六年级行程问题、相遇问题专项练习(含知识点)
小学奥数:多次相遇和追及问题.专项练习及答案解析

1. 学会画图解行程题2. 能够利用柳卡图解决多次相遇和追及问题3. 能够利用比例解多人相遇和追及问题板块一、由简单行程问题拓展出的多次相遇问题所有行程问题都是围绕“=⨯路程速度时间”这一条基本关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.【例 1】 甲、乙两名同学在周长为300米圆形跑道上从同一地点同时背向练习跑步,甲每秒钟跑3.5米,乙每秒钟跑4米,问:他们第十次相遇时,甲还需跑多少米才能回到出发点?【考点】行程问题 【难度】1星 【题型】解答【解析】 从开始到两人第十次相遇的这段时间内,甲、乙两人共跑的路程是操场周长的10倍,为300103000⨯=米,因为甲的速度为每秒钟跑3.5米,乙的速度为每秒钟跑4米,所以这段时间内甲共行了 3.5300014003.54⨯=+米,也就是甲最后一次离开出发点继续行了200米,可知甲还需行300200100-=米才能回到出发点.【答案】100米【巩固】 甲乙两人在相距90米的直路上来回跑步,甲的速度是每秒3米,乙的速度是每秒2米.如果他们同时分别从直路两端出发,10分钟内共相遇几次?【考点】行程问题 【难度】1星 【题型】解答【解析】 17【答案】17【巩固】 甲、乙两人从400米的环形跑道上一点A 背向同时出发,8分钟后两人第五次相遇,已知每秒钟甲比乙多走0.1米,那么两人第五次相遇的地点与点A 沿跑道上的最短路程是多少米?【考点】行程问题 【难度】2星 【题型】解答【解析】 176【答案】176【例 2】 甲、乙二人从相距 60千米的两地同时相向而行,6时后相遇。
如果二人的速度各增加1千米/时,那么相遇地点距前一次相遇地点1千米。
问:甲、乙二人的速度各是多少?【考点】行程问题 【难度】3星 【题型】解答【解析】 甲、乙两人的速度和第一次为60÷6=10(千米/时),第二次为12(千米/时),故第二次出发后5时相遇。
六年级相遇问题专项练习题

六年级相遇问题专项练习题【六年级相遇问题专项练习题】相遇问题是数学中的常见问题类型之一,它要求我们通过计算两个物体相向而行的速度以及各自的初始位置,确定它们何时相遇。
在解决相遇问题时,我们通常需要运用到一些基本的数学知识和运算技巧。
一、问题解析假设有两个人A、B,他们同时从相距500米的地方出发,A的速度是3米/秒,B的速度是4米/秒,问他们相遇需要多长时间?二、解决思路要解决相遇问题,我们首先需要确定两者的相对速度,然后用总距离除以相对速度,即可得到相遇所需的时间。
三、解题过程1. 确定相对速度由于A、B是相向而行的,所以他们的相对速度等于两者的速度之和:3 + 4 = 7 米/秒。
2. 计算相遇时间将总距离500米除以相对速度7米/秒,得到相遇所需的时间:500 /7 ≈ 71.43 秒。
四、答案验证为了验证我们的计算结果是否正确,我们可以用相对速度乘以相遇时间,来计算A、B各自的位移,然后将两者的位移相加,看是否等于总距离500米。
1. A和B各自的位移A的位移 = A的速度 ×相遇时间= 3 × 71.43 ≈ 214.29 米B的位移 = B的速度 ×相遇时间= 4 × 71.43 ≈ 285.72 米2. 两者位移之和A的位移 + B的位移= 214.29 + 285.72 ≈ 500 米由此可见,A和B的位移之和确实等于总距离500米,说明他们在相遇时刻的位置确实满足题设条件。
因此,两个人相遇需要的时间约为71.43秒。
【结束语】通过以上的解题过程,我们可以了解到在相遇问题中,关键是确定相对速度,并利用总距离除以相对速度来计算相遇所需的时间。
相遇问题是数学中常见的应用题,通过反复练习和掌握相对速度的计算方法,我们可以在解决实际问题时更加得心应手。
希望本文对六年级的学生们能有所帮助,继续加油!。
五、六年级行程:多次相遇、追及试题及详解5

五、六年级行程:多次相遇、追及试题及详解5
1、五年级行程问题:多次相遇、追及问题
难度:高难度
小明和小红两人在长100米的直线跑道上来回跑步,做体能训练,小明的速度为6米/秒,小红的速度为4米/秒.他们同时从跑道两端出发,连续跑了12分钟.在这段时间内,他们迎面相遇了多少次?
2、六年级行程问题:多次相遇、追及问题
难度:高难度
3、六年级行程问题:多次相遇、追及问题
难度:高难度
甲、乙两人分别从、两地同时出发相向而行,乙的速度是甲的,二人相遇后继续行进,甲到地、乙到地后立即返回.已知两人第二次相遇的地点距第三次相遇的地点是100千米,那么,、两地相距千米.
4、五年级行程问题:多次相遇、追及问题
难度:中难度
小王、小李二人往返于甲、乙两地,小王从甲地、小李从乙地同时出发,相向而行,两人第一次在距甲地3千米处相遇,第二次在距甲地6千米处相遇(追上也算作相遇),则甲、乙两地的距离为千米.
5、六年级行程问题:多次相遇、追及问题
难度:高难度
A,B两地相距540千米。
甲、乙两车往返行驶于A,B两地之间,都是到达一地之后立即返回,乙车较甲车快。
设两辆车同时从A 地出发后第一次和第二次相遇都在途中P地。
那么到两车第三次相遇为止,乙车共走了多少千米?。
六年级奥数行程问题专题:二次相遇行程问题的要点及解题技巧

六年级奥数专题:二次相遇行程问题的要点及解题技巧一、概念:两个运动物体作相向运动或在环形跑道上作背向运动,随着时间的发展,必然面对面地相遇,这类问题叫做相遇问题。
二、特点:它的特点是两个运动物体共同走完整个路程。
小学数学教材中的行程问题,一般是指相遇问题。
三、类型:相遇问题根据数量关系可分成三种类型:求路程,求相遇时间,求速度。
四、三者的基本关系及公式:它们的基本关系式如下:总路程=(甲速+乙速)×相遇时间相遇时间=总路程÷(甲速+乙速)另一个速度=甲乙速度和-已知的一个速度奥数行程:二次相遇例题及答案(一)答题思路点拨:甲从A地出发,乙从B地出发相向而行,两人在C 地相遇,相遇后甲继续走到B地后返回,乙继续走到A地后返回,第二次在D地相遇。
一般知道AC和AD的距离,主要抓住第二次相遇时走的路程是第一次相遇时走的路程的两倍。
例1。
甲乙两车同时从A、B两地相向而行,在距B地54千米处相遇,它们各自到达对方车站后立即返回,在距A地42千米处相遇。
请问A、B两地相距多少千米?A。
120 B。
100 C。
90 D。
80【解答】A。
解析:设两地相距x千米,由题可知,第一次相遇两车共走了x,第二次相遇两车共走了2x,由于速度不变,所以,第一次相遇到第二次相遇走的路程分别为第一次相遇的二倍,即54×2=x-54+42,得出x=120。
例2。
两汽车同时从A、B两地相向而行,在离A城52千米处相遇,到达对方城市后立即以原速沿原路返回,在离A城44千米处相遇。
两城市相距()千米A。
200 B。
150 C。
120 D。
100【解答】D。
解析:第一次相遇时两车共走一个全程,第二次相遇时两车共走了两个全程,从A城出发的汽车在第二次相遇时走了52×2=104千米,从B城出发的汽车走了52+44=94千米,故两城间距离为(104+96)÷2=100千米。
绕圈问题:例3。
在一个圆形跑道上,甲从A点、乙从B点同时出发反向而行,8分钟后两人相遇,再过6分钟甲到B点,又过10分钟两人再次相遇,则甲环行一周需要()?A.24分钟B.26分钟C.28分钟D.30分钟【解答】C。
六年级下册数学小升初专题-相遇追及(多次)、电车问题 全国通用(含答案)

小升初数学专题第4讲行程(一)相遇追及(多次)、电车问题一、知识地图简单相遇追及匀速直线行程多次相遇追及(包括火车过桥)发车间隔问题多次相遇追及环形线路行程(包括钟表问题)⎧⎨⎩⎧⎪⎨⎪⎩变速直线行程(求平均速度)流水行船不同参照系的行程自动扶梯行程中的比例关系其他类型(正、反比例运用)相遇点变化问题二、基础知识在历年“小升初”考试和各类小学奥数竞赛试题中,“行程问题”都占有很大的比重。
同时也是小学专题中的难点,“行程问题”经常作为一份试卷中的压轴难题出现,提高解决“行程问题”的能力不仅能帮助在小升初考试和各类数学竞赛中取得优异成绩,还能为今后初中阶段数学、物理学科的学习打下良好的基础。
(一) 典型的相遇和追及所有行程问题是围绕“⨯路程=速度时间”这一条基本关系式的展开,比如我们遇到的两大典型行程题相遇问题和追及问题的本质也是这三个量之间的关系,在这里: =⨯路程和速度和相遇时间; =⨯路程差速度差追及时间;这两组关系式中“路程和”或“路程差”实际上对应的是相遇或追及问题中的原始(初始)距离,我们可以通过图示来理解。
(二)多次相遇追及通过图示介绍直线上的相遇和追及的规律 这部分内容涉及以下几个方面:1 求相遇次数2 求相遇地点3 由相遇地点求全程“线段示意图”和“折线示意图”是解行程问题特别是多次相遇问题的重要方法。
追及问题相遇问题举个例子:假设A 、B 两地相距6000米,甲从A 地出发在AB 间往返运动,速度为6千米/小时,乙从B 出发,在AB 间往返运动,速度为4千米/小时。
我们可以依次求出甲、乙每次到达A 点或B 点的时间。
为了说明甲、乙在AB 间相遇的规律,我们可以用“折线示意图”来表示。
折线示意图能将整个行程过程比较清晰的呈现出来:例如AD 表示的是,甲从A 地出发运动到B 地的过程,其中D 点对应的时间为1小时,表示甲第一次到达B 点的时间为1小时,BF 表示乙从B 地出发到达A 地的过程,F 点对应的时间为1.5小时,表示乙第一次到达A 地的时间为1.5小时,AD 与BF 相交于C 点,对应甲、乙的第一次相遇事件,同样的G 点对应是甲、乙的第二次相遇事件。
六年级下册数学试题-奥数专题:行程问题(2)相遇问题(含答案)全国通用

行程问题之相遇问题【题目1】两列货车从相距450 千米的两个城市相向开出,甲车每小时行40 千米,乙车每小时比甲车多行1/4,出发几小时后两车相遇?【解答】本题是计算相遇时间,知道计算方法——相遇时间=总路程÷速度和。
【解法一】乙车的速度是40×(1+1/4)=50 千米/小时,甲乙两车的速度和是40 +50=90 千米/小时,相遇的时间是450÷90=5 小时。
【解法二】甲车行了450÷(1+1+1/4)=200 千米,相遇的时间是200÷40=5 小时。
【解法三】甲车行完450÷40=45/4 小时,相遇时间是45/4÷(1+1+1/4)=5 小时。
【解法四】甲乙两车的速度比是1:(1+1/4)=4:5,乙车行的路程是450×=200 米,相遇时间是200÷40=5 小时。
4 4 + 5【题目2】甲乙两列客车同时由相距600 千米的两地相对出发,经过8 小时后相遇。
已知甲车的速度是乙车速度的2/3,乙车每小时行多少千米?【解答】本题让学生明确——速度和=总路程÷相遇时间。
【解法一】根据题意只要求出速度和就可以求得乙车的速度。
则有两车速度和是600÷8=75 千米/时,把乙车速度看作单位1,甲车速度是2/3,那么速度和就是乙车的1+2/3=5/3,则乙车的速度是75÷5/3=45 千米/时。
【解法二】乙车需要8×(1+2/3)=40/3 小时行完全程,乙车的速度是600÷40/3=45 千米/时。
【解法三】乙车8 小时行了600÷(1+2/3)=360 千米,则乙车的速度是360÷8=45 千米/时。
【题目3】甲乙两列火车同时从A、B 两个城市对面开来,甲火车每小时行36 千米,乙火车每小时比甲火车多行2/9,开出4 小时后两车相遇。
求A、B 两地之间的距离是多少千米?【解答】本题要让学生知道——总路程=速度和×相遇时间。
六年级数学相遇问题专项练习30题

六年级数学相遇问题专项练习30题六年级数学上册1-4单元巩固题应用题练习1、甲乙两车同时从AB两地相对开出。
甲行驶了全程的5/11,如果甲每小时行驶4.5千米,乙行了5小时。
求AB两地相距多少千米 ?2、一辆客车和一辆货车分别从甲乙两地同时相向开出。
货车的速度是客车的五分之四,货车行了全程的四分之一后,再行28千米与客车相遇。
甲乙两地相距多少千米?3、甲乙两人绕城而行,甲每小时行8千米,乙每小时行6千米。
现在两人同时从同一地点相背出发,乙遇到甲后,再行4小时回到原出发点。
求乙绕城一周所需要的时间?4、甲乙两人同时从A地步行走向B地,当甲走了全程的1/4时,乙离B地还有640米,当甲走余下的5/6时,乙走完全程的7/10,求AB两地距离是多少米?5、甲,乙两辆汽车同时从A,B两地相对开出,相向而行。
甲车每小时行75千米,乙车行完全程需7小时。
两车开出3小时后相距15千米,A,B两地相距多少千米?6、甲,已两人要走完这条路,甲要走30分,已要走20分,走3分后,甲发现有东西没拿,拿东西耽误3分,甲再走几分钟跟乙相遇?7、甲,乙两辆汽车从A地出发,同向而行,甲每小时走36千米,乙每小时走48千米,若甲车比乙车早出发2小时,则乙车经过多少时间才追上甲车?8、甲乙两人分别从相距36千米的ab两地同时出发,相向而行,甲从a地出发至1千米时,发现有物品以往在a地,便立即返回,去了物品又立即从a地向b地行进,这样甲、乙两人恰好在a,b两地的终点处相遇,又知甲每小时比乙多走0.5千米,求甲、乙两人的速度?9、两列火车同时从相距400千米两地相向而行,客车每小时行60千米,货车小时行40千米,两列火车行驶几小时后,相遇有相距100千米?10、甲每小时行驶9千米,乙每小时行驶7千米。
两者在相距6千米的两地同时向背而行,几小时后相距150千米?11、甲乙两车从相距600千米的两地同时相向而行已知甲车每小时行42千米,乙车每小时行58千米两车相遇时乙车行了多少千米?12、两车相向,6小时相遇,后经4小时,客车到达,货车还有188千米,问两地相距?13、甲乙两地相距600千米,客车和货车从两地相向而行,6小时相遇,已知货车的速度是客车的3分之2 ,求二车的速度?14、小兔和小猫分别从相距40千米的A、B两地同时相向而行,经过4小时候相聚4千米,再经过多长时间相遇?15、甲、乙两车分别从a b两地开出甲车每小时行50千米乙车每小时行40千米甲车比乙车早1小时到两地相距多少?16、两辆车从甲乙两地同时相对开出,4时相遇。
六年级下册数学试题-奥数专题 行程问题(6)多次相遇问题

行程问题多次相遇的问题【题目1】甲、乙两人分别从A、B 两地同时出发,相向而行,乙的速度是甲的2/3,两人相遇后继续前进,甲到达 B 地,乙到达 A 地立即返回,已知两人第二次相遇的地点距离第一次相遇的地点是12千米,求 A、B 两地的距离?【解答】12÷(3/5-1/5)=30【题目2】甲、乙两人在同一条椭圆形跑道上做特殊训练。
他们同时从同一地点出发,沿相反方向跑。
每人跑完第一圈到达出发点后,立即回头加速跑第二圈,跑第一圈时,乙的速度是甲的2/3,甲跑第二圈时的速度比第一圈提高了1/3,乙跑第二圈时速度提高了1/5。
已知甲、乙两人第二次相遇点距第一次相遇点190米。
这条椭圆形跑道长多少米?【解答】190÷(7/8-2/5)=400米【题目3】A、B 两地之间有一条公路,甲从A 出发到 B 地,乙从 B 地出发不停地往返于A、B 之间,假如他们同时出发,80分钟后两人第一次相遇,100分钟后乙第一次追上甲。
问当甲到达 B 地时,乙追上几次?【解答】4次乙行20分钟相当于80+100=180分钟,乙的速度是甲的180÷20=9倍。
当甲从 A 到 B 时,乙就行了9个单程,乙每往返一次就追上甲一次,即能追上4次。
【题目4】甲、乙两个运动员同时从游泳池的两端相向下水做往、返游泳训练。
从池的一端到另一端甲要3分钟,乙要3.2分钟。
两人下水后连续游了48分钟,一共相遇了多少次?【解答】16次。
甲行48÷3=16个单程,乙行48÷3.2=15个单程,最后一次刚好在端点相遇,迎面和追及重合,只用讨论迎面的次数。
快的每行一个单程就会和慢的相遇一次,共相遇16次。
【题目5】一个游泳池长90米。
甲乙二人分别从游泳池的两端同时出发,游到另一端立即返回。
甲每秒游3米,乙每秒游2米。
二人往返游10分钟相遇了几次?【解答】10分钟共行(3+2)×60×10=3000米,〔3000÷90〕=33个单程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、相遇问题常见公式:
1、两者相遇路程=两者速度和×相遇时间
2、相遇时间=两者相遇路程÷两者速度和
3、两者速度和=两者相遇路程÷相遇时间
4、两者速度和=甲的速度+乙的速度
5、两者相遇路程=甲走的路程+乙走的路程
6、甲的速度=两者相遇路程÷相遇时间-乙的速度
7、甲走的路程=两者相遇路程-乙走的路程
二、解决实际问题的技巧
1、解答相遇此类问题,首先要弄清题目的题意,按照题意画出路程、时间或速度的相关线段图;然后分析各数量之间的关系;最后选择最适合的解答方法。
2、相遇问题除了要弄清路程、速度与两者相遇时间之外,还要注意一些其他重要的细节:
(1)两者是否是同一起点、同时出发。
如果有谁先出发了,先行走了路程,要考虑先出发者所走的路程值对题目的影响,该加还是该减掉。
(2)两者所行走的方向是否一致:梳理清楚两者是相向、同向,还是背向的。
方向不一样,处理问题就会不一样。
(3)所行走的路线是环形的,还是直线型的。
如果是环形的,要考虑再次相遇的可能。
【培优练习】1、小客车从长泾镇到杨梅镇要行驶3小时,大货车从杨梅镇到长泾镇要行驶6小时。
两车分别从长泾镇和杨梅镇同时出发,多久后两车会相遇?
2、两列高铁同时从两地相对开出,经过个小时后,两列高铁在途中相遇。
已知甲车每小时行驶240千米,乙车每小时行驶256千米,那么两地原来相距多少千米?
3、吴玲和杨嘉两人同时从相距18.6千米的两地骑车相向而行。
吴玲每小时骑行6.4千米,吴玲每小时比杨嘉少骑行2.7千米。
那么,几小时后她们两人在途中能相遇?
4、刘磊和武英两人同时步行出发相向而行,经过小时后两人相遇。
已知两地相距3千米的;刘磊每小时走2.5千米,问武英每小时走多少千米?
5、两辆小轿车同时从甲、乙两地相向开出,2.4小时后相遇。
已知甲、乙两地相距420千米,且两辆小轿车的速度比是2∶3,求出每辆小轿车的速度?
6、有两辆客车同时从客运中心相背而行出发,已知甲客车每小时行驶84千米,乙客车每小时行驶76千米。
当乙客车比甲客车少行驶32千米时,此时甲、乙两客车相距多少千米?
7、有两辆小汽车同时从两地出发,相向而行。
1.5个时后两车在距离中点12千米处相遇。
已知1号车每小时行驶84千米,2号车的速度比1号车慢一些,那么2号车每时行驶多少千米?
8、一列货运列车和一列客运列车同时从A、B两地开出,两车相向而行。
已知客运列车每小时行驶210千米,货运列车的速度是客运列车的。
两车相遇时,货运列车距中点还有84千米,A、B两地相距千米?
9、李佳佳和吴雷同时从沿江步行道的起点和终点相对而行,已知李佳佳每小时走4千米,吴雷每小时走6千米。
当吴雷走到沿江步行道中点处时,和李佳佳相距2千米。
沿江步行道的起点和终点相距多少千米?
10、A、B两辆客车同时从东景市和辉凌市两地相对开出。
A客车行驶了全程的,如果A客车每小时行驶80千米,B客车行驶了3小时。
求东景市和辉凌市两地相距多少千米?。