3-5原子物理知识点总结
物理3一5知识点总结

物理3一5知识点总结### 物理3-5知识点总结在高中物理学习中,物理3-5通常指的是高中物理的第三册和第五册教材内容,它们涵盖了物理学中的基础概念和一些进阶知识。
以下是对这些知识点的简要总结:#### 第三册物理知识点1. 力学基础:- 牛顿运动定律:描述物体运动的基本规律。
- 动量守恒定律:在没有外力作用的系统中,动量保持不变。
- 能量守恒定律:系统总能量在封闭系统中保持不变。
2. 力学进阶:- 圆周运动:物体在圆周路径上的运动规律。
- 万有引力:描述天体之间相互吸引的力。
- 简谐振动:物体在平衡位置附近做周期性运动。
3. 流体力学:- 流体静力学:研究静止流体的力学性质。
- 伯努利定律:描述流体在流动过程中能量守恒的定律。
4. 热力学:- 热力学第一定律:能量守恒在热力学过程中的应用。
- 热力学第二定律:热力学过程中熵增原理。
5. 光学基础:- 光的反射和折射:光在不同介质界面上的行为。
- 透镜成像:透镜如何形成图像。
6. 原子物理:- 原子结构:原子的组成和基本模型。
- 核反应:原子核的变化过程。
#### 第五册物理知识点1. 电磁学基础:- 库仑定律:描述电荷之间的力。
- 电场和电势:电场力作用下的空间分布。
2. 电磁学进阶:- 电流和电阻:电流的形成和电阻的概念。
- 欧姆定律:电流、电压和电阻之间的关系。
- 电路分析:电路中电流和电压的计算。
3. 电磁感应:- 法拉第电磁感应定律:描述变化磁场产生电动势的现象。
- 楞次定律:电磁感应中电流方向的规律。
4. 交流电:- 交流电的基本概念:交流电的产生和特性。
- 交流电路分析:交流电路中电流和电压的计算。
5. 电磁波:- 电磁波的传播:电磁波在空间中的传播特性。
- 电磁波谱:不同频率的电磁波及其应用。
6. 现代物理概念:- 量子力学基础:量子力学的基本概念和原理。
- 相对论简介:狭义相对论和广义相对论的基本原理。
这些知识点是高中物理教育中的重要组成部分,它们为学生提供了对自然界物理现象的基本理解和分析工具。
高中物理必修3-5原子核知识点

高中物理必修3-5原子核知识点原子核是高中物理必修3-5的内容,有哪些知识点需要我们了解?下面是店铺给大家带来的高中物理原子核知识点,希望对你有帮助。
高中物理原子核知识点一、原子核的组成1、1919年卢瑟福用α粒子轰击氮原子核发现质子即氢原子核。
2、卢瑟福预想到原子内存在质量跟质子相等的不带电的中性粒子,即中子。
查德威克经过研究,证明:用天α射线轰击铍时,会产生一种看不见的贯穿能力很强(10-20厘米的铅板)的不带电粒子,用其轰击石蜡时,竟能从石蜡中打出质子,此贯穿能力极强的射线即为设想中的中子。
3、质子和中子统称核子,原子核的电荷数等于其质子数,原子核的质量数等于其质子数与中子数的和。
具有相同质子数的原子属于同一种元素;具有相同的质子数和不同的中子数的原子互称同位素。
二、放射性元素的衰变1、天然放射现象(1)人类认识原子核有复杂结构和它的变化规律,是从天然放射现象开始的。
(2)1896年贝克勒耳发现放射性,在他的建议下,玛丽·居里和皮埃尔·居里经过研究发现了新元素钋和镭。
(3)用磁场来研究放射线的性质(图见3-5第74页):①α射线带正电,偏转较小,α粒子就是氦原子核,贯穿本领很小,电离作用很强,使底片感光作用很强;②β射线带负电,偏转较大,是高速电子流,贯穿本领很强(几毫米的铝板),电离作用较弱;③γ射线中电中性的,无偏转,是波长极短的电磁波,贯穿本领最强(几厘米的铅板),电离作用很小。
2、原子核由于放出某种粒子而转变为新核的变化叫做原子核的衰变。
在衰变中电荷数和质量数都是守恒的(注意:质量并不守恒。
)。
γ射线是伴随α射线或β射线产生的,没有单独的γ衰变(γ衰变:原子核处于较高能级,辐射光子后跃迁到低能级。
)。
2、半衰期:放射性元素的原子核有半数发生衰变需要的时间。
放射性元素衰变的快慢是由核内部本身的因素决定,与原子所处的物理状态或化学状态无关,它是对大量原子的统计规律。
高中物理选修3-5原子结构知识点

第八章原子结构一、电子的发现:(一)电子的发现:1.电子是怎样发现的:汤姆生用测定粒子的荷质比的方法发现了电子。
汤姆生发现阴极射线在电场和磁场中的偏转现象,根据偏转方向,确认阴极射线是带负电的粒子流。
当他测定阴线射线粒子的荷质比时发现,不同物质做成的阴极发出的射极(粒子)都有相同的荷质比,这表明它们都能发射相同的带电粒子,因此这种带电粒子是构成物质的共同成份,这就是电子。
2.电子的发现对人类认识原子结构的重要性。
①电子的发现使人们认识到原子不是组成物质的最小微粒,原子本身也具有结构。
②由于原子含有带负电的电子,从物质的电中性出发,推想到原子中还有带正电的部分,这就提出了进一步探索原子结构、探索原子模型的问题。
(二)汤姆生的原子模型(枣糕模型)葡萄干面包模型二、原子的核式结构的发现(一)原子核式结构的发现:1.什么叫散射实验?用各种粒子——x射线、电子和α粒子轰击很薄的物质层,通过观察这些粒子穿过物质层后的偏转情况,获得原子结构的信息,这种实验叫做散射实验。
2.为什么用α粒子的散射(实验)现象可以研究原子的结构?原子的结构非常紧密,用一般的方法无法探测它内部的结构,要认识原子的结构,需要用高速粒子对它进行轰击。
①由于α粒子具有足够的能量可以接近原子的中心,②α粒子可以使荧光物质发光,如果α粒子与其他粒子发生相互作用,改变了运动的方向,荧光屏便能够显示出它的方向变化。
3.α粒子散射装置①放射源(Pa“坡”)玛丽·居里的祖国波兰。
②金箔:1μm,能透光,有3000多层原子厚。
③荧光屏荧光屏和显微镜能够围绕金箔在一个④显微镜圆周上转动,从而可以观察到穿过金箔后⑤转动圆盘偏转角度不同的α粒子4.实验过程:实验室建在地下,通道大拐角(防光进入)马斯登和盖革(卢瑟福的学生、助手)进入实验室后要静座半小时散瞳孔后进行观察(纯人工计数),这种观察是十分艰苦细致的工作,所用的时间也是相当长的。
(1909年~~1911年两年的时间)。
高中物理3-5知识点_总结汇总

物理选修3-5知识点总结一、动量守恒定律1、 动量守恒定律的条件:系统所受的总冲量为零(不受力、所受外力的矢量和为零或外力的作用远小于系统内物体间的相互作用力),即系统所受外力的矢量和为零。
(碰撞、爆炸、反冲) 注意:内力的冲量对系统动量是否守恒没有影响,但可改变系统内物体的动量。
内力的冲量是系统内物体间动量传递的原因,而外力的冲量是改变系统总动量的原因。
2、动量守恒定律的表达式 m 1v 1+m 2v 2=m 1v 1/+m 2v 2/ (规定正方向) △p 1=—△p 2/3、某一方向动量守恒的条件:系统所受外力矢量和不为零,但在某一方向上的力为零,则系统在这个方向上的动量守恒。
必须注意区别总动量守恒与某一方向动量守恒。
4、碰撞(1)完全非弹性碰撞:获得共同速度,动能损失最多动量守恒, ;(2)弹性碰撞:动量守恒,碰撞前后动能相等;动量守恒, ;动能守恒, ;特例1:A 、B 两物体发生弹性碰撞,设碰前A 初速度为v0,B 静止,则碰后速度0v m m m m v B A B A A +-=,vB=02v m m m B A A +. 特例2:对于一维弹性碰撞,若两个物体质量相等,则碰撞后两个物体互换速度(即碰后A 的速度等于碰前B 的速度,碰后B 的速度等于碰前A 的速度)(3)一般碰撞:有完整的压缩阶段,只有部分恢复阶段,动量守恒,动能减小。
5、人船模型——两个原来静止的物体(人和船)发生相互作用时,不受其它外力,对这两个物体组成的系统来说,动量守恒,且任一时刻的总动量均为零,由动量守恒定律,有mv = MV (注意:几何关系)二、量子理论的建立 黑体和黑体辐射1、量子理论的建立:1900年德国物理学家普朗克提出振动着的带电微粒的能量只能是某个最小能量值ε的整数倍,这个不可再分的能量值ε叫做能量子ε= h ν。
h 为普朗克常数(6.63×10-34J.S )2、黑体:如果某种物体能够完全吸收入射的各种波长电磁波而不发生反射,这种物体就是绝对黑体,简称黑体。
高考物理3-5知识点总结

高考物理3-5知识点总结高考物理3-5知识点总结物理学是研究物质运动最一般规律和物质基本结构的学科。
作为自然科学的带头学科,物理学研究大至宇宙,小至基本粒子等一切物质最基本的运动形式和规律。
下面是小编为您整理的关于高考物理3-5知识点总结,欢迎阅读!第一章动量1、冲量物体所受外力和外力作用时间的乘积;矢量;过程量;I=Ft;单位是N·s。
2、动量物体的质量与速度的乘积;矢量;状态量;p=mv;单位是kg ·m/s;1kg ·m/s=1 N·s。
3、动量守恒定律一个系统不受外力或者所受外力之和为零,这个系统的总动量保持不变。
4、动量守恒定律成立的条件系统不受外力或者所受外力的矢量和为零;内力远大于外力;如果在某一方向上合外力为零,那么在该方向上系统的动量守恒。
5、动量定理系统所受合外力的冲量等于动量的变化;I=mv -mv 。
6、反冲在系统内力作用下,系统内一部分物体向某方向发生动量变化时,系统内其余部分物体向相反的方向发生动量变化;系统动量守恒。
7、碰撞物体间相互作用持续时间很短,而物体间相互作用力很大;系统动量守恒。
8、弹性碰撞如果碰撞过程中系统的动能损失很小,可以略去不计,这种碰撞叫做弹性碰撞。
9、非弹性碰撞碰撞过程中需要计算损失的动能的碰撞;如果两物体碰撞后黏合在一起,这种碰撞损失的动能最多,叫做完全非弹性碰撞。
第二章波粒二象性1、热辐射一切物体都在辐射电磁波,这种辐射与物体的温度有关,所以叫做热辐射。
2、黑体如果某种物体能够完全吸收入射的各种波长的电磁波而不发生反射,这种物质就是绝对黑体,简称黑体。
3、黑体辐射黑体辐射的电磁波的强度按波长分布,只与黑体的温度有关。
4、黑体辐射规律一方面随着温度升高各种波长的辐射强度都有增加,另一方面,辐射强度的极大值向波长较短的方向移动。
5、能量子普朗克认为振动着的带电粒子的能量只能是某一最小能量的整数倍,这个不可再分的最小能量值叫做能量子;并且 =h ,是电磁波的频率,h为普朗克常量,h=6.63 10 J·s;光子的能量为h 。
选修3-5原子结构整章知识点

选修3—5第十八章原子结构第一节电子的发现第二节原子的核式结构模型第三节氢原子光谱第四节玻尔的原子模型二. 知识内容(一)1. 阴极射线:阴极射线的本质是带负电的粒子流,后来,组成阴极射线的粒子被称为电子。
2. 电子的发现:1897年英国的物理学家汤姆孙发现了电子,并求出了这种粒子的比荷。
(二)1. 汤姆孙的原子模型:原子是一个球体,正电荷弥漫性地均匀分布在整个球体内,电子镶嵌其中,有人形象地把汤姆孙模型称为“西瓜模型”或“枣糕模型”。
2. a粒子散射实验:(1)a粒子:a粒子是从放射性物质中发射出来的快速运动的粒子,带有两个单位的正电荷,质量为氢原子质量的4倍。
(2)实验现象:绝大多数a粒子穿过金箔后,基本上仍沿原来的方向前进,但有少数a粒子(约占八千分之一)发生了大角度偏转,偏转的角度甚至大于900,也就是说它们几乎被“撞了回来”。
(3)卢瑟福核式结构模型:原子中带正电的部分体积很小,但几乎占有全部质量,电子在正电体的外面运动。
按照卢瑟福的理论,正电体被称为原子核,卢瑟福的原子模型因而被称为核式结构模型。
3. 原子核的电荷与尺度:(1)电荷:原子核是由质子和中子组成的,原子核的电荷数就是核中的质子数。
(2)尺度:对于一般的原子核,核半径的数量级为10-16m,而整个原子半径的数量级是10-10m,两者相差十万倍之多,可见原子内部是十分“空旷”的。
(三)1. 光谱:(1)定义:把光按波长的大小分开,获得光的波长(频率)成分和强度分布的记录。
即光谱。
(2)分类:光谱分为线状谱和连续谱。
(3)特征:线状谱是一条条分立的亮线;连续谱是一条连续的光带。
2. 原子光谱:(1)定义:各种原子的发射光谱都是线状谱,不同原子的亮线位置不同,把这些亮线称为原子的特征谱线。
(2)光谱分析:每种原子都有自己的特征谱线,我们可以用它来鉴别物质和确定物质的组成成分,这种方法称为光谱分析。
3. 氢原子光谱:巴耳末公式:,式中R是里德伯常量,其值为R=1.10×l07m-1,n只能取整数,不能连续取值,波长也只会是分立的值。
最新3-5原子物理知识点
第十七章波粒二象性1热辐射:一切在物体都辐射电磁波,而且温度不同时,物体发出的电磁波的波长(频率)、强度也不同.这种辐射与物体的有关,所以叫热辐射.2黑体:如果某种物体入射的各种波长的电磁波而,这种物体就是绝对黑体,简称黑体.3 黑体辐射:(1)定义:绝对黑体的热辐射,只与有关.(2)实验规律:黑体辐射的强度随温度的升高,各波长(频率)的都增加;辐射强度的极大值向的方向移动。
4能量子:(1)振动的带电微粒的能量只能是某一最小能量值ɛ的,这个最小的能量值叫能量子.(2)能量子的公式:ɛ=5光电效应(1)爱因斯坦光电效应方程:(2)一个光子的能量: ɛ=(3)光电效应规律:①任何一种金属都有一个极限频率,入射光的频率必须大于这个,才能产生光电效应;低于这个的光不能产生光电效应。
②光电子的最大初动能与入射光的无关,只随入射光的增大而增大。
③入射光照到金属上时,光子的发射几乎是的,一般不超过10-9s④当入射光的频率大于极限频率时,光电流强度与入射光成正比。
6康普顿效应(石墨中的电子对x射线的散射现象)这两个实验都证明光具性 , 、、体现波动性.7光波是概率波8物质波:任何运动物体都有λ= (这种波称为德布罗意波)第十八章原子的结构1汤姆生模型( 模型) 汤姆生发现,使人们认识到原子有复杂结构。
从而打开原子的大门.2卢瑟福的模型(行星式模型)卢瑟福α粒子散射实验装置,现象,从而总结出核式结构学说(1)α粒子散射实验是用α粒子轰击金箔,实验现象:结果是α粒子穿过金箔后基本上仍沿原来的方向前进,但是有α粒子发生了较大的偏转.这说明原子的正电荷和质量一定集中在一个很小的核上。
(2)卢瑟福由α粒子散射实验提出:在原子的中心有一个很小的核,叫,原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外空间运动。
(3)由α粒子散射实验的实验数据还可以估算出原子核大小的数量级是10-15m 。
而核式结构又与经典的电磁理论发生矛盾① ,②其发出的光谱 3玻尔模型,三条假设(1)轨道量子化 r n =n 2r 1 n=1、2、3…… 能级假设:21nE E n = E 1=-13.6eV定态--原子只能处于一系列不连续的能量状态(称为 ),电子虽然绕核运转,但不会向外辐射能量。
高考物理选修3-5近代物理全总结
近代物理知识点总结盘州市第七中学王富瑾一、原子结构汤姆孙:1、研究阴极射线管发现了电子(十九世纪三大发现之一),并测定其比荷,但没有测出电子的电荷量(电荷量由密立根通过油滴实验测出),说明原子可分,有复杂内部结构。
2、提出葡萄干——面包模型。
卢瑟福:1、进行了α粒子散射实验。
实验现象:绝大多数α粒子穿过金箔后,基本上仍沿原来的方向前进,但少数α粒子发生了大角度偏转,极少数α粒子的偏转超过了90°,极个别原路返回。
2、提出原子核式结构模型。
在原子中心有一个很小的核(10-15m左右),原子全部的正电荷和几乎全部质量都集中在核里,带负电的的电子在核外空间绕核做高速旋转。
波尔:提出了原子结构假说,成功地解释和预言了氢原子的光谱(仅能解释氢原子光谱)。
波尔原子结构假说:1、轨道:电子绕核运行的可能轨道是不连续的。
2、定态:原子只能处于一系列不连续的、稳定的能量状态(定态),在这些能量状态中原子是稳定的,电子虽然绕核运动,但并不向外辐射能量。
3、跃迁:原子从一种定态跃迁到另一种定态时,它辐射或吸收一定频率的光子,光子的能量由这两个定态的能量差决定,即hν=E2-E1。
(h是普朗克常量,h=6.63×10-34 J·s)。
4、能级图:原子在各个定态时的能量值称为原子的能级.它对应电子在各条可能轨道上运动时的能量E n(包括动能和势能).5、光谱:用光栅或棱镜可以把光按波长展开,获得光的波长(频率)和强度分布的记录。
高频考点:1、物理学史的识记。
2、卢瑟福α粒子散射实验的实验现象和结论。
3、跃迁发生的条件:(1)光子的能量恰等于两能级之差,hν=E2-E1(2)光子能量高于基态能量,则电子逸出,多余能量转化为电子的动能。
(3)若吸收的是电子能量,则电子能量大于两能级只差也可发生跃迁。
4、高能级向低能级跃迁时可能放出的光子种类:(1)一群原子核放出光的种类为:。
(2)一个原子核最多放出的光种类:n-1种。
(2021年整理)高中物理人教版选修3-5-知识点总结
(完整版)高中物理人教版选修3-5-知识点总结编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整版)高中物理人教版选修3-5-知识点总结)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整版)高中物理人教版选修3-5-知识点总结的全部内容。
(完整版)高中物理人教版选修3—5-知识点总结编辑整理:张嬗雒老师尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布到文库,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是我们任然希望(完整版)高中物理人教版选修3-5-知识点总结这篇文档能够给您的工作和学习带来便利。
同时我们也真诚的希望收到您的建议和反馈到下面的留言区,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请下载收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为 <(完整版)高中物理人教版选修3-5-知识点总结〉这篇文档的全部内容。
选修3-5知识梳理一.量子论的建立黑体和黑体辐射Ⅰ(一)量子论1。
创立标志:1900年普朗克在德国的《物理年刊》上发表《论正常光谱能量分布定律》的论文,标志着量子论的诞生。
2。
量子论的主要内容:①普朗克认为物质的辐射能量并不是无限可分的,其最小的、不可分的能量单元即“能量子”或称“量子",也就是说组成能量的单元是量子。
②物质的辐射能量不是连续的,而是以量子的整数倍跳跃式变化的。
3。
量子论的发展①1905年,爱因斯坦奖量子概念推广到光的传播中,提出了光量子论。
②1913年,英国物理学家玻尔把量子概念推广到原子内部的能量状态,提出了一种量子化的原子结构模型,丰富了量子论.③到1925年左右,量子力学最终建立。
物理3-5知识点总结
物理3-5知识点总结1. 物理3-5知识点总结物理3-5是高中物理的重要部分,涵盖了力学、热学、光学和电磁学等多个领域的知识。
本文将对这些知识点进行总结,以帮助读者更好地理解和掌握物理3-5的内容。
2. 力学力学是研究物体运动和静止规律的科学。
在力学中,我们需要了解以下几个重要概念:2.1 牛顿运动定律牛顿运动定律是力学的基础,分为三个定律:2.1.1 第一定律:也称为惯性定律,它指出在没有外力作用下,物体将保持静止或匀速直线运动。
2.1.2 第二定律:也称为加速度定律,它指出当外力作用于物体时,物体将产生加速度。
加速度与作用在物体上的合外力成正比。
2.1.3 第三定律:也称为作用与反作用定律,它指出任何两个相互作用的物体之间都存在相等大小、方向相反的两个相互作用力。
2.2 动量动量是物体运动状态的量度,定义为物体的质量乘以其速度。
动量守恒定律指出,在没有外力作用下,系统的总动量保持不变。
2.3 能量能量是物体进行工作或产生热效应的能力。
常见的能量形式包括动能、势能和热能。
2.3.1 动能是物体运动状态所具有的能力,定义为1/2乘以质量和速度平方。
2.3.2 势能是物体由于位置或形状而具有的储存能力。
常见的势能形式包括重力势能和弹性势能。
2.3.3 热能是由于分子间相互作用而产生的微观运动引起的宏观现象。
热平衡定律指出,在没有外界输入或输出热量时,系统内部各部分之间将达到相同温度。
3. 热学热学是研究温度、热传导、传热和理想气体等现象和规律的科学。
在研究热学时,我们需要了解以下几个重要概念:3.1 温度温度是衡量物体冷、暖程度高低的物理性质。
常用的温度单位有摄氏度、华氏度和开尔文。
3.2 热量热量是热能的传递方式,是物体之间由于温度差异而传递的能量。
热传导定律指出,热量的传递方向是从高温区向低温区。
3.3 理想气体理想气体是指在一定条件下,分子间无相互作用、无体积和无内能损失的气体。
理想气体状态方程可以用来描述理想气体在不同条件下的状态。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
部分内容来源于网络,有侵权请联系删除! 检查重点: 1.光电效应 2.玻尔原子假设与能级跃迁规律 3.半衰期 4.爱因斯坦质能方程及其计算 5. 物理学史(物理学家的贡献) 第17章 光电效应 波粒二象性 一、黑体辐射与能量子 1.黑体辐射的实验规律 ①一般材料的物体,辐射的电磁波除与温度有关外,还与材料的种类及表面状况有关. ②黑体辐射电磁波的强度按波长的分布只与黑体的温度有关. a.随着温度的升高,各种波长的辐射强度都增加. b.随着温度的升高,辐射强度的极大值向波长较短的方向移动. 2.能量子 (1)定义:普朗克认为,带电微粒辐射或者吸收能量时,只能辐射或吸收某个最小能量值的整数倍.即能量的辐射或者吸收只能是一份一份的.这个不可再分的最小能量值ε叫做能量子. (2)能量子的大小:ε=hν,其中ν是电磁波的频率,h称为普朗克常量.h=6.63×10-34 J·s. 二、光电效应 1.光电效应现象 光电效应:在光的照射下金属中的电子从金属表面逸出的现象,叫做光电效应,发射出来的电子叫做光电子. 2.光电效应实验规律 (1)每种金属都有一个极限频率. (2)光子的最大初动能与入射光的强度无关,只随入射光的频率增大而增大. (3)光照射到金属表面时,光电子的发射几乎是瞬时的. (4)光电流的强度与入射光的强度成正比. 3.爱因斯坦光电效应方程 (1)光子说:空间传播的光的能量是不连续的,是一份一份的,每一份叫做一个光子.光子的能量为ε=hν,其中h是普朗克常量,其值为6.63×10-34 J·s. (2)光电效应方程:Ek=hν-W0. 其中hν为入射光的能量,Ek为光电子的最大初动能,W0是金属的逸出功. 4.遏止电压与截止频率 (1)遏止电压:使光电流减小到零的反向电压Uc. (2)截止频率:能使某种金属发生光电效应的最小频率叫做该种金属的截止频率(又叫极限频率).不同的金属对应着不同的极限频率. (3)逸出功:电子从金属中逸出所需做功的最小值,叫做该金属的逸出功. 5.由Ek-ν图象(如图)可以得到的信息 (1)极限频率:图线与ν轴交点的横坐标νc. (2)逸出功:图线与Ek轴交点的纵坐标的绝对值E=W0. (3)普朗克常量:图线的斜率k=h. 三、光的波粒二象性与物质波 1.光的波粒二象性 (1)光的干涉、衍射、偏振现象证明光具有波动性. (2)光电效应和康普顿效应说明光具有粒子性. (3)光既具有波动性,又具有粒子性,称为光的波粒二象性. 2.光的散射:光在介质中与物质微粒相互作用,因而传播方向发生改变的现象。 康普顿效应:在研究电子对X射线的散射时发现有些散射波的波长比入射波的波长略大,康普顿认为这是因为光子不仅有能量,还有动量;说明了光具有粒子性。
光子的动量:由于光子的能量是h,由相对论知E=mc2,因此m=2ch,动量p=ch=h。 部分内容来源于网络,有侵权请联系删除!
3.物质波 (1)概率波 光的干涉现象是大量光子的运动遵守波动规律的表现,亮条纹是光子到达概率大的地方,暗条纹是光子到达概率小的地方,因此光波又叫概率波.
(2)物质波:也叫德布罗意波;任何一个运动的物体都有一种波与之对应,其波长=ph;宏观物体也存在波动性,波长很小。 p为运动物体的动量,h为普朗克常量. 电子衍射实验说明实物粒子具有波动性
第18章 原子结构
一、原子结构 1.电子的发现:1897年,英国物理学家汤姆生研究阴极射线发现了电子,并提出了原子的枣糕式模型。 2.原子的核式结构 (1)α粒子散射实验的结果 绝大多数α粒子穿过金箔后,基本上仍沿原来的方向前进,但少数α粒子发生了大角度偏转,极少数α粒子的偏转超过了90°,有的甚至被撞了回来,如图所示. (2)卢瑟福的原子核式结构模型 在原子的中心有一个很小的核,叫原子核,原子的所有正电荷和几乎所有质量都集中在原子核里,带负电的电子在核外绕核旋转. 二.光谱 氢原子是最简单的原子,其光谱也最简单。1885年,巴耳末对当时已知的,在可见光区的4条谱线作了分
析,发现这些谱线的波长可以用一个公式表示:)121(122nR n=3,4,5,… 式中R叫做里德伯常量,这个公式成为巴尔末公式。 三、玻尔理论 1.定态:原子只能处于一系列不连续的能量状态中,在这些能量状态中原子是稳定的,电子虽然绕核运动,但并不向外辐射能量. 2.跃迁:原子从一种定态跃迁到另一种定态时,它辐射或吸收一定频率的光子,光子的能量由这两个定态的能量差决定,即hν=Em-En.(h是普朗克常量,h=6.63×10-34 J·s) 3.轨道:原子的不同能量状态跟电子在不同的圆周轨道绕核运动相对应.原子的定态是不连续的,因此电子的可能轨道也是不连续的. 4.氢原子的能级、能级公式 (1)氢原子的能级图(如图所示) (2)氢原子的能级和轨道半径
①氢原子的能级公式:En=1n2E1(n=1,2,3,…),其中E1为基态能量,其数值为E1=-13.6 eV. ②氢原子的半径公式:rn=n2r1(n=1,2,3,…),其中r1为基态半径,又称玻尔半径,其数值为r1=0.53×10-10 m. 5.对原子跃迁条件的理解 (1)原子从低能级向高能级跃迁,吸收一定能量的光子.只有当一个光子的能量满足hν=E末-E初时,才能被某一个原子吸收,使原子从低能级E初向高能级E末跃迁,而当光子能量hν大于或小于E末-E初时都不能被原子吸收. (2)原子从高能级向低能级跃迁,以光子的形式向外辐射能量,所辐射的光子能量恰等于发生跃迁时的两能级间的能量差. 6.关于能级跃迁的说明 (1)当光子能量大于或等于13.6 eV时,也可以被处于基态的氢原子吸收,使氢原子电离;当处于基态的氢原子吸收的光子能量大于13.6 eV,氢原子电离后,电子具有一定的初动能. (2)当轨道半径减小时,库仑引力做正功,原子的电势能减小,电子动能增大,原子能量减小.反之,轨道半径增大时,原子电势能增大,电子动能减小,原子能量增大. (3)一个原子和一群原子的区别:一个氢原子只有一个电子,在某个时刻电子只能在某一个可能的轨道上,部分内容来源于网络,有侵权请联系删除!
当电子从一个轨道跃迁到另一个轨道上时,可能情况有多种C2n=2)1(nn但产生的跃迁只有一种.而如果是一群氢原子,这些原子的核外电子跃迁时就会出现所有的可能情况. (4)入射光子和入射电子的区别:若是在光子的激发下引起原子跃迁,则要求光子的能量必须等于原子的某两个能级差;若是在电子的碰撞下引起的跃迁,则要求电子的能量必须大于或等于原子的某两个能级差.两种情况有所区别. 第19章 原子核 1.天然放射现象 (1)天然放射现象的发现:1896年法国物理学,贝克勒耳发现铀或铀矿石能放射出某种人眼看不见的射线。这种射线可穿透黑纸而使照相底片感光。 放射性:物质能发射出上述射线的性质称放射性 放射性元素:具有放射性的元素称放射性元素 天然放射现象:某种元素自发地放射射线的现象,叫天然放射现象。这表明原子核存在精细结构,是可以再分的。 (2)放射线的成份和性质:用电场和磁场来研究放射性元素射出的射线,在电场中轨迹,如图 2.原子核 (1)原子核的组成 ①原子核由中子和质子组成,质子和中子统称为核子. ②原子核的核电荷数=质子数,原子核的质量数=中子数+质子数. ③X元素原子核的符号为AZX,其中A表示质量数,Z表示核电荷数. (2)同位素:具有相同质子数、不同中子数的原子核,因为在元素周期表中的位置相同,同位素具有相同的化学性质. 3.原子核的衰变和半衰期 (1)原子核的衰变 (1)原子核放出α粒子或β粒子,变成另一种原子核的变化称为原子核的衰变. (2)分类:α衰变:AZX→A-4Z-2Y+42He β衰变:AZX→ AZ+1Y+ 0-1e 1.衰变规律及实质
γ射线:γ射线经常是伴随着α衰变或β衰变同时产生的.其实质是放射性原子核在发生α衰变或β衰变的过程中,产生的新核由于具有过多的能量(核处于激发态)而辐射出光子. (3)半衰期:放射性元素的原子核有半数发生衰变所需的时间.
公式:N余=N原(12)t/τ,m余=m原(12)t/τ
影响因素:放射性元素衰变的快慢是由原子核内部自身因素决定的,跟原子所处的物理状态(如温度、压强)或化学状态(如单质、化合物)无关. 半衰期是大量原子核衰变概率统计规律,少数几个原子核不能用半衰期公式计算 4.原子核的人工转变 用高能粒子轰击靶核,产生另一种新核的反应过程. (1)卢瑟福发现质子的核反应方程为: 14 7N+42He→17 8O+11H. (2)查德威克发现中子的核反应方程为: 94Be+42He→12 6C+10n. (3)居里夫妇发现放射性同位素和正电子的核反应方程为: 2713Al+42He→3015P+10n. 3015P→3014Si+0+1e.
反应生成物P是磷的一种同位素,自然界没有天然的P3015,它是通过核反应生成的人工放射性同位素。与天然的放射性物质相比,人造放射性同位素:
衰变类型 α衰变 β衰变 衰变方程 AZX→A-4Z-2Y+42He AZX→A Z+1Y+0-1e
衰变实质 2个质子和2个中子结合成一个整体射出
中子转化为质子
和电子
211H+210n→42He 10n→11H+0-1e 衰变规律 质量数守恒、电荷数守恒