走进重高 培优讲义 八上 第一讲 认识三角形

合集下载

八年级上册1.1认识三角形

八年级上册1.1认识三角形

02
证明方法
通过作辅助线,将外角平分线与对边平行线相交,利用平行线的性质和
平行线的交角性质进行证明。
03
应用实例
在解决几何问题时,常常需要利用三角形内外角的关系来确定某些角的
度数或边的长度。
04 三角形的边长关系
三边关系定理
三角形任意两边之和大于第三 边
三角形任意两边之差小于第三 边
三角形三边关系定理的应用: 判断三条线段能否构成三角形
三角形的高、中线与角平分线
高的定义
从三角形的一个顶点垂直 到对边的线段
中线的定义
连接三角形两边中点的线 段
角平分线的定义
将一个角平分为两个相等
面积 = (底 × 高) / 2
面积公式的应用
计算三角形的面积,判断两个三角形是否等面积
3
特殊三角形的面积计算
八年级上册1.1认识三角形
contents
目录
• 三角形的定义与性质 • 三角形的分类 • 三角形的内外角和定理 • 三角形的边长关系 • 三角形的实际应用
01 三角形的定义与性质
三角形的定义
由不在同一直线上的 三条线段首尾顺次连 接而成的图形。
三角形是平面图形中 最简单的多边形。
三角形是具有三条边 的多边形。
三角形中,等角对应等边,即如果两个角相等,则它们所对的边也相等。
02 三角形的分类
按边分类
等边三角形
不等边三角形
三边长度相等的三角形,每个角都是 60度。
三边长度都不相等,三个角也不相等。
等腰三角形
两边长度相等,另一边不等,有两个 相等的角。
按角分类
锐角三角形
01
所有内角都小于90度。

第一讲 认识三角形

第一讲 认识三角形

八年级(上)数学提高班讲义第一讲认识三角形知识点分析1.三角形是由不在同一条直线上的三条线段首尾顺次相接而成的图形,是最简单、最基本的几何图形,是学习其他几何图形的基础。

2.三角形的边的性质有:任意两边之和大于第三边,任意两边之差小于第三边,这一性质可用“两点之间-<<+.线段最短”来说明,若三角形的两边长分别为a和b,那么第三边长c的取值范围是a b c a b 3.三角形的角的性质有:三个内角的和为180°,三个外角的和为360°,每个外角等于它不相邻的两个内角之和。

4.认识三角形的角平分线、中线以及高线。

例题分析例1、(1)已知三角形两边长分别为4和6,则第三边的长不可能是()A.4 B.6 C.8 D.10(2)有六条线段,长度分别为1 cm,2 cm,3 cm,2019 cm,2020 cm,2021 cm,选其中组成三角形,试问可以组成多少三角形?(3)已知a、b、c是△ABC的三边长,化简:|a+b﹣c|﹣|b﹣a﹣c|=______________。

例2、(1)如图,在△ABC中,E为AC边上一点,若∠1=20°,∠C=60°,则∠AEB等于()A.90°B.80°C.60°D.50°(2)在△ABC中,∠A:∠B:∠C=1:2:3,则∠A等于()A.100°B.90°C.60°D.30°(3)已知△ABC中,∠A+∠B=∠C,则∠C=。

例3、(1)如图,AD、BE、CF是△ABC的3条中线,若AF=a cm,则AB=________cm;若BC=b cm,则BD=________cm;若△ABC的周长为c cm,则AE+CD+BF=________cm。

(2)如图所示,在△ABC中,AD是角平分线,已知∠B=66°,∠C=38°,那么∠CAD=____________,∠ADC=____________。

八上数学第一章三角形知识点总结

八上数学第一章三角形知识点总结

八上数学第一章三角形知识点总结三角形是中学数学中的重要概念,深入理解三角形的性质和定理对于解决相关数学问题至关重要。

本文将对八年级上册数学第一章中的三角形知识点进行总结。

首先,我们会讨论三角形的定义和分类,然后介绍三角形的内角和外角性质以及重心、垂心和内心等特殊点的性质。

接下来,我们将介绍线段延长定理、角平分线定理和中线定理等与三角形相关的重要定理。

最后,我们还会解释勾股定理和正弦定理等常用的三角形定理。

通过本文的学习,读者将能够系统地了解八年级上册数学第一章中涉及的三角形知识点,为进一步学习和应用提供基础支持。

1. 三角形的定义和分类三角形是由三条线段组成的图形,其中任意两条线段的和大于第三条线段,而任意两条线段的差小于第三条线段。

根据边的长度和角的大小,三角形可以分为等边三角形、等腰三角形、直角三角形以及一般三角形。

2. 三角形的内角和外角性质对于任意三角形ABC,其内角和为180度。

同时,三角形的外角等于不相邻的两个内角之和。

此外,三角形的内角和与外角和均为360度。

3. 三角形特殊点的性质(1)重心:三角形的三条中线交于一点,称为重心。

重心到三角形各顶点的距离满足一个性质:重心到顶点距离之和等于重心到对边中点的距离之和。

(2)垂心:三角形的三条高线交于一点,称为垂心。

垂心到各顶点的距离满足一个性质:垂心到顶点距离之和最小。

(3)内心:三角形的三条角平分线交于一点,称为内心。

内心到各边的距离满足一个性质:内心到三条边的距离之和最小。

4. 三角形定理(1)线段延长定理:在三角形ABC中,若AB>AC,则延长线段AB会大于线段AC。

(2)角平分线定理:在三角形ABC中,角BAC的平分线会把线段BC分成相等的两部分。

(3)中线定理:在三角形ABC中,连接顶点A与线段BC的中点M,则AM是线段BC的中线,即AM=MC=MB/2。

5. 常用的三角形定理(1)勾股定理:在直角三角形ABC中,设直角边分别为AB和AC,斜边BC的长度为c,则有a^2 + b^2 = c^2。

8年级上册数学第一章《三角形初步认识2》讲义

8年级上册数学第一章《三角形初步认识2》讲义

第一章《三角形的初步认识》:1、认识三角形①“△ABC”读作“三角形ABC”。

三角形任何两边的和大于第三边。

②三角形三个内角的和等于180°。

三角形的一个外角等于和它不相邻两个内角的和。

2、三角形的平分线和中线在三角形中,一个内角的角平分线与它对边相交,这个角的顶点与交点之间的线段叫做三角形的三角形的平分线。

在三角形中,连结一个顶点与它对边中点的线段,叫做这个三角形的中线。

3、三角形的高从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段叫做三角形的高。

锐角三角形的三条高在三角形的内部,垂足在相应顶点的对边上。

直角三角形的直角边上的高分别与另一条直角边重合,垂足都是直角的顶点。

而在钝角三角形中,夹钝角两边上的高都在三角形的外部,它们的垂足都在相应顶点的对边的延长线上。

4、全等三角形能够重合的两个三角形称为全等三角形。

两个全等三角形重合时,能互相重合的顶点叫做全等三角形的对应顶点,互相重合的边叫做全等三角形的对应边,互相重合的角叫做全等三角形的对应角。

“全等”可用符号“≌”来表示。

全等三角形的性质:全等三角形对应边相等,对应角相等。

5、三角形全等的条件①三边对应相等的两个三角形全等(简写成“边边边”或“SSS”)。

当三角形三边长确定是,三角形的形状、大小完全被确定,这个性质叫做三角形的稳定性,这是三角形特有的性质。

②有一个角和夹这个角的两边对应相等的两个三角形全等(简写成“边角边”或“SAS”)。

垂直于一条线段,并且平分这条线段的直线叫做这条线段的垂直平分线,简称中垂线。

线段垂直平分线上的点到线段两端点的距离相等。

③有两个角和这两个角的夹边对应相等的两个三角形全等(简写成“角边角”或“ASA”)。

有两个角和其中一个角的对边对应相等的两个三角形全等(简写成“角角边”或“AAS”)。

角平分线上的一点到角两边的距离相等。

6、作三角形:在几何作图中,我们把用没有刻度的直尺和圆规作图,简称尺规作图。

初二数学培优讲义第1章+三角形的边+第1关+尖子

初二数学培优讲义第1章+三角形的边+第1关+尖子

第一章三角形的边本章进步目标★★★★★☆Level 5通过对本节课的学习,你能够:1.对三角形的三边关系应用达到【高级运用】级别;2.对三角形的面积计算问题达到【高级运用】级别。

VISIBLE PROGRESS SYSTEM进步可视化教学体系1VISIBLE PROGRESS SYSTEM一天,小优带着几个伙伴在路边竖一根电视天线杆。

天线杆竖起来以后,总是晃来晃去,他们急得团团转。

恰巧小能路过这里,看见了,赶忙过来说:“这又直又高的电视天线杆光这样竖着不稳定,有倒斜的危险。

”“请问,你有什么好办法吗?”小优诚恳地问。

小能说:“用三根绳子从杆子的上方向三个方向拉下来,拉紧以后把绳头固定在地面上,固定在地面上的三点组成一个三角形,天线杆就不会晃了。

”“好!”小优他们很快动手,把绳子拉好。

果然,天线杆不晃动了。

“真行!”“这个办法真灵!”大家一起高兴地围着小能询问这是为什么。

小能笑着说:“因为三角形有一个性质,叫做三角形的稳定性。

你看,木制的房顶、自行车的三角架,还有高压电线架都是三角形的,就是利用这个特性。

”“你真是个能干的设计师。

”小优称赞道。

小能不好意思地说:“不,我们各有所长,要相互学习。

”“哈哈,各有所长,各有所长……”大伙会心地笑了。

2 VISIBLE PROGRESS SYSTEM第一关三角形的三边关系★★★★★☆Level 5本关进步目标★★★☆☆☆你会利用两边长确定第三边的长或周长的取值范围,并根据三角形的三边关系化简代数式;★★★★★☆你会证明线段间的不等关系。

3VISIBLE PROGRESS SYSTEM4VISIBLE PROGRESS SYSTEM学习重点:掌握三角形三边关系定理及推论的应用.1.三角形两条边长分别是3 cm 和10 cm ,周长C 的取值范围是________20<C<26_________cm .2.三角形的三条边长分别是3a -,1a -,2a +,则a 的取值范围是_________a>6________.3.已知a ,b ,c 分别是△ABC 的三边之长,化简:a b c a b c b a c c b a +-+------+-=________2b -2c _________.三角形的三边关系定理及推论【高级理解】熟记三边关系定理及推论的内容理解不等式的性质关卡1-1三角形的三边关系定理及推论过关指南Tips笔记★★★☆☆☆ 高级理解例题5VISIBLE PROGRESS SYSTEM若一个三角形的两边长分别为5和7,则周长C 的取值范围是_____12>C>2____________;若x 为该三角形最长的边,则x 的取值范围是_________12>x >7________.( D ) A. a ,b ,a b + (0,0)a b >> B. a ,4a +,6a +(0a >) C. a ,3a -,3(3a >) D. 1a +,1a +,2a ()0a >已知a ,b ,c 分别是△ABC 的三边之长,化简:a cbc a b b c a ----+--+=______c -b -a ___________.过关练习错题记录Exercise 2错题记录Exercise 1错题记录Exercise 36VISIBLE PROGRESS SYSTEM学习重点:掌握 “8字”模型和“飞镖”模型中不等关系的证明和对结论的熟练应用.1.如图,四边形ABCD 是任意四边形,AC 与BD 交于点O ,求证:()12AC BD AB BC CD DA +>+++.∵三角形两边之和大于第三边 ∴在△ABO 中,AO+BO>AB 在△BOC 中,BO+CO>BC 在△COD 中,CO+DO>CD 在△AOD 中,AO+DO>AD2(AO +CO+BO +DO)>AB+BC+CD+DA 2(AC+BD)> AB+BC+CD+DA AC+BD> 1/2(AB+BC+CD+DA )三角形三边不等关系的证明【高级运用】“8字”模型不等关系的证明“飞镖”模型不等关系的证明不等式的性质关卡1-2三角形的三边不等关系的证明过关指南Tips笔记★★★★★☆ 高级运用例题P ABC ∆PBC ∆ABC ∆8VISIBLE PROGRESS SYSTEM如图所示,AD ,BC 相交于点O ,求证:AB+CD<AD+BC .AO+BO>AB,CO+DO>CDAO+BO+CO+DO=AD+BC>AB+CD如图所示,已知点P 是ABC ∆内一点,试说明()12PA PB PC AB BC AC ++>++.如图所示,已知点P 是ABC ∆内一点,求证:PA PB PC AB AC BC ++<++.延长BP 交AC 于点D过关练习错题记录Exercise 2错题记录Exercise 1错题记录Exercise 39VISIBLE PROGRESS SYSTEMAB+AD>BP+PD,DC+PD>PC 相加得AB+AC>PB+PC 同理AC+BC>PA+PB AB+BC>PA+PC相加得2(AB+AC+BC )>2(PA+PB+PC) PA+PB+PC<AB+AC+BC 如图所示,在四边形ABCD 中,对角线AC ,BD 相交于点O ,点E 在ABC ∆的内部,连接EB ,EC ,证明:(1)AB CD AC BD +<+;(2)AB AC EB EC +>+.(1) AB<AO+BO,CD<CO+DOAB+CD<AO+BO+CO+DO=AC+BD(2)延长BE 交AC 于点FBE+EF<AB+AF,EC<EF+FC相加得AB+AF+FC>EB+EC 即AB+AC>EB+EC错题记录Exercise 4。

人教版八年级上册数学培优精编讲义

人教版八年级上册数学培优精编讲义

三角形面积(讲义)一、知识点睛1.三角形相关概念:(1)在三角形中,连接一个顶点与它对边中点的________,叫做这个三角形的中线,三角形的三条中线_____________交于一点,这点称为三角形的____________.(2)在三角形中,一个内角的角平分线与它的对边相交,这个角的顶点与交点之间的________叫做三角形的角平分线,三角形的三条角平分线________________交于一点,这点称为三角形的_________.(3)从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的________叫做三角形的高线(简称三角形的高),三角形的三条高________________交于一点,这点称为三角形的________;锐角三角形三条高线及垂心都在其________,直角三角形的垂心是________,钝角三角形的垂心和两条高线在其________.在△ABC 中,作出AC边上的高线.________即为所求.(4)三角形的相关定理:180⎧⎪︒⎧⎪⎨⎪⎨⎪⎪⎪⎩⎩边:三角形的两边之和大于第三边,两边之差小于第三边;三角形的内角和是;角直角三角形两锐角互余;三角形的一个外角等于和它不相邻的两个内角的和.2.面积问题:(1)处理面积问题的思路:①_____________________________;②_____________________________;③_____________________________.(2)处理面积问题方法举例:①利用平行转移面积:如图,满足S △ABP =S △ABC 的点P 都在直线l 1,l 2上.②利用等分点转移面积:两个三角形底相等时,面积比等于_____之比,高相等时,面积比等于_____之比.二、精讲精练1.现有3cm ,4cm ,7cm ,9cm 长的四根木棒,任取其中三根组成一个三角形,那么可以组成的三角形的个数是()A .1个B .2个C .3个D .4个2.如图,用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依次为2,3,4,6,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任两螺丝之间的距离最大值是()A .5B .6C .7D .103.△ABC 的三边分别为4,9,x .(1)求x 的取值范围;(2)求△ABC 的周长的取值范围;(3)当x 为偶数时,求x ;(4)当△ABC 的周长为偶数时,求x ;(5)若△ABC 为等腰三角形,求x .第2题图4.如图,△ABC的角平分线AD,中线BE交于点O,则结论:①AO是△ABE的角平分线;②BO是△ABC的中线.其中()A.①,②都正确B.①,②都不正确C.①正确,②不正确D.①不正确,②正确5.如图所示,在△ABC中,BC边上的高是_______,AB边上的高是_______;在△BCE中,BE边上的高是________,EC边上的高是_________;在△ACD 中,AC边上的高是________,CD边上的高是________.6.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是()A.锐角三角形B.钝角三角形C.直角三角形D.都有可能7.如图,在正方形ABCD中,BC=2,∠DCE是正方形ABCD的外角,P是∠DCE 的角平分线CF上任意一点,则△PBD的面积等于_________.第7题图第8题图8.如图,在梯形ABCD中,AB∥CD,延长DC到E,使CE=AB,连接BD,BE,若梯形ABCD的面积为25cm2,则△BDE的面积是__________.9.正方形ABCD,正方形BEFG和正方形RKPF的位置如图所示,点G在线段DK 上,正方形BEFG的边长为4,则△DEK的面积为____________.第9题图10.已知在正方形网格中,每个小方格都是边长为1的正方形,A ,B 两点在小方格的顶点上,位置如图所示,点C 也在小方格的顶点上,且以A ,B ,C 为顶点的三角形面积为1,则点C 的个数是_______个.第10题图第11题图11.在如图的方格纸中,每个小方格都是边长为1的正方形,点A ,B 是方格纸中的两个格点(即正方形的顶点),在这个5×5的方格纸中,找出格点C 使△ABC 的面积为2个平方单位,则满足条件的格点C 的个数是_______个.12.如图,AD 是△ABC 的边BC 上的中线,点E 在AD 上,AE =2DE ,若△ABE 的面积是4,则△ABC 的面积是_______.第12题图第13题图13.如图,在△ABC 中,点D ,E ,F 分别为BC ,AD ,CE 的中点,且S △ABC =16,则S △DEF =_____________.14.如图,在△ABC 中,E 是BC 边上的一点,EC =2BE ,点D 是AC 的中点,设△ABC ,△ADF ,△BEF 的面积分别为S △ABC ,S △ADF ,S △BEF ,且S △ABC =12,则S △ADF S △BEF =()A .1B .2C .3D .415.如图所示,S △ABC =6,若S △BDE =S △DEC =S △ACE ,则S △ADE =_______.第14题图第15题图16.如图,设E,F分别是△ABC的边AC,AB上的点,线段BE,CF交于点D.若△BDF,△BCD,△CDE的面积分别是3,7,7,则△EDF的面积是_______,△AEF的面积是______.第16题图第17题图17.如图,梯形ABCD被对角线分为4个小三角形,已知△AOB和△BOC的面积分别为25cm2和35cm2,那么梯形的面积是_____________.18.如图,在长方形ABCD中,△ABP的面积为20cm2,△CDQ的面积为35cm2,则阴影四边形EPFQ的面积是_________.19.如图,若梯形ABCD面积为6,E,F为AB的三等分点,M,N为DC的三等分点,则四边形EFNM的面积是_________.三、回顾与思考_______________________________________________________________________________ _______________________________________________________________________________ __________________________________【参考答案】【知识点睛】1.(1)线段,在三角形内部,重心;(2)线段,在三角形内部,内心;(3)线段,所在直线,垂心,内部,直角顶点,外部;作图略2.(1)①公式法;②割补法;③转移法;(2)②对应高,对应底【精讲精练】1.B2.C3.(1)5<x<13(2)18<x<26(3)6,8,10,12(4)7,9,11(5)9 4.C5.AF,CE,CE,BE,DC,AC6.C7.28.25cm29.1610.6 11.512.1213.214.B15.1 16.3,1517.144cm218.55cm219.2三角形面积(作业)1.现有2cm,4cm,6cm,8cm长的四根木棒,任意选取三根组成一个三角形,那么可以组成三角形的个数为()A.1个B.2个C.3个D.4个2.如图,为估计池塘岸边A,B的距离,小方在池塘的一侧选取一点O,测得OA=15米,OB=10米,A,B间的距离不可能是()A.20米B.15米C.10米D.5米第2题图第3题图3.如图,AC⊥BC,CD⊥AB,DE⊥BC,垂足分别为C,D,E,则下列说法不正确的是()A.AC是△ABC的高B.DE是△BCD的高C.DE是△ABE的高D.AD是△ACD的高4.在直角三角形,钝角三角形和锐角三角形中,有两条高在三角形外部的是()A.锐角三角形B.钝角三角形C.直角三角形D.都有可能5.在如图的方格纸中,每个小方格都是边长为1的正方形,点A,B是方格纸中的两个格点(即正方形的顶点),在这个5×5的方格纸中,找出格点C使△ABC的面积为2个平方单位,则满足条件的格点C的个数是_______个.6.如图,直线AE∥BD,点C在BD上,若AE=4,BD=8,△ABD的面积为16,则△ACE的面积为.第6题图第7题图7.如图,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且S△ABC=4cm2,那么阴影部分的面积是.8.已知:如图,在△ABC中,点D,E,F分别在三边上,E是AC的中点,AD,BE,CF交于一点G,BD=2DC,S△BGD=8,S△AGE=3,那么△ABC的面积是.第8题图第9题图9.两条对角线把梯形分割成四个三角形,若S△EDC=6,S△BEC=18,则△AEB的面积是,△AED的面积是.10.如图所示,在□ABCD中,点E是AD的中点,点F在边CD上,CF=2DF,若□ABCD的面积为12,则△EDF的面积是_______.第10题图第11题图11.四边形ABCD与AEFG均为正方形,△ABH的面积为6cm2,图中阴影部分的面积是______________.12.多项式4x2+4加上一个单项式后,能使它成为一个整式的平方,则可以加上的单项式共有________个,分别是______________________________.13.已知:如图,AD⊥BC,EF⊥BC,∠1=∠2.求证:AB∥DG.【参考答案】1.A2.D3.C4.B5.56.87.1cm28.309.6;210.111.6cm212.5;-4,-4x2,x4,-8x,8x13.证明略三角形面积(随堂测试)1.现有2cm,3cm,4cm,5cm长的四根木棒,任取其中三根组成一个三角形,那么可以组成的三角形的个数是()A.1个B.2个C.3个D.4个2.如图,一个面积为50cm2的正方形与另一个小正方形并排放在一起,则△ABC的面积是________________.第2题图第3题图3.已知在正方形网格中,每个小方格都是边长为1的正方形,A,B两点在小方格的顶点上,位置如图所示,点C也在小方格的顶点上,且以A,B,C为顶点的三角形面积为2,则点C的个数是_______个.(在图中标出点C的位置)4.如图,在□ABCD中,点E,F分别是是AB,BC的中点,连接EF,若□ABCD的面积是8cm2,则△BEF的面积是________.【参考答案】1.C2.25cm23.104.1cm2三角形综合应用(讲义)一、知识点睛在三角形背景下处理问题的思考方向:1.三角形中的隐含条件是:_____________________________________________________;_____________________________________________________;_____________________________________________________.2.角平分线出现时采用______________解决问题.3.高线出现时考虑__________或__________.4.中线、周长一起出现时,考虑________和________的关系.二、精讲精练1.下列五种说法中:①三角形的三个内角中至少有两个锐角;②三角形的三个内角中至少有一个钝角;③一个三角形中,至少有一个角不少于60°;④钝角三角形中,任意两个内角的和必大于90°;⑤直角三角形中两锐角互余,正确的有___________________________________.2.如图,在三角形纸片ABC中,∠A=60°,∠B=55°.将纸片一角折叠使点C落在△ABC内,则∠1+∠2的度数为______.第2题图第3题图3.如图,一个五角星的五个角的和是________.4.如图,∠A+∠B+∠C+∠D+∠E+∠F=________.5.如图①,∠BAD的平分线AE与∠BCD的平分线CE交于点E,AB∥CD,∠ADC=40°,∠ABC=30°,则∠AEC=________;如图②,∠BAD的平分线AE与∠BCD的平分线CE交于点E,∠ADC=α,∠ABC=β,则∠AEC=_________________.图①图②6.探究:(1)如图①,在△ABC中,BP平分∠ABC,CP平分∠ACB,猜想∠P和∠A有何数量关系?(2)如图②,在△ABC中,BP平分∠ABC,CP平分外角∠ACE,猜想 P和∠A有何数量关系?(3)如图③,BP平分∠CBF,CP平分∠BCE,猜想∠P和∠A有何数量关系?图①图②图③7.如图,在△ABC中,三个内角的角平分线交于点O,OE⊥BC于点E.(1)∠ABO+∠BCO+∠CAO的度数为____________;(2)∠BOD和∠COE的数量关系是________________.第7题图8.在锐角△ABC中,BD和CE是两条高,相交于点M,BF和CG是两条角平分线,相交于点N,如果∠BMC=100°,求∠BNC的度数.9.等腰三角形的周长为17cm,其中一边长为5cm,则该等腰三角形的底边长为__________.10.等腰三角形的周长为13cm,其中一边长为3cm,则该等腰三角形的底边长为________.11.等腰三角形的周长是25cm,一腰上的中线将周长分为3:2的两部分,则此三角形的底边长为________________.12.已知BD是△ABC的中线,AB=5,BC=3,△ABD和△BCD的周长的差是________________.13.如图:△ABC的周长为30cm,把△ABC的边AC对折,使顶点C和点A重合,折痕交BC边于点D,交AC边于点E,连接AD,若AE=4cm,则△ABD的周长是____________.14.如图,在Rt△ABC中,∠BAC=90°,AD⊥BC.(1)若AB=6,AC=8,BC=10,则AD=____________;(2)若AB=2,BC=3,则AC:AD=____________.第14题图第15题图15.如图所示,在△ABC中,若AB=2cm,AC=3cm,BC=4cm,AD,BF,CE为△ABC的三条高,则这三条高的比AD:BF:CE=____________________.16.如图,在△ABC 中,AB =AC ,P 是BC 边上任意一点,PD ⊥AB 于点D ,PE ⊥AC 于点E .(1)若AB =8,△ABC 的面积为14,则PD +PE 的值是多少?(2)过点B 作BF ⊥AC ,求证:PD +PE =BF .三、回顾与思考_____________________________________________________________________________________________________________________________________________________________________【参考答案】【知识点睛】1.三角形中的隐含条件:1.三角形内角和是180°;2.三角形的一个外角等于和它不相邻的两个内角的和;3.三角形两边之和大于第三边,两边只差小于第三边.2.设元3.互余,面积4.边长,周长【精讲精练】1.①③⑤2.130°3.180°4.360°5.35°;12(α+β)6.(1)∠P =90°+12∠A(2)∠P =12∠A(3)∠P=90° 12∠A7.(1)90°(2)∠BOD=∠COE8.130°9.5cm或7cm10.3cm11.5cm或353cm12.213.22cm14.(1)245(2)3:215.3:4:616.(1)72(2)略三角形综合应用随堂测试题姓名________5.如图,∠A+∠B+∠C+∠D+∠E=.6.如图,E和D分别在△ABC的边BA和CA的延长线上,CF,EF分别平分∠ACB和∠AED,若∠B=65°,∠D=45°,则∠F的大小是________.第1题图第2题图7.等腰三角形周长为14cm,一腰上的中线将三角形分为两个三角形,这两个三角形的周长差为5cm,则此等腰三角形的底边长为___________.8.如图,在△ABC中,CE平分∠ACB,CD⊥AB于点D,DF⊥CE于点F,其中∠A=40°,∠B=72°,求∠FDE.【参考答案】1.180°2.55°3.434.16°三角形综合应用(作业)1.满足下列条件的△ABC 中,不是直角三角形的是()A .∠B +∠A =∠CB .∠A :∠B :∠C =2:3:5C .∠A =2∠B =3∠CD .一个外角等于和它相邻的一个内角2.如图,一个直角三角形纸片,剪去直角后,得到一个四边形,则∠1+∠2=______________.3.如图,∠A +∠B +∠C +∠D +∠E +∠F =__________.第3题图第4题图4.如图,在Rt △ABC 中,∠C =90°,若∠CAB 与∠CBA 的平分线相交于点O ,则∠AOB =__________.5.如图,在△ABC 中,∠ABC 的平分线BD 与外角平分线CE 的反向延长线相交于点D ,若∠A =30°,则∠D =________.第5题图第6题图6.如图,在△ABC 中,AD 平分∠BAC ,点F 在DA 的延长线上,FE ⊥BC ,∠B =40°,∠C =70°,则∠DFE =__________.7.等腰三角形的周长为21cm ,其中一边长为6cm ,则该等腰三角形的底边长为__________.第2题图8.等腰三角形周长为17cm,一腰上的中线将三角形分为两个三角形,这两个三角形的周长差为4cm,则此等腰三角形的底边长为__________.9.如图,在△ABC中,若AB=2cm,BC=4cm,则△ABC的高AD与CE的比是__________.10.如图,在△ABC中,AD是高,AE,BF是角平分线,它们相交于点O,∠BAC=50°,∠C=60°,求∠DAC及∠BOA的度数.11.如图,在△ABC 中,AD为∠BAC的角平分线,G为AD的中点,延长BG交AC于E.CF⊥AD于H,交AB于F.下列说法中正确的有_____________________.①AD是△ABE的角平分线;②BE是△ABD的中线;③CH为△ACD边AD上的高;④AH是△ACF边CF上的高;⑤BG是△ABD的中线.12.已知:如图,∠1+∠2=180°,∠3=∠B,试判断∠AED与∠C的数量关系,并说明理由.【参考答案】1.C2.270°3.360°4.135°5.15°6.15°7.6cm或9cm 8.3cm或253cm9.12 10.30°;120°第12题图第9题图第10题图第11题图11.③④⑤12.∠AED=∠C,证明略平行线与三角形内角和的综合应用(讲义)一、知识点睛1.如果两个角的和是____,那么称这两个角互为余角;如果两个角的和是____,那么称这两个角互为补角;①_____或_____的余角相等,②_____或_____的补角相等.2.对顶角:____________________________________________;③对顶角____.3.④三角形的内角和为_____,⑤直角三角形两锐角_____.已知:如图,△ABC.求证:∠BAC+∠B+∠C=180°.证明:_____,______________________________,∵MN∥BC∴∠B=∠1,∠C=∠2()∵∠1+∠2+∠3=180°()∴∠BAC+∠B+∠C=180°()二、精讲精练1.如图,∠AOC和∠BOD都是直角,如果∠AOD=50°,则∠BOC的度数是______.第1题图第2题图2.如图,∠COD为平角,AO⊥OE,∠AOC=2∠DOE,则有∠AOC=_______.3.已知:如图,OA⊥OB,直线CD经过顶点O,若∠BOD:∠AOC=5:2,则∠AOC=_____,∠BOD=_______.4.‘如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,则∠A的余角是_______和________,∠ACD=∠_______,∠BCD=∠______.5.如图,△ABC中,∠B=∠C,E是AC上一点,ED⊥BC,DF⊥AB,垂足分别为D,F,若∠AED=140°,则∠C=,∠BDF=,∠A=.第5题图第6题图AE BD,∠1=110o,∠2=30o,则∠C=______.6.已知:如图,//7.已知:如图,∠BAC与∠GCA互补,∠1=∠2,若∠E=46°,则∠F的度数是多少?8.已知:如图,AB⊥BC,BC⊥CD,∠1=∠2.求证:BE∥CF.证明:∵AB⊥BC,BC⊥CD()∴______=______=90°(垂直的性质)∵∠1=∠2()∴∠EBC=∠BCF()∴___∥___()9.已知:如图,∠1+∠2=180°,∠3=∠B.求证:∠AED=∠C.证明:∵∠1+∠2=180°()∠1+∠DFE=180°()∴_____=______()∴∥()∴∠3=∠ADE()∵∠3=∠B()∴∠ADE=∠B()∴___∥___()∴∠AED=∠C()10.已知:如图,∠1=∠2,∠C=∠D.求证:∠F=∠A.证明:∵∠1=∠2()∠1=∠DGF()∴∠2=∠DGF()∴____∥_____()∴∠D=∠FEC()∵∠C=∠D()∴∠FEC=∠C()∴DF∥AC()∴∠F=∠A.()三、回顾与思考___________________________________________________________________ ___________________________________________________________________ _____________________________________【参考答案】一、知识点睛1.90°;180°;同角;等角;同角;等角.2.具有公共顶点且角的两边互为反向延长线;相等.3.180°;互余;如图,过点A作BC的平行线MN;两直线平行,内错角相等;1平角=180°;等量代换.二、精讲精练第9题图第10题图1.50°2.60°3.60°;150°4.∠ACD,∠B;∠B;∠A5.50°;40°;80°6.40°;7.46°;8.已知;∠ABC,∠BCD;已知;等角的余角相等;BE,CF;内错角相等,两直线平行;9.已知;1平角=180°;∠2,∠DFE,同角的补角相等;AB,EF;内错角相等,两直线平行;两直线平行,内错角相等;已知;等量代换;DE,BC;同位角相等,两直线平行;两直线平行,同位角相等.10.已知;对顶角相等;等量代换;CE,BD;同位角相等,两直线平行;两直线平行,同位角相等;已知;等量代换;内错角相等,两直线平行;两直线平行,内错角相等.平行线与内角和的综合应用(随堂测试)1.已知:如图,AD与AB,CD交于A,D两点,EC,BF 与AB,CD交于E,F,且∠1=∠2,∠B=∠C.求证:∠A=∠D.证明:∵∠1=∠2()∠CGD=∠1()∴______=______(等量代换)∴CE//BF()∴_____=∠3()又∵∠B=∠C()∴∠3=______()∴____//_____()∴______=______()第1题图2.已知:如图,EF⊥BC,DE⊥AB,∠B=∠ADE.求证:AD∥EF.证明:∵EF⊥BC,DE⊥AB()∴∠EFB=∠AED=90°(垂直的性质)∴∠BEF+∠B=90°(直角三角形两锐角互余)∠BAD+∠ADE=90°()第2题图∵∠B=∠ADE()∴∠BEF=∠BAD()∴______∥______()【参考答案】1.已知;对顶角相等;∠CGD,∠2;同位角相等,两直线平行;∠C;两直线平行,同位角相等;已知;∠B;等量代换;AB,CD;内错角相等,两直线平行;∠A,∠D,两直线平行,内错角相等.2.已知,直角三角形两锐角互余;已知;等角的余角相等;同位角相等,两直线平行.平行线与三角形内角和的综合应用(作业)1.如图,三条直线AB ,CD ,EF 相交于点O ,∠AOF =3∠FOB ,∠AOC =90°,则∠EOC =.第1题图第2题图2.如图,在△ABC 中,DE ∥BC ,∠ADE =55°,∠1=25°,则∠DBE =________.3.如图,∠1+∠2=180°,∠3=90°,则∠4=______.4.如图,D 是△ABC 边BC 上的一点,∠1=∠B ,若∠ADC =60°,则∠BAC =_______.解:∵∠B +∠C +∠BAC =180°()∠1+∠C +∠ADC =180°()∵∠1=∠B ()∴∠BAC =∠ADC (等式的性质)∵∠ADC =60°()∴∠BAC =________()第4题图5.已知:如图,△ABC .求证:∠A +∠B +∠ACB =180°.证明:作BC 的延长线CE ,过点C 作CD ∥AB ,∵CD ∥AB ∴∠A =∠1()∠B =∠2()∵∠1+∠2+∠3=180°()∴∠A +∠B +∠ACB =180°()6.已知:如图,AB ∥CD ,∠BAE =∠DCE =45°.求证:∠E =90°.证明:∵AB ∥CD ()∴______+______=180°()∵∠BAE =∠DCE =45°()∴∠1+45°+∠2+45°=______即∠1+∠2=_______()∴∠E =180°-(∠1+∠2)=180°-90°=90°()7.已知:如图,∠1=∠ACB ,∠2=∠3.求证:CD ∥HF .证明:∵∠1=∠ACB ()∴____∥____()∴∠2=____()∵∠2=∠3()∴∠3=____()∴____∥____()第6题图第5题图第7题图【参考答案】1.45°;2.30°;3.90°;4.60°,三角形三个内角的和是180°三角形三个内角的和是180°;已知;已知;60°;等量代换.5.两直线平行,内错角相等;两直线平行,同位角相等;1平角=180°;等量代换.6.已知;∠BAC,∠ACD,两直线平行,同旁内角互补;已知;180°,90°,等式的性质;三角形三个内错的和等于180°;7.已知;DE,BC;同位角相等,两直线平行;∠DCB,两直线平行,内错角相等;已知;∠DCB,等量代换;CD,HF,同位角相等,两直线平行.三角形的外角(讲义)一、知识点睛1._________________________组成的角,叫做三角形的外角.2.三角形外角定理:三角形的一个外角等于____________________________________.已知:如图,∠2是△ABC的一个外角.求证:∠2=∠A+∠B证明:如图,∵∠A+∠B+∠1=180°()∠1+∠2=180°()∴∠2=∠A+∠B()二、精讲精练11.已知:如图,AC∥ED,∠C=25°,∠B=35°,则∠E的度数是()A.60°B.85°C.70°D.50°第1题图第2题图12.已知:如图,在△ABE中,D是边BE上一点,C是AE延长线上一点,连接CD,若∠BDC=140°,∠B=35°,∠C=25°,则∠A=.13.将一副直角三角板如图放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边重合,则α=________.14.如图,D 是AB 上一点,E 是AC 上一点,BE ,CD 相交于点F ,∠A =60°,∠ACD =35°,∠ABE =20°,则∠BDC =_____,∠BEC =_____.第4题图第5题图15.已知:如图,在△ABC 中,DE ∥BC ,F 是AB 上一点,FE 的延长线交BC 的延长线于点G ,∠A =45°,∠ADE =60°,∠CEG =40°,则∠EGH =______.16.如图,在△ABC 中,AD ⊥BC ,垂足为D ,AE 平分∠BAC ,BF 平分∠ABC ,它们相交于点O ,∠BAC =50°,∠C =70°,则∠DAC =____,∠AED =_____,∠BOE =______.17.已知:如图,在△ABC 中,∠B =∠C ,AD 平分外角∠EAC .求证:AD ∥BC .第6题图第7题图18.已知:如图,BE是∠ABC的平分线,AB∥CE,∠A=50°,∠E=30°,求∠ACD 的度数.解:∵AB∥CE()∴∠ABE=_______()∵∠E=30°()∴∠ABE=_______()∵BE是∠ABC的平分线()∴∠ABC=2∠ABE=2×30°=60°(角平分线的定义)∵∠ACD是△ABC的一个外角(外角的定义)∠A=50°()∴∠ACD=______+______=______+______=_______()19.已知:如图,在△ABC中,BD平分∠ABC,且∠ADE=∠C,求证:∠AED=2∠EDB证明:∵∠ADE=∠C()∴_____∥_____()∴∠EDB=∠DBC()∵BD平分∠ABC()∴∠EBD=∠DBC(角平分线的定义)∴∠EDB=∠EBD()∵∠AED是△BDE的一个外角()∴∠AED=_____+_____=2∠EDB()20.已知:如图,在△ABC中,CD平分∠ACB交AB于点D,∠ADE=∠B,DE交AC于点F,连接CE.求证:∠EFC=2∠FDC.第8题图第9题图第10题图【参考答案】一、知识点睛1.三角形的一边与另一边的延长线;2.和它不相邻的两个内角的和;三角形三个内角的和为180°;1平角=180°;等式性质.二、精讲精练1.A2.80°;3.75°;4.95°,80°;5.145°;6.20°,85°,55°;7.证明:如图,∵AD平分∠EAC(已知)∴∠EAC=2∠EAD(角平分线定义)∵∠EAC为△ABC的一个外角(外角的定义)∠B=∠C(已知)∴∠EAC=∠B+∠C=2∠B(三角形的一个外角等于和它不相邻的两个内角的和)∴∠EAD=∠B(等式性质)∴AD∥BC(同位角相等,两直线平行)8.已知;∠E,两直线平行,内错角相等;已知;30°,等量代换;已知;已知;∠A,∠ABC,50°,60°,110°,三角形的一个外角等于和它不相邻的两个内角的和;9.已知;DE,BC,同位角相等,两直线平行;两直线平行,内错角相等;已知;等量代换;外角的定义;∠EBD,∠EDB,三角形的一个外角等于和它不相邻的两个内角的和;10.证明:如图,∵∠B=∠ADE(已知)∴DE∥BC(同位角相等,两直线平行)∴∠FDC=∠DCB(两直线平行,内错角相等)∵CD平分∠ACB(已知)∴∠DCB=∠FCD(角平分线的定义)∴∠FDC=∠FCD(等量代换)∵∠EFC是△DFC的一个外角(外角的定义)∴∠EFC=∠FDC+∠FCD=2∠FDC(三角形的一个外角等于和它不相邻的两个内角的和)几何证明每日一题(三角形的外角)1.已知:如图,直线AD与直线EB、FC分别相交于点G,H,若∠BEF+∠CFE=180°,求证:∠A+∠B+∠C+∠D=180°.2.已知:如图,在△ABC中,BO平分∠ABC,CO平分∠ACB,若∠A=50°,求∠BOC的度数.3.已知:如图,在△ABC中,D是AB上一点,E是AC上一点,DE的延长线交BC的延长线于点F.若∠ACB=50°,∠DFB=30°,∠ADF=80°,求∠A的度数.∠BAC且AD平分∠EDF,若∠CFD=75°,则∠BED的度数为多少?若∠D=∠A+∠B,∠BFE=75°,∠G=35°,求∠EFG的度数.【参考答案】1.证明:如图,∵∠BEF+∠CFE=180°(已知)∴BE∥CF(同旁内角互补,两直线平行)∴∠BGH+∠CHG=180°(两直线平行,同旁内角互补)∵∠BGH是△ABG的一个外角(外角的定义)∴∠BGH=∠A+∠B(三角形的一个外角等于和它不相邻的两个内角的和)∵∠CHG是△CHD的一个外角(外角的定义)∴∠CHG=∠C+∠D(三角形的一个外角等于和它不相邻的两个内角的和)∴∠A+∠B+∠C+∠D=∠BGH+∠CHG=180°(等式性质)2.证明:如图,∵BO平分∠ABC,CO平分∠ACB(已知)∴∠OBC=12∠ABC,∠OCB=12∠ACB(角平分线的定义)∵∠A=50°(已知)∴∠BOC=180°-∠OBC-∠OCB=180°-12∠ABC-12∠ACB=180°-12(∠ABC+∠ACB)=180°-12(180°-∠A)=90°+12∠A=115°(三角形的三个内角的和等于180°)3.解:如图,∵∠ADF是△BDF的一个外角(外角的定义)∴∠ADF=∠B+∠DFB(三角形的一个外角等于和它不相邻的两个内角的和)∵∠ADF=80°,∠DFB=30°(已知)∴∠B=50°(等式性质)∵∠ACB=50°(已知)∴∠A=180°-∠B-∠ACB=180°-50°-50°=80°(三角形的三个内角的和等于180°)4.证明:如图,∵AD平分∠BAC且AD平分∠EDF(已知)∴∠FAD=∠EAD,∠FDA=∠EDA(角平分线的定义)∴∠FAD+∠FDA=∠EAD+∠EDA(等式性质)∵∠CFD是△ADF的一个外角(外角的定义)∴∠CFD=∠F AD+∠FDA(三角形的一个外角等于和它不相邻的两个内角的和)∵∠BED是△ADE的一个外角(外角的定义)∴∠BED=∠EAD+∠EDA(三角形的一个外角等于和它不相邻的两个内角的和)∴∠BED=∠CFD(等量代换)∵∠CFD=75°(已知)∴∠BED=75°(等量代换)5.证明:如图,∵∠ACF是△ABC的一个外角(外角的定义)∴∠ACF=∠A+∠B(三角形的一个外角等于和它不相邻的两个内角的和)∵∠D=∠A+∠B(已知)∴∠D=∠ACF(等量代换)∴BF∥DG(同位角相等,两直线平行)∴∠FEG=∠BFE(两直线平行,内错角相等)∵∠BFE=75°(已知)∴∠FEG=75°(等量代换)∵∠G=35°(已知)∴∠EFG=180°-∠FEG-∠G=180°-75°-35°=70°(三角形的三个内角的和等于180°)三角形的外角(随堂测试)1.如图,AB∥CD,EG与AB,CD分别交于F,G,∠A=30°,∠EGD=70°,求∠E 的度数.解:∵_____∥______()∴∠EFB=______()∵∠EGD=70°()∴∠EFB=_______()∵∠EFB是△AEF的一个外角()∴∠EFB=_______+_______()∵∠A=30°()∴∠E=______-________=______-________=_______()2.如图,BD是∠ABC的平分线,DE∥BC,交AB于点E,∠A=30°,∠BDC=60°,求∠BDE的度数.解:∵∠BDC是△ABD的一个外角()∴∠BDC=____+______()∵∠A=30°,∠BDC=60°()∴∠ABD=____-______=____-______=______()∵BD是∠ABC的平分线()∴∠DBC=∠ABD=_______()∵DE∥BC()∴∠BDE=______=_____()【参考答案】1.AB,CD,已知;∠EGD,两直线平行同位角相等;已知;70°,等量代换;外角的定义;∠A,∠E,三角形的一个外角等于和它不相邻的两个内角的和;已知;∠EFB,∠EAB,70°,30°,40°,等式性质.2.外角的定义;∠ABD,∠A,三角形的一个外角等于和它不相邻的两个内角的和;已知;∠BDC,∠A,60°,30°,30°,等式性质;已知;30°;角平分线的定义;已知;∠DBC,30°,两直线平行内错角相等.三角形的外角(作业)1.将一副直角三角板,按如图所示叠放在一起,则图中α的度数是()A.45°B.60°C.75°D.90°第1题图第2题图2.如图,在△ABC中,∠1是它的一个外角,E为AC上一点,延长BC到点D,连接DE.若∠1=115°,∠A=40°,∠2=35°,则∠3=_______.3.如图,AB∥CD,EG与AB,CD分别交于F,G,∠E=40°,∠CGE=110°,则∠A=_______.第3题图第4题图4.如图,在△ABC中,AD⊥BC,垂足为D,AE是∠BAC的平分线,若∠B=70°,∠C=30°,则∠BAD=_______,∠AED=_______.5.如图,在△ABC中,∠BAC=50°,∠C=60°,AD⊥BC,BE是∠ABC的平分线,AD,BE相交于点F,求∠AFB的度数.解:∵∠C=60°,∠BAC=50°()∴∠ABC=180°-_____-∠C=180°-50°-60°=70°()∵BE是∠ABC的平分线()∴∠EBD=12∠ABC=35°(角平分线的定义)∵AD⊥BC()∴∠ADB=90°(垂直的性质)∵∠AFB是△BDF的一个外角()∴∠AFB=______+_______=______+_______=________()6.填写下列解题过程中的推理根据:如图,在△ABC中,∠A=40°,BD平分∠ABC交AC于点D,∠BDC=70°,求∠C的度数.解:∵∠BDC是△ABD的一个外角()∴∠BDC=∠A+∠ABD()∵∠A=40°,∠BDC=70°()∴∠ABD=______()∵BD平分∠ABC()∴∠ABC=2∠ABD(角平分线的定义)∴∠ABC=60°()∴∠C=180°-∠A-∠ABC=180°-______-______=______()7.已知:E是AB,CD外一点,∠D=∠B+∠E,求证:AB∥CD.第6题图第5题图【参考答案】1.C;2.40°;3.30°;4.20°,70°;5.已知;∠BAC;三角形三个内角的和等于180°;已知;已知;外角的定义;∠FDB;∠FBD;90°;35°;125°;三角形的一个外角等于和它不相邻的两个内角的和;6.外角的定义;三角形的一个外角等于和它不相邻的两个内角的和;已知;30°;等式性质;已知;等式性质;40°;60°;80°;三角形三个内角的和等于180°;7.证明:如图,∵∠AFE是△FEB的一个外角(外角的定义)∴∠AFE=∠E+∠B(三角形的一个外角等于和它不相邻的两个内角的和)∵∠D=∠E+∠B(已知)∴∠AFE=∠D(等量代换)∴AB∥CD(同位角相等,两直线平行)全等三角形性质及判定(讲义)一、知识点睛1.由_____________________的三条线段_________________所组成的图形叫做三角形.三角形可用符号“__________”表示.2.三角形有关定理:三角形两边之和____________第三边,两边之差___________第三边.3._____________________的两个三角形叫做全等三角形,全等用符号“__________”表示.全等三角形的__________相等,____________相等.4.全等三角形的判定定理:______________________________.二、精讲精练1.作出下图三角形的高线.第1题图第2题图2.如图,△ABC≌△DEF,对应边AB=DE,____________,__________,对应角∠B=∠DEF,________,_________.3.如图,△ACO≌△BCO,对应边AC=BC,___________,__________,对应角∠1=∠2,__________,__________.第3题图第4题图4.如图,△ABC≌△DEC,对应边___________,___________,___________,对应角_______________,_______________,______________.5.如图,若AD=CB,AB=DC,则_________≌__________,理由是___________________;若∠B=∠D,∠BCA=∠DAC,则_________≌________,理由是___________.第5题图第6题图6.如图,AD,BC相交于点O,若AO=DO,BO=CO,则__________≌___________,理由是________________.7.如图,AO=BO,若加上一个条件_____________________,则△AOC≌△BOC,理由是_________________________.第7题图第8题图8.如图,∠1=∠2,若加上一个条件____________________,则△ABE≌△ACE,理由是_______________.9.如图,AD,BC相交于点O,∠A=∠C,若加上一个条件_______________,则△AOB≌△COD,理由是___________.10.如图,某同学把一块三角形的玻璃打碎成3块,现要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是()A.带①去B.带②去C.带③去D .①②③都带去第9题图11.如图,AB =AD ,∠1=∠2,要使△ABC ≌△ADE ,还需添加的条件是____________或____________或____________.第11题图第12题图12.如图,点B ,E ,C ,F 在一条直线上,在△ABC 与△DEF 中,AB =DE ,AC =DF ,如果∠__________=∠____________,则△ABC ≌△DEF ,所以BC =________,因此BE =________.13.如图,AE =BF ,AD ∥BC ,AD =BC ,则△ADF ≌_________,理由是__________,因此DF =__________.14.已知:如图,点D 在AB 上,点E 在AC 上,AB =AC ,∠B =∠C .求证:△ADC ≌△AEB .15.已知:如图,AB =CD ,AB //DC .试猜想AD 和BC 相等吗?并说明理由.第13题图第14题图第15题图16.已知:如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于D,DE⊥AB于E.求证:CD DE.第16题图三、回顾与思考________________________________________________________________________________________________________________________________________________________________________________________________【参考答案】一、知识点睛1.由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.三角形可用符号“△”表示.2.三角形有关定理:三角形两边之和大于第三边,两边之差小于第三边.3.能够完全重合的两个三角形叫做全等三角形,全等用符号“≌”表示.全等三角形的对应边相等,对应角相等.4.全等三角形的判定定理:SSS,SAS,ASA,AAS.二、精讲精练1.略2.AC=DF,BC=EF,∠A=∠D,∠ACB=∠F3.AO=BO,CO=CO,∠A=∠B,∠ACO=∠BCO4.AB=DE,AC=DC,BC=EC,∠A=∠D,∠B=∠E,∠ACB=∠DCE5.△ADC,△CBA,SSS,△ADC,△CBA,AAS6.△AOB,△DOC,SAS7.AC=BC,SSS(其它答案合理也可以)8.BE=CE,SAS(其它答案合理也可以)9.AO=OC,ASA(其它答案合理也可以)10.C11.AC=AE,∠B=∠D,∠C=∠E12.∠A=∠D,EF,CF13.△BCE,SAS,CE14.证明:在△ADC和△AEB中A AAC ABC B ∠=∠⎧⎪=⎨⎪∠=∠⎩(公共角)(已知)(已知)∴△ADC ≌△AEB (ASA )15.解:AD =BC ,理由如下:∵AB ∥DC ∴∠ABD =∠CDB 在△ABD 和△CDB 中=⎧⎪∠=∠⎨⎪=⎩AB CD ABD CDBBD DB (已知)(已证)(公共边)∴△ABD ≌△CDB (SAS )∴AD =CB (全等三角形对应边相等)16.解:∵AD 平分∠BAC∴∠CAD =∠EAD ∵DE ⊥AB ∴∠DEA =90°∵∠C =90°∴∠DEA =∠C 在△CAD 和△EAD 中C DEA CAD EADAD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩(已证)(已证)(公共边)∴△CAD ≌△EAD (AAS )∴CD =ED (全等三角形对应边相等)全等三角形性质及判定(每日一题)姓名_________ 1.已知:如图,DF=CE,AD=BC,∠D=∠C.求证:△AED≌△BFC.2.已知:如图,在等边三角形ABC中,∠C=∠ABD=60°,AB=BC=AC,点D,E分别为BC,AC边上一点且AE=CD,连接AD,BE相交于点F.求证:△ABD≌△BCE.3.已知:如图,AB=CD,AC=BD.求证:12∠=∠.4.如图,在正方形ABCD,DEFG中,AD=CD,DE=DG,∠EDG=∠ADC=90°,连接CG交AD于点N,连接AE交CG于点M.(1)求证:AE=CG;(2)观察图形,猜想AE与CG之间的位置关系,并证明你的猜想.考答案】1.证明:如图,∵DF =CE ∴DF -EF=CE -EF 即DE =CF在△AED 和△BFC 中AD BCD CDE CF (已知)(已知)(已证)=⎧⎪∠=∠⎨⎪=⎩∴△AED ≌△BFC (SAS )2.证明:如图,∵AC =BC AE =CD∴AC -AE =BC -CD 即CE =BD在△ABD 和△BCE 中AB BCABD CBD CE (已知)(已知)(已证)=⎧⎪∠=∠⎨⎪=⎩∴△ABD ≌△BCE (SAS )3.证明:如图,在△ABC 和△DCB 中AB CD AC BDBC BC (已知)(已知)(公共边)=⎧⎪=⎨⎪=⎩∴△ABC ≌△DCB (SSS )∴∠ABC =∠DCB ,∠ACB =∠DBC ∵∠1=∠ABC -∠DBC ∠2=∠DCB -∠ACB ∴∠1=∠24.证明:如图,(1)∵∠EDG =∠ADC∴∠EDG +∠ADG=∠ADC +∠ADG 即∠ADE =∠CDG 在△ADE 和△CDG 中AD CDADE CDGDE DG (已知)=(已证)(已知)=⎧⎪∠∠⎨⎪=⎩∴△ADE ≌△CDG (SAS )∴AE =CG (2)AE ⊥CG ∵∠ADC =90°∴∠GCD +∠CND =90°∵△ADE ≌△CDG ∴∠EAD =∠GCD ∵∠ANG =∠CND ∴∠EAD +∠ANG =90°∴∠AMC =90°即:AE ⊥CG全等三角形性质及判定(随堂测试)1.已知:如图,△ABC≌△DEF,对应边AB=DE,______________,_______________,对应角∠ABC=∠DEF,_______________,_______________.第1题图第2题图2.如图,∠BAD=∠CAE,AB=AD,若加上一个条件_______________,则△ABC≌△ADE,理由是_________.3.已知:如图,A,F,C,D在一直线上,AF=CD,AB∥DE,且AB=DE.求证:EC=BF.【参考答案】1.AC=DF BC=EF∠A=∠D∠C=∠F2.AE=AC SAS或者∠B=∠ADE ASA或者∠C=∠E AAS3.证明略全等三角形性质及判定(作业)1.作出下图三角形的高线.2.如图,△ABC≌△AEF,有以下结论:①AC=AE;②∠FAB=∠EAB;③EF=BC;④∠EAB=∠FAC.其中正确的个数是()A.1个B.2个C.3个D.4个第2题图第3题图3.如图,△ABC≌△DEF,对应边AB=DE,_____________,___________,对应角∠B=∠DEF,___________,__________.4.如图,点B,C,F,E在同一直线上,∠1=∠2,BC=EF,若加上一个条件______________________,则△ABC≌△DEF,理由是_______________.。

走进重高 培优测试八上 认识三角形1.1~1.3

走进重高 培优测试八上 认识三角形1.1~1.3

认识三角形(1.1~1.3)一、选择题(每题3分,共30分)1.若三角形的一个外角是锐角,则此三角形的形状是 ( )A .锐角三角形B .钝角三角形C .直角三角形D .无法确定2.已知一个三角形的两边长分别是2 cm 和9 cm ,且第三边长为奇数,则第三边长为 ( )cm A 5. cm B 7. cm C 9. cm D 11.3.有下列命题:①对顶角相等;②如果,02>x 那么;0>x ③两直线平行,同位角相等;④若|,|||b a = 则.b a =其中是真命题的有( )A .1个B .2个C .3个D .4个4.如图所示,已知AD 是△ABC 的边BC 上的中线,CE 是△ADC 的边AD 上的中线,若△ABD 的面积为,162cm 则△CDE 的面积为 ( )232.cm A 216.cm B 28.cm C 24.cm D(第4题) (第5题) (第6题) 5.如图所示,将△ABC 沿EF HG DE ,,翻折,三个顶点均落在点0处,若,1311 =∠则∠2的度数为( )49.A 50.B 51.C o D 52.6.如图所示,在△ABC 中,AD C B ,,,βαβα>=∠=∠是BC 边上的高线,AE 是BAC ∠的平分线,则DAE ∠的度数为( )βα-.A )(2.βα-B βα2.-C )(21.βα-D 7.如图所示,BD ,CE 分别是△ABC 的两条高线,它们交于点H ,则有下列式子:;A DHC ∠=∠① ;90 =∠+∠A EBH ② ;ABD ACE ∠=∠③.ABC ECB ∠=∠④其中正确的有( )A.1个 B .2个 C .3个 D .4个(第7题) (第8题) (第10题)8.如图所示,将四边形ABCD 沿EF 折叠,点A 落在点1A 处.若,10021o=∠+∠则∠A 的度数是( ) 80.A 60.B 50.C 40.D9.已知7条长度分别为整数721,,,a a a 的线段,它们中的任意三条都不能构成三角形,若<<=211a a43a a <,21765=<<<a a a 则6a 等于( )18.A 13.B 8.C 5.D10.如图所示,△ABC 的面积为1.第一次操作:分别延长CA BC AB ,,至点,,,111C B A 使C B AB B A 11,=,BC =,1CA A C =顺次连结,,,111C B A 得到;111C B A ∆第二次操作:分别延长111111,,A C C B B A 至点 ,,,222C B A 使,,,111211121112A C A C C B C B B A B A ===顺次连结,,,222C B A 得到 222C B A ∆按此规律,要使得到的三角形的面积超过2020,最少需要操作( )4.A 次5.B 次6.C 次7.D 次二、填空题(每题4分,共24分)11.如图所示,已知直线,25,115,// =∠=∠A C CD AB o 则=∠E __________.(第11题) (第12题) (第14题)12.日常生活中到处都存在着数学知识,只要同学们学会用数学的眼光观察生活,就会有许多意想不到的收获,已知以上两幅图都是由同一副三角尺拼凑得到的,则:(1)图1中的∠ABC 的度数为__________.(2)图2中,已知,//BC AE 则AFD ∠的度数为__________.13.若c b a ,,为△ABC 的三边,化简a c b a c b a 2||||+-+---结果是_________.14.如图所示,△AB E 和△ACD 是△ABC 分别沿着AB ,AC 边翻折180形成的,若,140 =∠BAC 则α∠的度数是_________.15.在△ABC 中,,70 =∠A 若点O 为三角形三边上的高线所在直线的交点,点0不与点B ,C 重合,则BOC ∠ 的度数是_______.16.如图所示,已知P 为△ABC 的边BC 上一点,△ABC 的面积为11,,C B a 分别为AB ,AC 上的中点,则11C PB ∆ 的面积为22,,4C B a 分别为C C B B 11,上的中点,则22C PB ∆的面积为33,,163C B a 分别为C C B B 22,上的中点,则33C PB ∆的面积为44,,647C B a 分别为C C B B 33,上的中点,则44C PB ∆的面积为..25615 ⋅a 按此规律可知,77C PB ∆的面积为_________.(第16题)三、解答题(共66分)17.(6分)在△ABC 中,.30, =∠-∠∠=∠+∠A B C B A (1)求C B A ∠∠∠,,的度数.(2)△ABC 按角分类,属于什么三角形?△,ABC 按边分类,属于什么三角形?18.(8分)如图所示,点A 在直线MN 上,点B 在直线PQ 上,连结AB ,过点A 作AB AC ⊥交PQ 于点C ,过点B 作BD 平分∠ABC 交AC 于点D ,且.90=∠+∠ABC NAC(1)求证:.//PQ MN(2)若,10 +∠=∠NAC ABC 求ADB ∠的度数.(第18题)19.(8分)如图所示,0是△ABC 的三条内角平分线的交点,.BC OE ⊥(1)若,80,60 =∠=∠ACB BAC 则=∠BOD ________=∠EOC ,_________.(2)试猜想BOD ∠与EOC ∠之间的大小关系,并证明你的结论.(第19题)20.(10分)已知4条线段的总长度是48 cm ,且第一条线段的长是a(cm),第二条线段比第一条线段的2倍多3 cm ,第三条线段的长等于第一、二两条线段的和.(1)用含a 的代数式表示第四条线段的长.(2)当38=a 时,这4条线段首尾相接能构成一个四边形吗?为什么? (3)已知口为整数,如果这4条线段首尾相接能构成一个四边形,请你直接写出满足上述条件的所有a 的值.21.(10分)如图所示,AD 为△ABC 的中线,BE 为△ABD 的中线.(1)若,35,15=∠=∠BAD ABE 求BED ∠的度数.(2)在△BED 中作BD 边上的高线.(3)若△ABC 的面积为,5,60=BD 求点E 到BC 边的距离.(第21题)22.(12分)如图1所示,已知面积为12的长方形ABCD ,边AB 在数轴上.点A 表示的数为-2,点B 表示的数为1,动点P 从点B 出发,以每秒1个单位长度的速度沿数轴向左匀速运动,设点P 运动时间为 ).0)((>t s t(1)长方形的边AD 长为____个单位长度.(2)当△ADP 面积为3时,点P 在数轴上表示的数是多少?(3)如图2所示,若动点Q 以每秒3个单位长度的速度,从点A 沿数轴向右匀速运动,与点P 出发时间相同,那么当BPC BDQ ∆∆,两者面积之差为21时,直接写出运动时间t 的值.(第22题)23.(12分)如图1所示,已知线段AB ,CD 相交于点O ,连结AC ,BD ,我们把形如这样的图形称为“8字型”.(1)求证:.D B C A ∠+∠=∠+∠(2)如图2所示,若BDC CAB ∠∠和的平分线AP 和DP 相交于点P ,且与CD ,AB 分别相交于点M,N . ①以线段AC 为边的“8字型”有_______个,以点O 为交点的“8字型”有______个.②若,120,100 =∠=∠C B 求P ∠的度数,③若将角的关系改为,31,31”“CDB CDP CAB CAP ∠=∠∠=∠试探究C B P ∠∠∠,与之间存在的数量关系,并说明理由.(第23题)答案。

第1章三角形的初步认识 讲义-浙教版八年级数学上册

第1章三角形的初步认识 讲义-浙教版八年级数学上册

三角形的初步认识责编:审核:辅导科目数学学生姓名授课老师上课课次授课日期班型1.理解三角形相关概念及其分类.2.理解三角形的边,角,三线的相关概念及定理.3.掌握尺规作图并能按要求作出图形及辅助线.4.掌握全等三角形的概念,性质与判定.5.理解定义,命题,证明相关概念,能判断命题真假,掌握几何证明正确的书写格式.一、三角形及其相关概念1.定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2.相关概念(1)边:组成三角形的三条线段,叫做三角形的边.(2)顶点:在三角形中,相邻两边的公共端点叫做三角形的顶点.(3)角:在三角形中,相邻两边所组成的在三角形内部的角叫做三角形的内角.(4)外角:三角形的一边与另一边的延长线组成的角,就叫做三角形的外角.教学目标知识梳理3.表示方法:顶点是A 、B 、C 的三角形,记作△ABC ,读作“三角形ABC ”.4.分类:三角形可以按内角的大小进行分类5.三角形的角(1)三角形的内角和等于180°.(2)三角形的外角等于与它不相邻的两个内角的和.(3)三角形的一个外角大于任何一个和它不相邻的内角.6.三角形的三边关系三角形任意两边之和大于第三边,三角形任意两边之差小于第三边.要点诠释:(1)理论依据:两点之间线段最短.(2)三边关系的应用:判断三条线段能否组成三角形,若两条较短的线段长之和大于最长线段的长,则这三条线段可以组成三角形;反之,则不能组成三角形.(3)证明线段之间的不等关系.7.三角形中的重要线段(1)高:从三角形的一个顶点向它的对边画垂线,顶点和垂足间的线段.(2)中线:连接三角形一个顶点和它的对边中点的线段.⎧⎪⎧⎨⎨⎪⎩⎩直角三角形三角形 锐角三角形斜三角形 钝角三角形(3)角平分线:一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段.【注】(1)三角形的三条中线交于三角形的内部.(2)三角形的三条角平分线交于三角形的内部.(3)锐角三角形的高都在三角形内部;直角三角形其中两条高恰好是直角边;钝角三角形其中两条高在三角形外部.1.将一副直角三角板如图放置,使两直角边重合,则∠α的度数为( D ).A.75°B.105°C.135°D.165°2.已知,如图,D、B、C、E四点共线,∠ABD+∠ACE=230°,则∠A的度数为__30°___.3.已知三角形的两边长分别为3和4,则第三边长x的范围是__1<x<7______.4.下列长度的三条线段能组成三角形的是( C ).A.2cm,3cm,6cmB.3cm,4cm,7cmC.5cm,6cm,8cmD.7cm,8cm,16cm5.若线段AM、AN分别是△ABC中BC边上的高线和中线,则( D ).A.AM>ANB.AM>AN或AM=ANC.AM<AND.AM<AN或AM=AN6.如图,在△ABC中,∠ACB=90°,CD⊥AD,垂足为点D,有下列说法:①点A与点B的距离是线段AB的长;②点A到直线CD的距离是线段AD的长;③线段CD是△ABC边AB上的高;④线段CD是△BCD边BD上的高.上述说法中,正确的个数为( D )A.1个 B.2个 C.3个D.4个二、定义、命题与证明1.定义:一般地,能清楚的规定某一名称或术语的意义的句子叫做该名称或术语的定义.2.命题:一般地,判断某一件事情的句子叫命题.正确的命题叫做真命题;不正确的命题叫做假命题.【注】(1)命题通常由条件、结论两个部分组成,条件是已知事项,结论是由已知事项得到的事项.通常命题可以写成“如果……那么……”的形式,其中以“如果“开始的部分是条件,”那么“后面的部分是结论.(2)命题属于判断句或陈述句,是对一件事情作出判断,与判断的正确与否没有关系.当证明一个命题是假命题时只要举出一个反例就可以.3.基本事实:人们经过长期实践后公认为正确的命题,作为判断其他命题的依据,也可称为公理.4.定理:用推理的方法判断为正确的命题.定理也可以作为判断其他命题真假的依据.【注】满足以下两个条件的真命题称为定理:(1)其正确性可通过公理或其它真命题逻辑推理而得到.(2)其又可作为判断其它命题真假的依据.5.证明:从命题的条件出发,根据已知的定义、基本事实、定理(包括推论),一步一步推得结论成立,这样的推理过程叫做证明.证明几何命题时,表述格式一般如下:(1)按题意画出图形;(2)分清命题的条件和结论,结合图形,在“已知”中写出条件,在“求证”中写出结论;(3)在“证明”中写出推理过程.【注】在解决几何问题时,有时需要添加辅助线,添辅助线的过程要写入证明中,辅助线通常要画出虚线.7.下列语句中,哪些是命题,哪些不是命题?(1)若,则;(2)三角形的三条高交于一点;(3)在△ABC 中,若AB >AC ,则∠C >∠B 吗?(4)两点之间线段最短;(5)解方程;(6)1+2≠3.【答案】(1)(2)(4)(6)是命题. 8.下列命题中,真命题的个数有( A )①对顶角相等 ②同位角相等 ③4的平方根是2 ④若a >b ,则-2a >-2bA .1个B .2个C .3个D .4个三、全等三角形的概念和性质1.全等图形:能够重合的两个图形叫做全等图形.【注】(1)全等形⇔形状相同、大小都相等;(2)平移、旋转、轴对称前后的图形是全等形.2.全等三角形:能够重合的两个三角形叫做全等三角形.3.对应点、对应边、对应角两个全等三角形重合在一起,重合的顶点叫对应顶点,重合的边叫对应边,重合的角叫对应角. 在写两个三角形全等时,通常把对应顶点的字母写在对应位置上,这样容易找出对应边、对应角.如下图,△ABC 与△DEF 全等,记作△ABC ≌△DEF ,“≌”读作“全等于”.其中点A 和点D ,点B 和a b <<-b a -2230x x --=点E,点C和点F是对应顶点;AB和DE,BC和EF,AC和DF是对应边;∠A和∠D,∠B和∠E,∠C 和∠F是对应角.4.全等三角形的性质(1)全等三角形的对应边相等,对应角相等.(2)全等三角形对应边上的高、中线以对应角的角平分线相等.(3)全等三角形的周长相等,面积相等.9.请观察下图中的6组图案,其中是全等形的是__(1)(4)(5)(6)________.10.如图,△ABC≌△AEF,那么与∠EAC相等的角是( B )A.∠ACB B. ∠BAF C. ∠CAF D. ∠AFE11.下列命题中:(1)形状相同的两个三角形是全等形;(2)在两个全等三角形中,相等的角是对应角,相等的边是对应边;(3)全等三角形对应边上的高、中线及对应角平分线分别相等,其中真命题的个数有( C )A.3个B.2个C.1个D.0个12.如图,△ABE和△ADC是△ABC分别沿着AB,AC翻折180°形成的,若∠1∶∠2∶∠3=28∶5∶3,∠α的度数是___80°___.四、全等三角形的判定1.三边对应相等的两个三角形全等.(可以简写成“边边边”或“SSS ”).如图,如果=AB ,=AC ,=BC ,则ABC △≌△.2.两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS ”).如图,如果AB =,A ∠=∠,AC =,则ABC △≌△.【注】(1)这里的角,指的是两组对应边的夹角. (2)有两边和其中一边的对角对应相等,两个三角形不一定全等.3.两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA ”).如图,如果A ∠=∠'A ,AB =''A B ,B ∠=∠'B ,则ABC △≌△'''A B C .''A B ''A C ''B C '''A BC ''A B 'A ''A C '''A BC4.两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS ”). 由三角形的内角和等于180°可得两个三角形的第三对角对应相等.这样就可由“角边角”判定两个三角形全等,也就是说,用角边角条件可以证明角角边条件,后者是前者的推论.5.三角形全等的证明思路(1)⎩⎨⎧→→SSSSAS 找第三边找夹角已知两边(2)⎩⎨⎧→→AAS ASA找除夹边外的任一边找夹边已知两角(3)⎪⎪⎩⎪⎪⎨⎧→→⎪⎩⎪⎨⎧→→→AAS ASA SAS AAS 找任一角边为角的对边找边上另一角找角的另一边找边的对角边为角的一边已知一边一角13.如图,∠E=∠F=90°,∠B=∠C ,AE=AF ,给出下列结论∶①BE=CF;②∠1=∠2;③△ACN ≌△ABM; ④CD=AE.其中正确的结论有( C ).A.1个B.2个C.3个D.4个14.在△ABC 中,已知∠A=60°,∠ABC 的平分线BD 与∠ACB 的平分线CE 相交于点0,∠BOC的平分线交BC 于F ,则下列说法中正确的是___①③④_______.①∠BOE=60° ②∠ABD=∠ACE③OE=OD ④BC=BE+CD.15.如图所示,AC=DB ,∠B=∠C ,求证:AB=CD.【解析】延长AB 、DC 相交于点M ,∵∠B= ∠C,∴∠DBM= ∠ACM .在△DBM 和△ACM 中,⎪⎩⎪⎨⎧=∠=∠∠=∠AC DB ACMDBM M M ∴△DBM≌△ACM(AAS).∵DM= AM,MB=MC.∴AM-BM=DM-CM,∴AB=CD.五、角平分线和中垂线的性质定理1.角平分线(1)性质定理:角平分线上的点到角的两边的距离相等.用符号语言表示角的平分线的性质定理:若CD 平分∠ADB ,点P 是CD 上一点,且PE ⊥AD 于点E ,PF ⊥BD 于点F ,则PE =PF.(2)性质定理的逆定理:角的内部到角两边距离相等的点在角的平分线上.如图,点P 是∠ADB 内CD 上的一点,且PE ⊥AD 于点E ,PF ⊥BD 于点F ,PE=PF ,则CD 平分∠ADB.2.中垂线(1)定义:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫线段的中垂线.(2)性质定理:垂直平分线上的点与这条线段两个端点的距离相等.(3)性质定理的逆定理:到线段两个端点距离相等的点,在这条线段的垂直平分线上.16.在直角△AB C中,∠C=90°,AD平分∠BAC交BC于点D,若CD=4,则点D到斜边AB的距离为___4____.17.已知,如图,△ABC中,AB=AC,AD是角平分线,BE=CF,下列说法正确的有__4______个.①DA平分∠EDF; ②△EBD≌△FCD; ③△AED≌△AFD; ④AD垂直于BC.18.如图所示,DE是线段AB的垂直平分线,下列结论一定成立的是( D ).A.ED=CD B.∠DAC=∠B C.∠C>2∠B D.∠B+∠ADE=90°19.如图所示,在△ABC 中,∠BAC=130°,AB 的垂直平分线ME 交BC 于点M ,交AB 于点E ,AC 的垂直平分线NF 交 BC 于点N ,交AC 于点F ,则∠MAN 为( A ).A.80°B. 70°C.60°D.50°六、尺规作图1.角平分线的尺规作图(1)以O 为圆心,适当长为半径画弧,交OA 于D ,交OB 于E.(2)分别以D 、E 为圆心,大于12DE 的长为半径画弧,两弧在∠AOB 内部交于点C. (3)画射线OC ,射线OC 即为所求.2.线段的垂直平分线的尺规作图(1)分别以点A ,B 为圆心,以大于AB 的长为半径作弧,两弧相交于C ,D 两点; (2)作直线CD ,CD 即为所求直线.21。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一讲 认识三角形例 1 有四条线段,长度分别为,12,10,8,4cm cm cm cm 选其中三条组成三角形,试问可以组成多少个三角形?例2 如图,将△ABC 沿着平行于BC 的直线折叠,使点A 落到点/A 处,折痕为DE.若,15,115 =∠=∠A C 则DB A /∠的度数为例3 如图,在△ABC 中,已知点D ,E ,F 分别是边BC ,AD ,CE 上的中点,且,1=∆BEF s 求⋅∆ABC s例4 如图:(1)图1是一个五角星,求∠++∠∠∠+DE+CBA∠的度数.(2)将图1中的点A向下移到BE上(如图2),五个角的和有无变化?说说你的理由.(3)将图2中的点C 向上移到BD上(如图3),五个角的和有无变化?说说你的理由,例5已知直线MN与直线PQ垂直相交于点o,点A在直线PQ上运动,点B在直线MN上运动.(1)如图1,已知AE,BE分别是∠BAO和∠ABO的平分线,点A,B在运动的过程中,∠AEB的大小是否会发生变化?若发生变化,请说明变化的情况;若不发生变化,试求出∠AEB的大小.(2)如图2,已知AB不平行于CD,AD,BC分别是∠BAP和∠ABM的平分线,DE ,CE分别是∠ADC和∠BCD 的平分线,点A,B在运动的过程中,∠CED的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出其值.(3)如图3,延长BA至点G,已知∠BAO,∠OAG的平分线分别与∠BOQ的平分线及延长线相交于点E,F,在△AEF中,如果有一个角是另一个角的3倍,请直接写出∠ABO的度数.例 如图1,已知线段AB ,CD 相交于点O ,连结AC ,BD ,我们把形如这样的图形称为“8字形”.(1)求证:.D B C A ∠+∠=∠+∠(2)如图2,若∠CAB 和∠BDC 的平分线AP 和DP 相交于点P ,且与CD ,AB 分别相交于点M ,N . ①以线段AC 为边的“8字形”有_______个,以0为交点的“8字形”有________个.②若,120,100 =∠=∠C B 求∠P 的度数. ③当CDB CDP CAB CAP ∠=∠∠=∠31,31时,试探究C B P ∠∠∠,与之间存在的数量关系,并说明理由,拓展训练A 组1.以下列长度的线段为边,能够组成三角形的是( ).9,6,3.A 9,5,3.B 4,6,2.C 9,6,4.D2.在△ABC 中,,3:2:1::=∠∠∠C B A 则△ABC 是( ).A .钝角三角形B .锐角三角形C .直角三角形D .不能确定形状3.在△ABC 中,B C A ∠∠∠与,的外角度数如图,则x 的值是( ).60.A 65.B 70.C 80.D(第3题)4.下面给出的四个三角形都有一部分被遮挡,其中不能确定三角形类型的是( ).5.已知三角形的三边长分别为,10,,2x 若x 为正整数,则这样的三角形的个数为( ).1.A2.B3.C4.D6.三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”,如果一个“特征三角形”的“特征角”为,110那么这个“特征三角形”的最小内角的度数为7.小亮家离学校,1km 小明家离学校,3km 如果小亮家与小明家相距),(km x 那么x 的取值范围是_______.8.如图,△ABC 三边的中线CF BE AD ,,交于点G ,若,12=∆ABC s 则阴影部分的面积是________.(第8题) (第9题) 9.如图,已知,28,34,142 =∠=∠=∠C B BDC 则=∠A _________.10.把长度分别为cm cm cm 8,15,20的三根木棒搭成一个三角形.(1)若把cm 20的木棒换成cm 7的木棒能否搭成一个三角形?(2)若把cm 20的木棒换成cm 5的木棒能否搭成一个三角形?(3)把cm 20的木棒换成什么范围内的木棒能搭成一个三角形?11.如图,已知AB DF ⊥于点,50,40, =∠=∠D A F 求∠ACB 的度数.(第11题)12.如图,在△ABC 中,,ABC A ∠=∠直线EF 分别交△ABC 的边AB ,AC 和CB 的延长线于点.,,F F D(1)求证:.2A FEC F ∠=∠+∠(2)过点B 作AC BM //交FD 于点M ,试探究FEC F MBC ∠+∠∠与的数量关系,并证明你的结论.(第12题)B 组13.下面不能组成三角形的三条线段是( ).cm c cm b a A 1,100.=== cm c b a B 3.===cm c b a c 332.=== cm a cm a c cm a b D 2,)1(,)1(.=+=+=14.如图,在△ABC 中,ABC A ∠=∠,52与ACB ∠的平分线交于点11,ABD D ∠与1ACD ∠的平分线交于点,2D 依此类推,4ABD ∠与4ACD ∠的平分线交于点,5D 则C BD 5∠的度数是( ). 60.A 56.B 94.C 68.D(第14题) (第15题) (第16题)15.如图,△ABC 和△DEF 有一部分重叠在一起(图中阴影部分),重叠部分的面积是△ABC 面积的,72是 △DEF 面积的,31且△ABC 与△DEF 面积之和为26,则重叠部分的面积是__________.16.如图,点G 是△AFE 的两外角平分线的交点,点P 是△ABC 的两外角平分线的交点,点F ,C 在AM 上,又点B ,E 在AN 上,如果,66 =∠FGE 那么=∠P ________.17.在△ABC 中,已知.40 =∠A(1)如图1,若两内角ACB ABC ∠∠,的平分线交于点P ,则=∠P ______p A ∠∠与,之间的数量关系是__________为什么有这样的关系?请证明它.(2)如图2,若内角∠ABC、外角∠AC E 的平分线交于点P ,则=∠P ________P A ∠∠与,之间的数量关系是_________.为什么有这样的关系?请证明它.(3)如图3,若两外角FCB EBC ∠∠,的平分线交于点P ,则=∠P ________A ∠,与P ∠之间的数量关系是_________.(第17题) 18.如图1,在△ABC 中,AD 是高线,AE 是∠BAC 的平分线,.70,40 =∠=∠ACB ABC(1)求∠EAD 的度数.(2)当βα=∠=∠ACB ABC ,时,请用βα,表示∠EAD ,并写出推导过程.(3)当,,βα=∠=∠ACB ABC AE 是∠BAC 的外角∠FAC 的平分线时,如图2,∠EAD 的度数是多少?(用βα,表示,直接写出结果)(第18题)走进重高1.【贵阳】如图,在△ABC 中,有四条线段DE ,BE ,EF ,FG ,其中有一条线段是△ABC 的中线,则该线段是( ).A.线段DE B .线段BE C .线段EF D .线段FG(第1题)2.【长春】如图,在△ABC 中,CD 平分么ACB 交AB 于点D ,过点D 作BC DE //交AC 于点E .若,48,54 =∠=∠B A 则∠CDE 的大小为( ).44.A 40.B 39.C 38.D(第2题) (第3题) (第5题)3.【聊城】如图,将一张三角形纸片ABC 的一角折叠,使点A 落在△ABC 外的点/A 处,折痕为DE .如果 ,,,//γβα=∠=∠=∠BDA CEA A 那么下列式子中正确的是( ).βαγ+=2.A βαγ2.+=B βαγ+=.C βαγ--= 180.D4.【巴中】若c b a ,,为三角形的三边,且a ,b 满足,0)2(92=-+-b a 第三边c 为奇数,则c=__________.5.【临海】如 图,若C A B ,,40 =∠分别为角两边上的任意一点,连结BAC AC ∠,与∠ACB 的平分线交于点,1P 则=∠1P________,D ,F 也为角两边上的任意一点,连结BFD DF ∠,与∠FDB 的平分线交于点 2P 按这样的规律,则=∠2016P ___________.6.如图是一张三角形纸片ABC ,其中.C A ∠=∠(1)把△ABC 纸片按如图1所示折叠,使点A 落在AC 边上的点F 处,DE 是折痕,证明.//DF BC(2)把△ABC 纸片沿DE 折叠,当点A 落在四边形BCED 内时(如图2),探究+∠∠1与C 2∠之间的大小关系,并说明理由.(3)当点A 落在四边形BCED 外时(如图3),2,1∠∠∠与C 的关系是________.(直接写出结论)(第6题)高分夺冠1.如图,在△ABC 中,点D 在BC 上,点0在AD 上,如果BO D AO B S s ∆∆=,3,1,2==∆Aco S 那么COD S ∆等于( ). 31.A 21.B 23.C 32.D (第1题)2.将长度为25 cm 的细铁丝折成边长都是质数(单位:cm)的三角形,若这样的三角形的三边的长分别是,,,c b a 且满足,c b a ≤≤则),,(c b a 有________组解,所构成的三角形都是________三角形.3.如图,点D ,C ,G 在同一直线上,BE 平分∠ABD 交AC 于点E ,CF 平分∠ACG ,BE 延长线与CF 相交于点F ,若,100,160 =∠=∠A BDC 则=∠F _____度.(第3题)4.已知△ABC 的面积是60,请回答下列问题:(1)如图1,若AD 是△ABC 的BC 边上的中线,则△ABD 的面积_______(填“>”“<”或“一”)△ACD的面积.(2)如图2,若CD ,BE 分别是△ABC 的AB ,AC 边上的中线,求四边形ADOE 的面积可以用如下方法:连结AO ,由DB AD =得,BDO ADO s s ∆∆=同理可得⋅=∆∆AEO CEo s s 设,x s BDo =∆,y s CEo =∆则⋅==∆∆y S x S AEO O D A , 由题意得,3021,3021====∆∆∆∆ABC ADC ABC ABE s S S S 可列方程组为 ⎩⎨⎧=+=+,302,302y x y x 解得________,则四边形ADOE 的面积为______ (3)如图,2:1:,3:1:,3==AE CE DB AD 请你计算四边形ADOE 的面积,并说明理由.(第4题) 5.已知在同一平面上有n 个点(n n ,3≥为自然数),其中任何三点都不在同一直线上.证明:一定存在三点,以这三点作为顶点的三角形中至少有一个内角不大于⋅n180答案。

相关文档
最新文档