必修五等差数列的通项公式题型总结
2024高考数学数列知识点总结与题型分析

2024高考数学数列知识点总结与题型分析数列是高中数学中的重要内容,作为数学的一个分支,数列的掌握对于高考数学的考试非常关键。
在本文中,我们将对2024年高考数学数列的知识点进行总结,并分析可能出现的相关题型。
一、等差数列与等差数列的通项公式等差数列是数学中最常见的数列类型之一。
对于等差数列,首先要了解等差数列的概念:如果一个数列中任意两个相邻的项之差都相等,则称该数列为等差数列。
1.1 等差数列的通项公式等差数列的通项公式是等差数列中非常重要的一个公式,它可以用来求解等差数列中任意一项。
设等差数列的首项为$a_1$,公差为$d$,第$n$项为$a_n$,则等差数列的通项公式为:$a_n = a_1 + (n-1)d$1.2 等差数列的性质与常用公式等差数列有一些重要的性质与常用的公式,掌握这些性质与公式可以帮助我们更好地解决与等差数列相关的题目。
(1)等差数列中,任意三项可以构成一个等差数列。
(2)等差数列的前$n$项和公式为:$S_n = \frac{n}{2}(a_1 + a_n)$(3)等差数列的前$n$项和的差为:$S_n - S_m = (n-m+1)\frac{a_1 + a_{n+m}}{2}$二、等比数列与等比数列的通项公式等比数列也是数学中常见的数列类型之一。
与等差数列不同的是,等比数列中的任意两项的比值都相等。
2.1 等比数列的通项公式等比数列的通项公式可以用来求解等比数列中的任意一项。
设等比数列的首项为$a_1$,公比为$q$,第$n$项为$a_n$,则等比数列的通项公式为:$a_n = a_1 \cdot q^{(n-1)}$2.2 等比数列的性质与常用公式等比数列也有一些重要的性质与常用的公式,下面我们来了解一下:(1)等比数列中,任意三项可以构成一个等比数列。
(2)等比数列的前$n$项和公式为($q\neq1$):$S_n = \frac{a_1(1-q^n)}{1-q}$(3)当公比$q \neq 1$时,等比数列的前$n$项和与第$n$项的关系为:$S_n = \frac{a_nq - a_1}{q - 1}$三、数列题型分析与解题技巧在高考数学中,对于数列的考察主要包括以下几个方面:3.1 数列的递推关系与通项公式的应用常见的数列题目往往要求我们根据已知的递推关系或者通项公式来求解数列中的某一项或者求解前$n$项的和。
高中数学必修5等差数列知识点总结和题型归纳

等差数列一.等差数列知识点:知识点1、等差数列的定义:①如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d表示知识点2、等差数列的判定方法:②定义法:对于数列,若(常数),则数列是等差数列③等差中项:对于数列,若,则数列是等差数列知识点3、等差数列的通项公式:④如果等差数列的首项是,公差是,则等差数列的通项为该公式整理后是关于n的一次函数知识点4、等差数列的前n项和:⑤⑥对于公式2整理后是关于n的没有常数项的二次函数知识点5、等差中项:⑥如果,,成等差数列,那么叫做与的等差中项即:或在一个等差数列中,从第2项起,每一项(有穷等差数列的末项除外)都是它的前一项与后一项的等差中项;事实上等差数列中某一项是与其等距离的前后两项的等差中项知识点6、等差数列的性质:⑦等差数列任意两项间的关系:如果是等差数列的第项,是等差数列的第项,且,公差为,则有⑧对于等差数列,若,则也就是:⑨若数列是等差数列,是其前n项的和,,那么,,成等差数列如下图所示:10、等差数列的前项和的性质:①若项数为,则,且,.②若项数为,则,且,(其中,).二、题型选析:题型一、计算求值(等差数列基本概念的应用)1、。
等差数列{a n}的前三项依次为a-6,2a -5, -3a +2,则a 等于()A . -1B . 1C 。
—2 D. 22.在数列{a n}中,a1=2,2a n+1=2a n+1,则a101的值为( )A.49 B.50 C.51 D.523.等差数列1,-1,-3,…,-89的项数是()A.92 B.47 C.46 D.454、已知等差数列中,的值是()()A 15B 30C 31D 645. 首项为-24的等差数列,从第10项起开始为正数,则公差的取值范围是()A.d>B.d<3 C。
≤d<3 D.<d≤36、。
在数列中,,且对任意大于1的正整数,点在直上,则=_____________。
根据等差数列知识点总结及题型归纳

根据等差数列知识点总结及题型归纳
等差数列是数学中常见的数列,也是初中数学中的基础概念之一。
以下是关于等差数列的知识点总结及题型归纳。
等差数列的定义
等差数列是指一个数列中的每个数与它的前一个数的差值都相等的数列。
通常用字母 a 表示首项,d 表示公差,数列的通项公式为 an = a + (n-1)d。
等差数列的性质
1. 首项与末项之和等于中间项之和的两倍(也即数列的平均值):a + an = 2 * (a + (n-1)d)。
2. 求和公式:等差数列前 n 项和 Sn = (n/2) * (2a + (n-1)d)。
3. 最后一项的值可以通过首项、末项和公差求得:an = a + (n-1)d。
4. 任意一项的值可以通过首项、公差和项数求得:ak = a + (k-1)d。
等差数列的题型归纳
1. 求等差数列的第 n 项的值。
2. 求等差数列的前 n 项和。
3. 求等差数列中缺失的项或差值。
4. 求等差数列中满足一定条件的项数。
5. 求等差数列中满足一定条件的和。
示例题目
1. 已知等差数列的首项 a = 3,公差 d = 2,求第 5 项的值和前5 项的和。
2. 一个等差数列的首项 a = 1,公差 d = 3,已知数列中缺失了第 4 项,求第 4 项的值。
3. 已知等差数列的首项 a = 2,公差 d = 5,求该等差数列中满足大于 20 的项数。
以上是对于等差数列的知识点总结及题型归纳,希望对你有所帮助。
如有需要,可以参考相应的解题方法和公式。
等差数列知识点总结与基本题型

等差数列知识点总结与基本题型一、基本概念 1、等差数列的概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示。
(2)对于公差d ,需强调的是它是每一项与它前一项的差(从第2项起)要防止把被减数与减数弄颠倒。
(3)0d>⇔等差数列为递增数列0d =⇔等差数列为常数列 0d <⇔等差数列为递减数列(4)一个等差数列至少由三项构成。
2、等差数列的通项公式 (1)通项公式:1(1)na a n d =+-,(当1n =时,等式也成立);(2)推导方法:①不完全归纳法:在课本中,等差数列的通项公式是由1234,,,,a a a a 归纳而得,这种利用一些特殊现象得出一般规律的方法叫不完全归纳法。
②迭加法:也称之为逐差求和的方法:2132,,a a d a a d -=-=431,,n n a a d a a d --=-=,上述式子相加,1(1)n a a n d -=-,即1(1)n a a n d =+-。
③迭代法:1223()2()2n n n n n a a d a d d a d a d d ----=+=++=+=++313(1)n a d a n d-=+==+-。
(3)通项公式的应用与理解①可根据d 的情况来分析数列的性质,如递增数列,递减数列等。
②用于研究数列的图象。
11(1)()n a a n d dn a d =+-=+-,∴(Ⅰ)0d ≠时,na 是n的一次函数,由于n N *∈,因此,数列{}n a 的图象是直线1()n a dn a d =+-上的均匀排开的无穷(或有穷)个孤立点。
(Ⅱ)0d=时,1n a a =,表示平行于x 轴的直线上的均匀排开的无穷(或有穷)个孤立点。
不难得出,任意两项可以确定一个等差数列。
③从函数知识的角度考虑等差数列的通项公式:11(1)n a a n d d n a d =+-=+-,n a 是关于n的一次式()n N*∈,所以等差数列的通项公式也可以表示为n a pn q =+(设1,p d q a d==-)。
苏教版数学必修五2.2等差数列的通项公式(习题+解析)

苏教版数学必修五2.2等差数列的通项公式(习题+解析)
26,求an。
**8.已知等差数列{an}中,a1+a4+a7=15,a2a4a6=45,求数列{an}的通项公式。
***9.在数列{an}中,a1=1,an= (n≥2),bn= 。
(1)求证数列{bn}是等差数列;
(2)求数列{an}的通项公式。
4.1ቤተ መጻሕፍቲ ባይዱ解析:∵a3和a15是方程x2-6x-1=0的两根,
∴a3+a15=2a9=6,a9=3,
∴a7+a8+a9+a10+a11=(a7+a11)+(a8+a10)+a9=5a9=15。
5.4n+2解析:显然构成一个等差数列,且首项a1=6,公差d=4,∴第n个图案中有an=6+4(n-1)=4n+2块白色地面砖。
6. 解析:an=a1+(n-1)d= +(n-1)d,由题意知d>0,a10≥1且a9<1,即a10= +9d≥1且a9= +8d<1,解得 。
7.解:设等差数列{an}的公差为d,
∵a3=7,a5+a7=26,
∴ 解得
∴an=3+2(n-1)=2n+1。
8.解:∵a1+a7=2a4,a1+a4+a7=3a4=15,
∴a4=5,
又∵a2a4a6=45,∴a2a6=9,
即(a4-2d)(a4+2d)=9,即(5-2d)(5+2d)=9,
解得d=±2。
若d=2,则an=a4+(n-4)·2=2n-3;
若d=-2,则an=a4+(n-4)·(-2)=13-2n。
9.(1)证明:由题意知bn-bn-1= - =3(n≥2,n∈N*),∴{bn}是公差为3的等差数列;
高中数列题型总结

高中数列题型总结高中数学中,数列是一个重要的概念。
数列题型主要包括等差数列、等比数列、递推数列等。
下面将对这些常见的数列题型进行总结。
一、等差数列1. 等差数列的概念:等差数列是指一个数列,其中相邻两项之间的差值是一个常数d。
数列的通项公式为an=a1+(n-1)d。
2. 等差数列的性质:- 若数列首项为a1,公差为d,则数列的第n项为an=a1+(n-1)d。
- 数列的前n项和Sn可以表示为Sn=(a1+an)n/2。
- 等差数列的性质还包括数列的前n项和与项数n的关系、等差数列的倒数第n项与第n项之和等。
3. 等差数列的题型:- 求等差数列的通项公式;- 求等差数列的前n项和;- 求等差数列中满足某些条件的项数;- 求等差数列中满足某些条件的项的和等。
二、等比数列1. 等比数列的概念:等比数列是指一个数列,其中相邻两项之间的比值是一个常数q。
数列的通项公式为an=a1*q^(n-1)。
2. 等比数列的性质:- 若数列首项为a1,公比为q,则数列的第n项为an=a1*q^(n-1)。
- 数列的前n项和Sn可以表示为Sn=a1*(1-q^n)/(1-q)。
- 等比数列的性质还包括数列的前n项和与项数n的关系、等比数列的倒数第n项与第n项之积等。
3. 等比数列的题型:- 求等比数列的通项公式;- 求等比数列的前n项和;- 求等比数列中满足某些条件的项数;- 求等比数列中满足某些条件的项的和等。
三、递推数列1. 递推数列的概念:递推数列是指一个数列,其中每一项都通过前一项来递推得到。
数列的通项公式一般无法表示。
2. 递推数列的性质:- 若数列的第n项为an,第n-1项为an-1,则数列的通项公式无法表示为an=f(an-1),其中f为一个函数。
- 递推数列的性质通常通过给定的递推规则来描述,如斐波那契数列等。
3. 递推数列的题型:- 求递推数列的前n项;- 求递推数列满足某些条件的项数;- 求递推数列满足某些条件的项等。
等差数列通项公式总结

等差数列通项公式总结等差数列通项公式总结_数列公式学好数学的关键是公式的掌握,数学是一种工具学科,是学习其他学科的基础,同时还是提高人的判断能力、分析能力、理解能力的学科。
下面是小编为大家整理的等差数列通项公式总结,希望能帮助到大家!等差数列通项公式总结an=a1+(n-1)dn=1时a1=S1n≥2时an=Sn-Sn-1an=kn+b(k,b为常数)推导过程:an=dn+a1-d令d=k,a1-d=b则得到an=kn+b 高考数学应试技巧1、拓实基础,强化通性通法高考对基础知识的考查既全面又突出重点。
抓基础就是要重视对教材的复习,尤其是要重视概念、公式、法则、定理的形成过程,运用时注意条件和结论的限制范围,理解教材中例题的典型作用,对教材中的练习题,不但要会做,还要深刻理解在解决问题时题目所体现的数学思维方法。
2、认真阅读考试说明,减少无用功在平时练习或进行模拟考试时,高中英语,要注意培养考试心境,养成良好的习惯。
首先认真对考试说明进行领会,并要按要求去做,对照说明后的题例,体会说明对知识点是如何考查的,了解说明对每个知识的要求,千万不要对知识的要求进行拔高训练。
3、抓住重点内容,注重能力培养高中数学主体内容是支撑整个高中数学最重要的部分,也是进入大学必须掌握的内容,这些内容都是每年必考且重点考的。
象关于函数(含三角函数)、平面向量、直线和圆锥曲线、线面关系、数列、概率、导数等,把它们作为复习中的重中之重来处理,要一个一个专题去落实,要通过对这些专题的复习向其他知识点辐射。
4、关心教育动态,注意题型变化由于新增内容是当前社会生活和生产中应用比较广泛的内容,而与大学接轨内容则是进入大学后必须具备的知识,因此它们都是高考必考的内容,因此一定要把诸如概率与统计、导数及其应用、推理与证明、算法初步与框图的基本要求有目的的进行复习与训练。
一定要用新的教学理念进行高三数学教学与复习,5、细心审题、耐心答题,规范准确,减少失误计算能力、逻辑推理能力是考试大纲中明确规定的两种培养的能力。
(完整版)等差数列知识点总结及练习(精华版)

等差数列的性质总结1.等差数列的定义:(d 为常数)();d a a n n =--12≥n 2.等差数列通项公式:, 首项:,公差:d ,末项:*11(1)()n a a n d dn a d n N =+-=+-∈1a n a 推广: . 从而;d m n a a m n )(-+=mn a a d mn --=3.等差中项(1)如果,,成等差数列,那么叫做与的等差中项.即:或a A b A a b 2ba A +=b a A +=2(2)等差中项:数列是等差数列{}n a )2(211-≥+=⇔+n a a a n n n 212+++=⇔n n n a a a 4.等差数列的前n 项和公式:1()2n n n a a S +=1(1)2n n na d -=+特别地,当项数为奇数时,是项数为2n+1的等差数列的中间项21n +1n a +5.等差数列的判定方法(1) 定义法:若或(常数) 是等差数列. d a a n n =--1d a a n n =-+1*∈N n ⇔{}n a (2) 等差中项:数列是等差数列. {}n a )2(211-≥+=⇔+n a a a n n n 212+++=⇔n n n a a a (3) 数列是等差数列(其中是常数)。
{}n a ⇔b kn a n +=b k ,(4) 数列是等差数列,(其中A 、B 是常数)。
{}n a ⇔2n S An Bn =+6.等差数列的证明方法定义法:若或(常数) 是等差数列.d a a n n =--1d a a n n =-+1*∈N n ⇔{}n a 7.提醒:等差数列的通项公式及前n 项和公式中,涉及到5个元素:,其中n a n S n n S a n d a 及、、、1称作为基本元素。
只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2.d a 、18. 等差数列的性质:(1)当公差时,0d ≠等差数列的通项公式是关于的一次函数,且斜率为公差;11(1)n a a n d dn a d =+-=+-n d 前和是关于的二次函数且常数项为0.n 211(1)(222n n n d dS na d n a n -=+=+-n (2)若公差,则为递增等差数列,若公差,则为递减等差数列,若公差,则为常数列。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§ 2.2等差数列
§ 2.2.1等差数列的概念及通项公式
[学习目标]
1.理解等差数列的定义.
2.会推导等差数列的通项公式,能运用等差数列的通项公式解决一些简单的问题^
3.掌握等差中项的概念.
知识点一等差数列的概念
一般地,如果一个数列从第2_项起,每一项与它的前一项的差等于同一个常数这个数列就叫做等差数列,这个常数叫做等差数列的公差,上学通常用字母d表示,可正可负可为零.
知识点二等差中项的概念
a b
如果三个数a, A, b组成等差数列,那么A叫做a与b的等差中项,且A=ay b.
知识点三等差数列的通项公式
若一个等差数列{a n},首项是a i,公差为d,则a n=a i + (n—1)d.此公式可用累加法证明
题型分析
类型一等差数列的概念
例1判断下列数列是不是等差数列?
(1)9,7,5,3,…,-2n+ 11,…;(2)— 1,11,23,35,…,12n—13,…;(3)1,2,1,2,…;(4)1,2,4,6,8,10,…; (5)a, a, a, a, a,….
跟踪训练1数列{a n}的通项公式a n=2n+5,则此数列()
A.是公差为2的等差数列
B.是公差为5的等差数列
C.是首项为5的等差数列
D.是公差为n的等差数列
类型二等差中项
例2在—1与7之间顺次插入三个数a, b, c使这五个数成等差数列,求此数列.
跟踪训练2 若m和2n的等差中项为4,2m和n的等差中项为5,求m和n的等差中项
例3在等差数列{a n }中,已知a 6=12, a i8=36,求通项公式a n .
跟踪训练3 (1)求等差数列8,5,2,…的第20项;
(2)判断—401是不是等差数列—5, —9,
—13,…的项,如果是,是第几项?
例4 某市出租车的计价标准为 1.2元/km,起步价为10元,即最初的4 km (不含4 km )计费10元, 如果某人乘坐该市的出租车去往 14 km 处的目的地,且一路畅通,等候时间为 0,那么需要支付多 少车费?
跟踪训练4在通常情况下,从地面到 10 km 高空,高度每增加1 km,气温就下降某一个固定数值
如果1 km 高度的气温是 8.5C, 5 km 高度的气温是一17.5C,求2 km, 4 km,8 km 高度的气温
达标检测
1 .下列数列不是等差数列的是
( )
A.1,1,1,1,1
B.4,7,10,13,16
C.L 2, 1,
5 3 3
3 3 2 .已知等差数列{a n }的通项公式a n=3-2n,则它的公差d 为(
)
A.2
B.3
C.—2
3 .已知在△ ABC 中,三个内角 A, B, C 成等差数列,则角 B 等于(
)
A.30 °
B.60 °
C.90 °
4 .已知等差数列一5, —2,1,…,则该数列的第 20项为(
) A.52
B.62
C.-62
5 .已知等差数列1, —1, —3, —5,…,一89,则它的项数是(
)
类型三
等差数列通项公式的求法及应用
检测评价达标过美
D. -3, -2, -1,1,2
D. — 3
D.120 °
D. -52
A.92
B.47
C.46
D.45课堂
若awb,则等差数列a, XI , x2, b 的公差是(
b —a
B. 2
等差数列20,17,14,11,…中第一个负数项是(
若5, x, y, z,21成等差数列,则x+ y+z 的值为(
.................................. a
一
一个等差数列的刖4项是a, x, b,2x,则b 等于
(
已知等差数列{a n }中,a 7+a 9=16, a 4= 1,则a 12的值是
二、填空题
9.若一个等差数列的前三项为
a, 2a —1, 3-a,则这个数列的通项公式为
24的等差数列,从第10项起开始为正数,则公差 d 的取值范围是
三、解答题
12.在数列{a n }中,a 1 = 1, a n+1=2a n+2n ,设 b n= 2n -1.
(1)证明:数列{b n }是等差数列; (2)求数列{a n }的通项公式.
13 .已知等差数列{a n }: 3,7,11,15,….
(1)135,4m+19(mC N *)是{a n }中的项吗?试说明理由;
(2)若a p, a q (p, q C N *)是数列{ a n }中的项,则2a p+3a q 是数列{a n }中的项吗?并说明你的理由
四、探究与拓展
练习
课堂练习 、选择题
1. 若数列{a n }满足3a n+1=3a n+1,则数列{2门}是(
A.公差为1的等差数列 1 ...... 1 ........................
B.公差为1的等差数列
C.公差为一的等差数列
3 3
D.不是等差数列
2. 在数列{a n }中,a 〔=2, 2a n+1—2a n=1,则 a 101 的值为( )
A.52
B.51
C.50
D.49
3.
b — a
D
=
4. 已知在等差数列{a n }中,a 3+a 8=22, a 6= 7,则
a 5等于(
) A.15 B.22 C.7 D.29 5.
A.第7项
B.第8项
C.第9项
D.第10项
6. A.26 B.29
C.39
D.52
7. A.4
B.2
C1 C.
3
8. A.15
B.30
C.31
D.64
10.现有一根 9节的竹子,自上而下各节的容积成等差数列,上面
4节的容积共3升,下面3节的
容积共4升, 则第5节的容积为
升.
11.首项为一
14.已知数列{a n}中,a i=1, a n 1—a n= a n a n i(n>2, nC N*),则a io=.
15.已知数列{a n}满足:a i=10, a2 = 5, a n—a n+2= 2(n C N*),求数列{a n}的通项公式。