透射电子显微镜分析基础

合集下载

各种仪器分析的基本原理

各种仪器分析的基本原理

各种仪器分析的基本原理仪器分析的基本原理主要涉及到不同类型仪器的工作原理和分析原理。

以下是一些常见仪器的基本原理:1.光谱仪器光谱仪器包括紫外可见光谱仪、红外光谱仪、质谱仪等。

其基本原理是测量样品对不同波长的光的吸收、发射或散射。

通过样品吸收、发射或散射光的特征,可以推断样品的组成、结构和浓度等信息。

2.色谱仪器色谱仪器包括气相色谱仪(GC)、液相色谱仪(HPLC)、离子色谱仪(IC)等。

其基本原理是在不同相的载体(固定相)上,利用样品分子在移动相中的不同分配、吸附、离子交换等特性,在固定相和移动相之间进行分离和分析。

3.质谱仪器质谱仪器是一种通过离子化技术对化学物质进行分析的仪器。

其基本原理是将样品中的分子或原子通过电离过程转变为带电的离子,然后通过质谱仪中不同电场、磁场等设备进行分析和检测。

4.电化学仪器电化学仪器包括电位计、电导仪、电解池等。

其基本原理是利用电化学反应来分析和测试样品中的化学物质。

常用电化学仪器有电化学分析技术、电化学平衡技术等。

5.核磁共振仪器核磁共振仪器通过检测和分析化学物质中原子核的行为来获得样品结构和性质的信息。

其基本原理是通过外加磁场和射频脉冲来激发和探测样品中的核磁共振信号,从而得到样品的谱图和数据。

6.能谱仪器能谱仪器是以能量测量为基础的一类仪器,包括γ射线仪、X射线仪、电子显微镜等。

其基本原理是通过测量材料与射线相互作用后所产生的能量变化来分析和测量样品的成分、形态和结构等。

7.热分析仪器热分析仪器主要有差示扫描量热仪(DSC)、示差热分析仪(DTA)、热重分析仪(TGA)等。

其基本原理是通过样品在不同温度下吸热、放热或失重的行为,来分析材料的性质、热稳定性和热分解特性。

8.电子显微镜电子显微镜是一种使用电子束替代可见光进行成像的仪器。

其基本原理是通过加速电子并聚焦形成电子束,然后在样品表面扫描,通过与样品相互作用所产生的信号来生成图像。

电子显微镜主要包括透射电子显微镜(TEM)和扫描电子显微镜(SEM)。

第14章电子背散射衍射-EBSD

第14章电子背散射衍射-EBSD

(14-3)
令g1= g2,可得米勒指数与欧拉角的互换公式
Φ arccosl
k 2 arccos 2 2 h k
(14-5)
(14-6)
(14-7)
16
1 arcsin
w 2 2 h k
第二节 电子背散射衍射技术相关晶体学基础
当两相的晶体结构存在较大差别,或第二相尺寸较大时,两 相间为此类界面。
3)部分共格相界 借助位错维持其共格性的界面。
此类界面在马氏体转变及外延生长晶体中较常见。
8
第二节 电子背散射衍射技术相关晶体学基础
三、晶体取向坐标系建立
如图14-5,样品坐标系,由轧向RD、横向TD 、法向ND 三个互相垂直的方向构成; 晶体坐标系(以立方晶体为例), 由3个互相垂直的晶轴[100]、[010]和[001]组成。
3
第一节 概 述
EBSD的发展经历: 1928年,日本学者Kikuchi在TEM中首次发现了带状电子 衍射花样,并对此衍射现象进行解释,称此为菊池花样。 1972年,Venables和Harland在扫描电镜中,得到了背散射 电子衍射花样。
20世纪80年代后期, Dingley得到了晶体取向的分布图。并 成功地将EBSD技术商品化
20世纪90年代初, 成功研究出自动计算取向、有效图像处 理以及自动逐点扫描技术,之后能谱分析和EBSD分析的 有效结合使相鉴定更加有效和准确。 2000年以后, EBSD标定速度大幅提升,加快了EBSD的发 展和推广。
4
第二节 电子背散射衍射技术相关晶体学基础
一、晶界类型 1)小角度晶界:指相邻晶粒位向差10的晶界,一般 2。 其中包括倾斜晶界、扭转晶界和重合晶界等。

《电子光学基础》课件

《电子光学基础》课件

02
电子光学中的基本现象
电子的波动性
总结词
电子的波动性是指电子在空间传播时表现出的波动特征,与光的波动性类似。
详细描述
电子的波动性是电子的一种基本属性,类似于光波。电子在空间中传播时,其 波前、波长、频率等波动特性与光波相似。这一特性在电子光学中具有重要意 义,是理解电子在物质中传播行为的基础。
数据分析
通过统计、拟合、图像处理等方法,提取有用的信息和特征。
结果解释
结合理论模型和实验条件,解释实验结果,得出科学结论。
05
电子光学的发展趋势与展 望
新型电子光学器件的研发
01
总结词
02
详细描述
随着科技的不断发展,新型电子光学器件的研发成为电子光学领域的 重要趋势。
新型电子光学器件如量子点、二维材料等具有优异的光电性能,在光 电器件、太阳能电池、光电探测器等领域具有广泛应用前景。
应用领域
电子束曝光系统在微电子制造、纳米科技、光子学等领域有广泛应用 。
电子束能量分析器
电子束能量分析器概述
电子束能量分析器是一种用于测量电子束能量的设备。
工作原理
电子束能量分析器利用电子光学透镜将电子束聚焦到一个 能量分析器上,通过测量不同能量的电子束的强度分布, 可以计算出电子束的能量分布。
应用领域
通过观察和分析透射束的强度和相位信息,测量样品的形貌和
晶体结构。
扫描电子显微镜(SEM)法
02
通过观察和分析扫描束的强度信息,测量样品的表面形貌和元
素分布。
电子能量损失谱(EELS)法
03
通过测量电子在样品中损失的能量,分析样品的化学成分和能
级结构。
电子光学实验中的数据处理与分析

材料分析测试方法考点总结

材料分析测试方法考点总结

材料分析测试方法XRD1、x-ray 的物理基础X 射线的产生条件:⑴ 以某种方式产生一定量自由电子⑵ 在高真空中,在高压电场作用下迫使这些电子做定向运动⑶ 在电子运动方向上设置障碍物以急剧改变电子运动速度→x 射线管产生。

X 射线谱——X 射线强度随波长变化的曲线:(1)连续X 射线谱:由波长连续变化的X 射线构成,也称白色X 射线或多色X 射线。

每条曲线都有一强度极大值(对应波长λm )和一个波长极限值(短波限λ0)。

特点:最大能量光子即具有最短波长——短波限λ0。

最大能量光子即具有最短波长——短波限λ0。

影响连续谱因素:管电压U 、管电流 I 和靶材Z 。

I 、Z 不变,增大U→强度提高,λm 、λ0移向短波。

U 、Z 不变,增大I ;U 、I 不变,增大Z→强度一致提高,λm 、λ0不变。

(2)特征X 射线谱:由一定波长的若干X 射线叠加在连续谱上构成,也称单色X 射线和标识X 射线。

特点:当管电压超过某临界值时才能激发出特征谱。

特征X 射线波长或频率仅与靶原子结构有关,莫塞莱定律特定物质的两个特定能级之间的能量差一定,辐射出的特征X 射线的波长是特定。

特征x 射线产生机理:当管电压达到或超过某一临界值时,阴极发出的电子在电场加速下将靶材物质原子的内层电子击出原子外,原子处于高能激发态,有自发回到低能态的倾向,外层电子向内层空位跃迁,多余能量以X 射线的形式释放出来—特征X 射线。

X 射线与物质相互作用:散射,吸收(主要)(1)相干散射:当X 射线通过物质时,物质原子的内层电子在电磁场作用下将产生受迫振动,并向四周辐射同频率的电磁波。

由于散射线与入射线的波长和频率一致,位相固定,在相同方向上各散射波符合相干条件,故称相干散射→ X 射线衍射学基础 ()σλ-=Z K 1(2)非相干散射:X 射线光子与束缚力不大的外层电子或自由电子碰撞时电子获得一部分动能成为反冲电子,X 射线光子离开原来方向,能量减小,波长增加,也称为康普顿散射。

材料现代分析方法绪论

材料现代分析方法绪论

扫描电镜
扫描隧道电 镜
OM
Ni-Cr合金的铸造组织
SEM
人类血细胞SEM照片
TEM
碳纳米管TEM照片
SPM
云母的表面原子阵列
图为IBM公司的Eigler博士用扫描探针显微镜(SPM)搬动 35个氙原子绘制的“IBM”字样。如果这种原子搬动技术 被巧妙使用的话,就完全可以绘制成美妙的原子艺术画。
不良品
良品
齿轮疲劳失效,是由于渗 碳处理不均匀,根本原因 在于硅的偏聚。
浸炭不 良部
不良品

良品
Si
XPS X射线光电子能谱
3. 4 分子结构分析
利用电磁波与分子键和原子核的作用,获得分 子结构信息。
红外光谱(IR)、拉曼光谱(Raman)、荧 光光谱(PL)等是利用电磁波与分子键作用 时的吸收或发射效应;
而核磁共振(NMR)则是利用原子核与电磁 波的作用来获得分子结构信息的。
4设计材料的开发
对于新材料的发现和研制,材料开发循环过程为:
功能需求分析一确定性能指标一确定材料体系 和加工方法一材料成分设计和工艺参数优化性能 评价一应用产品失效分析,然后进入下一乾循环, 直至达到预定要求(如图)。
例:如何分析聚合物材料
绪论
1.材料现代分析方法的概念 2.材料分析的内容及相应的分析方法 3.材料分析的理论依据
3.1 组织形貌分析 3.2 相结构分析 3.3 成分和价键分析 3.4分子结构分析
4.设计材料的开发 5.本课程的结构和特点
1.材料现代分析方法
材料现代分析方法是关于材料分析测试技术及其有关理论的 一门课程。 成分、结构、加工和性能是材料科学与工程的四个基本要素, 成分和结构从根本上决定了材料的性能,对材料的成分和结 构的进行精确表征是材料研究的基本要求,也是实现性能控 制的前提。

扫描电镜对比以及扫描电镜基础知识点-科邦实验室

扫描电镜对比以及扫描电镜基础知识点-科邦实验室

扫描电镜对比以及扫描电镜基础知识点扫描电子显微镜,是自上世纪60年代作为商用电镜面世以来迅速发展起来的一种新型的电子光学仪器,被广泛地应用于化学、生物、医学、冶金、材料、半导体制造、微电路检查等各个研究领域和工业部门。

如图1所示,是扫描电子显微镜的外观图。

一、特点制样简单、放大倍数可调范围宽、图像的分辨率高、景深大、保真度高、有真实的三维效应等,对于导电材料,可直接放入样品室进行分析,对于导电性差或绝缘的样品则需要喷镀导电层。

二、基本结构从结构上看,如图2所示,扫描电镜主要由七大系统组成,即电子光学系统、信号探测处理和显示系统、图像记录系统、样品室、真空系统、冷却循环水系统、电源供给系统。

图2:扫描电子显微镜结构图(图片来源:西南石油大学能源材料实验教学中心)其中最重要的三个系统是电子光学系统、信号探测处理和显示系统以及真空系统。

1、电子光学系统电子光学系统包括电子枪、电磁透镜、扫描线圈、样品室等,主要用于产生一束能量分布极窄的、电子能量确定的电子束用以扫描成象。

电子枪:用于产生电子,主要分类如下:电磁透镜:热发射电子需要电磁透镜来成束,所以在用热发射电子枪的扫描电镜上,电磁透镜必不可少。

通常会装配两组:汇聚透镜和物镜,汇聚透镜仅仅用于汇聚电子束,与成象会焦无关;物镜负责将电子束的焦点汇聚到样品表面。

扫描线圈的作用是使电子束偏转,并在样品表面作有规则的扫动,电子束在样品上的扫描动作和显像管上的扫描动作保持严格同步,因为它们是由同一扫描发生器控制的。

样品室内除放置样品外,还安置信号探测器。

2、信号探测处理和显示系统电子经过一系列电磁透镜成束后,打到样品上与样品相互作用,会产生二次电子、背散射电子、俄歇电子以及X射线等一系列信号。

所以需要不同的探测器譬如二次电子探测器、X射线能谱分析仪等来区分这些信号以获得所需要的信息。

虽然X射线信号不能用于成象,但习惯上,仍然将X射线分析系统划分到成象系统中。

有些探测器造价昂贵,比如Robinsons式背散射电子探测器,这时,可以使用二次电子探测器代替,但需要设定一个偏压电场以筛除二次电子。

扫描电镜基础知识

扫描电子显微镜(ScanningElectronMicroscope)基础知识一、扫描电子显微镜的工作原理扫描电镜是用聚焦电子束在试样表面逐点扫描成像。

试样为块状或粉末颗粒,成像信号可以是二次电子、背散射电子或吸收电子。

其中二次电子是最主要的成像信号。

由电子枪发射的能量为5 ~35keV 的电子,以其交叉斑作为电子源,经二级聚光镜及物镜的缩小形成具有一定能量、一定束流强度和束斑直径的微细电子束,在扫描线圈驱动下,于试样表面按一定时间、空间顺序作栅网式扫描。

聚焦电子束与试样相互作用,产生二次电子发射(以及其它物理信号),二次电子发射量随试样表面形貌而变化。

二次电子信号被探测器收集转换成电讯号,经视频放大后输入到显像管栅极,调制与入射电子束同步扫描的显像管亮度,得到反映试样表面形貌的二次电子像。

二、扫描电镜具有以下的特点(1) 可以观察直径为0 ~30mm的大块试样(在半导体工业可以观察更大直径),制样方法简单。

(2) 场深大、三百倍于光学显微镜,适用于粗糙表面和断口的分析观察;图像富有立体感、真实感、易于识别和解释。

(3) 放大倍数变化范围大,一般为15 ~200000 倍,对于多相、多组成的非均匀材料便于低倍下的普查和高倍下的观察分析。

(4) 具有相当高的分辨率,一般为3.5 ~6nm。

(5) 可以通过电子学方法有效地控制和改善图像的质量,如通过调制可改善图像反差的宽容度,使图像各部分亮暗适中。

采用双放大倍数装置或图像选择器,可在荧光屏上同时观察不同放大倍数的图像或不同形式的图像。

(6) 可进行多种功能的分析。

与X 射线谱仪配接,可在观察形貌的同时进行微区成分分析;配有光学显微镜和单色仪等附件时,可观察阴极荧光图像和进行阴极荧光光谱分析等。

(7) 可使用加热、冷却和拉伸等样品台进行动态试验,观察在不同环境条件下的相变及形态变化等。

三、扫描电镜的主要结构1.电子光学系统:电子枪;聚光镜(第一、第二聚光镜和物镜);物镜光阑。

10种显微镜基本概述


E.激光扫描共聚焦显微镜
• 共聚集的概念:普通显微镜观察时,处 在焦平面上的清晰结构和处在样品不同 深度的模糊结构都出现在同一图像中, 而共聚焦采用点照明,点检测的成像方 式,因此看到的是样品中位于一个薄层 共焦平面上的结构,消除了非共焦平面 上的背景信息。
应用
• 用激光扫描共聚焦显微镜进行活细胞的 定量分析:细胞内溶酶体、线粒体、 DNA含量、RNA含量、酶和结构性蛋白 质等物质的含量和分布。
电子显微镜
• 标本特殊处理:因为标本要暴露在非常高的真 空下,不可能是活的,湿的状态。 • 固定——脱水——树脂包埋 • 上述方法得出的标本与原本精巧的活细胞可能 不符。新方法:快速冷冻
• 将标本猛的放在冷却的光滑铜板上,或者插入 液态丙烷之类的制冷剂或将制冷剂喷在标本上。
F.透射电子显微镜(TEM)
A.用相差显微镜和微分干涉相 差显微镜清晰观察活细胞
• 原理:活细胞和未染色标本虽无色透明, 但各部分折射率或厚度都有微小差异, 当光波通过时,在各部分停滞时间有所 不同,光程的差异导致光波相位的微小 变化,相位差变成振幅差(明暗反差), 肉眼可见。
相差显微镜的应用
• 突出优点:观察活细胞的结构
光学显微镜的结构组成
• 显微镜的光学系统主要包括物镜、目镜、反光 镜和聚光器四个部件。广义的说也包括照明光 源、滤光器、盖玻片和载玻片等。 • 显微镜的机械装置是显微镜的重要组成部分。 其作用是固定与调节光学镜头,固定与移动标 本等。主要有镜座、镜臂、载物台、镜筒、物 镜转换器、与调焦装置组成。 • 光学显微镜能分辨0.2um的细节部分
• 在生物学和医学方面应用广泛:血液观 察、脓汁、分泌物检查、细胞癌变早期 诊断、细胞内部变化、细胞分裂现象。 在观察细胞血球等结构时候,最好单层, 不重叠。对一些陈旧褪色标本也能观察。

SEM基础理论介绍

under focus
Before correction
in focus
over focus
After correction
For Internal Use Only
35
电子光学系统 Electron Optical System
1. 电子枪(Electron gun) 2. 电磁透镜 (Electro-magnetic lens) 3. 物镜光阑(Objective lens aperture) 4. 扫描线圈(Scanning coil)
肖特基场发射 氧化锆/钨(100) 1800 >2000 ≤1000 15 5300 200 1.107 200 0.35-0.7 1 <0.5 ≤1.10-8 低 无要求
For Internal Use Only
25
电子光学系统 Electron Optical System
1. 电子枪(Electron gun) 2. 电磁透镜 (Electro-magnetic lens) 3. 物镜光阑(Objective lens aperture) 4. 扫描线圈(Scanning coil)
For Internal Use Only
26
电磁透镜 Electro Magnetic Lens
For Internal Use Only
27
电磁透镜 Electro Magnetic Lens
电磁透镜的主要作用是将电子枪的束流逐 渐汇聚,使原来直径约为50μm的束斑缩 小成一个只有1nm左右的细小束斑。
For Internal Use Only
33
像差 Aberration
c) 像散(Astigmatism):由于透镜的磁场轴向不对称所引起的 一种像差。

冷冻电镜技术

冷冻电镜技术于思腾 2019127081. 冷冻电镜技术的概论1.1. 什么是Cryo-EM?冷冻电镜即冷冻电子显微镜(cryo-electron microscopy,cryo-EM),是将生物大分子快速冷冻后,在低温环境下利用透射电子显微镜对样品进行成像,再经图像处理和重构计算获得样品的三维结构。

1.2. 冷冻电镜技术的分类目前我们平时所说的冷冻电镜基本上指的都是冷冻透射电子显微镜。

但是如果我们以使用冷冻技术的角度定义冷冻电镜的话,冷冻电镜主要可以分为冷冻透射电子显微镜、冷冻扫描电子显微镜、冷冻蚀刻电子显微镜。

1.2.1. 冷冻透射电镜(Cryo-TEM)冷冻透射电镜技术是在普通透射电镜上加装样品冷冻装置,将样品冷却到液氮温度( 77 K),用于观测蛋白、生物切片等对温度敏感样品的一种技术。

通过对样品的冷冻,可以降低电子束对样品的损伤,减小样品的形变,从而得到更加真实的样品形貌。

它的原理是通过对样品的冷冻,降低电子束对样品的损伤,减小样品的形变,从而得到更加真实的样品形貌。

它具有加速电压高、电子光学性能好、样品台稳定、全自动等优点。

1.2.2. 冷冻扫描电子显微镜(Cryo-SEM)冷冻扫描电镜技术一般是在普通扫描电镜上加装低温冷冻传输系统和冷冻样品台装置,它是在扫描电镜的基础上发展起来的一种技术,可以直接观察液体、半液体的样品,不需要对样品进行干燥处理,最大程度地减少了常规的干燥过程对高度含水样品的影响。

其基本原理是使水在低温状态下呈玻璃态,从而减少冰晶的产生,获得合适的样品,再通过传输系统送到冷冻样品台上进行观察,具有防止样品水分丢失、制样快、样品可以重复使用等优点。

1.2.3. 冷冻蚀刻电子显微镜(Freeze-etching)冷冻蚀刻电镜技术是一种将断裂和复型相结合的制备透射电镜样品技术,可以显示细胞、组织微细结构的立体构像。

它的原理是将样品置于干冰或液氮中进行冰冻,用冷刀劈开后,在真空中将温度回升到-100 ℃,使断裂面的冰升华,暴露出断面结构,最终得到可以观察的复膜。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档