数列求和的8种常用方法(最全)
数列求和公式七个方法

数列求和公式七个方法数列求和是数学中的一个重要概念,常用于计算数列中各项之和。
数列求和公式有多种方法,下面将介绍七种常见的求和公式方法。
方法一:等差数列求和公式等差数列是指数列中每一项与前一项之差都相等的数列。
等差数列求和公式是通过将数列项数n代入公式中,计算数列中各项之和Sn。
等差数列求和公式为Sn=n(a1+an)/2,其中Sn表示数列的和,a1表示首项,an表示末项,n表示项数。
方法二:等比数列求和公式等比数列是指数列中每一项与前一项之比都相等的数列。
等比数列求和公式是通过将数列项数n代入公式中,计算数列中各项之和Sn。
等比数列求和公式为Sn=a1(1-q^n)/(1-q),其中Sn表示数列的和,a1表示首项,q表示公比,n表示项数。
方法三:斐波那契数列求和公式斐波那契数列是指数列中每一项都是前两项之和的数列。
斐波那契数列求和公式是通过将数列项数n代入公式中,计算数列中各项之和Sn。
斐波那契数列求和公式为Sn=f(n+2)-1,其中Sn表示数列的和,f表示斐波那契数列。
方法四:调和数列求和公式调和数列是指数列中每一项的倒数是一个调和级数的一项。
调和数列求和公式是通过将数列项数n代入公式中,计算数列中各项之和Sn。
调和数列求和公式为Sn=1+1/2+1/3+...+1/n,即Sn=Hn,其中Hn表示调和级数的n项和。
方法五:等差数列求和差分公式通过差分公式,我们可以得到等差数列的求和公式。
差分公式是指数列中相邻两项之差等于同一个常数d。
等差数列求和差分公式为Sn=[(a1+an)/2]n,其中Sn表示数列的和,a1表示首项,an表示末项,n表示项数。
方法六:等比数列求和差分公式通过差分公式,我们可以得到等比数列的求和公式。
差分公式是指数列中相邻两项之比等于同一个常数q。
等比数列求和差分公式为Sn=a1(1-q^n)/(1-q),其中Sn表示数列的和,a1表示首项,q表示公比,n表示项数。
方法七:等差数列求和公式(倍差法)倍差法是一种基于等差数列的求和方法。
数列求和的8种方法

数列求和的基本方法和技巧(配以相应的练习)一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn3、 )1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n5、 213)]1(21[+==∑=n n k S nk n [例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和.[例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值.题1.等比数列的前n项和S n=2n-1,则=题2.若12+22+…+(n -1)2=an 3+bn 2+cn ,则a = ,b = ,c = .[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①[例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项的和.练习题1 已知 ,求数列{a n }的前n 项和S n .练习题2的前n 项和为____[例5] 求证:nnn n n n n C n C C C 2)1()12(5321+=++⋅⋅⋅+++[例6] 求89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值题1 已知函数练习。
已知()x f 满足21,x x ∈R ,当121=+x x 时,()()2121=+x f x f ,若=n S ()()11210f n n f n f n f f +⎪⎭⎫ ⎝⎛-++⎪⎭⎫⎝⎛+⎪⎭⎫⎝⎛+ N n ∈,,求.n S[例7] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n aa a n ,…[例8] 求数列{n(n+1)(2n+1)}的前n 项和.(1))()1(n f n f a n -+= (2)n n n n tan )1tan()1cos(cos 1sin -+=+ (3)111)1(1+-=+=n n n n a n (4))121121(211)12)(12()2(2+--+=+-=n n n n n a n(5)])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n(6) nn n n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则 (7))11(1))((1CAn B An B C C An B An a n +-+-=++=(8)n a ==[例9] 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.[例10] 在数列{a n }中,11211++⋅⋅⋅++++=n n n n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和.[例11] 求证:1sin 1cos 89cos 88cos 12cos 1cos 11cos 0cos 12=+⋅⋅⋅++练习题2。
数列求和的8种常用方法(最全)

求数列前n 项和的8种常用方法一.公式法(定义法): 1.等差数列求和公式:11()(1)22n n n a a n n S na d ++==+特别地,当前n 项的个数为奇数时,211(21)k k S k a ++=+⋅,即前n 项和为中间项乘以项数。
这个公式在很多时候可以简化运算; 2.等比数列求和公式: (1)1q =,1n S na =; (2)1q ≠,()111nn a q S q-=-,特别要注意对公比的讨论;3.可转化为等差、等比数列的数列;4.常用公式:(1)1nk k ==∑12123(1)n n n ++++=+;(2)21nk k ==∑222211631123(1)(21)()(1)2n n n n n n n ++++=++==++;(3)31nk k ==∑33332(1)2123[]n n n +++++=;(4)1(21)nk k =-=∑2135(21)n n ++++-=.例1 已知3log 1log 23-=x ,求23n x x x x ++++的前n 项和. 解:由212log log 3log 1log 3323=⇒-=⇒-=x x x 由等比数列求和公式得 23n n S x x x x =++++=xx x n--1)1(=211)211(21--n =1-n 21例2 设123n S n =++++,*n N ∈,求1)32()(++=n nS n S n f 的最大值.解:易知 )1(21+=n n S n , )2)(1(211++=+n n S n∴ 1)32()(++=n n S n S n f =64342++n n n=n n 64341++=50)8(12+-n n 501≤∴ 当 88-n ,即8n =时,501)(max =n f .二.倒序相加法:如果一个数列{}n a ,与首末两端等“距离”的两项的和相等或等于同一常数,那么求这个数列的前n 项和即可用倒序相加法。
求数列前n项和8种的方法(史上最全)

求数列前n 项和8种的方法一.公式法(定义法): 1.等差数列求和公式:11()(1)22n n n a a n n S na d ++==+特别地,当前n 项的个数为奇数时,211(21)k k S k a ++=+,即前n 项和为中间项乘以项数。
这个公式在很多时候可以简化运算; 2.等比数列求和公式: (1)1q =时,1n S na =; (2)()1111nn a q q S q-≠=-,,特别要注意对公比的讨论;3.可转化为等差、等比数列的数列;4.常用公式:(1)1nk k ==∑12123(1)n n n ++++=+;(2)21nk k ==∑222216123(1)(21)n n n n ++++=++;(3)31nk k ==∑33332(1)2123[]n n n +++++=;(4)1(21)n k k =-=∑2n 1)-(2n ...531=++++.例1 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++n x x x x 32的前n 项和. 解:由212log log 3log 1log 3323=⇒-=⇒-=x x x由等比数列求和公式得 n n x x x x S +⋅⋅⋅+++=32=xx x n--1)1(=211)211(21--n =1-n 21例2 设123n s n =++++,*n N ∈,求1)32()(++=n nS n S n f 的最大值.解:易知 )1(21+=n n S n , )2)(1(211++=+n n S n∴ 1)32()(++=n nS n S n f =64342++n n n=n n 64341++=50)8(12+-nn 501≤∴ 当 88-n ,即n =8时,501)(max =n f .二.倒序相加法:如果一个数列{a n },与首末两端等“距离”的两项的和相等或等于同一常数,那么求这个数列的前n 项和即可用倒序相加法。
数列求和的8种常用方法

数列求和的8种常用方法数列求和是数学中非常常见的问题,它的解法有很多种。
下面我将介绍8种常用的方法来求解数列的和,让我们一起来看看吧。
一、等差数列求和公式对于等差数列$a_n=a_1+(n-1)d$,其中$a_n$表示第n个数,$a_1$表示第一个数,d表示公差,我们可以利用等差数列求和公式求解:$S = \frac{n}{2}(a_1 + a_n) = \frac{n}{2}(2a_1 + (n-1)d)$其中S表示数列的和,n表示数列的项数。
二、等比数列求和公式对于等比数列$a_n = a_1 \cdot q^{(n-1)}$,其中$a_n$表示第n个数,$a_1$表示第一个数,q表示公比,我们可以利用等比数列求和公式求解:$S = \frac{a_1(q^n - 1)}{q - 1}$,其中q≠1或者当q=1时,$S=a_1n$其中S表示数列的和,n表示数列的项数。
三、几何级数求和公式对于几何级数$s_n = a_1 + a_2 + \dots + a_n$,其中$a_1$表示第一个数,q表示公比,我们可以利用几何级数求和公式求解:$S = \frac{a_1(q^n - 1)}{q - 1}$,其中q≠1四、等差数列-等比数列混合求和公式对于等差数列-等比数列混合数列$s_n = a_1 + a_2 + \dots + a_n$,其中$a_n = a_1 + (n-1)d$,$a_1$表示第一个数,d表示公差,我们可以利用等差数列-等比数列混合求和公式求解:$S = \frac{a_1(q^n - 1)}{q - 1} + \frac{n(n-1)d}{2}q^{(n-2)}$,其中q≠1五、反比例数列求和公式对于反比例数列$s_n = \frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}$,其中$a_1$表示第一个数,我们可以利用反比例数列求和公式求解:$S = \frac{n}{a_1}$六、算术-几何级数求和公式对于算术-几何级数$s_n = a_1 + a_2 + \dots + a_n$,其中$a_n = a_1 + (n-1)d$,$a_1$表示第一个数,d表示公差$S = \frac{a_1}{1-q} + \frac{d}{(1-q)^2}$,其中q≠1七、差分数列求和公式对于差分数列$s_n = a_1 + a_2 + \dots + a_n$,其中$a_n = a_1+ (n-1)d$,$a_1$表示第一个数,d表示公差,我们可以利用差分数列求和公式求解:$S = \frac{n}{2}(2a_1 + (n-1)d)$其中S表示数列的和,n表示数列的项数。
数列求和的八种重要方法与例题

练习10:
已知Sn=-1+3-5+7+…+(-1)n(2n-1),
1)求S20,S21 2)求Sn
=20 S20=-1+3+(-5)+7+……+(-37)+39
S21=-1+3+(-5)+7+(-9)+……+39+(-41)
=-21
总的方向: 1.转化为等差或等比数列的求和 2.转化为能消项的 思考方式:求和看通项(怎样的类型) 若无通项,则须先求出通项 方法及题型: 1.等差、等比数列用公式法 2.倒序相加法 3.错位相减法 4.裂项相消法
1 (1 3
2n )
5
n
12 3
1 (2n 5n 1) 3
热点题型3:递归数列与数学归纳法.
已知数列{an}的各项都是正数,且满足:a01,an1
(nN)
1 2
an (4
an ).
(1)证明an<an+1<2(nN) (2)求数列{an}的通项公式an
用数学归纳法证明:
类型a1+an=a2+an-1=a3+an-2=……
典例. 已知 lg(xy) 2 2.倒序相加法
S =lgxn +lg(xn-·1 y)+ ...+lg(x·1 yn-1)+lgyn,
(x > 0,y > 0) 求S .
S =lgxn +lg(xn-·1 y)+ ...+lgyn
S =lgyn +lg(yn-·1 x)+ ...+lgxn 2S =lg(xy)n +lg(xy)n + ...+lg(xy)n
数列求和的常用方法

数列求和的常用方法一、公式法1、 差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn例1、设{}n a 是公比大于1的等比数列,n S 为数列{}n a 的前n 项和.已知37S =,且123334a a a ++,,构成等差数列.(1)求数列{}n a 的等差数列.(2)令31ln 12n n b a n +==,,,,求数列{}n b 的前n 项和T .二、倒序相加法若和式中到首尾距离相等的两项和有其共性或数列的通项与组合数相关联,则常可考虑选用倒序相加法,发挥其共性的作用求和(这也是等差数列前n 和公式的推导方法).例2、设函数222)(+=x x x f 的图象上有两点P 1(x 1, y 1)、P 2(x 2, y 2),若)(2121OP OP +=且点P 的横坐标为21. (I )求证:P 点的纵坐标为定值,并求出这个定值;(II )若;求,),()3()2()1(*n n S N n nn f nf nf nf S ∈+⋯+++=三、裂项相消法:如果数列的通项可“分裂成两项差”的形式,且相邻项分裂后相关联,那么常选用裂项相消法求和.常用裂项形式有:(1)n n n n -+=++111(2)111=- (3)])2)(1(1)1(1[21)2)(1(1++-+=++n n n n n n n若数列}{n a 为等差数列,0≠n a ,公差0≠d ,)11(11,11111111++++++-=∴=-=-n n n n n n n n n n n n a a d a a a a d a a a a a a则数列}1{1+n n a a 的前n 项和)11(1)11(1)11(113221+-++-+-=n n n a a d a a d a a d S111111111)11(1++++=-⋅=-=n n n n a a na a a a d a a d 。
数列求和的8种常用方法

数列求和的8种常用方法数列求和是数学中常见的问题,解决数列求和问题有很多方法。
下面将介绍数列求和的8种常用方法。
1.直接相加法:这是最基本的方法,实际上就是将数列中的所有项相加。
例如,对于等差数列1,3,5,7,9,可以直接相加得到1+3+5+7+9=252.偶数项和与奇数项和之和法:对于一些数列,可以将其分解为偶数项和与奇数项和,然后再求和。
例如,对于等差数列1,3,5,7,9,可以分解为偶数项和4+8和奇数项和1+3+5+7+9,再相加得到(4+8)+(1+3+5+7+9)=373.首项与末项和的乘法法:对于等差数列,可以利用首项与末项之和的公式来求和。
首项与末项之和等于和的平均数乘以项数。
例如,对于等差数列1,3,5,7,9,首项与末项之和等于(1+9)*(项数/2)=10*5/2=254.首项与公差与项数的乘法法:对于等差数列,可以利用首项、公差和项数的乘积来求和。
等差数列的和等于首项乘以项数,再加上项数与公差之积的和。
例如,对于等差数列1,3,5,7,9,和等于1*5+(5*4)/2=10+10=20。
5.平均数法:对于一些特殊的数列,可以利用平均数的性质来求和。
平均数等于数列中的第一项与最后一项的平均值。
例如,对于等差数列1,3,5,7,9,平均数等于(1+9)/2=5,然后将平均数乘以项数,得到5*5=256.高斯求和法:高斯求和法是一种数学推导方法,用于求等差数列的和。
首先将数列化为由首项和末项构成的和,然后将数列顺序颠倒,再将之前的和与颠倒后的和相加,得到的结果就是等差数列的和。
例如,对于等差数列1,3,5,7,9,将其化为(1+9)+(3+7)+5,然后将数列颠倒得到5+(7+3)+9,再相加得到257. telescopage法(消去法):telescopage法是一种利用抵消的思想来求和的方法。
可以将数列中相邻的两项之差相消为0,最终得到一个简单的表达式,然后再求值。
例如,对于数列1, 2, 3, 4, 5,可以将(2-1) + (3-2) + (4-3) + (5-4)相加,得到1 + 1 + 1 + 1 = 48.更一般的求和方法:对于一些复杂的数列,可能需要应用更一般的数学方法来求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求数列前n 项和的8种常用方法一.公式法(定义法): 1.等差数列求和公式:11()(1)22n n n a a n n S na d ++==+特别地,当前n 项的个数为奇数时,211(21)k k S k a ++=+⋅,即前n 项和为中间项乘以项数。
这个公式在很多时候可以简化运算; 2.等比数列求和公式: (1)1q =,1n S na =; (2)1q ≠,()111nn a q S q-=-,特别要注意对公比的讨论;3.可转化为等差、等比数列的数列;4.常用公式:(1)1nk k ==∑12123(1)n n n ++++=+;(2)21n k k ==∑222211631123(1)(21)()(1)2n n n n n n n ++++=++==++;(3)31nk k ==∑33332(1)2123[]n n n +++++=;(4)1(21)nk k =-=∑2135(21)n n ++++-=.例1 已知3log 1log 23-=x ,求23n x x x x ++++的前n 项和. 解:由212log log 3log 1log 3323=⇒-=⇒-=x x x由等比数列求和公式得 23n n S x x x x =++++=xx x n --1)1(=211)211(21--n =1-n 21例2 设123n S n =++++,*n N ∈,求1)32()(++=n nS n S n f 的最大值.解:易知 )1(21+=n n S n , )2)(1(211++=+n n S n∴ 1)32()(++=n nS n S n f =64342++n n n=n n 64341++=50)8(12+-nn 501≤∴ 当 88-n ,即8n =时,501)(max =n f .二.倒序相加法:如果一个数列{}n a ,与首末两端等“距离”的两项的和相等或等于同一常数,那么求这个数列的前n 项和即可用倒序相加法。
如:等差数列的前n 项和即是用此法推导的,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.例3 求 89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设 89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………①将①式右边反序得1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …………② (反序) 又因为 1cos sin ),90cos(sin 22=+-=x x x x①+②得 (反序相加) )89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++⋅⋅⋅++++=S =89 ∴ S =44.5例4 函数()1x f x x =+,求()()()()1111220121201220112f f f f f f f ⎛⎫⎛⎫⎛⎫++++++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值.三.错位相减法:适用于差比数列(如果{}n a 等差,{}n b 等比,那么{}n n a b ⋅叫做差比数列)即把每一项都乘以{}n b 的公比q ,向后错一项,再对应同次项相减,即可转化为等比数列求和. 如:等比数列的前n 项和就是用此法推导的.例5 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S …………①解:由题可知,{1)12(--n x n }的通项是等差数列{}21n -的通项与等比数列{1-n x }的通项之积 设n n x n x x x x xS )12(7531432-+⋅⋅⋅++++=………………② (设制错位) ①-②得 n n n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)即:n n n x n xx x S x )12(1121)1(1----⋅+=-- ∴21)1()1()12()12(x x x n x n S n n n -+++--=+ 变式 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项的和.解:由题可知,22n n ⎧⎫⎨⎬⎩⎭的通项是等差数列{}2n 的通项与等比数列{n 21}的通项之积设n n nS 2226242232+⋅⋅⋅+++=…………………………①14322226242221++⋅⋅⋅+++=n n nS ………………………② (设制错位) ①-②得,1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS (错位相减)1122212+---=n n n∴1242n n n S -+=-四.裂项相消法:即把每一项都拆成正负两项,使其正负抵消,只余有限几项,可求和。
这是分解与组合思想(分是为了更好地合)在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 适用于1n n c a a +⎧⎫⎨⎬⋅⎩⎭,其中{}n a 是各项不为0的等差数列,c 为常数;部分无理数列、含阶乘的数列等。
其基本方法是()()1n a f n f n =+-.常见裂项公式: (1)111(1)1n n nn ++=-,1111()()n n k k nn k++=-;111111()n n n n a a d a a ++=-⋅({}n a 的公差为d ); (2)1d=.(根式在分母上时可考虑利用分母有理化,因式相消求和);(3)1111(1)(1)2(1)(1)(2)[]n n n n n n n -++++=-;(4)1111()(21)(21)22121n a n n n n ==--+-+;)121121(211)12)(12()2(2+--+=+-=n n n n n a n ;(5)nn n n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则; (6)n n n n tan )1tan()1cos(cos 1sin -+=+; (7)11(1)!!(1)!n n n n ++=-;(8)常见放缩公式:212<=.例6 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.解:设n n n n a n -+=++=111 (裂项)则 11321211+++⋅⋅⋅++++=n n S n (裂项求和) =)1()23()12(n n -++⋅⋅⋅+-+-=11-+n例7 求和1111133557(21)(21)n S n n =++++⨯⨯⨯-+.例8 在数列{}n a 中,11211++⋅⋅⋅++++=n n n n a n ,又12+⋅=n n n a a b ,求数列{}n b 的前n 项的和. 解: ∵ 211211n n n n n a n =++⋅⋅⋅++++=∴ )111(82122+-=+⋅=n n n n b n (裂项)∴ 数列{}n b 的前n 项和)]111()4131()3121()211[(8+-+⋅⋅⋅+-+-+-=n n S n (裂项求和)=)111(8+-n = 18+n n例9 求证:1sin 1cos 89cos 88cos 12cos 1cos 11cos 0cos 12=+⋅⋅⋅++解:设89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S ∵n n n n tan )1tan()1cos(cos 1sin -+=+ (裂项) ∴89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S (裂项求和) =]}88tan 89[tan )2tan 3(tan )1tan 2(tan )0tan 1{(tan 1sin 1-+-+-+- =)0tan 89(tan 1sin 1 -=1cot 1sin 1⋅= 1sin 1cos 2 ∴ 原等式成立变式 求11113153563n S =+++.解:1111315356311111335577911111111111(1)()()()2323525727911111111(1)()()()2335577911(1)2949+++=+++⨯⨯⨯⨯=-+-+-+-⎡⎤=-+-+-+-⎢⎥⎣⎦=-= 五.分段求和法:例10 在等差数列{}n a 中102523,22a a ==-,求:(1)数列{}n a 前多少项和最大;(2)数列{}n a 前n 项和.六.分组求和法: 有一类数列,既不是等差数列,也不是等比数列, 可把数列的每一项分成多个项或把数列的项重新组合,使其转化成常见的数列,然后分别求和,再将其合并即可.例11 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n aa a n ,…解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a S n n将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n (分组)当1a =a =1时,2)13(n n n S n -+==2)13(nn + (分组求和) 当1≠a 时,2)13(1111n n aa S n n -+--==2)13(11n n a a a n -+---. 例12 求数列()(){}121n n n ++的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1( ∴ ∑=++=nk n k k k S 1)12)(1(=)32(231k k k nk ++∑=将其每一项拆开再重新组合得3211123nnnn k k k S k k k ====++∑∑∑ (分组)=)21()21(3)21(2222333n n n +⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++=2)1(2)12)(1(2)1(22++++++n n n n n n n (分组求和) =2)2()1(2++n n n变式 求数列11111,2,3,,,2482n n ⎛⎫+ ⎪⎝⎭的前n 项和.解: 231111123()24821111(123)()222211(1)122n n n n S n n n n =+++++=+++++++++=++- 七.并项求和法:在数列求和过程中,将某些项分组合并后即可转化为具有某种特殊的性质的特殊数列,可将这些项放在一起先求和,最后再将它们求和,则称之为并项求和.形如()()1nn a f n =-类型,可采用两项合并求.利用该法时要特别注意有时要对所分项数是奇数还是偶数进行讨论. 例13 求cos1°+ cos2°+ cos3°+…+ cos178°+ cos179°的值. 解:设S n = cos1°+ cos2°+ cos3°+…..+ cos178°+ cos179°∵ )180cos(cos n n --= (找特殊性质项)∴S n = (cos1°+ cos179°)+( cos2°+ cos178°)+ (cos3°+ cos177°)++(cos89°+ cos91°)+ cos90° (合并求和)= 0例14 数列{}n a :n n n a a a a a a -====++12321,2,3,1,求2002S . 解:设2002S =2002321a a a a +⋅⋅⋅+++由n n n a a a a a a -====++12321,2,3,1可得 ,2,3,1654-=-=-=a a a,2,3,1,2,3,1121110987-=-=-====a a a a a a ……2,3,1,2,3,1665646362616-=-=-====++++++k k k k k k a a a a a a∵ 0665646362616=+++++++++++k k k k k k a a a a a a (找特殊性质项) ∴2002S =2002321a a a a +⋅⋅⋅+++ (合并求和)=)()()(66261612876321++++⋅⋅⋅+++⋅⋅⋅+⋅⋅⋅+++⋅⋅⋅+++k k k a a a a a a a a a a2002200120001999199819941993)(a a a a a a a +++++⋅⋅⋅+++⋅⋅⋅+ =2002200120001999a a a a +++ =46362616+++++++k k k k a a a a =5例15 在各项均为正数的等比数列中,若103231365log log log ,9a a a a a +⋅⋅⋅++=求的值. 解:设1032313log log log a a a S n +⋅⋅⋅++=由等比数列的性质 q p n m a a a a q p n m =⇒+=+ (找特殊性质项)和对数的运算性质 N M N M a a a ⋅=+log log log 得)log (log )log (log )log (log 6353932310313a a a a a a S n ++⋅⋅⋅++++= (合并求和) =)(log )(log )(log 6539231013a a a a a a ⋅+⋅⋅⋅+⋅+⋅ =9log 9log 9log 333+⋅⋅⋅++ =10变式 求和2222222212345699100n S =-+-+-++-.八.利用数列的通项求和先根据数列的结构及特征进行分析,找出数列的通项及其特征,然后再利用数列的通项揭示的规律来求数列的前n 项和,是一个重要的方法. 例16 求11111111111n +++⋅⋅⋅+⋅⋅⋅个之和.解:由于111111119999(101)99k k k ⋅⋅⋅=⨯⋅⋅⋅=-个个 (找通项及特征)∴ 11111111111n +++⋅⋅⋅+⋅⋅⋅个=)110(91)110(91)110(91)110(91321-+⋅⋅⋅+-+-+-n (分组求和) =()123111(10101010)111199n n +++⋅⋅⋅+-+++⋅⋅⋅+个 =9110)110(1091nn ---⋅=)91010(8111n n --+ 例17 已知数列{}n a :∑∞=+-+++=11))(1(,)3)(1(8n n n n a a n n n a 求的值.解:∵ ])4)(2(1)3)(1(1)[1(8))(1(1++-+++=-++n n n n n a a n n n (找通项及特征)=])4)(3(1)4)(2(1[8+++++⋅n n n n (设制分组)=)4131(8)4121(4+-+++-+⋅n n n n (裂项)∴ ∑∑∑∞=∞=∞=++-+++-+=-+1111)4131(8)4121(4))(1(n n n n n n n n n a a n (分组、裂项求和)=418)4131(4⋅++⋅=313变式 求55555555555n +++⋅⋅⋅+⋅⋅⋅个的前n 项和.解:∵()51019n n a =-()()()()12355551011011011019999n n S ∴=-+-+-++-()1235101010109n n ⎡⎤=++++-⎣⎦ ()151091081n n +=-- 以上8种方法虽然各有其特点,但总的原则是要善于改变原数列的形式结构,使其能使用等差数列或等比数列的求和公式以及其它已知的基本求和公式或进行消项处理来解决,只要很好地把握这一规律,就能使数列求和化难为易,迎刃而解.。