为a 、虚部为b 、模为(,)a b 、共轭为.-a bi三、解答题21.(1)93i -;(2)11i -.【分析】利用复数的加减运算法则求解.【详解】(1)()()6532i i -++,()()6325i =++-,93i =-.(2)()()()56234i i i -+---+,()()523614i =--+---,11i =-.【点睛】本题主要考查复数的加减,相等,还考查了运算求解的能力,属于中档题.22.(1)0;(2)8i -【分析】利用复数的乘除运算法则求解.【详解】计算下列各式:(1)()()23233232023232323i i i i i i i i i i i i--++-+=+=-=-+-+;(2)()())3338111i i i i i i i i i+++=-++-=-=-.【点睛】 本题主要考查复数的基本运算,还考查了运算求解的能力,属于中档题.23.(1)1i +或1i --;(2)1【分析】(1)设z =a +bi (a ,b ∈R ),由已知列关于a ,b 的方程组,求解可得复数z ; (2)分类求得A 、B 、C 的坐标,再由三角形面积公式求解.【详解】解:(1)设z =a +bi (a ,b ∈R ),由已知可得:222 22a bab⎧⎪+=⎨=⎪⎩,即2221a bab⎧+=⎨=⎩,解得11ab=⎧⎨=⎩或11ab=-⎧⎨=-⎩.∴z=1+i或z=﹣1﹣i;(2)当z=1+i时,z2=2i,z﹣z2=1﹣i,∴A(1,1),B(0,2),C(1,﹣1),故△ABC的面积S12=⨯2×1=1;当z=﹣1﹣i时,z2=2i,z﹣z2=﹣1﹣3i,∴A(﹣1,﹣1),B(0,2),C(﹣1,﹣3),故△ABC的面积S12=⨯2×1=1.∴△ABC的面积为1.【点睛】本题考查复数的乘方和加减运算,考查复数相等的条件和复数的几何意义,以及三角形的面积的求法,考查运算能力,属于中档题.24.z4=7+3i,210AD=【分析】由复数的几何意义得到AC对应复数z3-z1,AB对应复数z2-z1,AD对应复数z4-z1,AD AB AC=+,z4-z1=(z2-z1)+(z3-z1),再由复数的加法运算和模长的公式得到结果.【详解】如图所示:AC对应复数z3-z1,AB对应复数z2-z1,AD对应复数z4-z1.由复数加减运算的几何意义,得AD AB AC=+,∴z4-z1=(z2-z1)+(z3-z1).∴z4=z2+z3-z1=(5+i)+(3+3i)-(1+i)=7+3i.∴AD的长为41AD z z=-=()()73i1i62i210+-+=+=【点睛】在复平面上,点,()Z a b和复数z a bi=+(),a b∈R一一对应,所以复数可以用复平面上的点来表示,这就是复数的几何意义.复数几何化后就可以进一步把复数与向量沟通起来,从而使复数问题可通过画图来解决,即实现了数与形的转化.由此将抽象问题变成了直观的几何图形,更直接明了.25.1z =59,i -287.z i =--【分析】明确复数1z ,2z 的实部与虚部,结合加减法的运算规则,即可求出复数z ,从而用,x y 表示出z ,接下来根据复数相等的充要条件列出关于,x y 的方程组求解,即可得出1z ,2z .【详解】∵12z z z =- ()()()()344253x y y x i y x x y i =++---++ ()()342x y y x ⎡⎤=+--⎣⎦ ()()453y x x y i ⎡⎤+-++⎣⎦ ()()534x y x y i =-++. ∴()()534z x y x y i =--+.又∵132z i =+∴531342x y x y -=⎧⎨+=-⎩∴21x y =⎧⎨=-⎩∴()()1321142z i =⨯-+--⨯ 59,i =-∴()()24122523187.z i i ⎡⎤⎡⎤=⨯--⨯-⨯+⨯-=--⎣⎦⎣⎦【点睛】本题主要考查复数代数形式的加减运算、共轭复数的定义以及复数相等的充要条件,属于中档题.复数相等的性质是:若两复数相等则它们的实部与虚部分别对应相等.26.(1(2)0,1.m n =⎧⎨=⎩ 【分析】(1)根据题意求出()()121212i z i z i +=-++=-,即可得到模长;(2)根据212z z =,化简得()2212m i n ni -=--,列方程组即可求解. 【详解】(1)当1m =,1n =-时112z i =-,21z i =+,所以()()121212i z i z i +=-++=-,所以12z z +==. (2)若212z z =,则()221m i ni -=-, 所以()2212m i n ni -=--,所以2122m n n⎧=-⎨-=-⎩解得0,1.m n =⎧⎨=⎩ 【点睛】此题考查复数模长的计算和乘法运算,根据两个复数相等,求参数的取值范围.。

上海国和中学必修第二册第二单元《复数》测试(含答案解析)

上海国和中学必修第二册第二单元《复数》测试(含答案解析)

一、选择题1.在下列命题中,正确命题的个数是( ). ①两个复数不能比较大小;②复数i 1z =-对应的点在第四象限;③若()()22132i x x x -+++是纯虚数,则实数1x =; ④若()()2212230z z z z -+-=,则123z z z ==. A .0B .1C .2D .32.已知复数z 满足:21z -=,则1i z -+的最大值为( )A .2B 1C 1D .33.当z =时,100501z z ++=( ) A .1 B .-1 C .i D .i - 4.下列各式的运算结果为纯虚数的是 A .(1+i)2 B .i 2(1-i) C .i(1+i)2 D .i(1+i) 5.复数z 满足23z z i +=-,则z =( )A .1i +B .1i -C .3i +D .3i -6.若C z ∈,且22i 1z +-=,则22i z --的最小值是( ) A .2B .3C .4D .57.已知复数z 满足33z -=,则4z i -(i 为虚数单位)的取值范围为( )A .[]28,B .3⎤⎦C .[]1,9D .[]3,88.若实系数一元二次方程20z z m ++=有两虚数根αβ、,且3αβ=-,那么实数m 的值是( ) A .52B .1C .1-D .52-9.在下列命题中,正确命题的个数是( ) ①两个复数不能比较大小;②复数1z i =-对应的点在第四象限;③若22(1)(32)x x x i -+++是纯虚数,则实数1x =±;④若221223()()0z z z z -+-=,则123z z z ==.A .0B .1C .2D .310.在复平面内,复数201812z i i=++对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限11.已知复数z 满足()12i z i -=+,则z 的共轭复数在复平面内对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限 12.已知复数z 满足|z |=1,则|z +1-2i |的最小值为( )A1BC .3D .2二、填空题13.棣莫弗公式()cos sin cos sin nx i x nx i nx +=+(i 为虚数单位)是由法国数学家棣莫弗(1667~1754)发现的,根据棣莫弗公式可知,复数6cos sin 77i ππ⎛⎫+ ⎪⎝⎭在复平面内所对应的点位于第______象限.14.设为虚数单位,(12)|34|i z i -=+,则复数z 的虚部为________.15.若z C ∈且1z =,那么2z i +-的最小值为_______________. 16.已知复数1z =,i 为虚数单位,则34z i -+的最小值为_________.17.化简2012221i ⎛⎫+= ⎪+⎝⎭________.点集{||1|1,}D z z z C =++=∈,则||z 的最小值_____和最大值________.18.已知复数[(1)]z a ai i =++(i 是虚数单位)是虚数,且||1z =,则实数a 的值是______19.若复数214tz t i+=-+在复平面内对应的点位于第四象限,则实数t 的取值范围是____. 20.若复数z 满足2z i z i -++=,则1z i --的取值范围是________三、解答题21.(1)计算:()()432-2i (i 为虚数单位);(2)已知z 是一个复数,求解关于z 的方程,313z z i z i ⋅-⋅=+(i 为虚数单位). 22.(1)已知z C ∈,解关于z 的方程(3)13z i z i -⋅=+;(2)已知32i +是关于x 的方程220x ax b ++=在复数集内的一个根,求实数a ,b 的值. 23.计算下列各题:(1)55(1)(1)11i i i i +-+-+;(2)201920191111i i i i +-⎛⎫⎛⎫- ⎪ ⎪-+⎝⎭⎝⎭;;(4) 23201920202320192020i i i i i +++++.24.如图,在复平面内,已知复数z 1,z 2,z 3对应的向量分别是OA OB OC ,,,i 是虚数单位,若复数123z z z z ⋅=,求2z +.25.已知1(3)(?4)z x y y x i =++-,2(42)(53)(,)z y x x y i x y R =--+∈,设12z z z =-,且132z i =+,求复数1z ,2z .26.已知虚数z 满足4z z+是实数,且4223z z ≤+≤(1)试求z 的模;(2)若22z i --取最小值m 时对应的复数z 记为0z ,试求 ①m 的值; ②求200z 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据复数121,2z z ==,可得①是错误的;根据复数的表示,可得②是错误的;根据复数的分类,列出方程组,可得③是正确的;根据1231,,1z z i z ===-,可得④错误的. 【详解】对于①中,例如复数121,2z z ==,此时12z z <,所以①是错误的;对于②中,复数i 1z =-对应的点坐标为(1,1)-位于第二象限,所以②是错误的;对于③中,若()()22132i x x x -+++是纯虚数,则满足2210320x x x ⎧-=⎨++≠⎩,解得1x =,所以③是正确的;对于④中,例如1231,,1z z i z ===-,则()()22110i i -++=,所以④错误的. 故选:B. 【点睛】本题主要考查了复数的基本概念,以及复数的表示与复数的运算的综合应用,其中解答中熟记复数的概念与运算,逐项判定是解答的关键,着重考查推理与运算能力.2.B解析:B 【分析】复数方程|2|1z -=转化成实数方程()2221x y -+=,再由复数模定义|1|z i -+表示(1,1)-与圆上任一点(,)x y 间距离.【详解】解:设z x yi =+,由|2|1z -=得圆的方程()2221x y -+=,又|1|z i -+(1,1)-与圆上任一点(,)x y 间距离.则由几何意义得x ma |1|11z i -+==,故选:B . 【点睛】本题主要考查复数模的计算和几何意义,属于中档题.3.D解析:D 【分析】 根据100501zz ++的结构特点,先由z =,得到()2212-==-i z i ,再代入100501z z ++求解.【详解】因为z =所以()221,2-==-i z i 所以()()()2550250100,1=-=-=-=-=-z i i z i i ,所100501++=-z z i , 故选:D 【点睛】本题主要考查了复数的基本运算,还考查了周期性的应用,运算求解的能力,属于基础题.4.A解析:A 【分析】利用复数的四则运算,再由纯虚数的定义,即可求解. 【详解】由题意,对于A 中,复数2(1)2i i +=为纯虚数,所以正确;对于B 中,复数2(1)1i i i ⋅-=-+不是纯虚数,所以不正确; 对于C 中,复数2(1)2i i ⋅+=-不是纯虚数,所以不正确; 对于D 中,复数(1)1i i i ⋅+=-+不是纯虚数,所以不正确,故选A. 【点睛】本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其四则运算技巧和常规思路. 其次要熟悉复数相关基本概念是解答此类问题的关键,着重考查了推理与计算能力,属于基础题.5.A解析:A 【解析】令22()331,1z a bi z z a bi a bi a bi i a b =+∴+=++-=-=-∴==6.B解析:B 【分析】由复数的模的几何意义,可得z 在复平面的轨迹是以()2,2-为圆心,以1为半径的圆,根据圆的几何性质可得结果. 【详解】设i z x y =+(),x y ∈R ,则()22i 22i 1z x y +-=++-=, 所以()()22221x y ++-=,表示圆心为()2,2-,半径为1r =的圆.()()22i 22i z x y --=-+-=,表示点(),x y 和()2,2之间的距离,故()min 22i 22413z r --=---=-=. 故选:B. 【点睛】本题考查复数的模的几何意义,考查圆的性质,考查学生的计算求解能力,属于中档题.7.A解析:A 【分析】利用复数模长的三角不等式可求得4z i -的取值范围. 【详解】()()4334z i z i -=-+-,由复数模长的三角不等式可得()()334334334z i z i z i ---≤-+-≤-+-, 即35435z i -≤-≤+,即248z i ≤-≤,因此,4z i -的取值范围是[]28,. 故选:A. 【点睛】本题考查复数模长的取值范围的计算,考查三角不等式的应用,考查计算能力,属于中等题.8.A解析:A 【分析】根据实系数方程有两虚数根,利用求根公式解得:z =,由此可得αβ-的m 表示形式,根据3αβ-=即可求得m 的值. 【详解】因为20z z m ++=,所以12z -±=,又因为3αβ-=,所以3=,所以419m -=,解得:52m =. 故选A. 【点睛】实系数一元二次方程()200++=≠ax bx c a ,有两虚根为,αβ,注意此时的240b ac ∆=-<,因此在写方程根时应写成:x =x =9.A解析:A 【解析】对于选项①,不能说两个复数不能比较大小,如复数3和4就可比较大小,所以该命题是错误的.对于选项②,复数1z i =-对应的点在第二象限,所以该命题是错误的.对于选项③,若()()22132x x x i -+++是纯虚数,则21x -=0且232x x ++≠0,所以x=1,所以该命题是错误的. 对于选项④,若()()2212230z z z z -+-=,可以123,0,1z i z z ===, 所以该命题是错误的. 故选A.10.C解析:C 【解析】 因为201812z i i =++()()22231122555i i i i i i --=+=-=--+- ,复数201812z i i=++对应的点的坐标为31,55⎛⎫-- ⎪⎝⎭ ,故复数201812z i i=++对应的点位于第三象限,故选C. 11.D解析:D 【解析】()12i z i -=+,()()()()1i 1i 2+i 1i z ∴-+=+,13213i,i,22z z =+=+13i,22z z=-的共轭复数在复平面内对应点坐标为13,22⎛⎫- ⎪⎝⎭,z 的共轭复数在复平面内对应的点在第四象限,故选D.12.A解析:A 【分析】根据1z =分析出z 在复平面内的轨迹方程,再根据12z i +-的几何意义以及圆外一点到圆上点的距离最小值求法求解出结果. 【详解】因为|||i |1z x y =+==,所以221x y +=,即z 在复平面内表示圆O :221x y +=上的点;又|12i ||(1)(2)i |z x y +-=++-,所以|12i |z +-表示圆O 上的动点到定点(12)A -,的距离,所以min |12i |z +-为||1OA r -=, 故选:A . 【点睛】关键点点睛:解答本题的关键是理解1z =对应的轨迹方程以及掌握12z i +-的几何意义,将复数模的最值问题转化为点到点的距离最值问题.二、填空题13.二【分析】先根据棣莫弗公式得再根据三角函数确定符号根据复数集合意义得答案【详解】由得∵∴∴复数在复平面内所对应的点位于第二象限故答案为:二【点睛】本题考查复数的几何意义三角函数符号的判断是中档题解析:二 【分析】先根据棣莫弗公式得666cos sin cos sin 7777i i ππππ⎛⎫++ ⎪=⎝⎭,再根据三角函数确定符号,根据复数集合意义得答案. 【详解】由()cos sin cos sin nx i x nx i nx +=+,得666cos sin cos sin 7777i i ππππ⎛⎫++ ⎪=⎝⎭, ∵627πππ<<,∴6cos 07π<,6sin 07π>, ∴复数6cos sin 77i ππ⎛⎫+ ⎪⎝⎭在复平面内所对应的点位于第二象限.故答案为:二. 【点睛】本题考查复数的几何意义,三角函数符号的判断,是中档题.14.2【分析】首先将题中所给的式子进行化简求得从而得到其虚部的值【详解】根据可得所以所以复数的虚部为故答案为:2【点睛】该题考查的是有关复数的问题涉及到的知识点有复数的除法运算复数的模复数的虚部属于简单解析:2 【分析】首先将题中所给的式子进行化简,求得12z i =+,从而得到其虚部的值. 【详解】根据(12)|34|i z i -=+,可得(12)5i z -==, 所以2255(12)12121(2)i z i i +===+-+-, 所以复数z 的虚部为2, 故答案为:2. 【点睛】该题考查的是有关复数的问题,涉及到的知识点有复数的除法运算,复数的模,复数的虚部,属于简单题目.15.【分析】复数满足表示以为圆心1为半径的圆表示圆上的点与点的距离求出即可得出结果【详解】复数满足表示以为圆心1为半径的圆表示圆上的点与点的距离∵∴的最小值是故答案为【点睛】本题考查了复数的运算法则复数1【分析】复数z 满足1z =,表示以()0,0O 为圆心,1为半径的圆,2z i +-表示圆上的点与点()2,1M -的距离,求出1OM -即可得出结果.【详解】复数z 满足1z =,表示以()0,0O 为圆心,1为半径的圆,2z i +-表示圆上的点与点()2,1M -的距离.∵OM ==∴2z i +-11. 【点睛】本题考查了复数的运算法则、复数的几何意义、圆的方程,考查了推理能力与计算能力,属于中档题.16.4【分析】利用复数的几何意义转化求解即可【详解】解:复数z 满足为虚数单位复数z 表示:复平面上的点到(00)的距离为1的圆的几何意义是圆上的点与的距离所以其最小值为:故答案为:4【点睛】本题考查复数的解析:4 【分析】利用复数的几何意义,转化求解即可. 【详解】解:复数z 满足1z =,i 为虚数单位, 复数z 表示:复平面上的点到(0,0)的距离为1的圆.34z i -+的几何意义是圆上的点与()34-,的距离,14-= . 故答案为:4. 【点睛】本题考查复数的几何意义,复数的模的求法,考查转化思想以及计算能力,属于中档题.17.13【分析】根据复数的代数形式的除法乘方运算法则计算可得根据复数的几何意义得到的轨迹即可得到的最值;【详解】解:设因为即根据复数的几何意义可知表示以为圆心为半径的圆上的点集则故答案为:;;【点睛】本解析:1- 1 3 【分析】根据复数的代数形式的除法、乘方运算法则计算可得,根据复数的几何意义得到z 的轨迹,即可得到||z 的最值; 【详解】解:201222+⎝⎭)()()201222111i i i ⎡⎤-=⎢⎥+-⎢⎥⎣⎦2012022⎛⎫=-+ ⎪ ⎪⎝⎭2012022⎛⎫=-+ ⎪ ⎪⎝⎭1006222⎡⎤⎛⎫⎢⎥=- ⎪ ⎪⎢⎥⎝⎭⎣⎦()100610062514221i i i i ⨯+=-====-设(),z x yi x y R =+∈,因为{||1|1,}D z z z C =++=∈即11x yi +++=根据复数的几何意义可知{||1|1,}D z z z C =+=∈表示以(1,-为圆心,1为半径的圆上的点集,则max13z ==,min 11z ==,故答案为:1-;1;3. 【点睛】本题考查了复数代数形式的乘除运算,也考查了复数模的求法与几何意义,是中档题.18.【解析】【分析】计算复数根据结合模长公式即可解出实数的值【详解】由题:复数是虚数则即解得或(舍)所以故答案为:【点睛】此题考查复数的运算和模长的计算并求参数取值注意概念辨析一个复数是虚数则虚部不为零 解析:0【解析】 【分析】计算复数2[(1)](1)(1)z a ai i a i ai a a i =++=++=-++,根据||1z =,结合模长公式即可解出实数a 的值. 【详解】由题:复数2[(1)](1)(1)z a ai i a i ai a a i =++=++=-++,是虚数,则10a +≠,||1z ==,即2220a a +=,解得0a =或1a =-(舍) 所以0a =. 故答案为:0 【点睛】此题考查复数的运算和模长的计算并求参数取值,注意概念辨析,一个复数是虚数,则虚部不为零,此题的易错点在于漏掉考虑为虚数的限制条件.19.【分析】直接由复数代数形式的乘除运算化简复数再由复数在复平面内对应的点位于第四象限列出不等式组求解即可得结论【详解】在复平面内对应的点位于第四象限解得实数的取值范围是故答案为【点睛】复数是高考中的必 解析:()1,2-【分析】直接由复数代数形式的乘除运算化简复数z ,再由复数214t z t i+=-+在复平面内对应的点位于第四象限列出不等式组,求解即可得结论.【详解】 ()()2222i 114441i i i t t z t t t t ⎡⎤-++=-+=-+=--+⎢⎥-⎣⎦, 在复平面内对应的点位于第四象限,24010t t ⎧->∴⎨--<⎩,解得12t -<<, ∴实数t 的取值范围是()1,2-,故答案为()1,2-.【点睛】复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.20.【解析】分析:由复数的几何意义解得点的轨迹为以为端点的线段表示线段上的点到的距离根据数形结合思想结合点到直线距离公式可得结果详解:因为复数满足在复平面内设复数对应的点为则到的距离之和为所以点的轨迹为解析:【解析】分析:由复数的几何意义解得点z 的轨迹为以()()0,1,0,1-为端点的线段,1z i --表示线段上的点到()1,1的距离,根据数形结合思想,结合点到直线距离公式可得结果. 详解:因为复数z 满足2z i z i -++=,在复平面内设复数z 对应的点为(),z x y ,则(),z x y 到()()0,1,0,1-的距离之和为2,所以点z 的轨迹为以()()0,1,0,1-为端点的线段,1z i --表示线段上的点到()1,1的距离,可得最小距离是()0,1与()1,1的距离,等于1;最大距离是()0,1-与()1,1即1z i --的取值范围是⎡⎣,故答案为⎡⎣.点睛:本题考查复数的模,复数的几何意义,是基础题. 复数的模的几何意义是复平面内两点间的距离,所以若z x yi =+,则z a bi -+表示点(),x y 与点(),a b 的距离,z a bi r -+=表示以(),a b 为圆心,以r 为半径的圆.三、解答题21.(1)8;(2)13z i =-+或1z =-【分析】(1)()()()()()()4222232-22-22-28i i i i -=即可化简得值;(2)设,,z a bi a b R =+∈,建立等式()()()313a bi a bi i a bi i +---=+,列方程组求解.【详解】(1)()()()()()()4222232-22-22-286488i i i i --===-; (2)设,,z a bi a b R =+∈,313z z i z i ⋅-⋅=+,即()()()313a bi a bi i a bi i +---=+,223313a b b ai i +--=+,所以2231,33a b b a +-=-=,解得13a b =-⎧⎨=⎩或10a b =-⎧⎨=⎩, 所以13z i =-+或1z =-.故答案为:13z i =-+或1z =-【点睛】此题考查复数的运算,关键在于根据题意利用复数的运算法则,准确计算求解. 22.(1)1z =-或13i -+;(2)12,26a b =-=.【分析】(1)设,z a bi z a bi =+=-,代入(3)13z i z i -⋅=+,化简后利用向量相等的知识列方程组,解方程组求得,a b 的值,由此求得z .(2)根据虚根成对以及根与系数关系列方程组,解方程组求得,a b 的值.【详解】(1)设z a bi =+,则(3)()13a bi i a bi i +--=+,即223313a b b ai i +--=+ ∴223133a b b a ⎧+-=⎨-=⎩,解得10a b =-⎧⎨=⎩,或13a b =-⎧⎨=⎩∴1z =-或13i -+; (2)由题知方程在复数集内另一根为32i -,故323262(32)(32)132a i ib i i ⎧-=++-=⎪⎪⎨⎪=+-=⎪⎩, 即12,26a b =-=.【点睛】本小题主要考查复数运算,考查复数相等的概念,属于中档题.23.(1)0;(2)2i -;(3)516;(4)10101010i - 【分析】根据复数的乘除运算法则及乘方运算,即可计算出(1)(2)的值;利用复数模的运算性质可求出(3)的值;利用分组求和及i 的运算性质可求出(4)的值.【详解】 (1) 5566232322(1)(1)(1)(1)[(1)][(1)]11(1)(1)(1)(1)11i i i i i i i i i i i i i i +-+-+-+=+=+-+-++--- 3333(2)(2)44022i i i i -=+=-=. (2)因为21(1)21(1)(1)2i i i i i i i ++===--+,21(1)21(1)(1)2i i i i i i i ---===-++-, 所以20192019201945043201920319111(22221)i i i i i i i i i i ⨯+-=--==+-⎛⎫⎛⎫ ⎪ ⎪-+=⎝⎭=-⎝⎭.545488(43)(1)|(43)(1)|(42)|(42||)|||||i i i i ⋅--==++545454884|43|1||525|42|2516i i -⨯====+⋅⨯. (4) 23201920202320192020i i i i i +++++(234)(5678)(2017201820192020)i i i i i i =--++--+++--+(22)(22)(22)+i i i =-+-+- 505(22)i =⨯-10101010i =-.【点睛】本题主要考查复数的乘除运算,乘方运算,复数的模的运算性质及i 的运算性质,属于中档题.24.3【分析】由题图可知,z 1=3+i ,z 2=1-2i ,z 3=-2+2i ,再求出复数z,再求i 2z +. 【详解】解:由题图可知,z 1=3+i ,z 2=1-2i ,z 3=-2+2i , 则123(3)(12)5222z z i i z z i ⋅+-===--+,∴532222z z +=-++==. 【点睛】本题主要考查复数的几何意义,考查复数的计算和模的求法,意在考查学生对这些知识的理解掌握水平,属于基础题.25.1z =59,i -287.z i =--【分析】明确复数1z ,2z 的实部与虚部,结合加减法的运算规则,即可求出复数z ,从而用,x y 表示出z ,接下来根据复数相等的充要条件列出关于,x y 的方程组求解,即可得出1z ,2z .【详解】∵12z z z =- ()()()()344253x y y x i y x x y i =++---++ ()()342x y y x ⎡⎤=+--⎣⎦ ()()453y x x y i ⎡⎤+-++⎣⎦ ()()534x y x y i =-++. ∴()()534z x y x y i =--+.又∵132z i =+∴531342x y x y -=⎧⎨+=-⎩∴21x y =⎧⎨=-⎩∴()()1321142z i =⨯-+--⨯ 59,i =-∴()()24122523187.z i i ⎡⎤⎡⎤=⨯--⨯-⨯+⨯-=--⎣⎦⎣⎦【点睛】本题主要考查复数代数形式的加减运算、共轭复数的定义以及复数相等的充要条件,属于中档题.复数相等的性质是:若两复数相等则它们的实部与虚部分别对应相等.26.(1)2;(2)①2,②202-.【分析】(1)设,,,0z a bi a b R b =+∈≠,将4z z +化简后结合题设条件可得224a b +=.(2)22z i --=再利用2(1)2i i +=,即可求得200z .【详解】(1)设,,,0z a bi a b R b =+∈≠,则224444a bi z a bi a bi z a bi a b-+=++=++++, 整理得到2222444a b z a b i z a b a b ⎛⎫+=++- ⎪++⎝⎭, 因为4z z+是实数,故2240b b a b -=+, 但0b ≠,故224a b +=,即z 的模为2.(2)由(1)可得42z a z +=,故22a ≤≤1a ≤≤ 又22z i --=它表示圆224a b +=上的点到点()2,2Q 的距离,其最小值为2,当且仅当(),,,O P a b Q共线时取最小值.由2241a b a b a ⎧=⎪+=⎨⎪≤≤⎩可得a b ⎧=⎪⎨=⎪⎩ 故22zi --取最小值时0)z i=+,所以202020102102010200(1)2[(1)]22z i i i =⋅+=⋅+=⋅=-.故202002,2m z ==-.【点睛】本题考查复数的概念、复数的除法运算、复数的几何意义以及特殊复数的指数幂运算,一般地,对于较为复杂的复数问题,我们可以设出复数的实部和虚部,从而将复数问题转化为实数问题来处理,本题属于中档题.。

上海建青实验学校必修第二册第二单元《复数》测试(含答案解析)

一、选择题 1.12i12i+=- A .43i 55--B .43i 55-+C .34i 55--D .34i 55-+2.已知复数z 满足2||230z z --=的复数z 的对应点的轨迹是( ) A .1个圆B .线段C .2个点D .2个圆3.已知12,z z C ∈,121z z ==,12z z +=12z z -=( )A .0B .1C D .24.已知复数z 满足()20161i z i -=(其中i 为虚数单位),则z 的虚部为( )A .12B .12-C .12i D .12i -5.在复平面内,复数1i +与13i +分别对应向量OA 和OB ,其中O 为坐标原点,则AB =( )ABC .2D .46.已知复数()()31z m m i m Z =-+-∈在复平面内对应的点在第二象限,则1z=( )A B .2C .2D .127.在复平面内,O 是原点,,,OA OC AB 对应的复数分别为-2+i ,3+2i, 1+5i ,那么BC 对应的复数为( )A .4+7iB .1+3iC .4-4iD .-1+6i 8.若复数z 满足232,z z i +=-其中i 为虚数单位,则z=A .1+2iB .1-2iC .12i -+D .12i --9.已知复数z 满足33z -=,则4z i -(i 为虚数单位)的取值范围为( )A .[]28,B .3⎤⎦C .[]1,9D .[]3,810.设复数()()2cos sin z a a i θθ=+++(i 为虚数单位).若对任意实数θ,2z ≤,则实数a 的取值范围为( )A .10,5⎡⎤⎢⎥⎣⎦B .[]1,1-C .55⎡-⎢⎣⎦D .11,55⎡⎤-⎢⎥⎣⎦11.已知(,)a bi a b R +∈是11ii+-的共轭复数,则a b +=( )A .1-B .12-C .12D .112.复数z 满足()234(i z i i --=+为虚数单位),则(z = ) A .2i -+B .2i -C .2i --D .2i +二、填空题13.设z 为复数,且1z =,当23413z z z z ++++取得最小值时,则此时复数z =______.14.设为虚数单位,(12)|34|i z i -=+,则复数z 的虚部为________. 15.已知复数1z =,i 为虚数单位,则34z i -+的最小值为_________. 16.已知a 为实数,i 为虚数单位,若复数2(1)(1)z a a i =-++为纯虚数,则20001a i i+=+______. 17.复数3(2) i (,)z x y x y =++-∈R ,且||2z =,则点(,)x y 的轨迹是_____________. 18.已知复数z 满足43(zi i i+=为虚数单位),则z 的共轭复数z =____. 19.若复数 z =21ii-,则3z i + =__________ 20.设复数1(z i i =--虚数单位),z 的共轭复数为z ,则()1z z -⋅=________.三、解答题21.当实数m 取什么值时,复数224(6)Z m m m i =-+--分别满足下列条件? (1)复数Z 实数; (2)复数Z 纯虚数;(3)复平面内,复数Z 对应的点位于直线y x =-上.22.已知复数z 满足|z |=z 的实部、虚部均为整数,且z 在复平面内对应的点位于第四象限. (1)求复数z ;(2)若()22m m n i z --=,求实数m ,n 的值.23.已知复数1z mi =+(i 是虚数单位,m R ∈),且(3)z i ⋅+为纯虚数(z 是z 的共轭复数). (1)设复数121m iz i+=-,求1z ; (2)设复数20172a i z z-=,且复数2z 所对应的点在第一象限,求实数a 的取值范围.24.已知复数12,z z 在平面内对应的点分别为(2,1)A -,(,3)B a ,(a R ∈).(1)若125z z +≤,求a 的值;(2)若复数12·z z 对应的点在二、四象限的角平分线上,求a 的值. 25.已知复数1z mi =+(m R ∈,i 为虚数单位),且()1i z -为实数. (1)求复数z ;(2)设复数1z x yi =+(x ,y R ∈)满足11z z -=,求1z 的最小值. 26.若z C ∈,i 为虚数单位,且|22|1z i +-=,求|22|z i --的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】分析:根据复数除法法则化简复数,即得结果.详解:212(12)341255i i ii ++-+==∴-选D.点睛:本题考查复数除法法则,考查学生基本运算能力.2.A解析:A 【详解】因为2||230z z --=,所以3z =,3z = (负舍)因此复数z 的对应点的轨迹是以原点为圆心以3为半径的圆,选A.3.B解析:B 【分析】利用复数加法、减法和模的运算化简已知条件,由此求得12z z -. 【详解】设12,z a bi z c di =+=+,则()()12z z a c b d i +=+++,()()12z z a c b d i -=-+-. 依题意得:22221,1a b c d +=+=,12z z +=⇒()()223a c b d +++=⇒()222223a b c d ac bd +++++=⇒()21ac bd +=.所以12z z -==1==.故选:B 【点睛】本小题主要考查复数运算,属于中档题.4.B解析:B 【分析】 根据题意求出1122z i =+,即可得到z ,得出虚部. 【详解】20164504=⨯,201641i i ∴==.111122z i i ∴==+-,1122z i ∴=-,z ∴的虚部为12-.故选:B. 【点睛】此题考查复数的运算和概念辨析,易错点在于没能弄清虚部的概念导致选错.5.C解析:C 【分析】利用复数的几何意义、向量的模长公式和坐标运算,即可求解,得到答案. 【详解】因为复数1i +与13i +分别对应向量OA 和OB , 所以向量(1,1)OA =和(1,3)OB =, 所以(0,2)AB OB OA =-=,则202AB AB ===,故选C . 【点睛】本题主要考查了复数的几何意义、向量的模长计算和坐标运算,着重考查了推理能力和计算能力,属于基础题.6.C解析:C 【解析】分析:由题意得到关于m 的不等式组,求解不等式组确定m 的范围,然后结合题意即可求得最终结果.详解:由题意可得:3010x m m Z -<⎧⎪->⎨⎪∈⎩,即13m <<且m Z ∈,故2m =,则:1z i =-+,由复数的性质11z z ===本题选择C 选项.点睛:本题主要考查复数的运算法则,复数的综合运算等知识,意在考查学生的转化能力和计算求解能力.7.C解析:C 【解析】BC BA AO OC AB OA OC =++=--+15(2)3244i i i i =----+++=-,选C.8.B解析:B 【解析】试题分析:设i z b a =+,则23i 32i z z a b +=+=-,故,则12i z =-,选B.【考点】注意共轭复数的概念【名师点睛】本题主要考查复数的运算及复数的概念,是一道基础题目.从历年高考题目看,复数题目往往不难,有时对复数的运算与概念、复数的几何意义等进行综合考查,也是考生必定得分的题目之一.9.A解析:A 【分析】利用复数模长的三角不等式可求得4z i -的取值范围. 【详解】()()4334z i z i -=-+-,由复数模长的三角不等式可得()()334334334z i z i z i ---≤-+-≤-+-, 即35435z i -≤-≤+,即248z i ≤-≤, 因此,4z i -的取值范围是[]28,. 故选:A. 【点睛】本题考查复数模长的取值范围的计算,考查三角不等式的应用,考查计算能力,属于中等题.10.C解析:C 【分析】由1212z z z z +≤+可知()()cos sin 2cos sin 2i a ai i a ai θθθθ+++≤+++,令max2z≤,即可求出a 的范围.【详解】因为对任意θ,2z ≤,则max2z≤,()()cos sin 2cos sin 21z i a ai i a ai θθθθ=+++≤+++=,12∴≤,解得a ≤≤故选:C. 【点睛】本题考查向量模的大小关系,以及不等式的恒成立问题,属于中档题.11.A解析:A 【解析】 【分析】先利用复数的除法运算法则求出11ii+-的值,再利用共轭复数的定义求出a +bi ,从而确定a ,b 的值,求出a +b . 【详解】()()21(1)21112i i ii i i ++===-+-i , ∴a +bi =﹣i , ∴a =0,b =﹣1, ∴a +b =﹣1, 故选:A . 【点睛】本题主要考查了复数代数形式的乘除运算,考查了共轭复数的概念,是基础题.12.C解析:C 【解析】 【分析】把已知等式变形,再由复数代数形式的乘除运算化简得答案. 【详解】由()2345i z i --=+=,得()()()5252222i z i i i i -+===-+-----+, 2z i ∴=--. 故选C . 【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.二、填空题13.【分析】设复数的辐角为将用表示出来再利用二倍角公式二次函数性质求最小值可得与的值即可得复数【详解】设复数的辐角为所以所以故答案为:【点睛】本题主要考查了复数的三角形形式涉及三角恒等变换及二次函数性质解析:14-±【分析】设复数z 的辐角为θ,将23413z z z z ++++用θ表示出来,再利用二倍角公式,二次函数性质求最小值,可得cos θ与sin θ的值,即可得复数z . 【详解】设复数z 的辐角为θ,23413z z z z ++++==2cos22cos 3θθ=++ 24cos 2cos 1θθ=++ 21334cos 444θ⎛⎫=++≥ ⎪⎝⎭所以1cos 4θ=-,sin θ= 所以144z=-±, 故答案为:144i -± 【点睛】本题主要考查了复数的三角形形式,涉及三角恒等变换及二次函数性质,属于中档题.14.2【分析】首先将题中所给的式子进行化简求得从而得到其虚部的值【详解】根据可得所以所以复数的虚部为故答案为:2【点睛】该题考查的是有关复数的问题涉及到的知识点有复数的除法运算复数的模复数的虚部属于简单解析:2 【分析】首先将题中所给的式子进行化简,求得12z i =+,从而得到其虚部的值. 【详解】根据(12)|34|i z i -=+,可得(12)5i z -==, 所以2255(12)12121(2)i z i i +===+-+-, 所以复数z 的虚部为2,故答案为:2. 【点睛】该题考查的是有关复数的问题,涉及到的知识点有复数的除法运算,复数的模,复数的虚部,属于简单题目.15.4【分析】利用复数的几何意义转化求解即可【详解】解:复数z 满足为虚数单位复数z 表示:复平面上的点到(00)的距离为1的圆的几何意义是圆上的点与的距离所以其最小值为:故答案为:4【点睛】本题考查复数的解析:4 【分析】利用复数的几何意义,转化求解即可. 【详解】解:复数z 满足1z =,i 为虚数单位, 复数z 表示:复平面上的点到(0,0)的距离为1的圆.34z i -+的几何意义是圆上的点与()34-,的距离,14-= . 故答案为:4. 【点睛】本题考查复数的几何意义,复数的模的求法,考查转化思想以及计算能力,属于中档题.16.【分析】利用纯虚数的定义复数的运算法则即可求出【详解】解:为纯虚数且解得故答案为:【点睛】本题考查了复数的运算法则纯虚数的定义考查了推理能力与计算能力属于基础题 解析:1i -【分析】利用纯虚数的定义、复数的运算法则即可求出. 【详解】 解:2(1)(1)z a a i =-++为纯虚数,210a ∴-=,且10a +≠,解得1a =20001112(1)111(1)(1)i i i i i i i ++-∴===-+++-.故答案为:1i -. 【点睛】本题考查了复数的运算法则、纯虚数的定义,考查了推理能力与计算能力,属于基础题.17.以为圆心2为半径的圆【分析】根据复数模的定义确定复数对应点满足条件化简即得轨迹【详解】解:∵∴即点的轨迹是以为圆心2为半径的圆故答案为:以为圆心2为半径的圆【点睛】本题考查复数模的定义以及圆的方程含解析:以(3,2)-为圆心,2为半径的圆 【分析】根据复数模的定义确定复数对应点满足条件,化简即得轨迹. 【详解】解:∵||2z =,∴22(3)(2)4x y ++-=,即点(,)x y 的轨迹是以(3,2)-为圆心,2为半径的圆. 故答案为:以(3,2)-为圆心,2为半径的圆 【点睛】本题考查复数模的定义以及圆的方程含义,考查基本分析求解能力,属基础题.18.【分析】利用复数的运算法则共轭复数的定义即可得出结果【详解】由可得即所以故答案是:【点睛】该题考查的是有关复数的问题涉及到的知识点有复数的运算法则以及共轭复数的概念属于简单题目 解析:34i -+【分析】利用复数的运算法则、共轭复数的定义即可得出结果. 【详解】 由43z i i +=可得34zi i=-,即23434z i i i =-=--, 所以34z i =-+, 故答案是:34i -+. 【点睛】该题考查的是有关复数的问题,涉及到的知识点有复数的运算法则以及共轭复数的概念,属于简单题目.19.【解析】分析:先化简复数z 再求再求 的值详解:由题得所以故答案为:点睛:(1)本题主要考查复数的运算共轭复数和复数的模的计算意在考查学生对这些知识的掌握水平和基本的运算能力(2)复数的共轭复数【解析】分析:先化简复数z,再求3z i +,再求3z i + 的值. 详解:由题得2i 2i(1i)22i1i 1i (1i)(1i)2z +-+====-+--+,所以31312,3z i i i i z i +=--+=-+∴+==点睛:(1)本题主要考查复数的运算、共轭复数和复数的模的计算,意在考查学生对这些知识的掌握水平和基本的运算能力.(2) 复数(,)z a bi a b R =+∈的共轭复数,z a bi =-||z =20.【解析】分析:由可得代入利用复数乘法运算法则整理后直接利用求模公式求解即可详解:因为所以故答案为点睛:本题主要考查的是共轭复数的概念与运算以及复数的乘法的运算属于中档题解题时一定要注意和【解析】分析:由1i z =--,可得1i z =-+,代入()1z z -⋅,利用复数乘法运算法则整理后,直接利用求模公式求解即可.详解:因为1i z =--,所以1i z =-+,()()()()()111121z z i i i i ∴-⋅=++⋅-+=+⋅-+3i =-+==.点睛:本题主要考查的是共轭复数的概念与运算以及复数的乘法的运算,属于中档题.解题时一定要注意21i =-和()()()()a bi c di ac bd ad bc i ++=-++三、解答题21.(1)2m =-或3m =;(2)2m =;(3)2m =-或52m =. 【分析】(1)由虚部为0,求解m 值;(2)由实部为0且虚部不为0,列式求解m 值; (3)由实部与虚部的和为0,列式求解m 值. 【详解】解:由题可知,复数224(6)Z m m m i =-+--, (1)当Z 为实数时,则虚部为0,由260m m --=,解得:2m =-或3m =; (2)当Z 纯虚数时,实部为0且虚部不为0,由224060m m m ⎧-=⎨--≠⎩,解得:2m =;(3)当Z 对应的点位于直线y x =-上时,则0x y +=,即:实部与虚部的和为0,由224(6)0m m m -+--=,解得:2m =-或52m =. 【点睛】本题考查复数的基本概念,以及复数的代数表示法及其几何意义,属于基础题. 22.(1) 12z i =-或2i z =-. (2) 3m =±,5n =. 【分析】(1)利用已知条件,设出复数z ,通过225(,)a b a b +=∈Z 及所对点所在位置求出即可复数z ;(2)利用(1),结合复数的乘法运算求解m ,n 的值【详解】(1)设(,)z a bi a b =+∈Z ,则225(,)a b a b +=∈Z ,因为z 在复平面内对应的点位于第四象限,所以0a >,0b <,所以12a b =⎧⎨=-⎩或21a b =⎧⎨=-⎩, 所以12z i =-或2i z =-.(2)由(1)知12z i =-或2i z =-,当12z i =-时,234z i =--;当2i z =-时234z i =-.因为()22m m n i z --=,所以234m m n =±⎧⎨-=⎩,解得3m =±,5n =. 【点睛】本题考查复数的模长公式,考查复数的乘法运算,考查计算能力,是基础题23.(1)12z =;(2)13a > 【分析】(1)先根据条件得到13z i =-,进而得到15122z i =--,由复数的模的求法得到结果;(2)由第一问得到2(3)(31)10a a i z ++-=,根据复数对应的点在第一象限得到不等式30310a a +>⎧⎨->⎩,进而求解. 【详解】∵1z mi =+,∴1z mi =-.∴(3)(1)(3)(3)(13)z i mi i m m i ⋅+=-+=++-.又∵(3)z i ⋅+为纯虚数,∴30130m m +=⎧⎨-≠⎩,解得3m =-.∴13z i =-.(1)13251122i z i i -+==---,∴1z = (2)∵13z i =-,∴2(3)(31)1310a i a a i z i -++-==-, 又∵复数2z 所对应的点在第一象限,∴30310a a +>⎧⎨->⎩,解得:13a >. 【点睛】如果Z 是复平面内表示复数z a bi =+(),a b ∈R 的点,则①当0a >,0b >时,点Z 位于第一象限;当0a <,0b >时,点Z 位于第二象限;当0a <,0b <时,点Z 位于第三象限;当0a >,0b <时,点Z 位于第四象限;②当0b >时,点Z 位于实轴上方的半平面内;当0b <时,点Z 位于实轴下方的半平面内.24.(1)15a -≤≤;(2)1a =-.【解析】分析:(1)由已知复数12,z z 在平面内对应的点分别为()2,1A -,(),3B a ,写出复数12z z ,的代数形式,通过复数的模125z z +≤,列出不等式即可求出a 的范围; (2)利用复数的运算法则和几何意义即可得出结果.详解:1)由题意可知12z i =-+,23z a i =+∴()1224z z a i +=-+ ∴()2212216z z a +=-+ ∴()221625a -+≤即()()510a a -+≤ ∴15a -≤≤ 由12z i =-- ∴()()()()12·23326z z i a i a a i =--+=--+ 由12·z z z =对应的点在二、四象限的角分线上可知()()3260a a --+=∴1a =-点睛:本题考查了复数的几何意义和模的计算公式、复数的运算法则,先由已知复数12,z z 在平面内对应的点分别为()2,1A -,(),3B a ,写出复数12z i =-+,23z a i =+求出a 的范围,再借助12·z z 的积,然后运用题设建立方程求解.25.(1)1z i ∴=+;(21【分析】(1)设复数1z mi =+,化简()1i z -, 由复数的相等求解.(2) 设1z x yi =+(x ,y R ∈),由11z z -=得()()11x yi i +--=,可得,x y 的关系,从而解出答案.【详解】解:(1)由1z mi =+(m R ∈),得()()()()()11111i z i mi m m i -=-+=++-,()1i z -为实数,10m ∴-=,1m ∴=.1z i ∴=+(2)设1z x yi =+(x ,y R ∈),1z i =-, 11z z -=,()()11x yi i ∴+--=,即()()111x y i -++=,()()22111x y ∴-++=,即复数1z 在复平面内对应的点的轨迹是以()1,1-为圆心,以1为半径的圆. 1z ∴的最小值为()2211121+--=-.【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,考查复数的代数表示法及其几何意义,是基础题.26.3【分析】根据|22|1z i +-=,结合复数减法的模的几何意义,判断出z 对应点的轨迹,再根据复数减法的模的几何意义,结合圆的几何性质,求得|22|z i --的最小值.【详解】由|22|1z i +-=得|(22)|1z i --+=,因此复数z 对应的点Z 在以022z i =-+对应的点0Z 为圆心,1为半径的圆上,如图所示.设|22|y z i =--,则y 是Z 点到22i +对应的点A 的距离.又04AZ =,∴由图知min 0||13y AZ =-=.【点睛】本小题主要考查复数减法的模的几何意义,考查数形结合的数学思想方法,属于基础题.。

上海南洋模范初级中学必修第二册第二单元《复数》测试题(含答案解析)

一、选择题1.已知复数z 满足()20161i z i-=(其中i 为虚数单位),则z 的虚部为( ) A .12 B .12- C .12i D .12i - 2.213(1)i i +=+( ) A .3122i - B .3122i + C .3122i -- D .3122i -+ 3.已知复数23i -是方程220x px q ++=的一个根,则实数p ,q 的值分别是( ) A .12,26 B .24,26 C .12,0 D .6,84.“1x >”是“复数2(1)()z x x x i x R =-+-∈在复平面内对应的点在第一象限”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.设复数z 满足()13i z i +=+,则z =( )A B .2 C .D 6.已知集合,()(){}221,3156M m m m m i =--+--,{}1,3N =,{}1,3M N ⋂=,则实数m 的值为 ( )A .4B .-1C .4或-1D .1或6 7.若C z ∈,且22i 1z +-=,则22i z --的最小值是( )A .2B .3C .4D .58.已知复数z 满足33z -=,则4z i -(i 为虚数单位)的取值范围为( )A .[]28,B .3⎤⎦C .[]1,9D .[]3,8 9.已知复数1z i =-(i 为虚数单位)是关于x 的方程20x px q ++=(p ,q 为实数)的一个根,则p q +的值为( )A .4B .2C .0D .2-10.欧拉公式cos sin ix e x i x =+(i 为虚数单位)是由著名数学家欧拉发明的,他将指数函数定义域扩大到复数,建立了三角函数和指数函数的关系,根据欧拉公式,若将2i e π表示的复数记为z ,则(12)z i +的值为( )A .2i -+B .2i --C .2i +D .2i - 11.下列命题中,正确的命题是( )A .若1212,0z z C z z ∈->、,则12z z >B .若z R ∈,则2||z z z ⋅=不成立C .1212,,0z z C z z ∈⋅=,则10z =或20z =D .221212,0z z C z z ∈+=、,则10z =且20z =12.已知复数z 满足|z |=1,则|z +1-2i |的最小值为( )A .51-B .5C .3D .2 二、填空题 13.i 是虚数单位,若84i z z +=+,则z =___________.14.已知(1,1)OP =,将OP 按逆时针方向旋转3π得到OZ ,则Z 点对应的复数为________.15.设复数z ,满足11z =,22z =,123z z i +=-,则12z z -=____________. 16.计算121009100(23)(13)(123)i z i i -+=+=-++_______. 17.已知1cos z isin αα=+,2cos z isin ββ=-,α,β为实数,i 为虚数单位,且125121313z z i -=+,则cos()αβ+的值为_______. 18.已知复数(,是虚数单位)的对应点在第四象限,且,那么点在平面上形成的区域面积等于____19.已知i 为虚数单位,则(1)(23i)(32i)-+-+=________________;(2)(4i)(23i)+--+=________________;(3)已知复数13i z b =-,22i z a =-+,其中a ,b R ∈,若复数12z z z =+,且复数z 对应的点在第三象限,则+a b 的取值范围为________________;(4)在复平面内,复数1z 对应的点为(2,2)-,复数2z 对应的点为(1,1)-,若复数21z z z =-,则复数z 对应的点在第________________象限.20.定义运算a c ad bcb d =-,复数z 满足i 1i 1i z =+,z 为z 的共轭复数,则z =___________. 三、解答题21.实数m 取什么值时,复数22(56)(215)z m m m m i =+++--(1)与复数212i -相等(2) 与复数1216i +互为共轭复数(3)对应的点在x 轴上方.22.设m R ∈,复数22(56)(3)m m m m i -++-(i 为虚数单位)是纯虚数.(1)求m 的值;(2)若2mi -+是方程20x px q ++=的一个根,求实数p ,q 的值.23.已知复数()12251z a i a =+--,()223105z a i a =+-+,其中a 为实数,i 为虚数单位.(1)若复数1z 在复平面内对应的点在第三象限,求a 的取值范围;(2)若21z z +是实数(2z 是2z 的共扼复数),求1z 的值.24.已知复数z 满足|3+4i|+z=1+3i.(1)求z ; (2)求()()2134i i z++的值. 25.设复数12,z z 满足12122210z z iz iz +-+=.(1)若12,z z 满足212z z i -=,求12,z z .(2)若1z =k ,使得等式24z i k -=恒成立?若存在,试求出k 的值;若不存在,请说明理由.26.已知方程2320(,)x px q p q R -+=∈的两个根分别为,αβ.(1)若2i α=-,求,p q 的值;(2)若3p =,且||1αβ-=,求q 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】 根据题意求出1122z i =+,即可得到z ,得出虚部. 【详解】 20164504=⨯,201641i i ∴==.111122z i i ∴==+-,1122z i ∴=-,z ∴的虚部为12-.故选:B. 【点睛】此题考查复数的运算和概念辨析,易错点在于没能弄清虚部的概念导致选错.2.A解析:A【分析】首先计算2(1)i +,之后应用复数的除法运算法则,求得结果.【详解】 ()21313312221ii i i i ++==-+, 故选A.【点睛】该题考查的是有关复数的运算,属于简单题目.3.A解析:A【分析】复数23i -是方程的根,代入方程,整理后利用复数的相等即可求出p,q 的值.【详解】因为23i -是方程220x px q ++=的一个根,所以22(23)(23)0i p i q -+-+=, 即(224)3100p i p q --++=,所以22403100p p q -=⎧⎨-++=⎩,解得12,26p q ==,故选A. 【点睛】本题主要考查了复数方程及复数相等的概念,属于中档题.4.C解析:C【分析】根据充分必要条件的定义结合复数与复平面内点的对应关系,从而得到答案.【详解】若复数()()21z x x x i x R =-+-∈在复平面内对应的点在第一象限,则20,10x x x ⎧->⎨->⎩ 解得1x >,故“1x >”是“复数()()21z x x x i x R =-+-∈在复平面内对应的点在第一象限”的充要条件.故选C.【点睛】本题考查了充分必要条件,考查了复数的与复平面内点的对应关系,是一道基础题. 5.D解析:D【解析】分析:先根据复数除法得z ,再根据复数的模求结果.详解:因为()13i z i +=+,所以31(3)(1)212i z i i i i +==+-=-+,因此z =选D.点睛:首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如()()()(),(,,.)++=-++∈a bi c di ac bd ad bc i a b c d R . 其次要熟悉复数相关基本概念,如复数(,)a bi a b R +∈的实部为a 、虚部为b (,)a b 、共轭为.-a bi6.B解析:B【分析】根据交集的定义可得()()2231563m m m m i --+--=,由复数相等的性质列方程求解即可.【详解】因为()(){}221,3156M m m m m i =--+--,{}1,3N =,{}1,3M N ⋂=, 所以()()2231563m m m m i --+--=, 可得223131560m m m m m ⎧--=⇒=-⎨--=⎩,故选B. 【点睛】复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算.7.B解析:B【分析】由复数的模的几何意义,可得z 在复平面的轨迹是以()2,2-为圆心,以1为半径的圆,根据圆的几何性质可得结果.【详解】设i z x y =+(),x y ∈R ,则()22i 22i 1z x y +-=++-=,所以()()22221x y ++-=,表示圆心为()2,2-,半径为1r =的圆.()()22i 22i z x y --=-+-=,表示点(),x y 和()2,2之间的距离, 故()min 22i 22413z r --=---=-=.故选:B.【点睛】本题考查复数的模的几何意义,考查圆的性质,考查学生的计算求解能力,属于中档题.8.A解析:A【分析】 利用复数模长的三角不等式可求得4z i -的取值范围.【详解】()()4334z i z i -=-+-, 由复数模长的三角不等式可得()()334334334z i z i z i ---≤-+-≤-+-, 即35435z i -≤-≤+,即248z i ≤-≤,因此,4z i -的取值范围是[]28,.故选:A.【点睛】本题考查复数模长的取值范围的计算,考查三角不等式的应用,考查计算能力,属于中等题.9.C解析:C【分析】根据实系数一元二次方程的根与系数的关系,求出p ,q 即可求解.【详解】因为复数1z i =-(i 为虚数单位)是关于x 的方程20x px q ++=(p ,q 为实数)的一个根,所以1z i =+也是方程的一个根,故z z p z z q +=-⎧⎨⋅=⎩,即22p q =-⎧⎨=⎩, 所以0p q +=,故选:C 【点睛】 本题主要考查了实系数一元二次方程的根,根与系数的关系,属于中档题.10.A解析:A【分析】根据欧拉公式求出2cossin 22iz e i i πππ==+=,再计算(12)z i +的值. 【详解】∵2cos sin 22i z e i i πππ==+=,∴(12)(12)2z i i i i +=+=-+.故选:A.【点睛】此题考查复数的基本运算,关键在于根据题意求出z .11.C解析:C【分析】A .根据复数虚部相同,实部不同时,举例可判断结论是否正确;B .根据实数的共轭复数还是其本身判断2||z z z ⋅=是否成立;C .根据复数乘法的运算法则可知是否正确;D .考虑特殊情况:12,1z i z ==,由此判断是否正确.【详解】A .当122,1i z z i =+=+时,1210z z -=>,此时12,z z 无法比较大小,故错误;B .当0z =时,0z z ==,所以20z z z ⋅==,所以此时2||z zz ⋅=成立,故错误;C .根据复数乘法的运算法则可知:10z =或20z =,故正确;D .当12,1z i z ==时,2212110z z +=-+=,此时10z ≠且20z ≠,故错误. 故选:C.【点睛】本题考查复数的概念以及复数的运算性质的综合,难度一般.(1)注意实数集是复数集的子集,因此实数是复数;(2)若z C ∈,则有2z z z ⋅=. 12.A解析:A【分析】 根据1z =分析出z 在复平面内的轨迹方程,再根据12z i +-的几何意义以及圆外一点到圆上点的距离最小值求法求解出结果.【详解】因为|||i |1z x y =+==,所以221x y +=,即z 在复平面内表示圆O :221x y +=上的点;又|12i ||(1)(2)i |z x y +-=++-,所以|12i |z +-表示圆O 上的动点到定点(12)A -,的距离,所以min |12i |z +-为||1OA r -=,故选:A .【点睛】 关键点点睛:解答本题的关键是理解1z =对应的轨迹方程以及掌握12z i +-的几何意义,将复数模的最值问题转化为点到点的距离最值问题.二、填空题13.【分析】先设复数再求得最后利用复数相等即可求得【详解】解:设复数则所以所以根据复数相等得:解得所以故答案为:【点睛】本题考查复数的相等概念共轭复数复数的模等是基础题解析:34i +【分析】先设复数(),,z a bi a b R =+∈,再求得z =. 【详解】解:设复数(),,z a bi a b R =+∈,则z a bi =-=所以84z a bi i z =+=++,所以根据复数相等得:84a b ⎧⎪+=⎨=⎪⎩,解得34a b =⎧⎨=⎩, 所以34z i =+,故答案为:34i +【点睛】本题考查复数的相等概念,共轭复数,复数的模等,是基础题.14.【分析】写出P 点对应的复数为根据复数乘法的几何意义可写出Z 点对应的复数【详解】解:由题意得P 点对应的复数为由复数乘法的几何意义得:故填故答案为:【点睛】本题主要考查复数三角形式的几何意义属于基础题【分析】写出P 点对应的复数为1i +,根据复数乘法的几何意义可写出Z 点对应的复数.【详解】解:由题意得,P 点对应的复数为1i +,由复数乘法的几何意义得:11(1)cos sin 3322z i i ππ+⎛⎫=+⋅+=+ ⎪⎝⎭,.. 【点睛】本题主要考查复数三角形式的几何意义,属于基础题.15.【分析】根据复数的几何意义得到对应向量的表示再结合向量的平行四边形法则以及余弦定理求解出的值【详解】设在复平面中对应的向量为对应的向量为如下图所示:因为所以所以又因为所以所以所以又故答案为:【点睛】解析:6【分析】根据复数的几何意义得到对应向量的表示,再结合向量的平行四边形法则以及余弦定理求解出12z z-的值.【详解】设12,z z在复平面中对应的向量为12,OZ OZ,12z z+对应的向量为3OZ,如下图所示:因为123z z i+,所以12312z z=+=+,所以222131221cos1224OZ Z+-∠==⨯⨯,又因为1312180OZ Z Z OZ∠+∠=︒,所以12131cos cos4Z OZ OZ Z∠=-∠=-,所以222211212122cos1416Z Z OZ OZ OZ OZ Z OZ=+-⋅⋅∠=++=,所以216Z Z=,又12216z z Z Z-==,6.【点睛】结论点睛:复数的几何意义:(1)复数(),z a bi a b R=+∈←−−−→一一对应复平面内的点()(),,Z a b a b R∈;(2)复数(),z a bi a b R=+∈←−−−→一一对应平面向量OZ.16.-511【分析】利用复数的运算公式化简求值【详解】原式故答案为:【点睛】思路点睛:本题考查复数的次幂的运算注意以及等公式化简求值解析:-511【分析】利用复数的运算公式,化简求值.【详解】原式121210036910010099923)121511()13[(23)]132()()ii ii i=+=+=-+=---⨯-⨯-+-+.故答案为:511-【点睛】思路点睛:本题考查复数的n 次幂的运算,注意31312i ⎛⎫-+= ⎪ ⎪⎝⎭,()212i i +=, 以及()()612211i i ⎡⎤+=+⎣⎦,等公式化简求值. 17.【分析】根据复数减法和复数相等的条件列方程组结合两角和的余弦公式化简求得的值【详解】得即故答案为:【点睛】本小题主要考查复数减法和复数相等的条件考查两角和的余弦公式考查化归与转化的数学思想方法属于基解析:12【分析】根据复数减法和复数相等的条件列方程组,结合两角和的余弦公式,化简求得cos()αβ+的值.【详解】1cos sin z i αα=+,2cos sin z i ββ=-,12512(cos cos )(sin sin )1313z z i i αβαβ∴-=-++=+,5cos cos ,1312sin sin ,13αβαβ⎧-=⎪⎪∴⎨⎪+=⎪⎩①② 22+①②,得22cos()1αβ-+=,即1cos()2αβ+=. 故答案为:12【点睛】 本小题主要考查复数减法和复数相等的条件,考查两角和的余弦公式,考查化归与转化的数学思想方法,属于基础题.18.π【分析】先把复数分母有理化再根据z 在第四象限和|z|≤2可得关于xy 的不等式组进而可得点P 在平面上形成的区域面积【详解】由题得z=x+yi1+i=x+y+(y-x)i2z 在第四象限则有x+y2>0解析:【分析】先把复数分母有理化,再根据z 在第四象限和,可得关于x ,y 的不等式组,进而可得点P 在平面上形成的区域面积.【详解】由题得,z 在第四象限,则有,整理得,由得,化简得,则点在不等式组所表示的平面区域内,如图阴影部分: 则其面积.【点睛】本题考查复数的运算和复数的模,与线性规划相结合,有一定综合性.19.四【分析】(1)利用复数的加法法则计算即可;(2)利用复数的减法法则计算即可;(3)由题意可得则且据此可得的取值范围(4)由题意可得结合可得据此确定其所在的象限即可【详解】(1)(2)(3)因为所以解析:1i --62i -(,5)-∞四【分析】(1)利用复数的加法法则计算()()2332i i -+-+即可;(2)利用复数的减法法则计算()()423i i +--+即可;(3)由题意可得12(2)(3)i z z b a z =+=-+-,则2b <且3a <,据此可得+a b 的取值范围.(4)由题意可得122i z =-+,21z i =-,结合21z z z =-可得33z i =-,据此确定其所在的象限即可.【详解】(1)()()(23)(32)23321i i i i i -+-+=-+-+=--.(2)()()(4)(23)42362i i i i i +--+=++-=-.(3)因为13i z b =-,22i z a =-+,所以12(2)(3)i z z b a z =+=-+-,又复数z 对应的点在第三象限,所以2030b a -<⎧⎨-<⎩,所以2b <且3a <, 所以5a b +<,故+a b 的取值范围为(,5)-∞.(4)因为复数1z 对应的点为(2,2)-,复数2z 对应的点为(1,1)-,所以122i z =-+,21z i =-,又复数21z z z =-,所以1i (22i)33i z =---+=-,所以复数z 对应的点为(3,3)-,在第四象限【点睛】本题主要考查复数的加法、减法运算,复数所在象限的判定等知识,意在考查学生的转化能力和计算求解能力.20.2+i 【解析】根据题意得到=故得到z=2-i =2+i 故答案为2+i解析:2+i【解析】 根据题意得到1z i zi i i =-=1i +,故得到z=2-i ,z =2+i.故答案为2+i.三、解答题21.(1)m =-1(2)m =1(3)m<-3或m>5.【解析】解:(1)根据复数相等的充要条件得22562{21512m m m m ++=--=-解得m =-1. (2)根据共轭复数的定义得225612{21516m m m m ++=--=-解得m =1. (3)根据复数z 的对应点在x 轴的上方可得m 2-2m -15>0,解得m<-3或m>5. 22.(1)2.(2)4p =,8q =.【分析】(1)根据纯虚数的定义求出m 的值即可;(2)将2mi -+代入方程20x px q ++=,得到关于p ,q 的方程组,解出即可.【详解】(1)复数22(56)(3)m m m m i -++-是纯虚数,2256030m m m m ⎧-+=∴⎨-≠⎩ 解得:2?30?3m m m m ==⎧⎨≠≠⎩或且 2m ∴=(2) 2mi -+是方程20x px q ++=的一个根由(1)可得2m =,即:22i -+是方程20x px q ++=的一个根2(22)(22)0i p i q ∴-++-++=即(2)(28)0p q p i -++-=20280p q p -+=⎧∴⎨-=⎩解得:4p =,8q =.【点睛】本题解题关键是掌握纯虚数定义和复数相等求参数方法,考查了分析能力和计算能力,属于中档题.23.(1)51,2⎛⎫ ⎪⎝⎭;(2)1z =【分析】(1)根据复数1z 对应点所在的象限得出关于实数a 的不等式组,解出即可; (2)根据12z z +是实数,得出该复数的虚部为零,可求出实数a 的值,再利用复数的模长公式可计算出1z 的值.【详解】 (1)复数1z 在复平面内对应的点在第三象限,则201250a a ⎧<⎪-⎨⎪-<⎩,解得152a a >⎧⎪⎨<⎪⎩,即512a <<.故实数a 的取值范围是51,2⎛⎫ ⎪⎝⎭; (2)()223105z a i a =+-+,()223105a i a z =--+∴, ()()()2212233225102151551z z a i a i a a i a a a a∴+=+-+--=+++--++-. 12z z +是实数,2215015a a a a ⎧+-=⎪∴≠⎨⎪≠-⎩,解得3a =,()122511z a i i a∴=+-=-+-,12z ∴=. 【点睛】本题考查利用复数的几何意义、复数的概念求参数,同时也考查了复数模长的计算,考查计算能力,属于中等题.24.(1)43i --;(2)2【分析】(1)先求出为34i 5+= ,即可求出z ,再根据共轭复数的定义即可求出z ;(2)根据复数的运算法则计算即可得出结论.【详解】(1)因为|3+4i|=5,所以z=1+3i-5=-4+3i,所以=-4-3i.(2)===2. 【点睛】复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.25.(1)123,5z i z i ==-或12,z i z i =-=-. (2)存在,33k =【分析】(1)由条件可得211230z iz --=,设1z a bi =+,即可算出(2)由条件得212212iz z z i -=+,然后222132iz z i -=+22427z i -= 【详解】(1)由212z z i -=,可得212z z i =-,代入已知方程得()()1111222210z z i iz i z i -+--+=,即211230z iz --=.令()1,z a bi a b =+∈R , 所以()22230a b i a bi +---=, 即()222320a b b ai +---=, 所以2223020a b b a ⎧+--=⎨-=⎩,解得03a b =⎧⎨=⎩或01a b =⎧⎨=-⎩. 所以123,5z i z i ==-或12,z i z i =-=-.(2)由已知得212212iz z z i-=+,又13z =所以22212iz z i-=+22222132iz z i -=+, 所以()()()()22222121322iz iz z i z i ---=+-,整理得()()224427z i z i -+=,所以22427z i -=,即24z i -=,所以存在常数k =,使得等式24z i k -=恒成立.【点睛】设()1,z a bi a b =+∈R ,利用复数相等和相关性质将复数问题实数化是解决复数问题的常用方法.26.(1)6,15p q ==;(2)94q =或154q =. 【分析】(1)由实系数一元二次方程两虚数根互为共轭虚数,结合根与系数关系即可求出,p q 的值; (2)对方程是否为实数根进行分类讨论,然后再利用韦达定理和模长公式即可得出结果.【详解】(1)方程2320(,)x px q p q R -+=∈的两个根分别为,αβ, 2i α=-,则2i β=+,由根与系数关系可得,24,63p p αβ+==∴=,5,153q q αβ==∴= 6,15p q ∴==; (2)3612,2,3q q αβαβ∆=-+==当0,3,,q αβ∆≥≤为实数根,1αβ-===,解得94q =; 当0,3,,q αβ∆<>1αβ-==,解得154q =. 94q ∴=或154q = 【点睛】本题考查实系数一元二次方程根的分类讨论,根的特征,以及根与系数的关系,考查计算能力,属于中档题.。

上海七宝第二中学必修第二册第二单元《复数》测试卷(含答案解析)

一、选择题1.已知复数z 满足2||230z z --=的复数z 的对应点的轨迹是( ) A .1个圆 B .线段 C .2个点 D .2个圆2.已知12,z z C ∈,121z z ==,12z z +=12z z -=( )A .0B .1CD .2 3.欧拉公式e i x =cos x +isin x (i 为虚数单位)是由瑞士著名数学家欧拉发明的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里非常重要,被誉为“数学中的天桥”.根据欧拉公式可知,e 2i 表示的复数在复平面中对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 4.“1x >”是“复数2(1)()z x x x i x R =-+-∈在复平面内对应的点在第一象限”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.已知复数122z =--,则z z +=( )A .122i --B .122-+C .122i +D .122- 6.已知复数1z ﹑2z 满足()120z z r r -=>,复数,*(1)i i n n N ω≤≤∈满足1i z r ω-=或者2i z r ω-=,且i j r ωω-≥对任意1i j n ≤<≤成立,则正整数n 的最大值为( )A .6B .8C .10D .127.已知复数z 满足33z -=,则4z i -(i 为虚数单位)的取值范围为( )A .[]28,B .3⎤⎦C .[]1,9D .[]3,8 8.已知复数 1cos isin z αα=+ 和复数2cos isin z ββ=+,则复数12z z ⋅的实部是( ) A .()sin αβ-B .()sin αβ+C .()cos αβ-D .()cos αβ+ 9.已知复数z 满足()211i i z +=-(i 为虚数单位),则复数z =( ) A .1i + B .1i -+C .1i -D .1i -- 10.在复平面内,复数201812z i i =++对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限 11.已知复数z 满足()12i z i -=+,则z 的共轭复数在复平面内对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限12.若11i ai ++是纯虚数(其中i 为虚数单位),则实数a 等于( ) A .1 B .1-C .2D .2- 二、填空题 13.设z 为复数,且1z =,当23413z z z z ++++取得最小值时,则此时复数z =______.14.若12ω=+(i 为虚数单位),则3ω=_______. 15.设复数z 满足1z =,且使得关于x 的方程2230zx zx ++=有实根,则这样的复数z 的和为______.16.已知11z i --=,则z i +的取值范围是_____________;17.i 表示虚数单位,则201211i i +⎛⎫= ⎪-⎝⎭______. 18.若1i -是关于x 的方程20x px q ++=的一个根(其中i 为虚数单位,,p q R ∈),则p q +=__________.19.661i ⎛⎫+= ⎪ ⎪-⎝⎭_______________. 20.复数3(2) i (,)z x y x y =++-∈R ,且||2z =,则点(,)x y 的轨迹是_____________.三、解答题21.已知方程20x x p ++=有两个根1x ,2x ,p R ∈.(1)若123x x -=,求实数p 的值;(2)若123x x +=,求实数p 的值.22.已知()()212162=10,25,,51z a i z a i a R i a a--=+-∈+-为虚数单位.若12z z +是实数. (1)求实数a 的值; (2)求12z z ⋅的值.23.化简下列复数(1)()()6532i i -++(2)()()()56234i i i -+---+24.已知复数z =22761a a a -+-2(56)i a a +--,a R ∈. (1)若复数z 为实数,求实数a 的值;(2)若复数z 为虚数,求实数a 的取值范围;(3)是否存在实数a ,使得复数z 为纯虚数?25.已知复数()()21,,z a i bi a b R =+-∈,其中i 是虚数单位.(1)若5z i =-,求a ,b 的值;(2)若z 的实部为2,且0a >,0b >,求证:214a b+≥. 26.已知(2x -y +1)+(y -2)i =0,求实数x ,y 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【详解】 因为2||230z z --=,所以3z =,3z = (负舍)因此复数z 的对应点的轨迹是以原点为圆心以3为半径的圆,选A.2.B解析:B【分析】 利用复数加法、减法和模的运算化简已知条件,由此求得12z z -.【详解】设12,z a bi z c di =+=+,则()()12z z a c b d i +=+++,()()12z z a c b d i -=-+-. 依题意得:22221,1a b c d +=+=,12z z +=⇒()()223a c b d +++=⇒()222223a b c d ac bd +++++=⇒()21ac bd +=.所以12z z -==1==.故选:B【点睛】本小题主要考查复数运算,属于中档题. 3.B解析:B【分析】由题意得2cos 2sin 2i e i =+,得到复数在复平面内对应的点(cos 2,sin 2),即可作出解答.【详解】由题意得,e 2i =cos 2+isin 2,∴复数在复平面内对应的点为(cos 2,sin 2).∵2∈,∴cos 2∈(-1,0),sin 2∈(0,1),∴e 2i 表示的复数在复平面中对应的点位于第二象限,故选B.【点睛】本题主要考查了复数坐标的表示,属于基础题.4.C解析:C【分析】根据充分必要条件的定义结合复数与复平面内点的对应关系,从而得到答案.【详解】若复数()()21z x x x i x R =-+-∈在复平面内对应的点在第一象限,则20,10x x x ⎧->⎨->⎩解得1x >,故“1x >”是“复数()()21z x x x i x R =-+-∈在复平面内对应的点在第一象限”的充要条件.故选C.【点睛】本题考查了充分必要条件,考查了复数的与复平面内点的对应关系,是一道基础题. 5.C解析:C【解析】分析:首先根据题中所给的复数z ,可以求得其共轭复数,并且可以求出复数的模,代入求得132z z +=+,从而求得结果. 详解:根据132z =-,可得132z =-+,且13144z =+=,所以有1313122z z +=-++=+,故选C. 点睛:该题考查的是有关复数的问题,涉及到的知识点有复数的共轭复数、复数的模、以及复数的加法运算,属于基础题目.6.C解析:C【分析】用向量,OA OB 表示12,z z ,根据题意,可得OA OB BA r -==,因为1i z r ω-=或者2i z r ω-=,根据其几何意义可得i ω的终点的轨迹,且满足条件的终点个数即为n ,数形结合,即可得答案.【详解】用向量,OA OB 表示12,z z , 因为()120z z r r -=>,所以OA OB BA r -==,又,*(1)i i n n N ω≤≤∈满足1i z r ω-=或者2i z r ω-=,则i ω可表示以O 为起点,终点在以A 为圆心,半径为r 的圆上的向量,或终点在以B 为圆心,半径为r 的圆上的向量,则终点可能的个数即为n ,因为i j r ωω-≥,所以在同一个圆上的两个点,形成的最小圆心角为60︒,如图所示,则最多有10个可能的终点,即n =10.故选:C【点睛】 解题的关键是根据所给条件的几何意义,得到i ω的终点轨迹,根据条件,数形结合,即可得答案,考查分析理解,数形结合的能力,属中档题.7.A解析:A【分析】 利用复数模长的三角不等式可求得4z i -的取值范围.【详解】 ()()4334z i z i -=-+-,由复数模长的三角不等式可得()()334334334z i z i z i ---≤-+-≤-+-, 即35435z i -≤-≤+,即248z i ≤-≤,因此,4z i -的取值范围是[]28,.故选:A.【点睛】本题考查复数模长的取值范围的计算,考查三角不等式的应用,考查计算能力,属于中等题.8.D解析:D【解析】分析:利用复数乘法运算法则化简复数,结合两角和的正弦公式、两角和的余弦公式求解即可.详解:()()12cos cos cos cos z z isin isin ααββαβ⋅=++=()()2cos cos cos i sin isin i sin sin isin αβαβαβαβαβ+++=+++,∴实部为()cos αβ+,故选D.点睛:本题主要考查的是复数的乘法,属于中档题.解题时一定要注意21i =-和()()()()a bi c di ac bd ad bc i ++=-++运算的准确性,否则很容易出现错误. 9.B解析:B【解析】因为()211i i z+=-,所以22(1)112i i z i i i ==+=-- ,选B. 10.C解析:C【解析】 因为201812z i i =++()()22231122555i i i i i i --=+=-=--+- ,复数201812z i i=++对应的点的坐标为31,55⎛⎫-- ⎪⎝⎭,故复数201812z i i =++对应的点位于第三象限,故选C. 11.D解析:D【解析】()12i z i -=+,()()()()1i 1i 2+i 1i z ∴-+=+,13213i,i,22z z =+=+13i,22z z =-的共轭复数在复平面内对应点坐标为13,22⎛⎫-⎪⎝⎭,z 的共轭复数在复平面内对应的点在第四象限,故选D. 12.B解析:B【分析】 设11i bi ai+=+,化简后利用复数相等列方程求解即可.【详解】 设()1,,1i bi a b R ai+=∈+, 所以()11i bi ai ab bi +=⋅+=-+,所以11ab b -=⎧⎨=⎩, 解得11a b =-⎧⎨=⎩, 故选:B .【点睛】本题主要考查复数的乘法运算,考查复数相等的性质,属于基础题.二、填空题13.【分析】设复数的辐角为将用表示出来再利用二倍角公式二次函数性质求最小值可得与的值即可得复数【详解】设复数的辐角为所以所以故答案为:【点睛】本题主要考查了复数的三角形形式涉及三角恒等变换及二次函数性质解析:144-± 【分析】设复数z 的辐角为θ,将23413z z z z ++++用θ表示出来,再利用二倍角公式,二次函数性质求最小值,可得cos θ与sin θ的值,即可得复数z .【详解】设复数z 的辐角为θ,23413z z z z ++++== 2cos22cos 3θθ=++ 24cos 2cos 1θθ=++ 21334cos 444θ⎛⎫=++≥ ⎪⎝⎭所以1cos 4θ=-,sin4θ=± 所以14z=-±, 故答案为:14-【点睛】本题主要考查了复数的三角形形式,涉及三角恒等变换及二次函数性质,属于中档题. 14.-1【分析】先把转化为复数的三角形式再利用复数三角形式乘法运算法则进行解题即可【详解】解:复数对应的点在第一象限则所以所以所以故答案为:-1【点睛】本题主要考查由复数的代数形式转化为复数三角形式以及 解析:-1【分析】先把12ω=+转化为复数的三角形式,再利用复数三角形式乘法运算法则进行解题即可.【详解】解:复数12ω=对应的点在第一象限,则1r ==,1cos 2θ=, 所以arg 3z π=,所以1cos isin 233ππω=+=+, 所以33cos sin cos isin 133333333i ππππππππω⎛⎫⎛⎫⎛⎫=+=+++++=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 故答案为:-1.【点睛】本题主要考查由复数的代数形式转化为复数三角形式以及复数三角形式的乘法运算法则,属于基础题.15.【分析】首先设(且)代入方程化简为再分和两种情况求验证是否成立【详解】设(且)则原方程变为所以①且②;(1)若则解得当时①无实数解舍去;从而此时或3故满足条件;(2)若由②知或显然不满足故代入①得所 解析:74- 【分析】首先设z a bi =+ (a ,b ∈R 且221a b +=),代入方程,化简为()()222320ax ax bx bx i +++-=,再分0b =和0b ≠两种情况求,a x 验证是否成立.【详解】设z a bi =+,(a ,b ∈R 且221a b +=) 则原方程2230zx zx ++=变为()()222320ax ax bx bx i +++-=.所以2230ax ax ++=,①且220bx bx -=,②;(1)若0b =,则21a =解得1a =±,当1a =时①无实数解,舍去;从而1a =-,2230x x --=此时1x =-或3,故1z =-满足条件;(2)若0b ≠,由②知,0x =或2x =,显然0x =不满足,故2x =,代入①得38a =-,b =所以83z =-±.综上满足条件的所以复数的和为337188884i i ⎛⎫⎛⎫-+-++--=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. 故答案为:74-【点睛】思路点睛:本题考查复系数二次方程有实数根问题,关键是设复数z a bi =+后代入方程,再进行整理转化复数的代数形式,注意实部和虚部为0,建立方程求复数z . 16.【分析】利用复数的几何意义求解表示复平面内到点距离为1的所有复数对应的点表示复平面内到点的距离结合两点间距离公式可求范围【详解】因为在复平面内表示复平面内到点距离为1的所有复数对应的点即复数对应的点解析:1]【分析】 利用复数的几何意义求解,11z i --=表示复平面内到点(1,1)距离为1的所有复数对应的点,z i +表示复平面内到点(0,1)-的距离,结合两点间距离公式可求范围.【详解】 因为在复平面内,11z i --=表示复平面内到点(1,1)距离为1的所有复数对应的点,即复数z 对应的点都在以(1,1)为圆心,半径为1的圆上;z i +表示复平面内的点到点(0,1)-11=,11=,所以z i +的取值范围是1].故答案为:1]-.【点睛】 结论点睛:本题考查复数的模,复数的几何意义,复数的几何意义是复平面内两点之间的距离公式,若z x yi =+,则z a bi --表示复平面内点(,)x y 与点(,)a b 之间的距离,z a bi r --=表示以(,)a b 为圆心,以r 为半径的圆上的点.17.1【分析】利用复数代数形式的乘除运算化简再利用复数的乘法计算可得【详解】解:且……故答案为:【点睛】本题考查复数的代数形式的乘除运算以及复数的乘方属于基础题解析:1【分析】 利用复数代数形式的乘除运算化简11i i+-,再利用复数的乘法计算可得. 【详解】 解:()()()211111i i i i i i ++==--+ 且1i i =,21i =-,3i i =-,41i =,5i i =…… 2012201245034111i i i i i ⨯+⎛⎫∴==== ⎪-⎝⎭故答案为:1【点睛】本题考查复数的代数形式的乘除运算以及复数的乘方,属于基础题.18.0【分析】直接利用实系数一元二次方程的虚根成对原理及根与系数关系求解【详解】是关于的实系数方程的一个根是关于的实系数方程的另一个根则即故答案为:0【点睛】本题考查了一元二次方程的虚根特征和虚数的运算 解析:0【分析】直接利用实系数一元二次方程的虚根成对原理及根与系数关系求解.【详解】1i -是关于x 的实系数方程20x px q ++=的一个根,1i ∴+是关于x 的实系数方程20x px q ++=的另一个根,则(1)(1)2p i i -=-++=,即2p =-,2(1)(1)12q i i i =-+=-=,0p q ∴+=.故答案为:0【点睛】本题考查了一元二次方程的虚根特征和虚数的运算,考查了计算能力,属于中档题. 19.【分析】由于次数比较高先利用的周期性将其次数降低再进行四则运算【详解】故答案为:【点睛】本主要考查了有关的幂的运算和复数的四则运算还考查了转化问题运算求解的能力属于基础题解析:2i【分析】由于次数比较高,先利用()*n in ∈N 的周期性,将其次数降低,再进行四则运算. 【详解】661i⎛⎫+=⎪⎪-⎝⎭33233121⎡⎤+⎛⎫⎢⎥=+=+=⎪⎪-⎢⎥⎝⎭⎣⎦ii i i i ii.故答案为:2i【点睛】本主要考查了有关i的幂的运算和复数的四则运算,还考查了转化问题,运算求解的能力,属于基础题.20.以为圆心2为半径的圆【分析】根据复数模的定义确定复数对应点满足条件化简即得轨迹【详解】解:∵∴即点的轨迹是以为圆心2为半径的圆故答案为:以为圆心2为半径的圆【点睛】本题考查复数模的定义以及圆的方程含解析:以(3,2)-为圆心,2为半径的圆【分析】根据复数模的定义确定复数对应点满足条件,化简即得轨迹.【详解】解:∵||2z=,∴22(3)(2)4x y++-=,即点(,)x y的轨迹是以(3,2)-为圆心,2为半径的圆.故答案为:以(3,2)-为圆心,2为半径的圆【点睛】本题考查复数模的定义以及圆的方程含义,考查基本分析求解能力,属基础题.三、解答题21.(1)52p=或2-;(2)2p=-或94.【分析】(1)根据韦达定理,得出12121,x x x x p+=-=,22121212()4x x x x x x-=+-,则可求出实数p的值;(2)根据题意,对两根12,x x进行分类讨论,一是两实根,二是一对共轭虚根,分别根据韦达定理求出实数p 的值.【详解】解:(1)方程20x x p++=有两个根1x,2x,则由韦达定理知:12121,x x x x p+=-=,22121212()4149x x x x x x p∴-=+-=-=,52p∴=或2-;(2)①当1x,2x为两个实根,140p=-≥,即14p≤时,()()2222121212121212222x x x x x x x x x x x x +=++=+-+, 1229p p ∴-+=,则2p =-,②当1x ,2x 为一对共轭虚根,140p =-<,即14p >时, 由123x x +=,12x x =,得132x =, 由韦达定理可得2194p x ==, 综上所述,2p =-或94. 【点睛】关键点点睛:本题的关键是利用韦达定理,列出对应关系式,其中要注意对根的虚实情况进行讨论.22.(1)3;(2)3i -+.【分析】(1)求出12z z +,再根据复数的分类求出a 值;(2)写出共轭复数,然后由复数的乘法运算法则计算.【详解】(1)()2116105z a i a =--+,()22251z a i a=+--, ()()()()2212162162102525105151z z a i a i a a i a a a a ⎛⎫⎡⎤+=--++-=++--- ⎪⎣⎦+-+-⎝⎭由题意知12z z +为实数, ∴()()225100,50,10,a a a a ⎧---=⎪⎨+≠⎪-≠⎩,解得3a =. (2)当3a =时,12z i =-,21z i =-+, 12z i =+, 则()()12213z z i i i ⋅=+-+=-+.【点睛】本题考查复数的加法、乘法运算法则,考查共轭复数的概念,考查复数的分类,属于基础题.23.(1)93i -;(2)11i -.【分析】利用复数的加减运算法则求解.【详解】(1)()()6532i i -++,()()6325i =++-,93i =-.(2)()()()56234i i i -+---+,()()523614i =--+---,11i =-.【点睛】本题主要考查复数的加减,相等,还考查了运算求解的能力,属于中档题.24.(1)6;(2)(,1)(1,1)(1,6)(6,)-∞--+∞;(3)不存在实数a 使得复数z为纯虚数.【分析】根据z a bi =+为实数、虚数和纯虚数的条件,列方程,解方程求得a 的值.【详解】由于210a -≠,所以1a ≠±.(1)当z 为实数时,2560a a --=,解得6a =.(2)当z 为虚数时2560a a --≠,结合1a ≠±可知,a 的取值范围是()()()(),11,11,66,-∞-⋃-⋃⋃+∞.(3)当z 为纯虚数时,2227601560a a a a a ⎧-+=⎪-⎨⎪--≠⎩,方程227601a a a -+=-解得6a =,2560a a --≠解得1a ≠-且6a ≠,两者没有公共元素,故不存在实数a 使得复数z 为纯虚数.【点睛】本小题主要考查复数z a bi =+是实数、虚数和纯虚数的条件,属于基础题.25.(1)31a b =⎧⎨=⎩或232a b =⎧⎪⎨=⎪⎩;(2)见解析. 【分析】(1)由复数的乘法可得()22z a b ab i =+--,由5z i =-可知2521a b ab +=⎧⎨-=⎩,从而可求出a ,b 的值;(2)由z 的实部为2可得22a b +=,结合“1”的代换可知211442a b a b b a ⎛⎫+=++ ⎪⎝⎭,由基本不等式可证明214a b +≥. 【详解】(1)解:由()()()21225z a i bi a b ab i i =+-=+--=-,则2521a b ab +=⎧⎨-=⎩ ,解得31a b =⎧⎨=⎩或232a b =⎧⎪⎨=⎪⎩(2)证明:由题意知,22a b +=,所以()21121142422a b a b a b a b b a ⎛⎫⎛⎫+=++=++ ⎪ ⎪⎝⎭⎝⎭, 因为0a >,0b >,所以44a b b a +≥=, 当且仅当4a b b a =,即11,2a b == 时等号成立,则()2114442a b +≥⨯+=. 【点睛】本题考查了复数的乘法运算,考查了基本不等式,考查了复数的定义.运用基本不等式求最值时,注意一正二定三相等.26.1,22【解析】【分析】根据复数相等的概念得到实部虚部均为0,即21020x y y -+=⎧⎨-=⎩求得参数值. 【详解】∵(2x -y +1)+(y -2)i =0,∴21020x y y -+=⎧⎨-=⎩解得12x = ,y=2 所以实数x ,y 的值分别为12,2. 【点睛】这个题目考查了复数相等的概念,两个复数相等则需要实部等于实部,虚部等于虚部即可.。

上海储能中学必修第二册第二单元《复数》测试题(包含答案解析)

一、选择题1.设a R ∈,则复数22121a ai z a-+=+所对应点组成的图形为( ) A .单位圆 B .单位圆除去点()1,0±C .单位圆除去点()1,0D .单位圆除去点()1,0- 2.当z =时,100501z z ++=( ) A .1B .-1C .iD .i - 3.下列各式的运算结果为纯虚数的是 A .(1+i)2B .i 2(1-i)C .i(1+i)2D .i(1+i) 4.已知方程()()2440x i x ai a R ++++=∈有实根b ,且z a bi =+,则复数z 等于( )A .22i -B .22i +C .22i -+D .22i --5.已知复数12z =-,则z z +=( )A .12--B .12-+C .12+D .12- 6.已知z 是纯虚数,21z i +-是实数,那么z 等于 ( ). A .2iB .iC .-iD .-2i 7.设313i z i +=-,则232020z z z z ++++=( ) A .1B .0C .1i --D .1i + 8.若复数z 满足22iz i =-(i 为虚数单位),则z 的共轭复数z 在复平面内对应的点所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 9.已知复数1223,z i z a bi =+=+(,R,0a b b 且∈≠),其中i 为虚数单位,若12z z 为实数,则a b 的值为( ) A .32- B .23- C .23 D .3210.已知复数 1cos isin z αα=+ 和复数2cos isin z ββ=+,则复数12z z ⋅的实部是( ) A .()sin αβ-B .()sin αβ+C .()cos αβ-D .()cos αβ+ 11.复数z 满足(1i)2i z -=,则z =A .1i -B .1i -+C .1i --D .1i +12.设i 为虚数单位,a R ∈,“复数2202021a i z i=--不是纯虚数“是“1a ≠”的( ) A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案二、填空题13.复平面上点,()Z a b 对应着复数Z a bi =+以及向量(,)OZ a b =,对于复数123,,z z z ,下列命题都成立;①1221z z z z +=+;②1212z z z z +≤+;③2211z z =;④1212z z z z ⋅=⋅;⑤若非零复数123,,z z z ,满足1213z z z z =,则23z z =.则对于非零向量123OZ OZ OZ ,,仍然成立的命题的所有序号是___________.14.设z 为复数,且1z =,当23413z z z z ++++取得最小值时,则此时复数z =______.15.计算:8811i i -⎛⎫-= ⎪+⎝⎭______________. 16.复数(1sin )(cos sin )z θθθ=++-i 是实数,[]0,2θπ∈则θ=______.17.若实数,m n 满足20212(4)(2)i mi n i ⋅+=+,且z m ni =+,则||z =_____. 18.已知i 为虚数单位,则(1)(23i)(32i)-+-+=________________;(2)(4i)(23i)+--+=________________;(3)已知复数13i z b =-,22i z a =-+,其中a ,b R ∈,若复数12z z z =+,且复数z 对应的点在第三象限,则+a b 的取值范围为________________; (4)在复平面内,复数1z 对应的点为(2,2)-,复数2z 对应的点为(1,1)-,若复数21z z z =-,则复数z 对应的点在第________________象限. 19.设z 是复数,()a z 表示满足1n z =时的最小正整数n ,i 是虚数单位,则1i ()1ia +=-________. 20.定义运算a c ad bcb d =-,复数z 满足i 1i 1i z =+,z 为z 的共轭复数,则z =___________.三、解答题21.已知复数z 满足(1)z i m i +=-(其中i 是虚数单位).(1)在复平面内,若复数z 的共轭复数对应的点在直线70x y +-=上,求实数m 的值;(2)若||1z ,求实数m 的取值范围.22.化简下列复数(1)()()6532i i -++(2)()()()56234i i i -+---+23.已知复数1z mi =+(m R ∈,i 为虚数单位),且()1i z -为实数.(1)求复数z ;(2)设复数1z x yi =+(x ,y R ∈)满足11z z -=,求1z 的最小值.24.(1)求复数2320191i i i i z i++++=+的值. (2)复数()213105z a i a =+-+,()22251z a i a=+--,若12z z +是在复平面内对应的点在第三象限,求实数a 的取值范围. 25.已知复数()2227656 ()1a a z a a i a R a -+=+--∈-,实数a 取什么值时,z 是:①实数?②虚数?③纯虚数?26.已知O 为坐标原点,向量1OZ 、2OZ 分别对应复数1z 、2z ,且()213105z a i a =+-+,()()22251z a i a R a =+-∈-.若12z z +是实数. (1)求实数a 的值; (2)求以1OZ 、2OZ 为邻边的平行四边形的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据复数222221212111a ai a a z i a a a -+-==++++,得到复数z 对应点的坐标为:22212,11a a a a ⎛⎫- ⎪++⎝⎭,然后由22212,11a a x y a a -==++,利用复数的模求解. 【详解】 因为复数222221212111a ai a a z i a a a -+-==++++, 所以复数z 对应点的坐标为:22212,11a a a a ⎛⎫- ⎪++⎝⎭, 即22212,11a a x y a a-==++, 所以222222212111a a x y a a ⎛⎫-⎛⎫+=+= ⎪ ⎪++⎝⎭⎝⎭, 因为22212111a x a a -==-+++, 又因为a R ∈,所以211a +≥, 所以22021a<≤+, 所以221111a-<-+≤+, 即11x -<≤, 所以复数z 对应点组成的图形为单位圆除去点()1,0-.故选:D【点睛】本题主要考查复数的几何意义以及复数模的轨迹问题,还考查了运算求解的能力,属于中档题.2.D解析:D【分析】根据100501z z ++的结构特点,先由z =,得到()2212-==-i z i ,再代入100501z z ++求解.【详解】 因为z = 所以()221,2-==-i z i所以()()()2550250100,1=-=-=-=-=-z i i z i i , 所100501++=-z z i ,故选:D【点睛】本题主要考查了复数的基本运算,还考查了周期性的应用,运算求解的能力,属于基础题. 3.A解析:A【分析】利用复数的四则运算,再由纯虚数的定义,即可求解.【详解】由题意,对于A 中,复数2(1)2i i +=为纯虚数,所以正确;对于B 中,复数2(1)1i i i ⋅-=-+不是纯虚数,所以不正确;对于C 中,复数2(1)2i i ⋅+=-不是纯虚数,所以不正确;对于D 中,复数(1)1i i i ⋅+=-+不是纯虚数,所以不正确,故选A.【点睛】本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其四则运算技巧和常规思路. 其次要熟悉复数相关基本概念是解答此类问题的关键,着重考查了推理与计算能力,属于基础题. 4.A解析:A【解析】【详解】由b 是方程()()2440x i x ai a R ++++=∈的根可得()2440b i b ai ++++=, 整理可得:()()2440b a i b b ++++=, 所以20440b a b b +=⎧⎨++=⎩,解得22a b =⎧⎨=-⎩,所以22z i =-,故选A . 5.C解析:C【解析】分析:首先根据题中所给的复数z ,可以求得其共轭复数,并且可以求出复数的模,代入求得12z z +=+,从而求得结果.详解:根据122z =--,可得12z =-+,且1z ==,所以有1112222z z +=-++=+,故选C.点睛:该题考查的是有关复数的问题,涉及到的知识点有复数的共轭复数、复数的模、以及复数的加法运算,属于基础题目.6.D解析:D【分析】 根据复数的运算,化简得到21[(2)(2)]12z b b i i +=-++-,再由复数为实数,即可求解. 【详解】设z =b i (b ∈R ,且b ≠0),则=== [(2-b )+(2+b )i]. ∵∈R , ∴2+b =0,解得b =-2,∴z =-2i.故选D.【点睛】本题主要考查了复数的基本运算和复数的基本概念的应用,其中熟记复数的四则运算法则和复数的基本分类是解答的关键,着重考查了推理与计算能力,属于基础题.7.B解析:B【分析】利用复数代数形式的乘除运算化简z ,再由等比数列的前n 项和公式及虚数单位i 的运算性质求解.【详解】3(3)(13)1013(13)(13)10i i i i z i i i i +++====--+, 20202020232020(1)(1)(11)0111z z i i i z z z zz i i ---∴+++⋯+====---. 故选:B .【点睛】 本题考查复数代数形式的乘除运算,考查虚数单位i 的运算性质,训练了等比数列前n 项和的求法,是基础题.8.B解析:B【解析】分析:直接利用复数代数形式的乘除运算化简复数,然后求z 的共轭复数,即可得到z 在复平面内对应的点所在的象限.详解:由题意,()()()222222,i i i z i i i i -⋅--===--⋅-22,z i ∴=-+ 则z 的共轭复数z 对应的点在第二象限.故选B.点睛:本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题. 9.B解析:B【分析】先根据复数乘法计算,再根据复数概念求a,b 比值.【详解】因为()1223(z z i a bi =++)()23(32a b a b =-++) i , 所以320a b +=,因为0b ≠,所以23a b =-,选B. 【点睛】本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如()()()(),(,,.)++=-++∈a bi c di ac bd ad bc i a b c d R . 其次要熟悉复数相关基本概念,如复数(,)a bi a b R +∈的实部为a 、虚部为b 、模为(,)a b 、共轭为.-a bi10.D解析:D【解析】分析:利用复数乘法运算法则化简复数,结合两角和的正弦公式、两角和的余弦公式求解即可.详解:()()12cos cos cos cos z z isin isin ααββαβ⋅=++=()()2cos cos cos i sin isin i sin sin isin αβαβαβαβαβ+++=+++,∴实部为()cos αβ+,故选D.点睛:本题主要考查的是复数的乘法,属于中档题.解题时一定要注意21i =-和()()()()a bi c di ac bd ad bc i ++=-++运算的准确性,否则很容易出现错误. 11.B解析:B【解析】因为()1i 2i z -=,所以()2i 111iz i i i ==+=-+-,选B. 12.A解析:A【分析】先化简z ,求出a ,再判断即可.【详解】()()2202022211112121211222a i a a i a z i i i i i +=-=-=-=-----+, z 不是纯虚数,则21022a -≠,所以21≠a ,即1a ≠±, 所以1a ≠±是1a ≠的充分而不必要条件.故选:A .【点睛】本题主要考查根据复数的类型求参数,考查充分条件和必要条件的判断,考查逻辑思维能力和计算能力,属于常考题.二、填空题13.①②③【分析】①根据复数加法交换律判定;②结合复平面中复数模长的几何意义判定;③由判定;④结合复平面中向量数量积判定;⑤结合复平面中向量数量积判定【详解】解:①成立满足加法的交换律故①正确;②在复平解析:①②③【分析】①根据复数加法交换律判定;②结合复平面中复数模长的几何意义判定;③由221111z z z z ==判定;④结合复平面中向量数量积判定;⑤结合复平面中向量数量积判定.【详解】解:①1221z z z z +=+成立,满足加法的交换律,故①正确;②在复平面内,根据复数模长的几何意义知, 1212z z z z +,,分别对应三角形的三边,则1212z z z z +<+,若120,z z =或或12,z z 对应的向量方向相同时,有1212z z z z +=+, 综上,1212z z z z +≤+,故②正确; ③221111z z z z ==成立,故③正确; ④121212cos z z z z z z θ⋅=⋅≤⋅,故④不成立,⑤若非零复数123,,z z z ,满足1213z z z z =, 121213132323cos ,cos ,cos cos ,z z z z z z z z z z z z αβαβ===不一定等于,故⑤不成立.故答案为:①②③【点睛】与复数的几何意义相关问题的一般步骤:(1)进行简单的复数运算,将复数化为标准的代数形式;(2)把复数问题转化为复平面内的点之间的关系,依据是复a bi +与复平面上的点(,)a b 一一对应.14.【分析】设复数的辐角为将用表示出来再利用二倍角公式二次函数性质求最小值可得与的值即可得复数【详解】设复数的辐角为所以所以故答案为:【点睛】本题主要考查了复数的三角形形式涉及三角恒等变换及二次函数性质解析:14-± 【分析】设复数z 的辐角为θ,将23413z z z z ++++用θ表示出来,再利用二倍角公式,二次函数性质求最小值,可得cos θ与sin θ的值,即可得复数z .【详解】设复数z 的辐角为θ,23413z z z z ++++==2cos22cos 3θθ=++ 24cos 2cos 1θθ=++ 21334cos 444θ⎛⎫=++≥ ⎪⎝⎭所以1cos 4θ=-,sinθ= 所以144z=-±, 故答案为:14-【点睛】本题主要考查了复数的三角形形式,涉及三角恒等变换及二次函数性质,属于中档题. 15.【分析】先利用复数的运算法则将和化简然后计算出及的值然后得出的值【详解】故答案为:解析:0【分析】先利用复数的运算法则将11i i -+和2化简,然后计算出811i i -⎛⎫ ⎪+⎝⎭及8的值,然后得出8811i i -⎛⎫- ⎪+⎝⎭的值. 【详解】()()()()8422848811111011i i i i i i i ⎡⎤⎡⎤-=-=--=-=⎢⎥⎢⎥+-⎢-⎛⎫- ⎪+⎝⎭⎥⎥⎢⎣⎦⎣⎦. 故答案为:0.16.或【解析】【分析】由复数的虚部为0求得再由的范围得答案【详解】是实数即又或故答案为:或【点睛】本题主要考查了复数的代数表示法实部虚部的概念利用三角函数求角属于中档题 解析:4π或54π. 【解析】【分析】由复数z 的虚部为0求得tan θ,再由θ的范围得答案.【详解】(1sin )(cos sin )z i θθθ=++-是实数,cos sin 0θθ∴-=,即tan 1θ=,又[0,2],θπ∈4πθ∴=或54π, 故答案为:4π或54π 【点睛】 本题主要考查了复数的代数表示法,实部、虚部的概念,利用三角函数求角,属于中档题. 17.【分析】先通过复数代数形式的四则运算法则对等式进行运算再利用复数相等求出最后由复数的模的计算公式求出【详解】因为所以已知等式可变形为即解得【点睛】本题主要考查复数代数形式的四则运算法则复数相等的概念【分析】先通过复数代数形式的四则运算法则对等式进行运算,再利用复数相等求出,m n ,最后由复数的模的计算公式求出z .【详解】因为2021i i =,所以已知等式可变形为2(4)44i mi n ni +=+-, 即2444m i n ni -+=+-,2444m n n ⎧-=-⎨=⎩ 解得31m n =⎧⎨=⎩ ,3i z =+z ∴=.【点睛】本题主要考查复数代数形式的四则运算法则,复数相等的概念以及复数的模的计算公式的应用.18.四【分析】(1)利用复数的加法法则计算即可;(2)利用复数的减法法则计算即可;(3)由题意可得则且据此可得的取值范围(4)由题意可得结合可得据此确定其所在的象限即可【详解】(1)(2)(3)因为所以解析:1i --62i -(,5)-∞四【分析】(1)利用复数的加法法则计算()()2332i i -+-+即可;(2)利用复数的减法法则计算()()423i i +--+即可;(3)由题意可得12(2)(3)i z z b a z =+=-+-,则2b <且3a <,据此可得+a b 的取值范围.(4)由题意可得122i z =-+,21z i =-,结合21z z z =-可得33z i =-,据此确定其所在的象限即可.【详解】(1)()()(23)(32)23321i i i i i -+-+=-+-+=--.(2)()()(4)(23)42362i i i i i +--+=++-=-.(3)因为13i z b =-,22i z a =-+,所以12(2)(3)i z z b a z =+=-+-,又复数z 对应的点在第三象限,所以2030b a -<⎧⎨-<⎩,所以2b <且3a <, 所以5a b +<,故+a b 的取值范围为(,5)-∞.(4)因为复数1z 对应的点为(2,2)-,复数2z 对应的点为(1,1)-,所以122i z =-+,21z i =-,又复数21z z z =-,所以1i (22i)33i z =---+=-,所以复数z 对应的点为(3,3)-,在第四象限【点睛】本题主要考查复数的加法、减法运算,复数所在象限的判定等知识,意在考查学生的转化能力和计算求解能力.19.4【解析】∵∴∵表示满足的最小正整数∴当时满足第一次成立∴故答案为 解析:4【解析】 ∵21(1)1211(1)(1)11i i i i i i i +++-===--++∴1()()1i a a i i+=- ∵()a z 表示满足1n z =的最小正整数n ∴当4n =时满足1n i =第一次成立∴()4a i =故答案为4.20.2+i 【解析】根据题意得到=故得到z=2-i =2+i 故答案为2+i解析:2+i【解析】 根据题意得到1z i zi i i =-=1i +,故得到z=2-i ,z =2+i.故答案为2+i.三、解答题21.(1)7m =;(2)[1-,1].【分析】(1)把已知等式变形,利用复数代数形式的乘除运算,再由共轭复数的概念求得z ,由题意列关于m 的方程求解;(2)利用复数模的计算公式列式,求解关于m 的不等式得答案.【详解】解:(1)由(1)z i m i +=-,得()(1)111(1)(1)22m i m i i m m z i i i i ----+===-++-, ∴1122m m z i -+=+, 由题意,117022m m -++-=,解得7m =;(2)由||1z 1, 解得:11m -. ∴实数m 的取值范围[1-,1].【点睛】本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,考查复数模的求法,是基础题.22.(1)93i -;(2)11i -.【分析】利用复数的加减运算法则求解.【详解】(1)()()6532i i -++,()()6325i =++-,93i =-.(2)()()()56234i i i -+---+,()()523614i =--+---,11i =-.【点睛】本题主要考查复数的加减,相等,还考查了运算求解的能力,属于中档题.23.(1)1z i ∴=+;(21【分析】(1)设复数1z mi =+,化简()1i z -, 由复数的相等求解.(2) 设1z x yi =+(x ,y R ∈),由11z z -=得()()11x yi i +--=,可得,x y 的关系,从而解出答案.【详解】解:(1)由1z mi =+(m R ∈),得()()()()()11111i z i mi m m i -=-+=++-,()1i z -为实数,10m ∴-=,1m ∴=.1z i ∴=+(2)设1z x yi =+(x ,y R ∈),1z i =-,11z z -=, ()()11x yi i ∴+--=,即()()111x y i -++=,()()22111x y ∴-++=,即复数1z 在复平面内对应的点的轨迹是以()1,1-为圆心,以1为半径的圆.1z ∴11=.【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,考查复数的代数表示法及其几何意义,是基础题.24.(1)1122z i =-+;(2)()1,3 【分析】(1)根据4142434,1,,1n n n n i i i i i i +++==-=-=得414243442340,n n n n i i i i i i i i n N +++++++=+++=∈,进而得2311122i i i z i i ++==-++; (2)由题得()()()2121321551a z z a a i a a -+=++-+-,再结合题意,根据复数的几何意义得()()2130512150a a a a a -⎧<⎪+-⎨⎪+-<⎩,解不等式组即可得答案. 【详解】解:(1)由于4142434,1,,1n n n n ii i i i i +++==-=-=, 所以414243442340,n n n n i i i i i i i i n N +++++++=+++=∈,而201945043=⨯+, 所以()232019231111111222i i i i i i i i z i i i i --++++++-=====-++++; (2)()()()()22123232102510255151z z a i a i a a i a a a a ⎛⎫⎡⎤+=+-++-=++-+- ⎪⎣⎦+-+-⎝⎭()()()21321551a a a i a a -=++-+-, 因为12z z +在复平面内对应的点在第三象限,所以()()2130512150a a a a a -⎧<⎪+-⎨⎪+-<⎩,解不等式组得:13a <<. 故实数a 的取值范围是()1,3【点睛】本题考查复数的运算,复数的几何意义求参数,考查运算能力,是中档题.25.①6a =;②1a ≠±且6a ≠;③无解.【分析】对于复数z a bi =+(),a b R ∈,若0b =,则z 为实数;若0b ≠,则z 为虚数;若0b ≠且0a =,则z 为纯虚数;得到不等式解得;【详解】解:()2227656 ()1a a z a a i a R a -+=+--∈- ①若复数z 是实数,则22560,10,a a a ⎧--=⎨-≠⎩即16,1,a a a =-=⎧⎨≠±⎩或即6a =. ②若复数z 是虚数,则22560,10,a a a ⎧--≠⎨-≠⎩即16,1,a a a ≠-≠⎧⎨≠±⎩且即1a ≠±且6a ≠.③若复数z 是纯虚数,则222560,760,10,a a a a a ⎧--≠⎪-+=⎨⎪-≠⎩即16161a a a a a ≠-≠⎧⎪==⎨⎪≠±⎩且,且,,此时无解.【点睛】本题考查复数的基本概念,需注意实部的分母不能为零,属于基础题.26.(1)3a =;(2)118. 【分析】(1)求出1z 和2z ,由复数12z z +是实数,可求得实数a 的值;(2)求出1OZ 和2OZ ,利用平面向量的数量积求出12cos Z OZ ∠,进一步求出12sin Z OZ ∠,结合三角形的面积公式可求得所求四边形的面积.【详解】(1)由题意可得()213105z a i a =--+, ()22251z a i a =+--,则()2123221551z z a a i a a+=+++-+-, 由于复数12z z +是实数,则221505010a a a a ⎧+-=⎪+≠⎨⎪-≠⎩,解得3a =;(2)由(1)可得138z i =+,21z i =-+,则点13,18Z ⎛⎫ ⎪⎝⎭,()21,1Z -, 因此,以1OZ 、2OZ 为邻边的平行四边形的面积为121118S Z Z =⨯=. 【点睛】本题考查利用复数类型求参数,同时也考查了四边形面积的计算,涉及平面向量数量积的应用,考查计算能力,属于中等题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题 1.能使得复数32zaaiaR位于第三象限的是( )

A.212ai为纯虚数 B.12ai模长为3 C.3ai与32i互为共轭复数 D.

0a

2.复数z满足5(3)2izi-,则z的虚部是( )

A.12 B.12- C.12i- D.

1

2i

3.如果复数z满足|||i2|izz,那么|1|zi的最小值是( ) A.1 B.

2

C.2 D.5

4.已知复数,是z的共轭复数,则= A. B. C.1 D.2 5.已知复数1z﹑2z满足120zzrr,复数,*(1)iinnN满足

1i

zr

或者2izr,且ijr对任意1ijn成立,则正整数n的最大值为( ) A.6 B.8 C.10 D.12 6.已知复数Z满足13Zii,则Z的共轭复数为( ) A.2i B.2i C.2i D.

2i

7.已知i为虚数单位,(1+i)x=2+yi,其中x,y∈R,则|x+yi|=

A.22 B.2 C.4 D.

2

8.已知复数z满足15izi=,则z( )

A.23i B.23i C.32i D.

32i

9.已知复数 1cosisinz 和复数2cosisinz,则复数12zz的实部是( ) A.sin B.sin C.cos D.

cos

10.复数z满足(1i)2iz,则

z

A.1i B.

1i

C.1i D.

1i

11.若i为虚数单位,复数z满足33zi,则2zi的最大值为( )

A.2 B.3 C.23 D.33

12.复数11ii的实部和虚部分别为a,b,则ab( ) A.1 B.2 C.3 D.4 二、填空题 13.若i为虚数单位,则计232020232020iiii___________. 14.已知虚数,2zxyixyi(x,yR)的模为4,则23zi的取值范围为

________.

15.设复数z,满足11z,22z,123zzi,则12zz____________.

16.若z为复数,且22zz,则|z-1|的最小值是________.

17.在实数集R中,我们定义的大小关系“>”为全体实数排了一个“序”.类似地,我们在复数集

C上也可以定义一个称为“序”的关系,记为“>”.定义如下:对于任意两个复数:

111222121212zabizabiaabbRzz,,,,,>当且仅当“12aa>”或“12aa”且

“12bb>”.按上述定义的关系“>”,给出以下四个命题: ①若12zz>,则12zz>;

②若1223zzzz>,>,则13zz>;

③若12zz>,则对于任意12zCzzzz,>;

④对于复数0z>,若12zz>,则12zzzz>. 其中所有真命题的序号为______________.

18.已知复数4231234aizii,且1z,则实数a_________. 19.已知复数032zi,其中i是虚数单位,复数z满足003zzzz,则复数z的模

等于__________. 20.给出下列四种说法:

①-2i 是虚数,但不是纯虚数; ②两个复数互为共轭复数,当且仅当其和为实数; ③已知 xyR,,则 xi1iy 的充要条件为xy1; ④如果让实数a与 ai对应,那么实数集与纯虚数集一一对应. 其中正确说法的为 __________. 三、解答题 21.已知1zi,i为虚数单位. (1)若234zz,求;

(2)若2211zazbizz,求实数a,b的值. 22.已知复数(,)zabiabR,且2(1)430aiabi.

(Ⅰ)求复数z; (Ⅱ)若mzz是实数,求实数m的值. 23.设复数z的共轭复数为z,且23zzi,sincosi,复数z对应复

平面的向量OM,求z的值和2OM的取值范围. 24.已知复数121zmmmi (mR,i为虚数单位) (1)若z是纯虚数,求实数m的值;

(2)若2m,设1ziabiz (,abR),试求ab.

25.(1)求复数2320191iiiizi的值. (2)复数213105zaia,22251zaia,若12zz是在复平面内对应的点在第三象限,求实数a的取值范围. 26.已知O为坐标原点,向量1OZ、2OZ分别对应复数1z、2z,且

2

1

3105zaia

,22251zaiaRa.若12zz是实数.

(1)求实数a的值; (2)求以1OZ、2OZ为邻边的平行四边形的面积.

【参考答案】***试卷处理标记,请不要删除

一、选择题 1.A 解析:A 【分析】 分析四个选项中的参数a,判断是否能满足复数32zaaiaR是第三象限的点. 【详解】 322zaaiaai

由题意可知,若复数在第三象限,

需满足200aa ,解得:02a,

A.212zai是纯虚数,则12a,满足条件;

B.212143zaia,解得:2a,当2a不满足条件; C. 3ai与32i互为共轭复数,则2a,不满足条件;

D.0a不能满足复数z在第三象限,不满足条件. 故选:A 【点睛】 本题考查复数的运算和几何意义,主要考查基本概念和计算,属于基础题型. 2.A 解析:A 【解析】 【分析】 通过5(3)2izi-计算出z,从而得到z,根据虚部的概念即可得结果. 【详解】

∵5

(3)2izi-,∴5232211333322iiiiziiiii,

∴1122zi,即z的虚部是12,故选A.

【点睛】 本题主要考查了复数除法的运算,共轭复数的概念,复数的分类等,属于基础题. 3.A 解析:A 【分析】 直接利用复数模的几何意义求出z的轨迹.然后利用点到直线的距离公式求解即可. 【详解】 :∵|z+i|+|z-i|=2 ∴点Z到点A(0,-1)与到点B(0,1)的距离之和为2.

∴点Z的轨迹为线段AB.

而|z+1+i|表示为点Z到点(-1,-1)的距离. 数形结合,得最小距离为1 故选A. 【点睛】 本题只要弄清楚复数模的几何意义,就能够得到解答. 4.A 解析:A 【分析】

利用复数除法化简,再求出共轭复数,进而可得结果. 【详解】 , ,, 故答案为:A. 【点睛】 复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数、复数的模这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分. 5.C 解析:C 【分析】

用向量,OAOB表示12,zz,根据题意,可得OAOBBAr,因为1izr或者

2izr,根据其几何意义可得i的终点的轨迹,且满足条件的终点个数即为n,数形

结合,即可得答案. 【详解】 用向量,OAOB表示12,zz,

因为120zzrr,所以OAOBBAr, 又,*(1)iinnN满足1izr或者2izr, 则i可表示以O为起点,终点在以A为圆心,半径为r的圆上的向量,或终点在以B为圆心,半径为r的圆上的向量,则终点可能的个数即为n, 因为ijr,所以在同一个圆上的两个点,形成的最小圆心角为60,

如图所示,则最多有10个可能的终点,即n=10. 故选:C 【点睛】

相关文档
最新文档