脂肪酶固定化方法的研究进展

合集下载

几种脂肪酶的固定化及其应用研究

几种脂肪酶的固定化及其应用研究

几种脂肪酶的固定化及其应用研究几种脂肪酶的固定化及其应用研究摘要:脂肪酶是一类广泛应用于食品、化学、制药等领域的酶,其通过催化酯水解反应来分解脂肪,受到了广泛关注。

然而,传统的脂肪酶在使用中存在不稳定、易受温度、pH等条件的影响等缺点,固定化技术的发展为改善其性能提供了新的途径。

本文针对几种脂肪酶的固定化技术进行了概述,并分别探究了其在食品、工业和环境等领域中的应用。

关键词:脂肪酶、固定化、应用。

正文:1.胰脂肪酶的固定化及应用胰脂肪酶是一种广泛应用于酯水解反应的重要酶,其通过水解三酰甘油、磷脂和酯等来产生甘油和脂肪酸。

固定化是提高胰脂肪酶运用性能的重要手段。

胰脂肪酶的固定化可以通过多种方法进行,如基于聚合物的固定化、基于高分子材料的固定化和基于无机载体的固定化等。

其中,基于聚合物的固定化相对简单、易于实现,同时也具有较高的酶活性和稳定性。

而基于无机载体的固定化由于具有较大的比表面积和孔隙结构,且不易受到环境因素的影响,因而具有较长的使用寿命和较好的重现性,适用于多种应用场合。

胰脂肪酶的固定化在食品、制药、医学、建筑材料等众多领域中均有应用。

其中,在制造低脂肪食品方面,胰脂肪酶的固定化主要用于生产低脂肪奶酪、乳酸菌、酸奶和酸黄油等,可有效降低它们的脂肪含量。

在构筑生物医学材料时,胰脂肪酶作为一种活性酶可以被固定在多材料的基质上,使它们对胰脂肪的水解拥有一定的活性。

2.脂肪酶的泡沫固定化及应用泡沫固定化是利用泡沫的物理特性来将酶固化于泡沫中,以提高其使用性能的技术。

脂肪酶的泡沫固定化是一种将脂肪酶固定于泡沫内部的技术,该技术具有酶活性高、使用方便、价格低廉等优点。

脂肪酶的泡沫固定化在制造牛乳和奶酪中有着广泛的应用。

它可以在不影响食品质量的前提下,有效地将脂肪含量降低,使得乳制品变得更为健康。

此外,脂肪酶的泡沫固定化在其他领域如高分子材料合成、缓释药物制备,污水处理等方面也有着很好的应用前景。

3.脂肪酶的磁性固定化及应用脂肪酶的磁性固定化是将脂肪酶固定于一定的磁性载体上,使其具有更好的储存和操作性能的技术。

固定化脂肪酶的研究进展

固定化脂肪酶的研究进展

固定化脂肪酶的研究进展摘要固定化脂肪酶是一种重要的酶类生物催化剂,因其具有高效、高选择性、环保等优势而备受关注。

本文将对固定化脂肪酶的研究进展进行综述,主要包括固定化技术、载体种类、酶固定化方法、应用领域等方面,旨在为深入研究和开发固定化脂肪酶提供参考。

引言脂肪酶(Lipase)是一种重要的酶类生物催化剂,广泛应用于食品加工、制药、化工等领域。

传统的脂肪酶生产方式多为分离和提纯天然来源的酶,其成本高、效率低、质量难以稳定。

为了克服这些缺陷,人们通过基因工程技术获得了大量高度纯化的重组脂肪酶,这些酶具有更高的活性、热稳定性和抗丝氨酸等性质,但其应用领域仍然受到限制。

与传统的脂肪酶生产方式相比,固定化脂肪酶因具有高效、高选择性、易回收等优势而受到广泛关注。

本文将从固定化技术、载体种类、酶固定化方法、应用领域等方面对固定化脂肪酶的研究进展进行综述。

固定化技术固定化技术是将酶固定在载体上,形成固定化酶,以提高其催化效率和稳定性的一种生物技术。

固定化脂肪酶通过固定化技术制备而成,其固定化技术主要有物理吸附、交联固定、共价固定、包埋固定、磁性固定等多种方法。

这些方法的选择取决于酶的性质和产物特性以及应用需求等因素。

载体种类载体是将酶固定化在其表面的材料,其种类主要有聚合物、无机材料、金属有机框架(MOFs)、磁性材料等。

聚合物是最常用的载体材料之一,主要包括聚乙烯醇、聚丙烯酸、聚酰胺等。

无机材料则包括硅胶、陶瓷、玻璃等,其中硅胶是最常用的载体材料之一。

MOFs是一种新型的多孔有机-无机化合物,可以提供大量的活性位点和大表面积,因此受到研究者的关注。

磁性材料通常是由铁磁性物质和非磁性材料组成的,其具有磁性和化学稳定性,因此可以在固体和液体之间实现快速分离。

酶固定化方法1.物理吸附法物理吸附法是将酶直接吸附在载体表面,主要依靠静电作用力和范德华力等物理力作用固定酶,其优点是操作简便、成本低廉,缺点是载体表面吸附作用力比较弱,酶结合不稳定。

固定化脂肪酶的研究进展

固定化脂肪酶的研究进展

固定化脂肪酶的研究进展固定化酶是一种将酶固定在一定载体上的技术,它可以有效地提高酶的稳定性、重复利用性和操作性,从而广泛应用于食品、制药、生物工程等领域。

其中,固定化脂肪酶是一种重要的酶制剂,具有广泛的应用前景。

本文将对固定化脂肪酶的研究进展进行介绍。

固定化脂肪酶最早应用于生产特定脂肪酸酯的催化反应。

通过将脂肪酶固定在载体上,可以有效地提高其催化活性和稳定性,从而使脂肪酶在催化作用中具有更长的寿命。

同时,固定化脂肪酶还可以简化生产过程,提高产品质量。

在固定化脂肪酶的载体选择上,常用的载体包括无机载体和有机载体。

无机载体主要包括多孔陶瓷、多孔玻璃、硅胶等,这些载体具有较大的比表面积和孔隙结构,可以提供较好的活性位点和固定脂肪酶的空间结构。

有机载体主要包括聚合物材料和纤维材料,通过调整聚合物的化学结构和纤维材料的纤维结构,可以实现对脂肪酶的有效固定,提高其催化活性和稳定性。

固定化脂肪酶的制备方法主要包括物理吸附、化学交联和共价连接。

物理吸附是将脂肪酶与载体之间的非共价相互作用力用于固定酶,例如静电引力、范德华力等。

化学交联是在载体上引入交联剂,使酶与载体之间形成共价键,从而实现酶的固定。

共价连接是通过化学反应在载体上引入活性基团,然后将酶与载体上的活性基团通过共价键连接。

固定化脂肪酶的应用主要包括生产特定脂肪酸酯、脂肪酸的转化、生物柴油的合成等。

在生产特定脂肪酸酯方面,固定化脂肪酶可以通过酯交换反应和酶解反应实现。

通过固定化脂肪酶催化,可以有效地控制反应条件,提高反应速率和产物选择性。

在脂肪酸转化方面,固定化脂肪酶可以催化饱和脂肪酸的脱饱和反应和反硝化反应,从而实现对脂肪酸的功能性改造。

在生物柴油的合成方面,固定化脂肪酶可以有效地催化酯交换反应和脂肪酸甲酯化反应,从而提高生物柴油的产率和质量。

除了以上应用外,固定化脂肪酶还可以应用于废水处理、食品加工、药物合成等领域。

通过固定化脂肪酶催化,可以实现废水中脂肪酸的降解,减轻环境污染。

改性核桃壳固定化脂肪酶研究

改性核桃壳固定化脂肪酶研究

改性核桃壳固定化脂肪酶研究摘要:本文研究了改性核桃壳作为载体固定化脂肪酶的效果。

首先将核桃壳经过酸碱处理和改性,使得其表面具有一定亲疏水性和大量的羟基官能团。

然后将脂肪酶固定于改性核桃壳上,并对其催化性能、稳定性和重复使用性进行了研究。

结果表明,经过改性的核桃壳可以有效地固定化脂肪酶,与自由酶相比,固定化酶具有更好的耐受性和稳定性,可以在高温、强酸和强碱条件下催化反应,并且可以重复使用多次。

因此,改性核桃壳为载体固定化脂肪酶是一种有潜力的应用领域,可以应用于食品、制药和化妆品等领域。

关键词:改性核桃壳;脂肪酶;固定化;催化;稳定性Introduction:核桃壳是一种常见的生物质,具有丰富的羟基官能团和亲疏水性,可以作为载体固定化酶。

本文研究了改性核桃壳固定化脂肪酶的效果,以期为脂肪酶固定化研究提供新思路。

Materials and Methods:1. 材料核桃壳粉,脂肪酶(from porcine pancreas),丙酮,正己烷,pH 6.0的缓冲液。

2. 核桃壳的改性将核桃壳粉经过酸碱处理和改性,使其表面具有一定亲疏水性和大量的羟基官能团。

具体步骤如下:(1) 将核桃壳粉放入酸中,控制pH在2.0左右,放置12小时。

(2) 将核桃壳粉取出,用水洗涤至中性pH值。

(5) 将处理后的核桃壳粉放入100 ml的丙酮中,加入2.0 g黄原胶,搅拌5小时。

然后用正己烷洗涤核桃壳粉,使其表面均匀、光滑。

3. 固定化脂肪酶将脂肪酶与核桃壳混合,搅拌24小时,过滤去除未固定的酶。

然后用pH 6.0的缓冲液洗涤核桃壳固定化脂肪酶,获得固定化酶。

4. 催化性能的测定将固定化酶加入油脂底物中,控制反应温度、pH值和反应时间,使反应达到最佳条件。

然后使用紫外可见分光光度计测定反应产物的吸光度。

以自由酶为对照组,探究固定化酶与自由酶的催化效果差异。

5. 稳定性和重复使用性的研究将固定化酶置于不同的环境下,如高温、强酸和强碱等,探究其稳定性,同时重复使用固定化酶,测定其催化效果。

固定化脂肪酶研究进展

固定化脂肪酶研究进展

菌 D?DG! 溶液中, 静置固化 /0)9: , 经过滤、 洗涤和干 燥后得到球状固定化酶。固定化酶的活力回收约为 8/’7" 。酶学性质研究表明, 此固定化酶的热稳定性 较好。游离酶在 3&1 下保温 7, 已完全丧失活力, 而 固定化酶在 7&&1 下保温 7, 仅损失 83’!" 的活力, 在 7&&1 下保温 3, 仍可保持 /3’+" 的酶活力。酶经 固定化后, 其橄榄油水解反应的最适温度由 /&1 上 升至 (&1 , 2 ) 值 由 78’+)5 $ )* 降 为 +’7)5 $ )*。常 见有机溶剂对固定化酶的活力影响较小。将该固定 化脂肪酶用于非水溶剂中正戊酸异戊酯的合成, 重 复使用 3 次后, 固定化酶仍保持 (0" 的酶活力。
[B ] 等从 =# 种不同来源的树脂中筛选出固 李南薇
催化技术虽然成熟, 但酶分离困难, 不能重复使用, 难以实现过程连续化, 因此脂肪酶催化技术工业化 很大程度上取决于酶的固定化
[! ]
。当底物和产物是
小分子的可溶性物质时, 固定化酶更占优势。所 谓 固定化酶 就 是 指 在 一 定 空 间 内 呈 闭 锁 状 态 存 在 的 酶。固定化酶 的 两 个 最 大 的 优 点 是 酶 易 与 产 物 分 离, 可重复使用。通过固定化操作, 可以改变酶的一 些性质, 例如 K2:02+L2 K+)4/M.). 等
!"%$ 包埋法
包埋法 是 不 需 要 化 学 修 饰 酶 蛋 白 的 氨 基 酸 残 基, 反应条件温和, 很少改变酶结构的固定化方法。 其基本原理是单体和酶溶液混合, 再借助引发剂进

脂肪酶固定化的新方法研究及其应用的开题报告

脂肪酶固定化的新方法研究及其应用的开题报告

脂肪酶固定化的新方法研究及其应用的开题报告一、选题背景脂肪酶(Lipase)是广泛应用于食品、医药、化工等领域的一类重要酶。

目前,大多数的脂肪酶分离纯化方法采用离子交换色谱、凝胶过滤、透析等传统方法,但这些方法存在分离纯化周期长,成本高,难以大规模生产等问题。

因此,对脂肪酶固定化的研究具有重要意义。

脂肪酶固定化可以提高催化活性和稳定性,减少废弃物污染等优点,成为了研究的热点。

目前常见的固定化方法有包埋法、吸附法、凝胶法等。

但这些方法还存在着单一、操作困难等问题。

因此,本研究旨在探究一种新的脂肪酶固定化方法,使其具有更高的效率和实用性。

二、研究内容与目的本研究将探究一种新的脂肪酶固定化方法,该方法是基于金属有机骨架材料(MOF)的。

MOF具有稳定的多孔结构和良好的吸附性能,易于构造多种功能化材料,在催化应用方面具有广泛的应用前景。

本研究的目的是通过MOF固定化脂肪酶,提高其酶活性,稳定性和重复使用次数,拓展其在食品、医药等领域的应用。

具体研究内容包括:1. MOF的制备和表征2. MOF固定化脂肪酶的制备和表征3. 固定化脂肪酶的催化性能研究,包括酶活性、稳定性和重复使用次数等方面的研究4. MOF固定化脂肪酶在食品、医药等领域的应用实验三、研究意义本研究将探究一种新的脂肪酶固定化方法,对脂肪酶的高效、稳定和重复使用具有重要的意义。

该方法具有以下几个扩大应用的优点:1. MOF材料生产成本低廉,有望实现在大规模生产中的应用2. 脂肪酶的稳定性和催化活性得到提升,可支持更多化学反应的进行3. 固定化脂肪酶的重复使用次数增加,节约成本,提高效率4. 有望广泛应用于食品、医药和化工领域四、研究方法和技术路线1. 实验用具的准备,如摇床、离心机、pH计、紫外分光光度计、荧光分光光度计等2. MOF材料的制备和表征3. 脂肪酶的生物学特性分析4. MOF固定化脂肪酶的制备和表征5. MOF固定化脂肪酶的催化性能研究,包括酶活性、稳定性和重复使用次数等方面的研究6. MOF固定化脂肪酶在食品、医药等领域的应用实验七、论文结构本研究将完成以下部分的论文:1. 绪论2. 相关理论和方法3. MOF固定化脂肪酶的制备和表征4. 固定化脂肪酶在催化反应中的应用5. 结论6. 参考文献以上是本研究的开题报告,目前仍需在实验数据上进行更深入的探究和研究。

脂肪酶固定化及固定化脂肪酶的应用研究进展

脂肪酶固定化及固定化脂肪酶的应用研究进展

物膜 腔 中 ,以达 到 固定 化 酶 。它 包 括 网 格 型 和微 囊 型 2种 。 网格 和 微 囊 的 结 构 可 以 防止 酶 渗 出 到周 围 脂 肪 酶 (ps,EC311 ,甘 油酯 水 解 酶) 是 介质 中,但底物仍能渗入到网格或微囊 内与酶接触。 1 ae ..... i 3 类 特 殊 的 酯 键 水 解 酶 ,能 分解 生 物 产 生 的 各 种 天 所 以包 埋 法 只 适 合作 用 于小 分 子 底 物 和产 物 的酶 [ 3 1 。 然 油脂 ,主要 水 解 由甘 油 和 1 2碳原 子 以上 的长 链 脂 包 埋 法 一 般 不 需 要 与 酶 蛋 白的 氨基 酸残 基 进 行 结 合 肪 酸 形 成 的甘 油 三 酯 。 其 重 要 特 征 是 在 异 相 系 统 反应 ,很少改 变酶 的高级结构 ,酶活 回收率较高 , ( 油一 水 ) 界 面 上水 解 特殊 酯 ( 肪 酸 甘 油 酯 ) 类 。 该 方法 可应 用 于许 多酶 、微生 物 和细胞 器 的 固定 化 。 脂 作 为重 要 的工 业用 酶 广 泛应 用 于 食 品 、制 革 、饲 料 、 1 吸 附法 . 2
etr (at ai l e ds i teh t oeeu ytm (i- t ) it fc.t a a m otn adawd n eo s s Ft cdg cr e) n h e rgno sss e y y i e e o Wa r ne ae I hs ni pr t n ier g f l e r a a
0 引言

吸 附法 是 利 用 离 子 键 和物 理 吸 附等 方 法 ,将 酶 固定在 纤 维素 、琼脂 糖等 多糖 或多孔 玻璃 、离子 交换 1 脂肪 酶 的 固定 化方 法 树脂 等 载体上 的 固定 方式 。其 优点 为 :载体 选择 范 围 固 定 化 酶 是用 物 理 或 化 学 方 法 使 酶 与 水 不 溶 性 较广 ,操 作过程 简单 ,处 理条 件温 和 ,对酶 的损 害作 大 分 子 载 体 结 合 或 把 酶 包 埋 在 水 不 溶 性 凝 胶 或 半 透 用小 。但是 ,酶与载体 的吸 附力 比较 弱 ,容 易在不 适 膜 的微 囊 体 中制 成 的。酶 固定 化后 一 般 稳定 性 增 加 , 宜 的 p H值 、高盐 浓度 、高底 物浓 度 以及 高 温条件 下 易 从 反 应 系 统 中分 离 ,便 于 运输 和贮 存 ,且 易 于 控 解 吸脱 落 『 3 _ ,故很 少有 大规 模工 业化 的报 道 。 制 ,能 反 复多次 使 用 ,有利 于 自动 化生 产 。 吸 附 载 体 包 括无 机 载 体 和 有 机 载 体 。无 机 载 体 脂肪酶作为酶 的一种 ,其 固定 化方法与其他酶 包 括 多 孔 陶 珠 、多 孔 玻 璃 、氧 化 铝 、活 性 炭 、硅 相 同 ,大 致 可 分 为 :包 埋 法 、吸 附法 、共 价 结 合 法 和交 联 法等 。 11 包 埋 法 . 将 酶 分 子 包 埋 于 凝 胶 的 网 眼 中或 半 渗 透 的 聚 合

脂肪酶固定化方法的研究进展

脂肪酶固定化方法的研究进展

脂肪酶固定化方法的研究进展脂肪酶是一种可以催化脂肪水解的酶类,对于脂肪的降解具有重要的应用价值。

脂肪酶固定化是一种重要的手段,可以改善脂肪酶的稳定性、降低酶的负担、提高反应产率。

本文将对脂肪酶固定化方法的研究进展进行探讨。

脂肪酶固定化的方法主要包括物理吸附、交联固定化、共价固定化和包埋固定化等。

物理吸附是一种简单易行的方法,通过静电作用或氢键等力使酶分子吸附于载体表面。

物理吸附固定化方法操作简单,但稳定性较差,容易发生脱附。

交联固定化是一种常用的方法,通过交联剂将酶分子固定于载体上。

交联固定化能够提高酶的稳定性和重复使用次数,但可能会降低酶的催化活性。

共价固定化是将酶与载体之间形成共价键,具有较高的稳定性和催化活性,但操作复杂且成本较高。

包埋固定化是将酶包藏于聚合物中,形成固定化酶粒子,具有较好的稳定性和催化活性。

随着生物技术的发展,脂肪酶固定化方法不断得到改进和完善。

例如,一些研究者采用纳米材料作为载体,通过调节纳米材料的物理化学性质,改善酶的固定化效果。

金属纳米材料如金纳米颗粒、银纳米颗粒等具有较大的比表面积和活性位点,可以显著提高酶的固定化效果和催化活性。

同时,这些纳米材料还可以通过表面修饰,提高载体与酶之间的亲和性,进一步增强酶的固定化效果。

另外,一些研究者采用分子印迹技术固定化脂肪酶。

分子印迹技术是一种特异性识别和绑定分子的方法,通过将目标分子与功能单体结合,形成高选择性和亲和力的识别位点。

利用分子印迹技术固定化脂肪酶,可以大大提高酶对底物的选择性和催化活性。

此外,一些研究者还采用双酶固定化方法,将脂肪酶与其他酶共同固定在载体上。

双酶固定化方法可以形成多酶复合体,提高酶对底物的转化效率。

例如,将脂肪酶与脱氢酶固定化,可以实现脂肪的选择性酸化。

总之,脂肪酶固定化是一种重要的手段,可以改善酶的稳定性、降低负担、提高反应产率。

随着生物技术的发展,脂肪酶固定化方法不断得到改进和完善,例如利用纳米材料作为载体、分子印迹技术固定化和双酶固定化等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

脂肪酶固定化方法的研究进展生物工程2班周明20091525摘要:酶的固定化是生物技术中最为活跃的研究领域之一。

脂肪酶能发生催化水解、醇解、酯化、酯交换等反应,是一种重要的生物催化剂。

而由于脂肪酶的特性,其能否工业化利用很大程度取决于固定化技术的成功与否,酶的固定化方法是酶固定化技术的重要研究内容。

固定化脂肪酶由于其易与底物分离且可重复使用而备受关注。

为此,本文综述了常用的固定化方法,包括物理吸附法、共价结合法、交联法和包埋法,不同的固定化方法对酶的性质有不同的影响。

本文对近年来固定化脂肪酶方法的研究进行了综述,为固定化方法的进一步探讨提供了研究基础。

关键词:固定化;脂肪酶;载体材料The research progress of lipase immobilizedAbstract:Of enzyme fixed is in the biotechnology research field of the most active.Fat enzymes would happen catalytic water and alcohol, ester, ester exchange for is a major catalyst of biological.And the fat, the enzymes can be very much depends on the use of technology on the success of the enzyme is a fixed set of the technical content of important research.Into a fatty because of the enzymes that are and separate and can reuse have a major concern.The common immobilization methods were generally introduced including physical adsorption, covalent cross-linking method and entrapment method. Different immobilization methods had different effects on the enzyme.Of the few years, the enzymes a study of the review, as a further explore the method provides research.Keywords:immobilization; lipase; carrier脂肪酶(Lipase EC3.1.1.3,甘油酯水解酶)是一类特殊的酰基水解酶它的底物是油脂其水解部位是油脂中脂肪酸和甘油相连接的酯键[1];人们对脂肪酶的研究已有上百年的历史,是最早被研究的酶类之一[2]。

脂肪酶作为生物催化剂,可用于许多有机合成反应,列如能在油—水界面上催化酯水解或醇解、酯合成、酯交换、内酯合成、多肽合成、高聚物合成及立体异构体拆分等有机合成反应,是目前被重点研究的酯催化剂[3]。

有关脂肪酶(1ipase)较确切的定义是20世纪70年代由Brockerhoff等首先提出的,他将水解长链脂肪酸酯或水解油酸酯类的酶类定义为脂肪酶[4]。

自由酶对所处环境十分敏感,在强酸、强碱、高温、高离子浓度和部分有机溶剂中均不够稳定,容易导致酶蛋白的变性,从而降低甚至丧失其催化活性。

同时,自由酶反应后不易与底物和产物分离,既影响反应产物纯度又难以重复使用,这在很大程度上限制了酶促反应的广泛应用[5]。

固定化酶(Immobilized enzyme)技术克服了自由酶的上述不足,提高了酶的储存稳定性,实现了重复使用及连续自动化生产,降低了成本,在生物工程、食品工业、医药和精细化学工业等领域有着广泛的应用前景。

酶大分子包含疏水头和亲水尾两部分酶的反应部位与疏水头不同位,但很靠近,亲水尾使酶分子在界面上的定向更为稳定。

因此,酶在界面上具有较大的亲和力,脂肪酶催化作用需要一定的水份必须水,以维持酶分子的活性构象,这些必须水与酶分子的带电基团相互作用,使酶分子具有一定的柔韧性而表现出催化活力。

脂肪酶的固定化方法大致分为4类:吸附法、共价法、交联法和包埋法。

分析和比较了各种固定化方法。

1固定化脂肪酶的方法1.1吸附法吸附法包括物理吸附和离子吸附。

物理吸附是最简单的固定化方法,利用离子键或吸附作用将酶固定到载体上,操作相对简单,很少用到有机试剂。

主要依靠蛋白质和载体间的结合力联结,作用力较弱,酶易脱落但载体选择范围较广,固定化操作过程简单,吸附法是经济上最具吸引力的固定化方法。

高阳[6]等以不同大孔树脂吸附法固定化假丝酵母99—125脂肪酶,在微水有机相中的应用表明,非极性树脂NKA是最佳的固定化载体。

结果表明,在给酶量为1.92/1 (初始酶粉与树脂的质量比),pH为7.4,体系水含量为15%(水与油的质量比),反应温度为40℃条件下,固定化酶具有最佳的催化能力。

固定化酶连续反应19批以后,生物柴油的转化率仍然保持为70.2%,固定化酶的酶活为初始值的85.1%,显示出固定化酶具有良好的操作稳定性。

王冰[7]等以沙蒿多糖壳聚糖复合磁性微球为载体,采用物理吸附法固定化脂肪酶,对固定化过程中对酶活力有影响的各种因素进行研究,同时对固定化酶的部分理化性质、最适pH 、最适温度、酶的热稳定性以及表观米氏常数与游离酶做了比较。

实验结果表明:固定化脂肪酶的最佳条件为每0.1g载体加2%(w/v)的酶溶液0.9mL,固定8h,温度为50℃。

固定化酶的K m小于游离酶的K m,其最适pH和最适温度分别为8.0和50℃.而且固定化脂肪酶具有良好的热稳定性、可应用性和重复使用性。

李俊奎[8]等以纺织物膜为载体, 通过吸附法对Candida sp.99-125脂肪酶发酵液固定化处理。

系统地研究了以提取的毛油和甲醇为原料,用固定化Candida sp.99-125 脂肪酶催化合成脂肪酸甲酯(FAMEs)的可行性。

同时考察了磷脂对固定化酶活性、反应起始速率、固定化酶使用批次的影响以及毛油和精炼油对固定化酶使用批次等的影响。

研究结果表明,用磷脂质量分数为1%的石油醚悬液浸泡过的脂肪酶比仅用石油醚浸泡过的脂肪酶初始转酯化速率显著下降。

说明磷脂可以造成固定化酶的失活,这与Y omi Watanabe的结论相符;当磷脂的质量分数为0%~5%时, 5 min 和15 min 的产率都随着磷脂质量分数的增大而减少,当磷脂的质量分数在5%~15%时,5 min和15 min产率变化不明显;大豆油和小桐子油两种油料的毛油、脱胶油和精炼油对酶的寿命影响不明显,两种毛油经过10个批次FAMEs的产率还保持70%以上。

1.2包埋法包埋法是一种酶物理包埋在高聚物内,反应条件温和,很少改变酶结构的固定化方法。

其基本原理是单体和酶溶液混合,再借助引发剂进行聚合反应,将酶固定于载体材料的网格中[9]。

适用于大多酶、酶制剂及完整的微生物细胞,但只有小分子的底物和产物条件下适用。

包埋法包括凝胶包埋法和微囊化法。

王爱玲[10]等以海藻酸钠明胶为复合载体,采用包埋法制备固定化黑曲霉脂肪酶,考察了海藻酸钠、明胶浓度等因子对固定化效果的影响,比较固定化酶和游离酶对温度、等条件的稳定性。

结果表明,制备固定化黑曲霉脂肪酶的最优条件为:海藻酸钠、明胶浓度分别为1.25%和0.5%,CaCl2浓度为10%,给酶量为450U/g ,固定化酶最适温度为35℃,最适pH为9.0。

鲁玉侠[11]等研究了以海藻酸钠为载体,用包埋法制备固定化脂肪酶的条件,将一定量的海藻酸钠用蒸馏水加热溶解,在海藻酸钠浓度为1%条件下,与一定量的酶液混合均匀,逐滴分别加到0.01mol/L、0.03mol/L、0.05mol/L、0.07mol/L、0.09mol/L 的CaCl2 溶液中。

结果表明,CaCl2浓度为0.03mol/L时,酶活力最大。

将500mg脂肪酶溶解在pH=6 的缓冲溶液中,然后两者混合均匀,用注射器将海藻酸钠酶液逐滴到1%的无菌CaCl2溶液中,搅拌条件下室温固定1h,过滤,洗涤,干燥,得球状固定化脂肪酶。

试验表明,此固定化酶具有良好的耐热性能,在60℃下加热固定化脂肪酶和游离脂肪酶1.5h,固定化酶活力仅损失30%,而游离脂肪酶的酶活只为原来的18%。

固定化脂肪酶还有良好的可操作性,连续使用反应10次,固定化脂肪酶的酶活依然为初始酶活的95%。

1.3交联法主要特色是用多功能试剂进行酶蛋白分子之间的交联,基本原理是酶分子和多功能试剂之间形成共价键,得到三向的交联网架结构。

通常在载体上加入氨基、醛基等功能性集团来使酶结合得更牢固。

最常用的交联试剂是戊二醛,此类方法是固定化酶研究中最有潜力的方法。

刘新喜[12]等用蛋壳作载体固定化脂肪酶,其工艺条件为:酶用量为0.12U/g ,搅拌吸附时间为30min,在pH为6.2的室温下,先将酶吸附在蛋壳的表面,再用戊二醛试剂进行交联。

得到固定化酶的最大活力29.41 U/g,该固定化酶最适用的温度为35℃,最适pH为9.0,重复使用6次后活力仍保留53%。

胡文静[13]等以化学改性后的壳聚糖为载体固定假丝酵母99—125脂肪酶,研究了用活化后壳聚糖为载体,采用与戊二醛偶联。

结果表明载体的活EDC的量为20mg,活化时间为20min,交联剂浓度为0.15%,交联时间为60min,pH为7.4时,固定化酶的活力最大。

一般地固定化效率与固定化酶的活力的变化趋势一致,但是在优化交联剂用量的过程中,固定化效率随着交联剂用量的增大而增大,这是因为当戊二醛浓度为0.15%时,载体表面的氨基组分得到充分的交联,从而酶与载体得到最大的结合量。

1.4共价结合法彭立凤[14]等研究了以纤维素滤纸膜为载体的猪胰脂肪酶的四种固定方法(高碘酸钠氧化法、对苯醌活化法、环氧氯丙烷活化法、壳聚糖涂层法),再用戊二醛活化法在纤维素滤纸上固定化猪胰脂肪酶的方法,并对之进行了比较。

结果表明,在适宜条件下,高碘酸钠氧化法获得的固定化酶活最高,达0.52U/cm2,酶活回收率为20%。

曹国民[15]等研究了蚕丝固定化脂肪酶的工艺条件,并考察了固定化脂肪酶的稳定性。

试验结果表明:蚕丝与对硫酸醋乙矾基苯胺(SESA)反应制备蚕ABSE-蚕丝,再与脂肪酶进行共价偶联,制得活力为106—160U/g的固定化脂肪酶,此时固定化酶的活力回收率较高。

固定化酶的稳定性较高,其操作半衰期约为250h。

相关文档
最新文档