脉冲波形的产生和整形知识分享

合集下载

脉冲波形的产生与整形

脉冲波形的产生与整形

8.3 单稳态电路
1.输出 脉冲宽度tW
2.恢复时间tre
4.输出脉 冲幅度Um
3.分辨时间td
8.3 单稳态电路
8.3.3 集成单稳态电路
常用单稳态电路有 54/74121,54/74221, 54/74123,CD4098, CD4538等。
集成单稳态电路分为 可重复触发型和不可重复 触发型两种。如图8.3.7 所示,输入给电路的4个 触发脉冲分别作用于两种 单稳态电路。
8.4 多谐振荡电路
2.石英晶体多谐振荡器 前述的各种多谐振荡器由于阻容元件及门电路的阈值电压等随外界条
件(主要是温度)变化较大,其频率稳定性一般很难优于10-3。石英晶体 多谐振荡器具有极高的稳定性,用它作为谐振元件做成的石英晶体多谐振 荡器的频率稳定性可优于10-9。
石英晶体的等效电路如图8.4.7(a)所示,图8.4.7(b)是其电路符 号,图8.4.7(c)是其阻抗频率特性。
因为ui=uo,再经过3个tpd时间,uo自动返回到低电 平,如此循环反复,输出矩形脉冲,产生振荡信号。矩 形脉冲振荡信号波形图如图8.4.2(b)所示,其振荡 周期为T=2×3tpd =6tpd
8.4 多谐振荡电路
图8.4.2 环形多谐振荡器
8.4 多谐振荡电路
8.4.2 对称和谐振荡器
在介绍单稳态电路时,将RS锁存器一侧的反馈回路改为RC微 分电路,如图8.4.4(a)、(b)所示,结果使电路由具有两个稳态 变成了具有一个稳态和一个暂稳态。
第8章 脉冲波形的产生与整形
本章小结 ➢施密特触发器除了波形变换、脉冲鉴幅、脉冲整形外,还可以改善 输入脉冲的上升沿和下降沿,使脉冲接近理想脉冲信号。施密特触发 器除有反相传输和同相传输两种电路外,还有施密特与非门、施密特 或非门等。 ➢集成定时器电路有TTL构成的电路,也有CMOS构成的电路。除了作 为定时器外,还可作为施密特触发器、单稳态电路和多谐振荡器等。 ➢当需要产生的脉冲信号频率较高,并且频率稳定性较高时,通常采 用石英晶体振荡器。

第7章脉冲波形

第7章脉冲波形

1、组成
1 UO1 1 UO2 1 UO3
利用门电路的传输延迟时间tpd , G1
G2
G3
将奇数个反相器首尾相接。
2、工作波形
UO1 tpd
3、计算
TW = ntpd ;
UO2
t
n是门的数目。
UO3
t
T=2TW ; f =1/T
TW
一般,tpd =
TTL类几十 ns CMOS类几百ns
(所以,环形振荡器 t 的振荡频率f 特别高)
vO VOH
VOL
0
VT-
VT+
vI
图7.5 施密特触发器的传输特性和电路符号
7-3-1 用门电路构成施密特触发器
一、构成(用CMOS非门)
R1
二、工作原理
UI
R2
G1
1
UI’
UO1
G2 1
UO
UI =0 UI上升 过程中
UI下降 过程中
UI
0
<VT+ =>VT+ =VT+ >VT+
>VT=>VT=VT<VT-
A1 (3)
A2 (4)
1
B (5)
RINT (9) CEXT (10)
REXT/CEXT (11)
(6)
Q
TR_A (3) ≥1 & 1
TR_B (4)
(6) Q
TR+ (5)
RINT (9)
(1)
Q
RI
CEXT (10)
CX
REXT/CEXT (11) RI/ CX
(1)
Q
7-4-4 单稳态触发器的应用

第10章 脉冲波形

第10章 脉冲波形
电路来实现。
uO的下降沿比uI的下降沿延迟了tw的时间。
数字电子技术
单稳态触发器小结
单稳态触发器可以由门电路构成,也可以由 555定时器构成。在单稳态触发器中,由一个暂稳 态过渡到稳态,其“触发”信号也是由电路内部 电容充(放)电提供的,暂稳态的持续时间即脉 冲宽度也由电路的阻容元件决定。
单稳态触发器不能自动地产生矩形脉冲,但 却可以把其它形状的信号变换成为矩形波,用途 很广。
对称式 多谐振荡器
数字电子技术
二、工作原理
假定接通电源后,由于某种原因使uI1有微小正跳变,则 必然会引起如下的正反馈过程 :
使uO1迅速跳变为低电平、uO2迅速跳变为高电平, 电路进入第一暂稳态。 此后,uO2的高电平对C1电容充电使uI2升高,电容 C2放电使uI1降低。由于充电时间常数小于放电时间常数, 所以充电速度较快,uI2首先上升到G2的阈值电压UTH, 并引起如下的正反馈过程:
为数字—模拟混合集成电路。 可产生精确的时间延迟和振荡,内部有 3 个 5KΩ的电阻分压器,故称555。
在波形的产生与变换、测量与控制、家用电
器、电子玩具等许多领域中都得到了应用。
数字电子技术
各公司生产的 555 定时器的逻辑功能与外引线 排列都完全相同。
双极型产品 单555型号的最后几位数码 双555型号的最后几位数码 优点 电源电压工作范围 负载电流 555 556 驱动能力较大 5~16V 可达200mA CMOS产品 7555 7556 低功耗、高输入阻抗 3~18V 可达4mA
数字电子技术
10.4 多谐振荡器
1. 多谐振荡器没有稳定状态,只有两个暂稳态。 • 通过电容的充电和放电,使两个暂稳态相互交替, 从而产生自激振荡。 • 输出周期性的矩形脉冲信号,由于含有丰富的谐 波分量,故称作多谐振荡器。

脉冲信号的产生与整形

脉冲信号的产生与整形
施密特触发器是一种能够把输入波形整形成为适合于数字电路需要的矩形脉冲的电路。而且由于具有滞回特性,所以抗干扰能力也很强。 施密特触发器可以由分立元件构成,也可以由门电路及555定时器构成。 施密特触发器在脉冲的产生和整形电路中应用很广。
1
2
电阻R1、R2的作用是保证两个反相器在静态时都能工作在线性放大区。对TTL反相器,常取R1=R2=R=0.7 kΩ~2kΩ,而对于CMOS门,则常取R1=R2=R=10kΩ~100kΩ;C1=C2=C是耦合电容,它们的容抗在石英晶体谐振频率f0时可以忽略不计;石英晶体构成选频环节。
01
振荡频率等于石英晶体的谐振频率f0。
多谐振荡器可以由门电路构成,也可以由555定时器构成。由门电路构成的多谐振荡器和基本RS触发器在结构上极为相似,只是用于反馈的耦合网络不同。RS触发器具有两个稳态,多谐振荡器没有稳态,所以又称为无稳电路。 在多谐振荡器中,由一个暂稳态过渡到另一个暂稳态,其“触发”信号是由电路内部电容充(放)电提供的,因此无需外加触发脉冲。多谐振荡器的振荡周期与电路的阻容元件有关。
ΔUT= UT+-UT-
回差电压(滞后电压):
前面介绍的施密特触发器的回差电压为: ΔUT=UT+-UT-=UT-(UT-UD)=UD= 0.7V 缺点是回差太小,且不能调整。
下限阈值电压
集成施密特触发器
4.3.2 由555定时器构成的施密特触发器
4.3.3 施密特触发器的应用
本节小结:
01
02
74121的输出脉冲宽度:
TR-A、TR-B是两个下降沿有效的触发信号输入端,TR+A、TR+B是两个上升沿有效的触发信号输入端。Q和是两个状态互补的输出端。Rext/Cext、Cext、Rin3个引出端是供外接定时元件使用的,外接定时电阻R(R=5kΩ~50kΩ)、电容C(无限制)的接法与74121相同。RD为直接复位输入端,低电平有效。 当定时电容C>1000pF时,74122的输出脉冲宽度: tp≈0.32RC

脉冲波形的产生和整形

脉冲波形的产生和整形

第十章脉冲波形的产生和整形内容提要本章主要介绍矩形波的产生和整形电路。

在矩形波产生电路中介绍几种常用的多谐振荡器-对称式和非对称多谐振荡器、环形振荡器以及用施密特触发器和555定时器构成的多谐振荡器等。

此外对几种不同类型的压控振荡器也做了介绍。

在整形电路中,介绍了施密特触发器和单稳态触发器。

本章也讨论了最常用的555定时器及其所构成的施密特触发器、单稳态触发器及多谐振荡器的电路及工作原理。

本章内容10.4 多谐振荡器10.5 555定时器及其应用一、产生矩形脉冲的途径形如图10.1.1所示。

其中:图10.1.1脉冲周期T :周期行重复的脉冲序列中,两个相邻脉冲之间的时间间隔。

有时也用频率f=1/ T表示单位时间内脉冲重复的次数上升时间t r :脉冲上升沿从0.1V m 上升到 0.9V m 所需要的时间图10.1.1W :从脉冲前沿到达0.5V m 起,到脉冲后沿到达0.5V m 为止的一段时间。

下降时间t :脉冲下降沿从图10.1.1占空比q :脉冲宽度与脉冲周期的比值,即q =t w 注:在脉冲整型或产生电路用于数字系统时,有时对脉冲有些特殊要求,如脉冲周期和幅度的稳定性10.2 施密特触发器(Schmitt Trigger)换时对应的输入电平,与输入信号从高电平下降过程在电路状态转换时,通过电路内部的正反馈过程使输出电压波形的边沿变得很陡。

注:利用这两个特点不仅能将边沿变化缓慢地信号波形整形为边沿陡峭的矩形波,而且可以将叠加在矩形波脉冲高、低电平上的噪声有效地清除。

图10.2.111I v 1R 2R I v ′o v 1o v ov ′G 1G 2图6.2.1 用C M O S 反相器构成的施密特触发器(a )电路I v v ′I v o v 设反相器G 1和G 2均为CMOS 门,其阈值电压为=011≈+=v R R v A ①当v I =0时, v o1= V OH , v o = V OL ≈0,此时G 1门的输入电压为逐渐升高到使得v A=时,反相器进入电压传输特性的放大区(转折区),故v A的增加,会引起下面的正反馈,即v1o v vA设施密特触发器在输入信号v I 正向增加时的门槛电T +,称为正向阈值电压,此时v o =0, G 1门的输入电压为++=T 212TH V V R R R v A =121T V V R R R R ++=于也存在正反馈,即ov 使电路迅速跳变到v o =V OL ≈ 0此时施密特触发器在v I 下降时对应输出电压由高电平转为低电平时的输入电压为DD 211T 2120211I 212TH V V V R R R R R R v R R R v R R R v A ++++++=-==TH21T V )1V R R −=(-由于V TH = V DD / 2,故只要v ITH21T T T V 2V V V R R =∆-+-=THT I V R R V V )(211+==+THT I V R R V V )(211−==−施密特触发器的电压传输特性为图10.2.2所示图10.2.2TH V DDV Iv ov V O L+T V -T V TV ∆TH V DD V Iv Av 0+T V -T V TV ∆(a )同相输出(b )反相输出V O HV O LV O H用门电路组成的施密特触发器TH DDV Iv +T -T TH V V Av 0+T V -T V TV ∆(a )同相输出(b )反相输出图100..2.3由C M OS 反相器构成的施密特触发器的电压传输特性V O LV O H图10.2.3(a)是以v o 做为输出的, v o 和v I 同相位;而图10.2.3(b)是以v ′A 做为输出的,利用施密特触发器可以将边沿变化缓慢的周期性信号变换为边沿很陡的矩形脉冲DD V I v +(b )反相输出反相器构成的施密特触发器的电压传输特性利用施密特触发器将一系列幅度不同的脉冲信号,其中幅度大于正向阈值电压的幅度鉴别出来。

脉冲波形的产生和整形

脉冲波形的产生和整形

TD
导通
不变 不变
1
1
截止
截止
施密特触发器 脉冲整形,能把变化缓慢的波形变换成矩形脉冲
主要参数 正向阀值电平VT+:输入电压上升的翻转电平 负向阀值电平VT-:输入电压下降的翻转电平 传输特性
vo
VOH
回差电压ΔVT: VT VT TT
vo VT
VOH
vI
1 G
V 2OL 0
R2 VT 同向传输 VOH R1 v
特点: ①有一个稳态和一个暂稳态。 ②在外界触发信号作用下,能从稳态→暂稳态,维持TW时 间后自动返回稳态,并在输出端产生一个宽度为TW的矩 形脉冲。 ③暂稳态维持的时间长短取决于电路内部参数。
单稳态触发器常用在数字系统的整形、延迟和定时电路中
集成单稳态触发器
输 入 输出 A1 A2 B vo vo 0 × × 3 4 A1 A2 GND 7 74121 × 0 × 1 1 1 1 0 × 1 1 1 0 × (a)图形符号 × 0 0 0 0 0 1 1 1 1
0.01F
3
vo
R’
S’
VCC VT T1 ( R1 R2 )C ln VCC VT
( R1 R2 )C ln 2
VT T2 R2C ln R2C ln 2 VT
T T1 T2 ( R1 2R2 )C ln 2
控制和协调整个系统的工作 脉冲幅度Vm:脉冲电压的最大幅度值 脉冲宽度Tw:从脉冲前沿的0.5Vm到脉冲后沿的0.5Vm的时间 上升时间Tr:脉冲上升沿从0.1Um上升到0.9Um所需的时间 下降时间Tf:脉冲下降沿从0.9Um下降到0.1Um所需的时间
脉冲周期T:在周期性重复的脉冲中,相邻脉冲的间隔时间

脉冲波形的产生与变换


02
脉冲波形的产生
矩形脉冲的产生
矩形脉冲:通过将电压快速地加到高 电平然后减到低电平,再重复这个过 程,可以产生矩形脉冲。
矩形脉冲的宽度和高度可以通过改变 电压的上升和下降速度以及高低电平 的电压值来调整。
三角脉冲的产生
三角脉冲:三角脉冲可以通过比较器电路产生,当输入信号大于某个阈值时,比 较器输出高电平,否则输出低电平。
脉冲波形产生与变换技术的实际应用
为了更好地发挥脉冲波形产生与变换技术的优势,未来研究可以加强该技术在各领域的实 际应用研究。通过与产业界的合作,推动脉冲波形产生与变换技术的成果转化,为经济发 展和产业升级提供技术支持。
感谢您的观看
THANKS
压力传感器
通过检测压力变化产生的 脉冲波形,实现对压力的 测量。
温度传感器
利用热敏元件产生的脉冲 波形,实现对温度的测量。
在医学领域的应用
超声成像
利用超声波产生的脉冲波形,通 过接收反射回的脉冲信号进行成
像。
核磁共振成像
通过施加脉冲磁场和射频脉冲, 获取组织中的氢原子核磁矩信息,
重建图像。
脉冲激光治疗
目的和意义
随着科技的发展,脉冲波形在各个领 域的应用越来越广泛,对脉冲波形产 生与变换的研究具有重要的实际意义。
此外,脉冲波形的产生与变换也是信 号处理领域的重要研究方向之一,对 于推动相关领域的发展具有重要意义。
研究脉冲波形的产生与变换,有助于 深入了解信号的特性和传播规律,为 信号处理、通信系统设计等领域提供 理论支持和技术指导。
够将输入的脉冲波形进行变换,得到所需的输出波形。实验结果表明,
该算法具有快速、准确和稳定的特点。
03
脉冲波形在各领域的应用

数字电路第8章脉冲波形的产生与整形概要

振荡周期为
T T 1 T 2 0 .7 (R 1 R 2 )C
占空比为
DT1 R1 T R1 R2
第8章 脉冲波形的产生与整形
4)
用两个多谐振荡器可以组成如图8-7(a)所示的模拟声 响电路。适当选择定时元件,使振荡器A的振荡频率 fA=1Hz , 振荡器B的振荡频率 fB= 1kHz。由于低频振荡 器A的输出接至高频振荡器B的复位端(4脚),当Uo1输出高 电平时,B振荡器才能振荡,Uo1输出低电平时, B振荡器 被复位,停止振荡,因此使扬声器发出 1kHz的间歇声响。 其工作波形如图 8-7(b)所示。
到,电路就一直处于Uo=0 的稳定状态。
第8章 脉冲波形的产生与整形
② 暂稳态:外加触发信号Ui的下降沿到达时,由于
U21 3UC、 C U6(UC)0,RS触发器Q端置 1,因此Uo=1, V1截止,UCC开始通过电阻R向电容C充电。随着电容C充 电的进行,UC不断上升,趋向值UC(∞)=UCC。
电路处于某一暂稳态,电容C上电压UC略低于
,Uo
输出高电平,V1截止,电源UCC通过R1、R2 给电容C充电。 随输着出充电电压的Uo进就行一U直C逐保渐持增高高电,平但不只变要,13这U就CC是U第C 一23个U暂CC稳,
态。
第8章 脉冲波形的产生与整形

2 3
当电容C上的电压UC略微超过
2 3
U6 U23i的U触CC 发期负间脉,冲R消S失触后发,器U状2回态到保高持电不平变,,在因U此2 ,13UUoCC、 一直保持高电平不变,电路维持在暂稳态。但当电容C上
的电压上升到
U6
2 3
UCC
时,RS触发器置 0,电路输出Uo
=0,V1导通,此时暂稳态便结束,电路将返回到初始的
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档