鸡兔同笼问题题型归类及练习答案
鸡兔同笼练习题及答案

鸡兔同笼练习题及答案关键信息1、练习题的数量:____________________________2、练习题的难度级别:____________________________3、答案的详细程度:____________________________4、答案的准确性保证:____________________________5、练习题的适用范围:____________________________6、练习题的更新频率:____________________________一、练习题部分11 笼子里有若干只鸡和兔,从上面数有 35 个头,从下面数有 94 只脚,鸡和兔各有多少只?111 一个笼子里鸡和兔的总数为 20 只,它们的脚总数为 56 只,求鸡和兔的数量分别是多少?112 有鸡兔共 18 只,共有 52 条腿,鸡兔各有几只?二、答案部分21 对于“笼子里有若干只鸡和兔,从上面数有 35 个头,从下面数有94 只脚,鸡和兔各有多少只?”这道题,我们可以使用假设法来解答。
假设全是鸡,那么脚的总数应该是 35×2 = 70 只,而实际有 94 只脚,多出来的 94 70 = 24 只脚是因为把兔当成鸡来算,每只兔少算了 4 2= 2 只脚,所以兔的数量为 24÷2 = 12 只,鸡的数量为 35 12 = 23 只。
211 对于“一个笼子里鸡和兔的总数为 20 只,它们的脚总数为 56 只,求鸡和兔的数量分别是多少?”假设全是鸡,脚的总数为 20×2 = 40 只,实际多了 56 40 = 16 只脚,每只兔少算 2 只脚,所以兔有 16÷2 = 8 只,鸡有 20 8 = 12 只。
212 对于“有鸡兔共 18 只,共有 52 条腿,鸡兔各有几只?”同样假设全是鸡,脚数为 18×2 = 36 条,实际多 52 36 = 16 条腿,兔的数量为 16÷2 = 8 只,鸡有 18 8 = 10 只。
小学奥数教程-鸡兔同笼问题(一).教师版 (115) 全国通用(含答案)

1. 熟悉鸡兔同笼的“砍足法”和“假设法”.2. 利用鸡兔同笼的方法解决一些实际问题,需要把多个对象进行恰当组合以转化成两个对象.一、鸡兔同笼 这个问题,是我国古代著名趣题之一.大约在1500年前,《孙子算经》中就记载了这个有趣的问题.书中是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚.求笼中各有几只鸡和兔?你会解答这个问题吗?你想知道《孙子算经》中是如何解答这个问题的吗?二、解鸡兔同笼的基本步骤解答思路是这样的:假如砍去每只鸡、每只兔一半的脚,则每只鸡就变成了“独脚鸡”,每只兔就变成了“双脚兔”.这样,鸡和兔的脚的总数就由94只变成了47只;如果笼子里有一只兔子,则脚的总数就比头的总数多1.因此,脚的总只数47与总头数35的差,就是兔子的只数,即473512-=(只).显然,鸡的只数就是351223-=(只)了.这一思路新颖而奇特,其“砍足法”也令古今中外数学家赞叹不已.除此之外,“鸡兔同笼”问题的经典思路“假设法”.假设法顺口溜:鸡兔同笼很奥妙,用假设法能做到,假设里面全是鸡,算出共有几只脚,和脚总数做比较,做差除二兔找到.解鸡兔同笼问题的基本关系式是:如果假设全是兔,那么则有:鸡数=(每只兔子脚数×鸡兔总数-实际脚数)÷(每只兔子脚数-每只鸡的脚数)兔数=鸡兔总数-鸡数如果假设全是鸡,那么就有:兔数=(实际脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡的脚数)鸡数=鸡兔总数-兔数当头数一样时,脚的关系:兔子是鸡的2倍当脚数一样时,头的关系:鸡是兔子的2倍在学习的过程中,注重假设法的运用,渗透假设法的重要性,在以后的专题中,如工程,行程,方程等专题中也都会接触到假设法模块一、两个量的“鸡兔同笼”问题——鸡兔同笼问题【例 1】 鸡兔同笼,头共46,足共128,鸡兔各几只?【考点】鸡兔同笼问题 【难度】1星 【题型】解答【关键词】假设思想方法【解析】 假设46只都是兔,一共应有446184⨯=只脚,这和已知的128只脚相比多了18412856-=只脚,这是因为我们把鸡当成了兔子,如果把1只鸡当成1只兔,就要比实际多422-=(只)脚,那么56只脚是我们把56228÷=只鸡当成了兔子,所以鸡的只数就是28,兔的只数是462818-=(只).当例题精讲 知识精讲教学目标6-1-9.鸡兔同笼问题(一)然,这里我们也可以假设46只全是鸡!鼓励学生从两个方面假设解题,更深一步理解假设法.【答案】鸡28只,兔18只【巩固】点点家养了一些鸡和兔子,同时养在一个笼子里,点点数了数,它们共有35个头,94只脚.问:点点家养的鸡和兔各有多少只?【考点】鸡兔同笼问题【难度】1星【题型】解答【关键词】假设思想方法【解析】方法一:我们假设,每只鸡都是“金鸡独立”,一只脚站着;而每只兔子都是两条后腿,像人一样用两只脚站着.现在,地面上出现的脚是总数的一半,也就是94247÷=(只).在47这个数中,鸡的头数算了一次,兔子的头数相当于算了两次,因此从47减去总头数35,剩下的就是兔子头数,-=(只)鸡.473512-=(只),所以有12只兔子,有351223方法二:假设35只都是兔子,那么就有354140⨯=(只)脚,比94只脚多了1409446-=(只).每只鸡比兔子少422÷=(只)-=(只)脚,那么共有鸡46223方法三:还可以假设35只都是鸡,那么共有脚23570-=(只)脚,⨯=(只),比94只脚少了947024每只鸡比兔子少422-=(只)脚,那么共有兔子24212÷=(只).方法一可以归结为:总脚数2÷-总头数=兔子数.能够这样算,主要是利用了兔和鸡的脚数分别为4和2,而且4是2的2倍.方法二说明假设的35只兔子中有23只不是兔子,而是鸡.由此可以列出公式:鸡数=(兔脚数⨯总头数-总脚数)÷(兔脚数-鸡脚数)方法三说明假设的35只鸡中有12只是兔.由此可以列出公式:兔数=(总脚数-鸡脚数⨯总头数)÷(兔脚数-鸡脚数)【答案】鸡23只,兔12只【巩固】鸡兔共有45只,关在同一个笼子中.每只鸡有两条腿,每只兔子有四条腿,笼中共有100条腿.试计算,笼中有鸡多少只?兔子多少只?【考点】鸡兔同笼问题【难度】1星【题型】解答【关键词】假设思想方法【解析】⑴假设法:若假设所有的45只动物都是兔子,那么一共应该有445180⨯=(条)腿,比实际多算÷=(只)鸡被当作了-=(条)腿.而每将一只鸡算做一只兔子会多算两条腿,所以有80240 18010080兔子,所以共有40只鸡,有45405-=(只)兔子.注意:假设为兔子时,按照“多算的腿数”计算出的是鸡的数目;假设为鸡时,按照“少算的腿数”计算出的是兔子的数目.同学们可以自己来做一下当假设为鸡时的算法.⑵“金鸡独立”法(砍足法):假设所有的动物都只用一半的腿站立,这样就出现了鸡都变成了“金鸡独立”,而兔子们都只用两条腿站立的“奇观”.这样就有一个好处:鸡的腿数和头数一样多了;而每只兔子的腿数则会比头数多1.因此,在腿的数目都变成原来的一半的时候,腿数比头数多多少,就有多少只兔子.原来有100只腿,让兔子都抬起两只腿,鸡抬起一只腿,则此时笼中有100250÷=(条)腿,比头数多-=,所以有5只兔子,另外40只是鸡.50455【答案】鸡40只,兔5只【巩固】老虎和鸡共l0只,脚共26只.鸡()只.【考点】鸡兔同笼问题【难度】1星【题型】填空【关键词】走美杯,3年级,初赛【解析】这属于鸡兔同笼问题,每只老虎有4只腿,每只鸡有2只腿。
鸡兔同笼题型训练总汇

鸡兔同笼题型训练总汇鸡兔同笼问题是我国古代著名的数学趣题之一,也是小学数学中常见的一类应用题。
这类问题通常会给出鸡和兔的总数以及它们脚的总数,要求算出鸡和兔各有多少只。
虽然看似简单,但对于很多同学来说,想要快速、准确地解决并非易事。
接下来,让我们通过一系列的题型训练来掌握解决这类问题的方法和技巧。
一、基础题型例 1:笼子里有若干只鸡和兔,从上面数,有 8 个头,从下面数,有 26 只脚。
鸡和兔各有几只?解题思路:我们可以先假设笼子里全部都是鸡,那么 8 只鸡应该有8×2 = 16 只脚,而实际有 26 只脚,多出来的脚是因为把兔当成鸡来计算了。
每只兔比鸡多 4 2 = 2 只脚,所以兔的数量就是(26 16)÷ 2 = 5 只,鸡的数量就是 8 5 = 3 只。
解法:假设全是鸡,则兔的数量为:(26 8×2)÷(4 2)=(26 16)÷ 2= 10÷ 2= 5(只)鸡的数量为:8 5 = 3(只)答:鸡有 3 只,兔有 5 只。
二、变化题型例 2:鸡兔同笼,鸡比兔多 10 只,共有 110 只脚。
鸡和兔各有多少只?解题思路:设兔有 x 只,则鸡有 x + 10 只。
兔的脚数为 4x,鸡的脚数为 2×(x + 10)。
根据脚的总数可列出方程 4x + 2×(x + 10)= 110,解方程即可得出兔的数量,进而求出鸡的数量。
解法:设兔有 x 只,则鸡有 x + 10 只。
4x + 2×(x + 10)= 1104x + 2x + 20 = 1106x = 90x = 15鸡的数量为:15 + 10 = 25(只)答:鸡有 25 只,兔有 15 只。
例 3:鸡兔共有 100 只,鸡的脚比兔的脚少 28 只。
鸡和兔各有多少只?解题思路:设鸡有 x 只,则兔有 100 x 只。
兔的脚数为 4×(100 x),鸡的脚数为 2x。
小学奥数 鸡兔同笼问题(二) 精选练习例题 含答案解析(附知识点拨及考点)

1. 熟悉鸡兔同笼的“砍足法”和“假设法”.2. 利用鸡兔同笼的方法解决一些实际问题,需要把多个对象进行恰当组合以转化成两个对象.一、鸡兔同笼 这个问题,是我国古代著名趣题之一.大约在1500年前,《孙子算经》中就记载了这个有趣的问题.书中是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚.求笼中各有几只鸡和兔?你会解答这个问题吗?你想知道《孙子算经》中是如何解答这个问题的吗?二、解鸡兔同笼的基本步骤解答思路是这样的:假如砍去每只鸡、每只兔一半的脚,则每只鸡就变成了“独脚鸡”,每只兔就变成了“双脚兔”.这样,鸡和兔的脚的总数就由94只变成了47只;如果笼子里有一只兔子,则脚的总数就比头的总数多1.因此,脚的总只数47与总头数35的差,就是兔子的只数,即473512-=(只).显然,鸡的只数就是351223-=(只)了.这一思路新颖而奇特,其“砍足法”也令古今中外数学家赞叹不已.除此之外,“鸡兔同笼”问题的经典思路“假设法”.假设法顺口溜:鸡兔同笼很奥妙,用假设法能做到,假设里面全是鸡,算出共有几只脚,和脚总数做比较,做差除二兔找到.解鸡兔同笼问题的基本关系式是:如果假设全是兔,那么则有:数=(每只兔子脚数×鸡兔总数-实际脚数)÷(每只兔子脚数-每只鸡的脚数) 兔数=鸡兔总数-鸡数如果假设全是鸡,那么就有:兔数=(实际脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡的脚数) 鸡数=鸡兔总数-兔数当头数一样时,脚的关系:兔子是鸡的2倍当脚数一样时,头的关系:鸡是兔子的2倍在学习的过程中,注重假设法的运用,渗透假设法的重要性,在以后的专题中,如工程,行程,方程等专题中也都会接触到假设法两个量的“鸡兔同笼”问题——变例【例 1】 某次数学竞赛,共有20道题,每道题做对得5分,没做或做错都要扣2分,小聪得了79分,他做对了多少道题?例题精讲 知识精讲教学目标6-1-9.鸡兔同笼问题(二)【考点】鸡兔同笼问题【难度】3星【题型】解答【关键词】假设思想方法【解析】做错(52079 ) (52)3-=(道).⨯-÷+=(道),因此,做对的20317【答案】17道【巩固】数学竞赛共有20道题,规定做对一道得5分,做错或不做倒扣3分,赵天在这次数学竞赛中得了60分,他做对了几道题?【考点】鸡兔同笼问题【难度】3星【题型】解答【关键词】假设思想方法【解析】假设他将所有题全部做对了,则可得100分,实际上只得了60分,比假设少了40分,做错一题要少得8分,少得的40分中,有多少个8分,就是他做错的题的数量,则知他做对了15道.【答案】15道【巩固】东湖路小学三年级举行数学竞赛,共20道试题.做对一题得5分,没有做一题或做错一题都要倒扣2分.刘钢得了86分,问他做对了几道题?【考点】鸡兔同笼问题【难度】3星【题型】解答【关键词】假设思想方法【解析】这道题也类似于“鸡兔同笼”问题.假设刘钢20道题全对,可得分520100⨯=(分),但他实际上只得86分,少了1008614-=(分),因此他没做或做错了一些题.由于做对一道题得5分,没做或做错一道题倒扣2分,所以没做或做错一道题比做对一道题要少527+=(分).14分中含有多少个7,就是刘钢没做或做错多少道题.所以,刘钢没做或做错题为1472-=÷=(道),做对题为20218(道).【答案】18道【巩固】某次数学竞赛,试题共有10道,每做对一题得6分,每做错一题倒扣2分。
【奥数系列训练】(含答案)鸡兔同笼

【奥数系列训练】(含答案)鸡兔同笼【奥数系列训练】(含答案)——鸡兔同笼请填入正确答案:【题目1】一个大笼子里关了一些鸡和兔子。
数它们的头,一共有36个;数它们的腿,共100条。
则鸡有多少只,兔有多少只?【题目2】王老师用40元钱买来20枚邮票,全是1元和5元的。
求这两种邮票分别买了多少枚和多少枚。
【题目3】兔妈妈上山采蘑菇,晴天,每天能採30个,雨天,每天能採12个.它从4月10号开始,到4月29号,中间没休息,一共採了510个蘑菇。
那么,晴天是多少天?雨天有多少天?【题目4】肖老师带51名学生去公园里划船。
他们一共租了44条船,其中有大船和小船,每条大船坐6人,小船4人。
每条都坐满了人。
他们租的大船有几条,小船有几条?【题目5】一辆汽车参加车赛,9天共行了5000公里。
已知它晴天每天行688公里,雨天平均每天行390公里。
在比赛期间,有几个晴天?有几个雨天?【题目6】有大小两种塑料桶共60只。
每个大桶装水5公斤,每个小桶只能装水2公斤。
又知大桶一共比小桶多装26公斤。
则大桶有多少只,小桶有多少只?【题目7】用单价为6元/公斤的两种水果糖,配制成单价为6元/公斤的混合型糖15公斤。
有的原来单价11元/公斤的糖取了几公斤?【题目8】一百个和尚吃一百个馒头,大和尚一人吃三个,小和尚三人吃一个。
大和尚有多少个?小和尚有多少个?【题目9】孙老师带领99名同学种100棵树,他先种了一棵示范后,安排男同学一人种两棵,女生每两人种一棵。
植树的男生有多少人?而女生有多少人?【题目10】某化工厂甲、乙两车间共110人,现在要求甲车间每8人选出一名代表,乙车间每6人选出一名代表。
两车间一共选出了16名代表。
则甲车间有多少名工人,乙车间有多少名工人?【参考答案】1.【解答】鸡22只,兔子14只。
可先假设这36个全是鸡,那么应该只有36×2=72条腿。
而实际上有100条腿,这是因为兔子有4条腿,比鸡多2条。
鸡兔同笼问题题型归类(新)

鸡兔同笼问题基本公式一.意义:已知“鸡兔”的总头数和总腿数。
求“鸡”和“兔”各多少只。
解题规律:假设全是鸡,兔子头数=(总腿数-鸡腿数)÷2;即兔子头数=(总腿数-2×总头数)÷2。
假设全是兔子,鸡的只数=(兔子腿数-总腿数)÷2,即鸡的只数=(4×总头数-总腿数)÷2二.常见题型:1、已知总头数和鸡兔脚数的差数,求鸡兔各多少只(1)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,(每只鸡脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;总头数-鸡数=兔数。
例题:鸡兔同笼,鸡兔共40个头,鸡脚比兔脚多32只,问鸡兔各多少只?(2)已知总头数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时。
(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数。
或(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;例题:鸡兔同笼,鸡兔共40个头,兔脚比鸡脚多20只,问鸡兔各多少只?2、已知总脚数和鸡兔头数的差数,求鸡兔各多少只⑴、已知总脚数和鸡兔头数的差数,当鸡只数比兔只数多时,(实际脚数-每只鸡脚×只数差)÷(4+2)=兔数或(实际脚数+每只兔脚×只数差)÷(4+2)=鸡数例题:鸡兔同笼,鸡兔共22只脚,鸡比兔多2只,问鸡兔各多少只?⑵、已知总脚数和鸡兔头数的差数,当兔只数比鸡只数多时,(实际脚数-每只兔脚×只数差)÷(4+2)=鸡数或(实际脚数+每只鸡脚×只数差)÷(4+2)=兔数例题:鸡兔同笼,鸡兔共26只脚,兔比鸡多2只,问鸡兔各多少只?3、得失分数:①假设全对:错题=(每题得分×总答题数-实得分数)÷(每题得分+每题失分)②假设全错:对题=(实得分+每题扣分×总答题)÷(每题得分+每题失分)例题:在知识竞赛中,有10道判断题,评分规定:每答对一道题的两分,答错一道题要倒扣一分。
小学生奥数题三年级下册数学《鸡兔同笼问题》每天练习及答案题型归纳
小学生奥数题三年级下册数学《鸡兔同笼问题》每天练习及
答案题型归纳
【鸡兔同笼问题】1、难度:
一只鸡有1个头2条腿,一只兔子有1个头4条腿,如果笼子里的鸡和兔子共有10个头和26条腿,你知道鸡和兔子各有几只吗?
2、难度:
松鼠妈妈采松籽,晴天每天可以采20个,雨天每天只能采12个,它一连几天一共采了112个松籽,平均每天采14个。
请问:这些天里有几天是雨天?
答案下页参考
【鸡兔同笼问题】1、难度:
一只鸡有1个头2条腿,一只兔子有1个头4条腿,如果笼子里的鸡和兔子共有10个头和26条腿,你知道鸡和兔子各有几只吗?
解:假设10个动物都是兔子,那么就有10_4=40(条)腿。
但实际是26条腿,与实际相差40-26=14(条)腿。
每将一个兔子变成一只鸡总的腿数就减少两只,需要转化14(4-2)=7(只)那么鸡就有7只,兔子就有10-7=3(只)。
2、难度:
松鼠妈妈采松籽,晴天每天可以采20个,雨天每天只能采12个,它一连几天一共采了112个松籽,平均每天采14个。
请问:这些天里有几天是雨天?
解:首先先算出松鼠采了11214=8(天),假设这8天都是晴天,那么应该能采20_8=160(个),
比实际相差160-112=48(个),如果一天晴天变成一天阴天,那么将少采20-12=8(个),因此需要转化488=6(天)因此6天是阴天,8-6=2(天)2天是晴天。
小学数学奥数训练:鸡兔同笼问题专项练习试卷讲义及答案(50道题有详细答案解析)
小学数学奥数训练:鸡兔同笼问题专项练习试卷讲义及答案(50道题有详细答案解析)1、鸡兔同笼,上有35只头,下有94只脚.则兔有()只.A.12 B.23 C.17 D.182、鸡兔同笼,从上面数有8个头,从下面数有22只脚,鸡和兔相差( )只。
A.2 B.3 C.4 D.63、鸡兔同笼,从上面数8个头,有22只脚,鸡有()只.A.3 B.5 C.64、(2013•东莞)鸡兔同笼,15个头,40条腿,鸡的只数与兔的只数的最简整数比是()A.3:1 B.3:8 C.2:1 D.8:35、(2013•长沙)鸡兔同笼,有20个头,48条腿,其中兔子有()只.A.2 B.3 C.4 D.56、鸡兔同笼,从上面数有8个头,从下面数有22只脚,鸡和兔相差( )只。
A.2 B.3 C.4 D.67、鸡兔同笼,有21个头,50条腿,鸡有()只,兔有()只。
A.14 B.4C.17 D.78、鸡兔同笼,共46个头,128条腿,鸡兔分别有()只.A.28,18B.18,28C.20,269、鸡兔同笼,一共有288只脚,并且兔子比鸡多15只,那么笼子里有()A.鸡35只,兔50只 B.鸡50只,兔38只 C.鸡28只,兔43只 D.鸡38只,兔53只10、鸡兔同笼,共有24个头,68只脚,鸡有()只.A.l0 B.l4 C.12 D.1611、鸡兔同笼,有20个头,46条退,鸡、兔各有()A.17只、3只 B.18只、2只 C.19只、1只 D.16只、4只12、“鸡兔同笼”问题是我国古代的数学名题之一,《孙子算经》中记载的题目是这样的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”,同学们,你得出的这个古代名题的结果是()A.鸡23只兔12只 B.鸡12只兔23只 C.鸡14只兔21只13、鸡兔同笼,一共有20个头,54只脚。
笼中有鸡( )只。
A.16 B.14C.13 D.714、鸡兔同笼,一共有22个头,70条腿,那么鸡有9只,兔有13只。
数学;鸡兔同笼(附答案)
数学;鸡兔同笼(附答案)鸡兔同笼鸡兔同笼问题,其实是⼩学奥数中的⼀个专题,其中包含的题⽬从简到难,层次较多。
掌握解答此类问题的基本⽅法,同时也让思维进⼀步得到锻炼,⼀种是假设法,⼀种是列⽅程。
在这两种⽅法⾥,任意选择⼀种。
例:鸡兔同笼,头20个,脚60只,问鸡兔各⼏只?假设法:假设全是鸡。
则⼀共有脚:20×2=40(只)这个数⽐实际的脚数少20只:60-40=20(只)(想:为什么脚会⽐实际的只数少20只呢?因为这20只实际上并不全是鸡,其中有⼀些是兔,我们把4只脚的兔看成了鸡,当然脚的总数就会变少。
那么到底有多少只兔⼦被看成了鸡呢?那要看少了多少只脚。
每⼀只兔⼦都⽐鸡多两只脚,有⼀只兔⼦被看成鸡,就会少2只脚,现在少了20只脚,应该是多少只兔⼦被看成了鸡呢?)上⾯的思考过程写成算式如下:20÷(4-2)=10(只)(4-2是每⼀只兔⼦⽐鸡多2只脚,20÷2就是看少了的这20只脚,是多少只兔⼦被算成了鸡。
10只就是被算成了鸡的兔⼦,也就是兔⼦的实际数量。
那么鸡的数量就是20-10=10(只)当然也可以假设全是兔。
过程省略。
⽅程法:设有兔⼦X只,那么鸡就是20-X只。
根据兔⼦有4只脚,鸡有2只脚,以及脚的总数,可以列出等式:兔脚总数+鸡脚总数=总脚数即:4X+2(20-X)=60 4X+40-2X=60 2X=60-40 2X=20 X=10 鸡的只数:20-10=10(只)当然也可以设鸡的数量为X。
但是在解⽅程的过程中会遇到⼀点点⼩⿇烦。
课堂上我们⽐较过两种⽅法,⼀致认为设兔为X⽐较好。
假设法和⽅程法,运⽤熟练的话,都是⾮常好的⽅法。
可以根据⾃⼰的习惯选择喜欢的⽅法。
当然,我个⼈还是⾮常喜欢使⽤⽅程法。
先练⼏道简单的。
1、今有鸡兔共居⼀笼,已知鸡头与兔头共35个,鸡脚与兔脚共94只,问鸡兔各⼏只? 2、⼩红的储钱罐⾥有⾯值2元和5元的⼈民币共65张,总钱数为205元,两种⾯值的⼈民币各多少张? 3、⾃⾏车越野赛全程 220千⽶,全程被分为 20个路段,其中⼀部分路段长14千⽶,其余的长9千⽶.问:长9千⽶的路段有多少个? 4、刘⽼师带了41名同学去北海公园划船,共租了10条船.每条⼤船坐6⼈,每条⼩船坐4⼈,问⼤船、⼩船各租⼏条?掌握了上⾯的题,考试遇见鸡兔同笼就没问题了。
鸡兔同笼问题题型归类练习之欧阳德创编
鸡兔同笼问题一.常见题型:类型1、已知“鸡兔”的总头数和总腿数。
求“鸡”和“兔”各多少只。
解题关键:采用假设法,假设全是一种动物(如全是鸡或全是兔),然后根据腿的差数可以推断出一种动物的头数。
解题规律:假设全是鸡,兔子头数=(总腿数-鸡腿数)÷2;即兔子头数=(总腿数-2×总头数)÷2。
假设全是兔子,鸡的只数=(兔子腿数-总腿数)÷2,即鸡的只数=(4×总头数-总腿数)÷2类型2、已知总头数和鸡兔脚数的差数,求鸡兔各多少只(1)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,(每只鸡脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;总头数-鸡数=兔数。
(2)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时。
(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数。
或(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;类型3、鸡兔互换问题(已知总脚数及鸡兔互换后总脚数,求鸡兔各多少的问题),〔(两次总脚数之和)÷(每只鸡兔脚数和)+(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=鸡数;〔(两次总脚数之和)÷(每只鸡兔脚数之和)-(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=兔数。
类型4、得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:(1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。
或者是总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
鸡兔同笼问题一.意义:已知“鸡兔”的总头数和总腿数。
求“鸡”和“兔”各多少只。
解题关键:采用假设法,假设全是一种动物(如全是鸡或全是兔),然后根据腿的差数可以推断出一种动物的头数。
解题规律:假设全是鸡,兔子头数=(总腿数-鸡腿数)÷2;即兔子头数=(总腿数-2×总头数)÷2。
假设全是兔子,鸡的只数=(兔子腿数-总腿数)÷2,即鸡的只数=(4×总头数-总腿数)÷2二.常见题型:1、已知总头数和鸡兔脚数的差数,求鸡兔各多少只(1)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,(每只鸡脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;总头数-鸡数=兔数。
(2)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时。
(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数。
或(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;2、鸡兔互换问题(已知总脚数及鸡兔互换后总脚数,求鸡兔各多少的问题),〔(两次总脚数之和)÷(每只鸡兔脚数和)+(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=鸡数;〔(两次总脚数之和)÷(每只鸡兔脚数之和)-(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=兔数。
3、得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:(1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。
或者是总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。
例题例1. 有鸡兔共30只,兔脚比鸡脚多60只,问鸡兔各多少只?解:兔数:(2×30+60)÷(2+4)=20(只);鸡数:30-20=10(只)解析:首先假设都是鸡,那么有60只脚,然后再加上鸡兔脚数之差,那么剩下的和兔数相同的鸡和兔,也就是相当也是一种六条腿的小怪物,所以再除以6,就自然得出兔子的数了。
例2. 小朋友们去划船,大船可以坐10人,小船坐6人,小朋友们共租了15只船,已知乘大船的人比乘小船的人多22人,问大船几只,小船几只?解:大船:(6×15+22)÷(6+10)=7(只);小船:15-7=8(只)或者小船:(10×15-22)÷(6+10)=8(只)大船:15-8=7(只)例3. 有一些鸡和兔,共有脚44只,若将鸡数与兔数互换,则共有脚52只。
鸡兔各是多少只?解:鸡数:〔(52+44)÷(4+2)+(52-44)÷(4-2)〕÷2=20÷2=10(只)兔数:〔(52+44)÷(4+2)-(52-44)÷(4-2)〕÷2=12÷2=6(只)解析:首先用鸡兔互换的数相加,大家想想,那出来的结果是什么,是不是鸡兔的数都变成了鸡兔的总数,已经是变成了鸡兔总数只的六条腿的小怪物,所以(52+44)÷(4+2),得出的是鸡兔的和,这时其实就变成了一道普通的鸡兔同笼问题了,但如果我们再看看用鸡兔互换的数相减得到的是什么数,为什么交换了会有差捏,因为兔子4条腿,鸡2条腿,所以每把一只鸡换成一只兔子就会多出两条腿,所以(52-44)÷(4-2),得出的是鸡兔的差。
那么这是不是就变成和差问题了,下面大家就能很容易的解答了。
例4. 小朋友们去划船,大船可以坐10人,小船坐6人,能坐130人,如果把大船和小船的只数互换则少坐20人,问大船几只,小船几只?解:小船:〔(130-20+130)÷(10+6)+20÷(10-6)〕÷2=20÷2=10(只)大船:〔(130-20+130)÷(10+6)-20÷(10-6)〕÷2=10÷2=5(只)例5. 有鸡兔共30只,鸡脚比兔脚多30只,问鸡兔各多少只?解:兔数:(2×30-30)÷(2+4)=5(只);鸡数:30-5=25(只)解析:首先假设都是鸡,那么有60只脚,然后再减去鸡兔脚数之差,那么剩下的和兔数相同的鸡和兔,也就是相当也是一种六条腿的小怪物,所以再除以6,就自然得出兔子的数了。
例6. 小朋友们去划船,大船可以坐10人,小船坐6人,小朋友们共租了15只船,已知乘小船的人比乘大船的人多42人,问大船几只,小船几只?解:大船:(6×15-42)÷(6+10)=3(只);小船:15-3=12(只)或者小船:(10×15+42)÷(6+10)=12(只)大船:15-12=3(只)总头数-鸡数=兔数。
例7. “灯泡厂生产灯泡的工人,按得分的多少给工资。
每生产一个合格品记4分,每生产一个不合格品不仅不记分,还要扣除15分。
某工人生产了1000只灯泡,共得3525分,问其中有多少个灯泡不合格?”解一(4×1000-3525)÷(4+15)=475÷19=25(个)解二1000-(15×1000+3525)÷(4+15)=1000-18525÷19=1000-975=25(个)(答略)(“得失问题”也称“运玻璃器皿问题”,运到完好无损者每只给运费××元,破损者不仅不给运费,还需要赔成本××元……。
它的解法显然可套用上述公式。
)课堂练习1. 小梅数她家的鸡与兔,数头有16个,数脚有44只。
问:小梅家的鸡与兔各有多少只?解:有兔(44-2×16)÷(4-2)=6(只),有鸡16-6=10(只)。
答:有6只兔,10只鸡。
2. 100个和尚140个馍,大和尚1人分3个馍,小和尚1人分1个馍。
问:大、小和尚各有多少人?假设100人全是大和尚,那么共需馍300个,比实际多300-140=160(个)。
现在以小和尚去换大和尚,每换一个总人数不变,而馍就要减少3-1=2(个),因为160÷2=80,故小和尚有80人,大和尚有100-80=20(人)。
3.彩色文化用品每套19元,普通文化用品每套11元,这两种文化用品共买了16套,用钱280元。
问:两种文化用品各买了多少套?假设买了16套彩色文化用品,则共需19×16=304(元),比实际多304——280=24(元),现在用普通文化用品去换彩色文化用品,每换一套少用19——11=8(元),所以买普通文化用品 24÷8=3(套),买彩色文化用品 16-3=13(套)。
4.鸡、兔共100只,鸡脚比兔脚多20只。
问:鸡、兔各多少只?分析:假设100只都是鸡,没有兔,那么就有鸡脚200只,而兔的脚数为零。
这样鸡脚比兔脚多200只,而实际上只多20只,这说明假设的鸡脚比兔脚多的数比实际上多200-20=180(只)。
现在以兔换鸡,每换一只,鸡脚减少2只,兔脚增加4只,即鸡脚比兔脚多的脚数中就会减少4+2=6(只),而180÷6=30,因此有兔子30只,鸡100——30=70(只)。
解:有兔(2×100——20)÷(2+4)=30(只),有鸡100——30=70(只)。
答:有鸡70只,兔30只。
5.现有大、小油瓶共50个,每个大瓶可装油4千克,每个小瓶可装油2千克,大瓶比小瓶共多装20千克。
问:大、小瓶各有多少个?解:小瓶有(4×50-20)÷(4+2)=30(个),大瓶有50-30=20(个)。
答:有大瓶20个,小瓶30个。
6.一批钢材,用小卡车装载要45辆,用大卡车装载只要36辆。
已知每辆大卡车比每辆小卡车多装4吨,那么这批钢材有多少吨?分析:要算出这批钢材有多少吨,需要知道每辆大卡车或小卡车能装多少吨。
利用假设法,假设只用36辆小卡车来装载这批钢材,因为每辆大卡车比每辆小卡车多装4吨,所以要剩下4×36=144(吨)。
根据条件,要装完这144吨钢材还需要45-36=9(辆)小卡车。
这样每辆小卡车能装144÷9=16(吨)。
由此可求出这批钢材有多少吨。
解:4×36÷(45-36)×45=720(吨)。
答:这批钢材有720吨。
7. 乐乐百货商店委托搬运站运送500只花瓶,双方商定每只运费元,但如果发生损坏,那么每打破一只不仅不给运费,而且还要赔偿元,结果搬运站共得运费元。
问:搬运过程中共打破了几只花瓶?分析:假设500只花瓶在搬运过程中一只也没有打破,那么应得运费×500=120(元)。
实际上只得到元,少得=(元)。
搬运站每打破一只花瓶要损失+=(元)。
因此共打破花瓶÷=3(只)。
解:(×500-)÷(+)=3(只)。
答:共打破3只花瓶。
8. 小乐与小喜一起跳绳,小喜先跳了2分钟,然后两人各跳了3分钟,一共跳了780下。
已知小喜比小乐每分钟多跳12下,那么小喜比小乐共多跳了多少下?分析与解:利用假设法,假设小喜的跳绳速度减少到与小乐一样,那么两人跳的总数减少了12×(2+3)=60(下)。
可求出小乐每分钟跳(780-60)÷(2+3+3)=90(下),小乐一共跳了90×3=270(下),因此小喜比小乐共多跳780-270×2=240(下)。
课后作业1.某校有100名学生参加数学竞赛,平均分是63分,其中男生平均分是60分,女生平均分是70分,男同学比女同学多________人。
女生:(63⨯100-60⨯100)÷(70-60)=30(人)男生: 100-30=70(人)70-30=40(人)2. 有黑白棋子一堆,其中黑子的个数是白子个数的2倍,如果从这堆棋子中每次同时取出黑子4个,白子3个,那么取出________次后,白子余1个,而黑子余18个。
由黑子的个数是白子个数的2倍,假如每次取出白子2个(黑子的一半)的话,那么最后余下黑子18个,白子应余下18÷2=9(个)现在只余下一个白子,这是因为实际每次取3个比假设每次多取一个,故共取(9-1)÷(3-2)=8(次)3. 学生买回4个篮球5个排球一共用185元,一个篮球比一个排球贵8元,篮球的单价是________元。