单克隆抗体技术在生物制药发展及应用

合集下载

生物制药技术专业试题及答案

生物制药技术专业试题及答案

生物制药技术专业试题及答案一、选择题1. 生物制药技术主要涉及哪些领域的研究?A. 药物化学B. 生物技术C. 制药工程D. 所有以上选项答案:D2. 以下哪项不是生物制药技术的特点?A. 高效性B. 特异性C. 低毒性D. 长期性答案:D3. 重组DNA技术在生物制药中主要用于:A. 基因治疗B. 生产蛋白质药物C. 基因编辑D. 以上都是答案:B4. 以下哪种细胞培养技术不适用于生物制药?A. 悬浮细胞培养B. 贴壁细胞培养C. 微囊细胞培养D. 植物细胞培养答案:D5. 单克隆抗体技术在生物制药中的应用包括:A. 疾病诊断B. 疾病治疗C. 药物筛选D. 以上都是答案:D二、填空题6. 生物制药技术中常用的生物反应器类型包括________和________。

答案:搅拌式生物反应器;填充床生物反应器。

7. 基因工程药物的生产过程中,________是关键步骤之一。

答案:基因克隆。

8. 在生物制药中,________是用于表达外源基因的宿主细胞。

答案:大肠杆菌。

9. 蛋白质药物的纯化过程中,________是一种常用的层析技术。

答案:离子交换层析。

10. 生物制药技术在新药开发中的优势包括________、________和________。

答案:生产效率高;产品纯度高;副作用小。

三、简答题11. 简述生物制药技术在新药开发中的重要性。

答案:生物制药技术在新药开发中的重要性体现在其能够利用生物体的生物合成能力,生产出具有高度特异性和生物活性的新型药物。

与传统化学合成药物相比,生物制药技术可以生产出难以通过化学合成得到的复杂大分子药物,如蛋白质、多肽等。

此外,生物制药技术还可以通过基因工程、细胞工程等手段,对药物进行定向改造,提高药物的疗效和安全性。

四、论述题12. 论述生物制药技术在治疗重大疾病方面的应用前景。

答案:生物制药技术在治疗重大疾病方面的应用前景广阔。

首先,生物制药技术可以生产出针对特定疾病靶点的单克隆抗体药物,这些药物具有高度的特异性和亲和力,能够精确地作用于病变部位,减少对正常细胞的损害。

生物制药的创新技术

生物制药的创新技术

生物制药的创新技术生物制药是利用生物技术生产药物的一种制药方式,其产品主要包括蛋白质药物、抗体药物、疫苗等。

随着生物技术的不断发展,生物制药领域的创新技术也在不断涌现,为药物研发和生产带来了新的机遇和挑战。

本文将重点介绍生物制药领域的创新技术,包括基因工程、单克隆抗体技术、基因编辑技术等。

一、基因工程技术基因工程技术是生物制药领域最重要的创新技术之一。

通过基因工程技术,科学家可以将外源基因导入宿主细胞中,使其表达目标蛋白,从而实现大规模生产药物的目的。

基因工程技术的应用使得生物制药领域的药物研发周期大大缩短,同时也提高了药物的纯度和效力。

基因工程技术的核心是重组DNA技术,包括DNA的克隆、DNA的测序、DNA的合成等。

通过重组DNA技术,科学家可以构建携带目标基因的载体,并将其导入宿主细胞中,使其表达目标蛋白。

目前,基因工程技术已经成功应用于生产多种重要的生物制药产品,如胰岛素、生长激素、干扰素等。

二、单克隆抗体技术单克隆抗体技术是生物制药领域的又一项重要创新技术。

单克隆抗体是指来源于同一克隆细胞的抗体,具有高度的特异性和亲和力。

单克隆抗体技术通过对抗体的基因进行克隆和表达,可以大规模生产具有特定功能的单克隆抗体,用于治疗癌症、自身免疫性疾病等。

单克隆抗体技术的应用为个性化医疗提供了新的途径。

通过对患者的基因信息和病理特征进行分析,科学家可以设计和生产针对特定靶点的单克隆抗体,实现精准治疗。

目前,单克隆抗体已经成为生物制药领域的主力产品之一,为临床治疗带来了革命性的变革。

三、基因编辑技术基因编辑技术是近年来兴起的一项新兴生物技术,也被广泛应用于生物制药领域。

基因编辑技术通过精准编辑基因组中的特定序列,可以实现基因的插入、修饰、删除等操作,为药物研发和生产提供了全新的思路和方法。

CRISPR-Cas9技术是目前应用最广泛的基因编辑技术之一。

通过设计特定的引物和Cas9蛋白,科学家可以实现对基因组的高效编辑,从而修正遗传病变、增强药物的疗效等。

浅谈生物工程技术在制药业中的应用

浅谈生物工程技术在制药业中的应用

浅谈生物工程技术在制药业中的应用摘要:生物工程为制药业的发展提供了巨大的动力,随着人们对健康的日益重视,生物制药的应用将越来越广泛。

生物工程在制药业中的应用,提高了药物的生产水平,有利于新药的研发,节约了药物的生产成本,提高了生产效率,从而促进了制药业的发展。

本文重点介绍了生物工程技术在制药业中的应用。

关键词:生物工程;制药业;应用生物工程是一门以技术手段为基础,以生物体或生物过程为媒介,生产具有经济价值产品的学科,它是基础科学与应用科学高度发展后的结合产物。

目前,生物工程已深入到人类生产的各个行业,其中生物工业发展迅速,已成为当下一种新的工业体系,在各个行业的知识及技术创新中发挥着重要作用,特别是在制药业中。

目前,越来越多的生物工程医药产品投入到市场,为世界创造了巨大的经济效益,对制药业产生了深远的影响。

一、生物工程技术简介1、概述。

生物工程技术发展于20世纪70年代,是基础学科与其他学科相结合的产物,也就是在生物学的理论和技术基础上,与机械、化工、计算机等现代工程技术相结合,制造出具有经济和实用价值产品的一种现代技术。

目前,可把生物工程技术分为基因工程、细胞工程、生物反应器工程、微生物工程和酶工程五部分。

基因工程和细胞工程的作用是将常规菌作为遗传物质受体,然后让其获得外来的基因,从而获得新的物种;后三个工程的作用是对前面得到的新物种进行大规模的培养,充分利用新物种的优点来服务人类。

此外,生物工程技术自发展以来,被广泛应用到农业、工业、环保等各方面,并取得了良好的成效。

2、特点。

生物工程技术是现代新兴的高科技手段,在各个不同领域的应用中表现出显著而突出的特征。

1)作为一项生产技术和研究环境上都要求较高的新型技术手段,生物工程技术在应用范围上必然受到一定的限制,这无疑对该项技术的进一步扩展研发带来了显著的局限性。

2)生物工程技术的研发和生产成本较高,这是现代高新技术手段的共同特点。

于是,这也限定了部分中小型企业的相关技术研发。

单克隆抗体在医学上的应用 ppt课件

单克隆抗体在医学上的应用  ppt课件

• 利用单克隆抗体的特性可把它作为研究工作中的 探针。此时,可以从分子、细胞和器官的不同水 平上,研究抗原物质的结构与功能的关系,进而 并可从理论上阐明其机理。
ppt课件
5
4.增强抗原的免疫原性
• 抗体对抗原免疫原性 的增强作用由来已久, 60年代就已发现幼猪 对破伤风类毒素难以 产生抗体,注射相应 特异性抗体IgG,就能 有效地提高对委内瑞 拉马脑炎病毒的免疫 应答。
ppt课件 2
应用前景
1.作为生物治疗的导向武器 • 包有细胞毒剂的脂质体膜上偶联抗体,可定向攻 击靶细胞。这种“导向治疗”,在动物试验与体 外试验中已获得满意效果。 • 常见抗肿瘤细胞毒剂:化疗药物、 细菌毒素、植物毒素或放射性同位 素等 优点:这不仅提高了抗体的疗效, 也可降低细胞毒剂对正常细胞的 毒性反应。 3 ppt课件
ppt课件 10
解决方案
• 最新方法:——噬菌体技术和转基因鼠技 术 • 以分子生物学技术提取、扩增编码是人源抗体, 具有建库简单、抗体表达稳定等特点。迄 今已有多种抗体产生。可以预见,该技术 具有良好的发展和应用前景。
ppt课件
9
瓶颈
• 单克隆抗体在理论和实践上的应用成为解 决生物学和医学等许多重大问题的重要手 段。但是,上述应用的单抗属于鼠源性, 鼠源性单抗应用于人类有较强的免疫mouse antibody,HAMA)反应,大大限制 了其临床应用价值。而且,鼠源性抗体在 人体内半衰期缩短,生物活性降低。 • 因此,人们一直致力于人源性抗体的研究。
抗原的免疫原性首先决定于其自身的化学特性但同一种抗原对不同种动物或同种动物不同个体间其免疫原性强弱可表现很大差异因此一种抗原的免疫原性是由其化学性质和宿主因素决定的
单克隆抗体在医学上的应用

单抗药物

单抗药物

单抗药物市场的现在时和将来时自1975年单抗-杂交瘤技术诞生以来,经过30多年的深入研究,从最初的鼠源单抗过渡至人源化单抗直到现在的全人单抗,单克隆抗体的发展使抗体制备技术进入了一个全新的时代, 其相关的药物已广泛应用到生物医学中的许多领域, 如肿瘤、自身免疫性疾病、器官移植、戒毒、血液性疾病、感染性疾病、中毒性疾病、变态反应性疾病等方面的诊断和治疗。

单抗作为治疗疾病的药物主要基于其固有的生物学功能包括: 补体介导的细胞毒性作用(CDC)、抗体依赖的细胞介导的细胞毒作用(ADCC)、凋亡诱导、调理吞噬等。

二十一世纪是生物技术药物和生物仿制药的世纪,特别是单克隆抗体药物发展迅猛,生物仿制药的研发机遇已经来临。

2011年全球抗体药物的市场规模已达到671亿美元。

随着发达市场许多“重磅炸弹”级生物药品专利陆续到期,预计到2020年,生物技术药物占全部药品销售收入的比重将超过1/3。

据全球医药市场预测机构EvaluatePharma对2012年销售前15位药品的估计,今年生物技术产品全面崛起,其中销售前十强中,单克隆抗体药物占据五席。

表1 预计2012年全球销量排名前十的单抗类药物基本情况1986年由Ortho开发的用于治肾移植后的排斥反应的世界上首个单抗药物—抗CD3单抗OKT3获得了FDA批准,在美国上市,由此拉开了单抗药物治疗疾病的序幕。

由于它属于鼠源性单克隆抗体,易产生过敏反应和抗-抗体反应(AAR),即人对外源免疫球蛋白的免疫反应, 有时会产生严重的临床后果, 如休克、器官衰竭甚至危及生命。

于是研究人员通过不断改造抗体,减少免疫球蛋白中鼠源氨基酸序列, 获得了各种小分子抗体, 或全长的嵌合抗体, 人源化抗体, 以及全人抗体来达到降低其免疫原性的目的。

目前国外市场上人源化单克隆抗体占到了90%。

但想得到高纯度、稳定、安全和有效的单抗类药物,需要经过复杂的生产工艺和较长的生产周期。

由于其技术的复杂性,目前国内企业只有7家企业获得相关批文,鼠源性单抗较多。

生物制药技术的现状和发展趋势

生物制药技术的现状和发展趋势

生物制药技术的现状和发展趋势随着科技的不断进步和人们健康意识的提高,生物制药技术愈发展壮大。

今天我们生活中的诸多医疗药品,都是得益于生物制药技术的发展。

从单克隆抗体到重组蛋白质,生物制药一直在掀起一波又一波的“革命”,其发展前景十分明确和广阔。

本文将从现状和发展趋势两个角度探讨,生物制药的局面。

一、生物制药技术的现状生物制药技术的现状有以下几个重要方面。

1、市场需求不断增长随着人口老龄化日益加剧,人们的健康问题更加突出。

生物制药技术所能研制的药品,在满足人们生理需求的同时,又不产生副作用问题,广受市场欢迎。

而生物制药技术的发展空间很大,未来市场需求也将继续增长。

2、研发难度较高生物制药技术的研究是比较复杂和难度较高的。

一般需要多学科交叉,包括生物学、医学、化学、生物信息学等多个领域。

同时这也需要大量的资金投入和时间成本,因此制药企业只有拥有雄厚的科研实力才能在市场中占据一席之地。

3、生产环节管控需要精细生物制药技术根据药品种类不同,生产环节的工艺链也不尽相同。

因此,针对不同工艺链需求,药品生产企业需要对生产环节的每一个步骤都进行精细的管控,以确保生产出的药品质量有保障。

二、生物制药技术的发展趋势1、定制化创新不断壮大生物制药技术的创新发展使药品制造监管和市场变得更加严格和复杂。

因此,药品生产企业面对越来越严格的监管环境,必须根据不同市场需求进行定制化创新,保持研发活力。

定制化创新是生物制药技术发展的必经之路。

2、若干领域切入生物制药技术的惊人之处在于其适用范围越来越广泛。

除了适用于生产人类药品以外,也适用于生产动物药品,例如兽药。

为找到更多的适用领域,生物制药技术也在向食品、化妆品等领域拓展,对于未来的发展方向非常有利。

3、智能技术更加普及随着信息时代的到来,智能技术在各行各业中被应用得越来越广泛。

在制药企业中,智能化技术也将会得到广泛应用。

例如基于人工智能技术进行药物分子的发掘和筛选,有望大大加速生物制药技术的研发效率。

生物技术在医疗中的应用例题和知识点总结

生物技术在医疗中的应用例题和知识点总结

生物技术在医疗中的应用例题和知识点总结生物技术是一门涉及生命科学、工程学和计算机科学等多个领域的交叉学科,它在医疗领域的应用正不断改变着我们的医疗方式和健康水平。

本文将通过一些具体的例题来介绍生物技术在医疗中的应用,并对相关的知识点进行总结。

一、基因编辑技术基因编辑技术是一种能够精确修改生物体基因组的技术,其中最为著名的是 CRISPRCas9 系统。

例题:假设存在一种遗传性疾病,是由于某个基因的特定突变导致的。

研究人员利用 CRISPRCas9 技术对患者的细胞进行基因编辑,成功修复了突变的基因,使其恢复正常功能。

知识点:1、CRISPRCas9 系统的工作原理:Cas9 蛋白在向导RNA(gRNA)的引导下,能够识别并结合到特定的 DNA 序列上,然后切割 DNA 双链,实现基因的编辑。

2、基因编辑的应用范围:不仅可以用于治疗遗传性疾病,还在癌症治疗、抗病毒感染、农业等领域具有潜在的应用价值。

3、伦理和法律问题:基因编辑涉及到人类生殖细胞的编辑时,引发了一系列伦理和法律争议,需要制定严格的规范和准则。

二、干细胞治疗干细胞具有自我更新和分化为多种细胞类型的能力,因此在医疗中具有广阔的应用前景。

例题:一位患有帕金森病的患者接受了干细胞治疗。

研究人员将诱导多能干细胞(iPSC)诱导分化为多巴胺能神经元,并将其移植到患者的大脑中,显著改善了患者的症状。

知识点:1、干细胞的类型:包括胚胎干细胞(ESC)、成体干细胞(如造血干细胞、间充质干细胞)和诱导多能干细胞(iPSC)。

2、干细胞治疗的机制:通过补充受损组织或器官中的细胞,或者分泌有益的细胞因子来促进组织修复和再生。

3、面临的挑战:干细胞的获取和培养难度较大,移植后的免疫排斥反应,以及长期安全性和有效性的评估等。

三、生物制药生物技术在制药领域的应用使得药物的研发和生产发生了革命性的变化。

例题:利用单克隆抗体技术研发的抗癌药物,能够特异性地识别和结合肿瘤细胞表面的靶点,从而达到治疗癌症的效果。

治疗性单克隆抗体药物的现状及发展趋势_王志明

治疗性单克隆抗体药物的现状及发展趋势_王志明

Bevacizumab Natalizumab Ranibizumab Panitumumab Eculizumab Certolizumab pegol Golimumab
人源化 人源化 人源化 全人源 人源化 人源化
IgG IgG Fab IgG IgG PEG 化 Fab IgG
VEGF 整合素 4 αVEGF EGFR C5 TNFα
Yervoy
伊匹单抗
Ipilimumab brentuximab vedotin
全人源
IgG
CTLA4
Adcetris Perjeta ABthrax 帕妥珠单抗 瑞西巴库单抗
嵌合 人源化 全人源
MMAE 标 CD30 记 IgG IgG IgG1 λ HER2 PA
Pertuzumab Raxibacumab
IgG
CD52
泽瓦林
Zevalin
替伊莫单抗
Ibritumomab tiuxetan Adalimumab Omalizumab Tositumomabiodine131
鼠源
111In 或 90Y 放 射 CD20 标记 IgG IgG IgG TNFα IgE
修美乐 雷索尔
Humira Xolair
1. 2
治疗性单抗药物的分子结构及发展趋势 为了降低单抗药物的免疫原性并提高疗效, 单抗
明显的特征: 与其他药物的作用原理不同, 治疗性单抗药 物通常针对特定的单一抗原表位, 具有高度的特异性。 抗肿瘤抗体药物的研究表明, 其特异性主要表现为特异 选择性杀伤靶细胞、 体内靶向性分布以及具有更 性结合、 强的疗效。另一方面, 治疗性单抗药物经过三十多年的 不断发展和完善, 其临床有效性明显优于其他药物种类, 很多传统医药无法处理的遗传性和后天病理性的代谢、 免疫、 内分泌、 心血管等疾病通过该类药物能够获得有效 治疗, 越来越为人们所认识和接受。同时, 单抗药物还具 如市场回报率高, 市场潜力巨大等。 有其他一些优点, 2011 年全球治疗性单抗药物以 567. 6 亿美元的销售额继 续领跑全球药品市场, 同比增加 20% , 其中 9 个单克隆抗 成为重磅炸弹药物, 销 体药物年销售额超过 10 亿美元, 售排名 前 五 的 治 疗 性 单 抗 药 物 依 次 为: 阿 达 木 单 抗 ( Humira) 、 英 夫 利 昔 单 抗 ( Remicade ) 、 利妥昔单抗 ( Rituxan ) 、贝 伐 单 抗 ( Avastin ) 和 曲 妥 珠 单 抗 ( Herceptin) , 这 5 种药物 2011 年的销售额均超过了 50 亿美元( 表 2 ) 。 治疗性单抗药物存在的问题: 临床上可能存在严 重不良反应, 虽然抗体自身的抗原性问题已经随着全 人源抗体技术的进步而减轻, 但是由于抗体药物靶点 功能研究不详尽、 靶点分布位置不明确、 药物本身与非 靶点的交叉作用认识不全面以及临床前安全性评价采 用动物替代人等问题, 增加了临床使用的不确定性, 多 个已经 批 准 上 市 的 抗 体 药 物 出 现 了 严 重 不 良 反 应 , Seifert 等[4]报道使用 rituximab 治疗 14 岁男孩复发性
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单克隆抗体技术在生物制药发展及应用Monoclonal antibody technology in biological pharmaceuticaldevelopment and application姓名:杨寨(学号091414134)摘要:本综述包括以下内容:简要叙述了单克隆抗体的概念及原理;系统地阐述单克隆抗体技术的优点和单克隆抗体的提纯;详细介绍单克隆抗体技术在疾病治疗和食品卫生检验中的应用。

关键词:生物制药技术单克隆抗体技术疾病治疗食品安全应用前言:生物制药技术是21世纪极具潜力的高科技技术以及新兴产业。

它的飞速发展为制药行业以及人们的健康保障带来了巨大的改变和影响。

生物制药技术的发展可以帮助人类解决很多目前无法医治的疾病的治疗问题,它可消除营养不良,延长人类寿命,提高生命质量。

生物制药技术运用了多种先进的技术,包括基因工程制药,动物细胞工程制药,植物细胞工程制药,发酵工程制药,酶工程制药等。

在此,就动物细胞工程制药当中的单克隆抗体技术,谈谈其发展以及应用。

1.单克隆抗体技术的概念单克隆抗体技术,一种免疫学技术,将产生抗体的单个B淋巴细胞同肿瘤细胞杂交,获得既能产生抗体,又能无限增殖的杂种细胞,并以此生产抗体。

抗体主要由B淋巴细胞合成。

每个B淋巴细胞有合成一种抗体的遗传基因。

动物脾脏有上百万种不同的B淋巴细胞系,含遗传基因不同的B淋巴细胞合成不同的抗体。

当机体受抗原刺激时,抗原分子上的许多决定簇分别激活各个具有不同基因的B细胞。

被激活的B细胞分裂增殖形成该细胞的子孙,即克隆由许多个被激活B细胞的分裂增殖形成多克隆,并合成多种抗体。

如果能选出一个制造一种专一抗体的细胞进行培养,就可得到由单细胞经分裂增殖而形成细胞群,即单克隆。

单克隆细胞将合成一种决定簇的抗体,称为单克隆抗体。

2.单克隆抗体技术的基本原理要制备单克隆抗体需先获得能合成专一性抗体的单克隆B淋巴细胞,但这种B淋巴细胞不能在体外生长。

而实验发现骨髓瘤细胞可在体外生长繁殖,应用细胞杂交技术使骨髓瘤细胞与免疫的淋巴细胞二者合二为一,得到杂种的骨髓瘤细胞。

这种杂种细胞继承两种亲代细胞的特性,它既具有B淋巴细胞合成专一抗体的特性,也有骨髓瘤细胞能在体外培养增殖永存的特性,用这种来源于单个融合细胞培养增殖的细胞群,可制备抗一种抗原决定簇的特异单克隆抗体。

3.单克隆抗体的提纯一般常用金黄色葡萄球菌蛋白A-琼脂糖4B亲和层析法。

单克隆抗体的保存由腹水中获得的抗体,经离心去除细胞成分,再经冷冻超速离心,取上清液加0.1%NaN3,少量分装,冷冻于-70℃可保存几年。

但应避免反复冻融,否则抗体失活,特别是IgM抗体。

提纯的单克隆抗体,冷冻干燥保存于2~8℃,取出时溶解后,保存于2~8℃,至少一个月内可保持稳定。

腹水抗体也可冷冻干燥低温(4℃)保存两年,融化后放置4℃下保存一个月。

短期使用的腹水抗体,4℃3~4 个月仍保持稳定, 培养上清加0.1%NaN3,贮于-20℃,两年不失活性。

4.单克隆抗体的应用目前利用单抗对疾病进行治疗已取得了很大的成果,主要是将单抗同药物耦联,再与病原体或肿瘤的特异抗原结合后发挥作用[1]。

4.1单克隆抗体在肿瘤治疗中的应用目前,应用单抗隆抗体技术治疗肿瘤主要是通过两大途径。

4.1.1非结合型单抗隆抗体治疗肿瘤肿瘤抗体(非结合型单抗)与肿瘤抗原结合,直接抑制肿瘤细胞的生长繁殖或杀死肿瘤细胞。

单独用单抗的主要优点是它们的毒副作用小、相关产物安全。

其抗肿瘤作用主要通过:①与相应抗原结合引起ADCC 效应,使肿瘤细胞死亡;②促发细胞内信号系统的改变,促进细胞凋亡;③抑制肿瘤细胞增殖,促进其分化;④对病毒、毒素等的中和作用。

目前有一定效果的非结合型单抗有包括抗C D 的抗体如CD20、D22、表皮生长因子受体(EGFR)、C -1苷脂GD3 等抗原的单抗[2]。

4.1.2结合型单克隆抗体治疗肿瘤目前国际上与肿瘤治疗相关的抗体研究主要集中在将抗体与耦联物作用后直接杀伤肿瘤细胞,利用抗体促进肿瘤细胞凋亡和抑制肿瘤血管生成等方面[3]。

抗体与耦联物相结合即为结合型单克隆抗体,目前耦联物主要是化学药物、酶、放射性核素、毒素和生物诱导剂等。

单抗与抗肿瘤药物通过药物分子上特殊的功能基团如羟基、巯基、氨基等相偶尔,抗肿瘤药物主要通过抑制细胞D N A或蛋白质合成、干扰破坏细胞核酸或蛋白质功能、抑制细胞有丝分裂等方式来杀伤肿瘤细胞, 而单抗的特异性客观上造成了这些药物对增殖旺盛细胞的“选择性杀伤”,极大地限制了这类药物的进一步应用和发展,从而达到增效减毒的作用。

而抗体与酶的结合物利用抗体与肿瘤细胞表面抗原的特异性结合,将前体药物的专一性活化酶与单抗耦联,导向输入到靶细胞部分,再注入前体药物,使其在酶的作用下转化为活性药物,进而杀伤肿瘤细胞。

目前研究较多的肿瘤放射免疫治疗是将单抗与放射性核素耦联而成,将放射性核素导向肿瘤组织,通过内照射杀伤肿瘤细胞,然而这种放射性的治疗主要用于实体瘤或全身多部位转移的肿瘤。

目前结合型单抗的研究国内外正处于发展与完善阶段,抗肿瘤结合型单抗也时有报道,发展前景较好。

4.2单克隆抗体在治疗阿尔茨海默病中的应用阿尔茨海默病(AD)[4]是一种严重危害人类健康的退行性脑病, 亦称早老性痴呆。

可引起脑功能逐渐衰退, 其典型的症状记忆力、抽象思维、定向力等障碍及人格改变,同时伴有智力衰退, 社会活动能力减退。

这主要是由于控制记忆力、语言和其他较高级功能的脑中枢部位的神经细胞大量死亡所致。

其典型的病理标志为患者脑内出现大量的老年斑(SP)。

β-淀粉样多肽(A β)是老年斑的核心成分,能形成淀粉样沉着,在AD 的发生、发展过程中起了关键性作用。

A β的聚集物对神经细胞有着明显的直接或间接毒性作用, 导致神经突触的减少和神经元的坏死[5]。

赵正卿[6]的研究表明, 运用单克隆抗体技术通过主动或被动免疫在体内产生一系列单克隆抗体, 从而与体内致病抗原结合, 有效清除脑内沉积的Aβ, 阻断Aβ的神经毒作用,达到治疗的目的,值得近一步进入临床研究。

4.3单克隆抗体在食品中的应用4.3.1单克隆抗体在乳品工业中的应用单克隆抗体在乳品工业中主要用于牛奶成分分析;形成牛奶正常和非正常风味的微生物与酶的鉴定;牛奶中的病原微生物和毒素的检测;加工工艺对牛奶蛋白结构的影响以及牛奶中掺杂羊奶的识别。

在牛奶中掺杂羊奶会严重影响乳酪的加工,因为牛奶凝块的组成将影响产品的感官品质和加工特性。

根据不同动物的免疫反应不同,一种以抗牛奶酪蛋白的专一性抗体进行的免疫斑点技术被建立。

而且由于酪蛋白的耐热性,这种方法对巴氏杀菌前后的牛奶或乳酪都能进行分析[7]。

4.3.2单克隆抗体在肉品卫生中的应用肉品卫生检验是免疫学技术应用的一个重要方面。

沙门氏菌是肉品污染中一种典型的病原微生物。

目前出现的许多快速检测方法是利用酶免疫(EIA)方法。

包括直接EIA、夹心ELASA等。

最新的检测方法是采用特殊材料制成固相载体,聚酯布(Potyester cloth)结合单抗放置在层析柱的底部富集鼠伤寒沙门氏菌,然后直接做斑点印迹试验;还有用单抗结合到磁性粒子(直径28nm)上,用来检测卵黄中的肠炎沙门氏菌,英国bio merienx 公司最新推出了一种全自动ELISA 沙门氏检测系统,其原理是将捕捉抗体包被到凹形金属片的内面上,吸附被检样中的沙门氏菌[8]。

仅需把样品加到测定试剂孔中,其余全部为自动分析,仅45 分钟,比传统的方法省时、方便。

4.3.3单克隆抗体技术在酿酒工业中的应用单克隆抗体可用于检出酿酒过程中的各种污染物,用于对酿酒过程的检测。

免疫学检测的步骤简单, 易于自动化, 其最大缺点是单克隆抗体的制备成本高,不过单克隆抗体的制备正成为研究的热点。

另外,浑浊敏感蛋白是引起啤酒稳定性下降的主要因素之一,可以引起啤酒浑浊, 主要由蛋白质与多酚发生聚合反应而产生,它在整个啤酒酿造过程中保持着抗原性,能被抗体认别。

利用ELISA 技术检测啤酒生产中的浑浊敏感蛋白[9],以便控制工艺条件,提高啤酒的品质。

贾娟[10]等人在酶联免疫吸附实验(ELISA)技术基础上,利用单克隆抗体技术鉴定区分泡沫活性蛋白和浑浊敏感蛋白,研究取得较好的效果。

4.3.4单克隆抗体在食品储藏中的应用食品在储藏过程中会受到霉菌等微生物的污染,其结果不仅导致感官品质和营养价值的降低,更重要的是某些霉菌能产生毒素。

对霉菌的检测一般采用培养、电导测量、测定耐热物质如几丁质以及显微观察等,均繁琐而费时,现在已从青霉、毛霉等霉菌中提取耐热性抗原制成抗体。

用ELISA方法可检出加热和未加热的食品中的霉菌[11]。

黄曲霉素致癌、致突变物。

对这种真菌毒素的免疫学分析方法有放射免疫分析(RIA)和酶联免疫吸附分析等。

新一代ELISA引入一系列放大机制,使ELISA敏感性大为提高,如底物循环放大机制,使碱性磷酸酶不直接催化有色物质生成,而是使NADP脱磷酸生成NAD ,NAD进入由醇脱氢酶和黄素酶催化的氧化还原循环,导致有色物质的生成,这种放大机制使碱性磷酸酶的信号比标准ELISA放大了250倍。

一种专一的竞争ELISA 微量试验碟已被用于检出黄曲霉素B1、B2之间的交叉反应,抗黄曲霉素B2的单克隆抗体被用于间接竞争ELISA,灵敏度为50pg。

5.单克隆抗体的优点:单克隆抗体技术是生物技术的重要内容之一。

它不仅可与基因工程媲美,而且已与基因工程配合应用,将更加发挥其重大作用。

这是由它们的下列优点所决定的:5.1用任何抗原、半抗原,包括各种细菌、激素、酶素、病原体、氨基酸序列、核酸,还有其他异体蛋白或糖蛋白等抗原物质,都可以用杂交瘤技术获得相应的单克隆抗体。

因而人们可以在体外或动物体内按自己的需要,生产不同类型的单抗。

现在,已经可以制出多种病毒、细菌、枝原体、霉菌、寄生虫表面抗原,癌胚抗原,血型红细胞抗原,移植抗原,肿瘤相关抗原,多种血清成份,678,978,基因片段等等单克隆抗体。

已应用单克隆抗体制成免疫荧光技术,酶免疫吸附实验以及放射免疫测定等高度敏感性快速诊断需要的标记抗体。

5.2和惯用的常规免疫血清(又称多克隆抗体)相比,单抗的特异性高,效价高,纯度高,质地均一,易于标准化,而且生产方便,易于精制浓缩。

应用单抗可以提高诊断检测法的敏感性和特异性。

同时,它又是基础研究,制备疫苗,提纯抗原,生产生物制剂的重要手段。

5.3来源充裕可长期使用。

高效价的杂交瘤株,一旦选育成功,鉴定合格,置液氮内保存,如不发生变异,染色体不丢失,就可长久源源不断地大批量生产特异性高,化学纯的单抗。

5.4杂交瘤技术近年来发展迅速,除B 淋巴细胞杂交瘤外,还建立T淋巴细胞杂交瘤和TB细胞杂交瘤。

相关文档
最新文档