特高压交直流输电的优缺点对比

合集下载

特高压输电技术知识

特高压输电技术知识

特高压输电技术知识特高压直流输电技术的主要特点(1)特高压直流输电系统中间不落点,可点对点、大功率、远距离直接将电力送往负荷中心。

在送受关系明确的情况下,采用特高压直流输电,实现交直流并联输电或非同步联网,电网结构比较松散、清晰。

(2)特高压直流输电可以减少或避免大量过网潮流,按照送受两端运行方式变化而改变潮流。

特高压直流输电系统的潮流方向和大小均能方便地进行控制。

(3)特高压直流输电的电压高、输送容量大、线路走廊窄,适合大功率、远距离输电。

(4)在交直流并联输电的情况下,利用直流有功功率调制,可以有效抑制与其并列的交流线路的功率振荡,包括区域性低频振荡,明显提高交流的暂态、动态稳定性能。

(5)大功率直流输电,当发生直流系统闭锁时,两端交流系统将承受大的功率冲击。

特高压输电与超高压输电经济性比较特高压输电与超高压输电经济性比较,一般用输电成本进行比较,比较2个电压等级输送同样的功率和同样的距离所用的输电成本。

有2种比较方法:一种是按相同的可靠性指标,比较它们的一次投资成本;另一种是比较它们的寿命周期成本。

这2种比较方法都需要的基本数据是:构成2种电压等级输电工程的统计的设备价格及建筑费用。

对于特高压输电和超高压输电工程规划和设计所进行的成本比较来说,设备价格及其建筑费用可采用统计的平均价格或价格指数。

2种比较方法都需要进行可靠性分析计算,通过分析计算,提出输电工程的期望的可靠性指标。

利用寿命周期成本方法进行经济性比较还需要有中断输电造成的统计的经济损失数据。

一回1 100 kV特高压输电线路的输电能力可达到500 kV 常规输电线路输电能力的4 倍以上,即4-5回500 kV输电线路的输电能力相当于一回1 100 kV输电线路的输电能力。

显然,在线路和变电站的运行维护方面,特高压输电所需的成本将比超高压输电少得多。

线路的功率和电能损耗,在运行成本方面占有相当的比重。

在输送相同功率情况下,1 100 kV线路功率损耗约为500 kV线路的1/16左右。

高压直流输电的优势

高压直流输电的优势

高压直流输电的优势和应用及其展望京江学院J电气0802 3081127059 陈鑫郁简单的讲,直流输电是先将交流电通过换流器变成直流电,然后通过直流输电线路送出。

在受电端再把直流电变成交流电,进入受端交流电网。

直流输电系统由换流(逆变)站、接地极、接地极线路和直流送电线路构成。

直流输电具有传输功率大,线路造价低,控制性能好等特点,是目前世界发达国家作为解决高电压、大容量、长距离送电和异步联网的重要手段。

直流输电( HVDC)的发展历史到现在已有百余年了,在输电技术发展初期曾发挥作用,但到了20 世纪初,由于直流电机串接运行复杂,而高电压大容量直流电机存在换向困难等技术问题,使直流输电在技术和经济上都不能与交流输电相竞争,因此进展缓慢。

20 世纪50 年代后,电力需求日益增长,远距离大容量输电线路不断增加,电网扩大,交流输电受到同步运行稳定性的限制,在一定条件下的技术经济比较结果表明,采用直流输电较为合理,且比交流电有较好的经济效益和优越的运行特性,因而直流电重新被人们所重视。

1 高压直流输电高压直流输电基本原理高压直流输电的定义:发电厂发出的交流电,经整流器变换成直流电输送至受电端,再用逆变器将直流电变换成交流电送到受端交流电网。

直流输电的一次设备主要由换流站(整流站和逆变站)、直流线路、交流侧和直流侧的电力滤波器、无功补偿装置、换流变压器、直流电抗器以及保护、控制装置等构成。

高压直流输电的技术特点(1)高压直流输电输送容量更大、送电距离更远。

(2)直流输送功率的大小和方向可以实现快速控制和调节。

(3)直流输电接入系统是不会增加原有电力系统的短路电流容量的,也并不受系统稳定极限的限制。

(4)直流输电是可以充分利用线路的走廊资源,线路的走廊宽度大致为交流输电线路的一半,并且送电容量相比前者更大。

(5)直流输电工程运行时,无论任一极发生故障时,另一极均能继续运行,并可以发挥过负荷能力,保持输送功率不变或最大限度的减少输送功率的损失。

特高压直流输电双极运行原理

特高压直流输电双极运行原理

特高压直流输电双极运行原理特高压直流输电是一种高效、稳定的电力传输方式,其双极运行原理是指在两个极端分别设置一个直流输电线路,通过高压直流输电技术将电能从发电站输送到远距离的负荷中心。

下面我们来详细了解一下特高压直流输电双极运行原理。

一、特高压直流输电双极运行原理的基本概念特高压直流输电双极运行原理是指在两个极端分别设置一个直流输电线路,通过高压直流输电技术将电能从发电站输送到远距离的负荷中心。

其中,直流输电线路由直流输电电缆和直流输电塔组成,直流输电电缆是由高压绝缘材料制成的,具有良好的绝缘性能和耐高压能力,直流输电塔则是用于支撑直流输电电缆的结构。

二、特高压直流输电双极运行原理的工作原理特高压直流输电双极运行原理的工作原理是通过高压直流输电技术将电能从发电站输送到远距离的负荷中心。

在特高压直流输电系统中,直流输电线路的两端分别设置一个换流站,换流站由换流变压器、换流阀和控制系统组成。

换流变压器用于将交流电压升高到特高压水平,换流阀则用于将交流电转换为直流电,控制系统则用于控制换流阀的开关和电压等参数。

在特高压直流输电系统中,换流站的作用是将交流电转换为直流电,并将直流电输送到对端的换流站,然后再将直流电转换为交流电,输送到负荷中心。

在特高压直流输电系统中,直流输电线路的两端分别设置一个极地地电极,用于将电荷释放到地球中,以保证系统的稳定性。

三、特高压直流输电双极运行原理的优点特高压直流输电双极运行原理具有以下优点:1. 传输距离远:特高压直流输电系统可以传输数千公里的电能,比传统的交流输电系统传输距离更远。

2. 传输效率高:特高压直流输电系统的传输效率高,能够将电能损失降至最低。

3. 稳定性好:特高压直流输电系统的稳定性好,能够在恶劣的天气条件下保持正常运行。

4. 环保节能:特高压直流输电系统的环保节能性能好,能够减少能源消耗和环境污染。

四、特高压直流输电双极运行原理的应用领域特高压直流输电双极运行原理广泛应用于电力输送、城市供电、工业生产等领域。

高压直流输电讲解

高压直流输电讲解

把直流功率输送给逆变站内的逆变器,逆变器姜直流功率变换成交流功率,
再经换流变压器2送入受端的交流电力系统Ⅱ。
直流输电系统接线示意图
P6 P5 P4 P3 P2 P1
ecb
eab
eac
ebc
eba
eca
ecb
eab
二、两端直流输电系统
指具有一个整流站和一个逆变站的输电系统
构成
单极 双极 无直流输电线路(也叫两侧换流器 背靠背地装设在一起
中国是一个发展中国家,中国电网无论从总体规模和技术水平方面 与发达国家相比,都有较大的差距。因此,为了中国大规模西电东 送和全国联网工程的实施,必须研究电力系统的安全、稳定和经济 性,并进而研究相应对策,防止在建成规模巨大的电力供应网络后 发生大面积停电事故。
高压直流输电具有明显的优势。直流输电是电力系统中近年来迅 速发展的一项新技术。将其与交流输电相互配合,构成了现代电 力传输系统,并随着电力系统技术经济需求的不断增长和提高, 直流输电受到广泛的注意并得到不断的发展。
据了解,目前世界上只有日本和俄罗斯两国拥有1000千伏特高 压交流电网,且都是短距离输电。正负800千伏直流输电技术国 际上尚无运行经验,关键技术和设备有待进一步研究开发。南方 电网采用特高压输电技术,可以有效缓解长距离“西电东送”输 电走廊资源紧张局面,提高电网安全稳定水平,输电能力也将明 显提高。
5、向孤立负荷点送电或从孤立电站向电网送电的直流工程
6、与交流输电并联的直流输电工电是将发电厂发出的交流电经过升压变压器后,又换流设备(整流器) 整成直流,通过直流线路送到受端,再经换流设备(逆变器)换成交流供给 交流系统。
按它与交流系统连接的节点数可分为
两端 多端

特高压

特高压

4
电网的发展历程
1952 年 , 前 苏 联 建 成 第 一 条 330kV 线 路 ; 1956 年 建 成 330kV 400kV 线路 1967年建成 400kV线路 ; 1967 年建成 750kV 线路 。 从 330kV电压等级 线路; 年建成750kV线路 线路。 330kV 电压等级 发展到750kV电压等级用了 年时间 电压等级用了15年时间。 发展到750kV电压等级用了15年时间。 欧 洲 和 美 国 , 在 超 高 压 输 电 方 面 , 主 要 发 展 345kV 、 345kV 380kV和750kV电压级 380kV和750kV电压级, 500kV线路发展比较慢。1964年, 电压级, 500kV线路发展比较慢 1964年 线路发展比较慢。 美国建成第一条500kV线路 线路, 230kV 到 500kV 输电 输电, 美国建成第一条 500kV 线路 , 从 230kV到 500kV输电 , 时 间间隔达36 年 前苏联的500kV电压等级是在 电压等级是在400kV基础 间间隔达 36年 。 前苏联的 500kV 电压等级是在 400kV 基础 上升级发展起来的,1964年 建成完善的500kV输电系统 输电系统。 上升级发展起来的,1964年 , 建成完善的500kV输电系统。 1985年 前苏联建成世界上第一条1150kV特高压输电线 1985 年 , 前苏联建成世界上第一条 1150kV 特高压输电线 500kV电压等级到 电压等级到1150kV电压等级用了 年时间 电压等级用了20年时间。 路。从500kV电压等级到1150kV电压等级用了20年时间。
根据国际电工委员会的定义:交流特高压是指 根据国际电工委员会的定义: 1000kV 1000kV 以 上 的 电 压 等 级 。 在 我 国 , 常 规 性 是 指 1000kV以上的交流 800kV以上的直流 1000kV以上的交流,800kV以上的直流。 以上的交流, 以上的直流。

浅谈特高压输电技术的发展

浅谈特高压输电技术的发展

浅谈特高压输电技术的发展针对当前发展特高压输电技术的必要性,分别从直流和交流输电两个方面介绍了特高压输电系统的主要特点,结合国内外特高压输电技术的发展现状,分析了我国特高压输电技术的发展趋势和前景。

标签:高压输电;输电技术原理;高压直流前言:高压输电技术是世界能源领域的重大前沿技术,开展高压輸电技术的研究,对促进电力工业和能源工业的可持续发展,对世界电力科技创新和能源保障体系建设具有重要意义。

因此,在世界范围内,高压输电技术已得到了越来越多的机构和学者的关注。

1.什么叫高压输电从发电站发出的电能,一般都要通过输电线路送到各个用电地方。

根据输送电能距离的远近,采用不同的高电压。

从我国现在的电力情况来看,送电距离在200~300公里时采用220千伏的电压输电;在100公里左右时采用110千伏;50公里左右采用35千伏;在15公里~20公里时采用10千伏,有的则用6600伏。

输电电压在110千伏以上的线路,称为超高压输电线路。

在远距离送电时,我国还有500千伏的超高压输电线路。

2.为什么要高压输电根据P=UI,电压越高产生的电力浪费的也相对的越少,现在电力的材料是铜,他一个种导体,任何物质都会产生电阻,电阻就是电力浪费的主要原因,虽然说铜的电阻很小,也会产生浪费,况且铜的造价较高,主要是这个原因才使电线采用高压传输的方法,如果要打到物体没有电阻是有办法的,达到绝对零度,就是零下273℃,在这个温度下什么问题都能边成超导体,不过这样方法不能是实现,所以只能采用高压输电。

3.高压输电的原理高压输电原理可用欧姆定律解释.及电压=电流*电阻.或电流=电压/电阻.高压输电是要达到远距离输电的目的。

这个输电的重任就落到金属导线上,任何金属都有电阻存在,而电阻与其材质,长度和切面有关,各中材质导电系数不同,长度越长电阻越大,切面越大电阻越小。

为了达到高效率,远距离,节省成本输电的目的,就要用殴姆定律及电压,电流,电阻的关系来科学考虑其输电导线的成本。

交直流牵引供电的比较

交直流牵引供电的比较

交直流牵引供电的比较成员:目录一、牵引供电系统介绍 (3)1牵引供电系统的电流制 (3)2工频单相交流牵引供电系统 (4)二、我国列车铁轨及列车内部用电方式转变发展史 (5)三、直流远供技术与交流供电的对比 (6)四、地铁和国铁分别采用直流、交流的原因 (7)五、广州地铁直流牵引供电与交流牵引供电系统的选择 (8)1直流牵引供电系统 (8)2交流牵引供电系统 (9)六、高压直流输电与特高压交流输电的优缺点比较 (10)1直流输电的优点: (10)2限制直流输电应用范围的因素: (10)3特高压交流输电的优点: (11)直流制应用最早,19世纪末电力牵引开始用于铁路干线时,应用的就是直流制。

目前在英、法、日、苏等国直流制仍然大量存在。

直流制是将电力系统的三相交流电降压并变换为直流电供应接触网。

接触网电压有1200伏、1500伏、3000伏等多种。

由于电力机车电压受直流牵引电动机换向条件的限制,接触网电压很难大幅度提高,所以直流制须沿接触网输送大量电流,在接触网上一般须用两根铜接触导线,并应用铜承力索,另加一些平行的铝加强导线来分流,耗费有色金属量较大。

另外,为了保持接触网的电压水平,沿线路每隔10~30公里须设置一个牵引变电所。

直流制的这些弱点,推动了交流制的研究。

一、牵引供电系统介绍牵引供电是指拖动车辆运输所需电能的供电形式。

例如城市电车、城市地下铁道、工厂矿山的电力交通运输供电等,都可称为牵引供电。

电气化铁道供电,因其用电量大、分布广,因而形成相对独立于电力系统的电气化铁道牵引供电系统。

1牵引供电系统的电流制电气化铁道供电采用何种电流制,关系到许多重大技术问题和铁路运输的经济效益,故成为每个建造电气化铁道的国家首先要考虑的问题。

目前主要有以下4种电流制。

(一)直流制直流制是世界上早期电气化铁道普遍采用的方式,到目前为止,直流制在电气化铁道中所占的比例仍占43%左右。

其原因是电力机车多采用机械性能好,调速方便的直流串励电动机牵引,显然,利用直流电向直流电机供电可以极大地简化机车设备。

特高压交直流输电的技术特点

特高压交直流输电的技术特点

特高压交直流输电的技术特点摘要:伴随输电技术的不断突破,当前我国呈现出特高压输电广泛应用的状况。

本文对特高压交、直流输电技术的特性进行细致阐释,对比特高压交、直流输电技术的经济性特点。

以此为基础,探讨特高压输电技术应用在多个场合的具体应用情况。

关键词:特高压交直流输电;技术特点;发展1 引言特高压电网通常是1100kV级交流和±800kV级直流输电电网。

特高压输电技术的突破和创新使我国大规律、远距离输电得到解决,并且呈现稳定性和低成本的特点。

特高压输电的经济性是其核心基础。

我国特高压输电技术处于持续性的探索和创新状态,我国特高压输电技术的工程实践能力也得到了显著提升,特高压交、直流两种输电方式在未来的具体应用才是工程技术人员亟待解决的问题。

本文深入分析特高压交、直流输电技术的根本特点,重点阐释其应用场合和带来的具体经济性优势。

2 特高压直流输电技术根本特性2.1电网结构并不复杂,调控操作简单特高压直流输电通常传输模式为大功率、点对点、远距离,没有中间落点,电力直接被输送至负荷中心。

在送、受端已经确定之后,采取直流输电方式能够成功形成交、直流电网并联输电的状态,也可以采取非同步联网输电,电网结构明朗,调控简单。

2.2可以更好的限制短路电流通常直流输电线路用来连接交流电网。

直流系统自身能够成功实现定电流控制,将系统中短路电流进行限制,避免系统短路容量在电网互联的情况下逐渐加大。

2.3系统稳定性、可靠性较为突出可控硅换流器的使用能够实现直流输电技术中对有功功率进行快速调整,改变电流方向。

此外,正常状态下直流系统可以提供稳定的输出,一旦出现事故,能够立即对故障系统开展支援。

所以,交、直流电网互联的情况下,如果交流电网线路短路,可以采取短暂增大直流输送功率的措施用于对电源端的发电机转子速度进行控制,使系统的可靠性得到提升。

2.4降低年电能损耗,线路成本不高交流架空线输电由三根导线组成,直流由两根导线组成,电阻损耗较小,线路感抗和容抗的无功损耗、交流工况下的集肤效应都没有,能够充分利用导线截面;直流输电方案如果采取大地作为回路或者海水作为回路,一根导线即可完成,降低了投资成本,在前期投资以及运行费用方面体现护经济性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

特高压交直流输电的优缺点对比
一、直流输电技术的优点
1.经济方面:
(1)线路造价低。

对于架空输电线,交流用三根导线,而直流一般用两根,采用大地或海水作回路时只要一根,能节省大量的线路建设费用。

对于电缆,由于绝缘介质的直流强度远高于交流强度,如通常的油浸纸电缆,直流的允许工作电压约为交流的3倍,直流电缆的投资少得多。

(2)年电能损失小。

直流架空输电线只用两根,导线电阻损耗比交流输电小;没有感抗和容抗的无功损耗;没有集肤效应,导线的截面利用充分。

另外,直流架空线路的“空间电荷效应”使其电晕损耗和无线电干扰都比交流线路小。

所以,直流架空输电线路在线路建设初投资和年运行费用上均较交流经济。

2.技术方面:
(1)不存在系统稳定问题,可实现电网的非同期互联。

由此可见,在一定输电电压下,交流输电容许输送功率和距离受到网络结构和参数的限制,还须采取提高稳定性的措施,增加了费用。

而用直流输电系统连接两个交流系统,由于直流线路没有电抗,不存在上述稳定问题。

因此,直流输电的输送容量和距离不受同步运行稳定性的限制,还可连接两个不同频率的系统,实现非同期联网,提高系统的稳定性。

(2)限制短路电流。

如用交流输电线连接两个交流系统,短路容量增大,甚至需要更换断路器或增设限流装置。

然而用直流输电线路连接两个交流系统,直流系统的“定电流控制’,将快速把短路电流限制在额定功率附近,短路容量不因互联而增大。

(3)调节快速,运行可靠。

直流输电通过可控硅换流器能快速调整有功功率,实现“潮流翻转”(功率流动方向的改变),在正常时能保证稳定输出,在事故情况下,可实现健全系统对故障系统的紧急支援,也能实现振荡阻尼和次同
步振荡的抑制。

在交直流线路并列运行时,如果交流线路发生短路,可短暂增大直流输送功率以减少发电机转子加速,提高系统的可靠性。

(4)没有电容充电电流。

直流线路稳态时无电容电流,沿线电压分布平稳,无空、轻载时交流长线受端及中部发生电压异常升高的现象,也不需要并联电抗补偿。

(5)节省线路走廊。

按同电压500 kV考虑,一条直流输电线路的走廊~40 m,一条交流线路走廊~50 m,而前者输送容量约为后者2倍,即直流传输效率约为交流2倍。

二、直流输电技术的不足:
(1)换流装置较昂贵。

这是限制直流输电应用的最主要原因。

在输送相同容量时,直流线路单位长度的造价比交流低;而直流输电两端换流设备造价比交流变电站贵很多。

这就引起了所谓的“等价距离”问题。

(2)消耗无功功率多。

一般每端换流站消耗无功功率约为输送功率的40%~60%,需要无功补偿。

(3)产生谐波影响。

换流器在交流和直流侧都产生谐波电压和谐波电流,使电容器和发电机过热、换流器的控制不稳定,对通信系统产生干扰。

(4)就技术和设备而言,直流波形无过零点,灭弧困难。

目前缺乏直流开关而是通过闭锁换流器的控制脉冲信号实现开关功能。

若多条直流线路汇集一个地区,一次故障也可能造成多个逆变站闭锁,而且在多端供电方式中无法单独地切断事故线路而需切断全部线路,从而会对系统造成重大冲击。

(5)从运行维护来说,直流线路积污速度快、污闪电压低,污秽问题较交流线路更为严重。

与西方发达国家相比,目前我国大气环境相对较差,这使直流线路的清扫及防污闪更为困难。

设备故障及污秽严重等原因使直流线路的污闪率明显高于交流线路。

(6)不能用变压器来改变电压等级。

直流输电主要用于长距离大容量输电、交流系统之间异步互联和海底电缆送电等。

与直流输电比较,现有的交流
500kV输电(经济输送容量为1 000 kW,输送距离为300~500 km)已不能满足需要,只有提高电压等级,采用特高压输电方式,才能获得较高的经济效益。

三、特高压交流输电的主要优点:
(1)提高传输容量和传输距离。

随着电网区域的扩大,电能的传输容量和传输距离也不断增大。

所需电网电压等级越高,紧凑型输电的效果越好。

(2)提高电能传输的经济性.输电电压越高输送单位容量的价格越低。

(3)节省线路走廊和变电站占地面积。

一般来说,一回1150 kV输电线路可代替6回500 kV线路。

采用特高压输电提高了走廊利用率。

(4)减少线路的功率损耗, 就我国而言, 电压每提高1 % , 每年就相当于新增加500万kW 的电力, 500 kV输电比1200 kV的线损大5倍以上。

(5)有利于连网,简化网络结构,减少故障率。

四、特高压输电的主要缺点:
特高压输电的主要缺点是系统的稳定性和可靠性问题不易解决。


1965-1984年世界上共发生了6次交流大电网瓦解事故,其中4次发生在美国,2次在欧洲。

这些严重的大电网瓦解事故说明采用交流互联的大电网存在着安全稳定、事故连锁反应及大面积停电等难以解决的问题。

特别是在特高压线路出现初期,不能形成主网架,线路负载能力较低,电源的集中送出带来了较大的稳定性问题。

下级电网不能解环运行,导致不能有效降低受端电网短路电流,这些都威胁着电网的安全运行。

另外,特高压交流输电对环境影响较大。

总结:输电线路的建设主要考虑的是经济性,而互联线路则要将系统的稳定性放在第一位。

在超高压交流输电方面,若在500kV电压等级上采用750kV (最高运行电压800kV),有可能因两级电压相距太近,会造成电磁环网多、潮流控制困难、电网损耗大等问题,而且,即使今后采用灵活交流输电技术或紧凑型输电技术,输电容量的有限增加仍难以满足电力系统长远发展的需要。

综上所述,与750kV交流输电相比较,特高压在大容量远距离输电和建设全国的坚强电网方面具有一定的优势,在技术和设备上并无不可逾越的技术难题,在建设投资和运行上也较为经济。

相关文档
最新文档