核心考点十二 含参函数在区间上具有单调性、无单调性或存在单调区间,求参数范围

合集下载

新教材人教A版必修第一册 3.2.1 第1课时 函数的单调性 课件(48张)

新教材人教A版必修第一册 3.2.1  第1课时 函数的单调性 课件(48张)

核心概念掌握
核心素养形成
随堂水平达标
课后课时精练
7.图象变换对单调性的影响 (1)上下平移不影响单调区间,即 y=f(x)和 y=f(x)+b 的单调区间相同. (2)左右平移影响单调区间.如 y=x2 的单调递减区间为(-∞,0];y=(x +1)2 的单调递减区间为(-∞,-1]. (3)y=k·f(x),当 k>0 时单调区间与 f(x)相同,当 k<0 时单调区间与 f(x)相 反.
随堂水平达标
课后课时精练
2.做一做(请把正确的答案写在横线上) (1)已知函数 f(x)=x 的图象如图 1 所示,从左至右图象是上升的还是下降 的:________. (2)已知函数 y=f(x)的图象如图 2 所示,则该函数的单调递增区间是 ________,单调递减区间是________.
核心概念掌握
核心概念掌握
核心素养形成
随堂水平达标
课后课时精练
答案
金版点睛 定义法证明单调性的步骤
判断函数的单调性常用定义法和图象法,而证明函数的单调性则应严格 按照单调性的定义操作.
利用定义法判断函数的单调性的步骤为:
核心概念掌握
核心素养形成
随堂水平达标
课后课时精练
注意:对单调递增的判断,当 x1<x2 时,都有 f(x1)<f(x2),也可以用一个 不等式来替代:
核心概念掌握
核心素养形成
随堂水平达标
课后课时精练
3.单调区间 (1)这个区间可以是整个定义域.如 y=x 在整个定义域(-∞,+∞)上单 调递增, y=-x 在整个定义域(-∞,+∞)上单调递减; (2)这个区间也可以是定义域的真子集.如 y=x2 在定义域(-∞,+∞) 上不具有单调性,但在(-∞,0]上单调递减,在[0,+∞)上单调递增. 4.函数在某个区间上单调递增(减),但是在整个定义域上不一定都是单 调递增(减).如函数 y=1x(x≠0)在区间(-∞,0)和(0,+∞)上都单调递减, 但是在整个定义域上不具有单调性.

2014高考复习——函数的单调性与最值

2014高考复习——函数的单调性与最值

§2.2 函数的单调性与最值复习备考要这样做 1.从数、形两种角度理解函数的单调性与最值;2.判断复合函数的单调性;3.含参函数的最值,对参数进行讨论.1.函数的单调性 (1)单调函数的定义(2)若函数y =f (x )在区间D 上是增函数或减函数,则称函数y =f (x)在这一区间具有(严格的)单调性,区间D 叫作函数y =f (x )的单调区间. 2.函数的最值[难点正本 疑点清源] 1.函数的单调性是局部性质函数的单调性,从定义上看,是指函数在定义域的某个子区间上的单调性,是局部的特征.在某个区间上单调,在整个定义域上不一定单调.2.函数的单调区间的求法函数的单调区间是函数定义域的子区间,所以求解函数的单调区间,必须先求出函数的定义域.对于基本初等函数的单调区间可以直接利用已知结论求解,如二次函数、对数函数、指数函数等;如果是复合函数,应根据复合函数的单调性的判断方法,首先判断两个简单函数的单调性,再根据“同则增,异则减”的法则求解函数的单调区间. 3.单调区间的表示单调区间只能用区间表示,不能用集合或不等式表示;如有多个单调区间应分别写,不能用并集符号“∪”联结,也不能用“或”联结.1.若函数f (x )=|2x +a |的单调递增区间是[3,+∞),则a =________. 2.函数f (x )=log 5(2x +1)的单调增区间是______________. 3.(课本改编题)函数f (x )=2xx +1在[1,2]的最大值和最小值分别是__________. 4.已知函数y =f (x )在R 上是减函数,A (0,-2)、B (-3,2)在其图像上,则不等式-2<f (x )<2的解集为________. 5.如果函数f (x )=ax 2+2x -3在区间(-∞,4)上是单调递增的,则实数a 的取值范围是( )A .a >-14B .a ≥-14C .-14≤a <0D .-14≤a ≤0答案 (1) -6 (2) ⎝⎛⎭⎫-12,+∞ (3) 43,1 (4) (-3,0) (5) D题型一 函数单调性的判断例1 试讨论函数f (x )=axx -1 (a ≠0)在(-1,1)上的单调性.思维启迪:可利用定义或导数法讨论函数的单调性.(也可分类常数)解 设-1<x 1<x 2<1,当a >0时,f (x 1)-f (x 2)>0,即f (x 1)>f (x 2),函数f (x )在(-1,1)上递减; 当a <0时,f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),函数f (x )在(-1,1)上递增.探究提高 证明函数的单调性用定义法的步骤:取值—作差—变形—确定符号—下结论.(1)已知a >0,函数f (x )=x +ax (x >0),证明函数f (x )在(0,a ]上是减函数,在[a ,+∞)上是增函数;(2)求函数y =x 2+x -6的单调区间.答案(1)证明 (略)(2)y =x 2+x -6的单调减区间为(-∞,-3],单调增区间为[2,+∞). 题型二 利用函数单调性求参数例2 若函数f (x )=ax -1x +1在(-∞,-1)上是减函数,求实数a 的取值范围.思维启迪:利用函数的单调性求参数的取值范围,解题思路为视参数为已知数,依据函数的图像或单调性定义,确定函数的单调区间,与已知单调区间比较求参.答案 a 的取值范围是(-∞,-1).探究提高 已知函数的单调性确定参数的值或范围,可以通过解不等式或转化为不等式 恒成立问题求解;需注意的是,若函数在区间[a ,b ]上是单调的,则该函数在此区间的任意子集上也是单调的.(1)若函数f (x )=(2a -1)x +b 是R 上的减函数,则a 的取值范围为____________. (2)函数y =x -5x -a -2在(-1,+∞)上单调递增,则a 的取值范围是( )A .a =-3B .a <3C .a ≤-3D .a ≥-3答案 (1)⎝⎛⎭⎫-∞,12 (2)C 题型三 利用函数的单调性求最值例3 已知函数f (x )对于任意x ,y ∈R ,总有f (x )+f (y )=f (x +y ),且当x >0时,f (x )<0,f (1)=-23.(1)求证:f (x )在R 上是减函数; (2)求f (x )在[-3,3]上的最大值和最小值.思维启迪:问题(1)对于抽象函数的问题要根据题设及所求的结论来适当取特殊值,证明f (x )为单调减函数的首选方法是用单调性的定义来证.问题(2)用函数的单调性即可求最值.探究提高 对于抽象函数的单调性的判断仍然要紧扣单调性的定义,结合题目所给性质和相应的条件,对任意x 1,x 2在所给区间内比较f (x 1)-f (x 2)与0的大小,或f (x 1)f (x 2)与1的大小.有时根据需要,需作适当的变形:如x 1=x 2·x 1x 2或x 1=x 2+x 1-x 2等;利用函数单调性可以求函数最值.已知定义在区间(0,+∞)上的函数f (x )满足f ⎝⎛⎭⎫x 1x 2=f (x 1)-f (x 2),且当x >1时,f (x )<0.(1)求f (1)的值; (2)判断f (x )的单调性;(3)若f (3)=-1,求f (x )在[2,9]上的最小值.忽视函数的定义域典例:(10分)求函数y =log 13(x 2-3x )的单调区间.温馨提醒 函数的单调区间是函数定义域的子区间,所以求解函数的单调区间,必须先求出函数的定义域.如果是复合函数,应该根据复合函数单调性的判断方法,首先判断两个简单函数的单调性,根据同增异减的法则求解函数的单调区间.由于思维定势的原因,容易忽视定义域,导致错误.函数的单调性与最值典例:(12分)函数f (x )对任意的m 、n ∈R ,都有f (m +n )=f (m )+f (n )-1,并且x >0时,恒有f (x )>1.(1)求证:f (x )在R 上是增函数; (2)若f (3)=4,解不等式f (a 2+a -5)<2.审题视角 (1)对于抽象函数的单调性的证明,只能用定义.应该构造出f (x 2)-f (x 1)并与0比较大小.(2)将函数不等式中的抽象函数符号“f ”运用单调性“去掉”是本小题的切入点.要构造出f (M )<f (N )的形式.规范解答(1)证明 设x 1<x 2,∴x 2-x 1>0, ∵当x >0时,f (x )>1,∴f (x 2-x 1)>1.[2分] f (x 2)=f [(x 2-x 1)+x 1]=f (x 2-x 1)+f (x 1)-1,[4分] ∴f (x 2)-f (x 1)=f (x 2-x 1)-1>0⇒f (x 1)<f (x 2), ∴f (x )在R 上为增函数.[6分]解函数不等式问题的一般步骤:第一步:确定函数f (x )在给定区间上的单调性; 第二步:将函数不等式转化为f (M )<f (N )的形式;第三步:运用函数的单调性“去掉”函数的抽象符号“f ”, 转化成一般的不等式或不等式组; 第四步:解不等式或不等式组确定解集;第五步:反思回顾.查看关键点,易错点及解题规范.温馨提醒 本题对函数的单调性的判断是一个关键点.不会运用条件x >0时,f (x )>1.构造不出f (x 2)-f (x 1)=f (x 2-x 1)-1的形式,找不到问题的突破口.第二个关键应该是将不等式化为f (M )<f (N )的形式.解决此类问题的易错点:忽视M 、N 的取值范围,即忽视f (x )所在的单调区间的约束.方法与技巧1. 可以根据定义判断或证明函数的单调性. 2. 求函数的单调区间:首先应注意函数的定义域,函数的单调区间都是其定义域的子集;其次掌握一次函数、二次函数等基本初等函数的单调区间.常用方法:根据定义,利用图像和单调函数的性质;利用导数的性质. 3. 复合函数的单调性——简称:同增异减. 失误与防范1. 函数的单调区间是指函数在定义域内的某个区间上单调递增或单调递减.单调区间要分开写,即使在两个区间上的单调性相同,也不能用并集表示.2. 函数f (x )、g (x )在x ∈(a ,b )上都是增(减)函数,则f (x )+g (x )也为增(减)函数,但f (x )·g (x ),1f (x )等的单调性与其正负有关,切不可盲目类比.(2)解 ∵m ,n ∈R ,不妨设m =n =1, ∴f (1+1)=f (1)+f (1)-1⇒f (2)=2f (1)-1,[8分]f (3)=4⇒f (2+1)=4⇒f (2)+f (1)-1=4⇒3f (1)-2=4,∴f (1)=2,∴f (a 2+a -5)<2=f (1),[10分] ∵f (x )在R 上为增函数,∴a 2+a -5<1⇒-3<a <2,即a ∈(-3,2).[12分]A 组 专项基础训练 (时间:35分钟,满分:57分)一、选择题(每小题5分,共20分)1. 下列函数中,在(-∞,0)上为增函数的是( )A .y =1-x 2B .y =x 2+2xC .y =11+xD .y =xx -1答案 A解析 ∵y =1-x 2的对称轴为x =0,且开口向下, ∴(-∞,0)为其单调递增区间.2. 已知函数f (x )=2ax 2+4(a -3)x +5在区间(-∞,3)上是减函数,则a 的取值范围是( )A.⎝⎛⎭⎫0,34 B.⎝⎛⎤0,34 C.⎣⎡⎭⎫0,34D.⎣⎡⎦⎤0,34 答案 D解析 当a =0时,f (x )=-12x +5,在(-∞,3)上是减函数; 当a ≠0时,由⎩⎪⎨⎪⎧a >0-4(a -3)4a ≥3,得0<a ≤34.综上,a 的取值范围是0≤a ≤34.3. 已知f (x )=⎩⎪⎨⎪⎧a x(x >1),⎝⎛⎭⎫4-a 2x +2 (x ≤1)是R 上的单调递增函数,则实数a 的取值范围为( )A .(1,+∞)B .[4,8)C .(4,8)D .(1,8)答案 B解析 因为f (x )是R 上的单调递增函数,所以可得⎩⎪⎨⎪⎧a >1,4-a 2>0,a ≥4-a 2+2.解得4≤a <8,故选B.4. 给定函数①y =x 12,②y =log 12(x +1),③y =|x -1|,④y =2x +1,其中在区间(0,1)上单调递减的函数的序号是( )A .①②B .②③C .③④D .①④答案 B解析 ①函数y =x 12在(0,+∞)上为增函数,故在(0,1)上也为增函数;②y =log 12(x +1)在(-1,+∞)上为减函数,故在(0,1)上也为减函数;③y =|x -1|在(0,1)上为减函数;④y =2x+1在(-∞,+∞)上为增函数,故在(0,1)上也为增函数.二、填空题(每小题5分,共15分)5. f (x )=x 2-2x (x ∈[-2,4])的单调增区间为__________;f (x )max =________.答案 [1,4] 8解析 函数f (x )的对称轴:x =1,单调增区间为[1,4], f (x )max =f (-2)=f (4)=8.6. 函数f (x )=ln(4+3x -x 2)的单调递减区间是__________.答案 ⎣⎡⎭⎫32,4解析 函数f (x )的定义域是(-1,4),u (x )=-x 2+3x +4=-⎝⎛⎭⎫x -322+254的减区间为⎣⎡⎭⎫32,4,∵e>1, ∴函数f (x )的单调递减区间为⎣⎡⎭⎫32,4.7. 若函数f (x )=a |x -b |+2在[0,+∞)上为增函数,则实数a 、b 的取值范围是____________.答案 a >0且b ≤0解析 要使f (x )在[0,+∞)上为增函数,则a >0且x -b ≥0恒成立,即b ≤x ,∴b ≤0. 三、解答题(共22分)8.(10分)已知函数f (x )=1a -1x(a >0,x >0),(1)求证:f (x )在(0,+∞)上是单调递增函数; (2)若f (x )在⎣⎡⎦⎤12,2上的值域是⎣⎡⎦⎤12,2,求a 的值. (1)证明 设x 2>x 1>0,则x 2-x 1>0,x 1x 2>0, ∵f (x 2)-f (x 1)=⎝⎛⎭⎫1a -1x 2-⎝⎛⎭⎫1a -1x 1=1x 1-1x 2=x 2-x 1x 1x 2>0, ∴f (x 2)>f (x 1),∴f (x )在(0,+∞)上是单调递增函数. (2)解 ∵f (x )在⎣⎡⎦⎤12,2上的值域是⎣⎡⎦⎤12,2, 又f (x )在⎣⎡⎦⎤12,2上单调递增,∴f ⎝⎛⎭⎫12=12,f (2)=2.∴易得a =25. 9.(12分)已知函数f (x )=x 2+ax(x ≠0,a ∈R ).(1)判断函数f (x )的奇偶性;(2)若f (x )在区间[2,+∞)上是增函数,求实数a 的取值范围. 解 (1)当a =0时,f (x )=x 2(x ≠0)为偶函数; 当a ≠0时,f (-x )≠f (x ),f (-x )≠-f (x ), ∴f (x )既不是奇函数也不是偶函数.(2)设x 2>x 1≥2,则f (x 1)-f (x 2)=x 21+a x 1-x 22-a x 2 =x 1-x 2x 1x 2[x 1x 2(x 1+x 2)-a ], 由x 2>x 1≥2,得x 1x 2(x 1+x 2)>16,x 1-x 2<0, x 1x 2>0.要使f (x )在区间[2,+∞)上是增函数, 只需f (x 1)-f (x 2)<0,即x 1x 2(x 1+x 2)-a >0恒成立,则a ≤16.B 组 专项能力提升 (时间:25分钟,满分:43分)一、选择题(每小题5分,共20分)1. 已知函数f (x )=x 2-2ax +a 在区间(-∞,1)上有最小值,则函数g (x )=f (x )x在区间(1,+∞)上一定( )A .有最小值B .有最大值C .是减函数D .是增函数答案 D解析 由题意知a <1,∴g (x )=f (x )x =x +ax -2a ,当a <0时,显然g (x )在区间(1,+∞)上单调递增, 当a >0时,g (x )在[a ,+∞)上是增函数, 故在(1,+∞)上为增函数, ∴g (x )在(1,+∞)上一定是增函数.2. 已知定义在R 上的增函数f (x ),满足f (-x )+f (x )=0,x 1,x 2,x 3∈R ,且x 1+x 2>0,x 2+x 3>0,x 3+x 1>0,则f (x 1)+f (x 2)+f (x 3)的值( )A .一定大于0B .一定小于0C .等于0D .正负都有可能答案 A解析 ∵f (-x )+f (x )=0,∴f (-x )=-f (x ). 又∵x 1+x 2>0,x 2+x 3>0,x 3+x 1>0, ∴x 1>-x 2,x 2>-x 3,x 3>-x 1. 又∵f (x 1)>f (-x 2)=-f (x 2),f (x 2)>f (-x 3)=-f (x 3),f (x 3)>f (-x 1)=-f (x 1), ∴f (x 1)+f (x 2)+f (x 3)>-f (x 2)-f (x 3)-f (x 1). ∴f (x 1)+f (x 2)+f (x 3)>0.3. 已知函数f (x )=⎩⎪⎨⎪⎧x 2+4x , x ≥0,4x -x 2, x <0,若f (2-a 2)>f (a ),则实数a 的取值范围是 ( ) A .(-1,2) B .(-∞,-1)∪(2,+∞) C .(-2,1)D .(-∞,-2)∪(1,+∞)答案 C解析 由题意知f (x )在R 上是增函数, 由题意得2-a 2>a ,解得-2<a <1. 二、填空题(每小题5分,共15分)4. 设函数f (x )=ax +1x +2a在区间(-2,+∞)上是增函数,那么a 的取值范围是__________.答案 [1,+∞)解析 f (x )=ax +2a 2-2a 2+1x +2a =a -2a 2-1x +2a ,其对称中心为(-2a ,a ).∴⎩⎪⎨⎪⎧ 2a 2-1>0-2a ≤-2⇒⎩⎪⎨⎪⎧2a 2-1>0a ≥1⇒a ≥1. 5. 已知f (x )为R 上的减函数,则满足f ⎝⎛⎭⎫⎪⎪⎪⎪1x <f (1)的实数x 的取值范围是______________. 答案 (-1,0)∪(0,1)解析 由f ⎝⎛⎭⎫⎪⎪⎪⎪1x <f (1),得⎪⎪⎪⎪1x >1, ∴1x >1或1x<-1,∴0<x <1或-1<x <0. 6. 设x 1,x 2为y =f (x )的定义域内的任意两个变量,有以下几个命题:①(x 1-x 2)[f (x 1)-f (x 2)]>0; ②(x 1-x 2)[f (x 1)-f (x 2)]<0; ③f (x 1)-f (x 2)x 1-x 2>0;④f (x 1)-f (x 2)x 1-x 2<0.其中能推出函数y =f (x )为增函数的命题为________.(填序号)答案 ①③解析 依据增函数的定义可知,对于①③,当自变量增大时,相对应的函数值也增大,所以①③可推出函数y =f (x )为增函数. 三、解答题7. (13分)已知f (x )是定义在[-1,1]上的奇函数,且f (1)=1,若a ,b ∈[-1,1],a +b ≠0时,有f (a )+f (b )a +b>0成立.(1)判断f (x )在[-1,1]上的单调性,并证明它; (2)解不等式:f (x +12)<f (1x -1);(3)若f (x )≤m 2-2am +1对所有的a ∈[-1,1]恒成立,求实数m 的取值范围. 解 (1)任取x 1,x 2∈[-1,1],且x 1<x 2, 则-x 2∈[-1,1],∵f (x )为奇函数, ∴f (x 1)-f (x 2)=f (x 1)+f (-x 2) =f (x 1)+f (-x 2)x 1+(-x 2)·(x 1-x 2),由已知得f (x 1)+f (-x 2)x 1+(-x 2)>0,x 1-x 2<0,∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2). ∴f (x )在[-1,1]上单调递增. (2)∵f (x )在[-1,1]上单调递增,∴⎩⎪⎨⎪⎧x +12<1x -1,-1≤x +12≤1,-1≤1x -1≤1.∴-32≤x <-1.(3)∵f (1)=1,f (x )在[-1,1]上单调递增. ∴在[-1,1]上,f (x )≤1. 问题转化为m 2-2am +1≥1,即m 2-2am ≥0,对a ∈[-1,1]恒成立. 设g (a )=-2m ·a +m 2≥0.①若m =0,则g (a )=0≥0,对a ∈[-1,1]恒成立.②若m ≠0,则g (a )为a 的一次函数,若g (a )≥0,对a ∈[-1,1]恒成立,必须有g (-1)≥0且g (1)≥0, ∴m ≤-2或m ≥2.∴m 的取值范围是m =0或m ≥2或m ≤-2.。

2021届高三高考数学理科一轮复习知识点专题2-2 函数的单调性与最值【含答案】

2021届高三高考数学理科一轮复习知识点专题2-2 函数的单调性与最值【含答案】

2021届高三高考数学理科一轮复习知识点专题2.2 函数的单调性与最值【核心素养分析】1.理解函数的单调性、最大(小)值及其几何意义.2.会运用基本初等函数的图象分析函数的性质.3.培养学生数学抽象、逻辑推理、直观想象能力。

【重点知识梳理】知识点一函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数f(x)的定义域为I,如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是增函数当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间D上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的(2)单调区间的定义如果函数y=f(x)在区间D上是增函数或减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间.知识点二函数的最值前提设函数y=f(x)的定义域为I,如果存在实数M满足条件(1)对于任意的x∈I,都有f(x)≤M;(3)对于任意的x∈I,都有f(x)≥M;(2)存在x 0∈I ,使得f (x 0)=M(4)存在x 0∈I ,使得f (x 0)=M 结论M 为最大值M 为最小值【特别提醒】1.函数y =f (x )(f (x )>0)在公共定义域内与y =-f (x ),y =1f (x )的单调性相反. 2.“对勾函数”y =x +ax (a >0)的单调增区间为(-∞,-a ),(a ,+∞);单调减区间是[-a ,0),(0,a ].【典型题分析】高频考点一 确定不含参函数的单调性(区间)例1.(2020·新课标Ⅱ)设函数()ln |21|ln |21|f x x x =+--,则f (x )( ) A. 是偶函数,且在1(,)2+∞单调递增B. 是奇函数,且在11(,)22-单调递减C. 是偶函数,且在1(,)2-∞-单调递增D. 是奇函数,且在1(,)2-∞-单调递减【答案】D【解析】由()ln 21ln 21f x x x =+--得()f x 定义域为12x x ⎧⎫≠±⎨⎬⎩⎭,关于坐标原点对称,又()()ln 12ln 21ln 21ln 21f x x x x x f x -=----=--+=-,()f x ∴为定义域上的奇函数,可排除AC ;当11,22x ⎛⎫∈-⎪⎝⎭时,()()()ln 21ln 12f x x x =+--, ()ln 21y x =+在11,22⎛⎫- ⎪⎝⎭上单调递增,()ln 12y x =-在11,22⎛⎫- ⎪⎝⎭上单调递减,()f x ∴在11,22⎛⎫- ⎪⎝⎭上单调递增,排除B ; 当1,2x ⎛⎫∈-∞-⎪⎝⎭时,()()()212ln 21ln 12ln ln 12121x f x x x x x +⎛⎫=----==+ ⎪--⎝⎭,2121x μ=+-在1,2⎛⎫-∞- ⎪⎝⎭上单调递减,()ln f μμ=在定义域内单调递增,根据复合函数单调性可知:()f x 在1,2⎛⎫-∞-⎪⎝⎭上单调递减,D 正确. 【举一反三】(2020·山东青岛二中模拟)函数y =x 2+x -6的单调递增区间为________,单调递减区间为________.【答案】[2,+∞) (-∞,-3] 【解析】令u =x 2+x -6,则y =x 2+x -6可以看作是由y =u 与u =x 2+x -6复合而成的函数. 令u =x 2+x -6≥0,得x ≤-3或x ≥2.易知u =x 2+x -6在(-∞,-3]上是减函数,在[2,+∞)上是增函数,而y =u 在[0,+∞)上是增函数, 所以y =x 2+x -6的单调减区间为(-∞,-3],单调增区间为[2,+∞)。

关于含参函数单调性问题导数解法的研究

关于含参函数单调性问题导数解法的研究

问题 4 ( 201 3 江 苏 高 考 第 20 题 )设 函 数 () 若函数在 ( 上是单调减 1, =ln - , + ɕ) 求实数 函数 , 的范围 .
2 导数与函数单调性关系深层次探究
我们知道 , 定义 2 给复杂函数单调性的判断 带来了极大的便利 , 但使用其解决关于单调性的 逆向问题时 , 则有点力不从心 . 因为逆向问题的解 当然充要条件 决至少应考虑单调 性 的 必 要 条 件 , 更好 . 华东师大《 数 学 分 析 》教 材 ( 高等教育出版 社, 1 99 1 年版 )对于这个问题给出的答案是 : 定理 若函数 ( ) 在区间 ( ,) 内可导 , 则 ( )在区间 ( ,)内 严 格 递 增 ( 递 减 )的 充 要 条 ,有 ᶄ( ) ≥ ∈ ( ,) ;( ᶄ( )≤ 0 ) 0( 2 )在 ( ,)的 任 何 子 区 间 上 ᶄ( )不恒为 0 . 需说明 的 是 : ( 1 )这 里 的 严 格 递 增 指 高 中 教 材中所说的递增 , 即对应定义 1 ; ( 2 )此 定 理 的 证 所以教参 明需涉及超出高中 知 识 范 畴 的 新 知 识 , 中的不必深究应是 指 此 原 因 , 但实际教学中完全 可以由具体实例引导学生直观得到并理解这一定 理, 如可由æ=
( 象去直观阐述 ; 3 )定理中 ( 2 )事实上是指 ᶄ( ) 离 散解 ) 综 . = 0 在区间 ( ,)上至多只有孤立解 ( 上, 若已知含参 函 数 在 某 开 区 间 上 的 单 调 性 求 参 数范围问题 , 完全可以等价地转化为求同时满足 下列两个条件的新问题 : ᶄ( ) = 0 在此区间上至 多有孤立解和 ᶄ( ) 在此区间上 ᶄ( ) ≥ 0( ≤ 0) 恒成立 . 具体讨论如下 : 2. 1 导数解决含参函数单调性问题的策略一 对于问题 2 , 令æ 若 ≤ 0, 此 ᶄ=3 2 - 1 =0 , - 1 < 0 在( - ɕ, 显然符合 ; 若 > 0, 方程 根为 + ɕ )上都成立 ,

第二章 函数与基本初等函数1

第二章 函数与基本初等函数1

第1讲函数及其表示【2013年高考会这样考】1.主要考查函数的定义域、值域、解析式的求法.2.考查分段函数的简单应用.3.由于函数的基础性强,渗透面广,所以会与其他知识结合考查.【复习指导】正确理解函数的概念是学好函数的关键,函数的概念比较抽象,应通过适量练习弥补理解的缺陷,纠正理解上的错误.本讲复习还应掌握:(1)求函数的定义域的方法;(2)求函数解析式的基本方法;(3)分段函数及其应用.基础梳理1.函数的基本概念(1)函数的定义:设A、B是非空数集,如果按照某种确定的对应关系f,使对于集合A中的一个数x,在集合B中都有确定的数f(x)和它对应,那么称f:A→B为从集合A到集合B的一个函数,记作:y=f(x),x∈A.(2)函数的定义域、值域在函数y=f(x),x∈A中,x叫自变量,x的取值范围A叫做,与x的值对应的y值叫函数值,函数值的集合{f(x)|x∈A}叫值域.值域是集合B的子集.(3)函数的三要素:定义域、值域和对应关系.(4)相等函数:如果两个函数的定义域和完全一致,则这两个函数相等;这是判断两函数相等的依据.2.函数的三种表示方法表示函数的常用方法有:解析法、列表法、.3.映射的概念一般地,设A、B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A 中的任意一个元素x ,在集合B 中都有 确定的元素y 与之对应,那么就称对应f :A →B 为从集合A 到集合B 的一个映射.一个方法求复合函数y =f (t ),t =q (x )的定义域的方法:①若y =f (t )的定义域为(a ,b ),则解不等式得a <q (x )<b 即可求出y =f (q (x ))的定义域;②若y =f (g (x ))的定义域为(a ,b ),则求出g (x )的值域即为f (t )的定义域. 两个防范(1)解决函数问题,必须优先考虑函数的定义域. (2)用换元法解题时,应注意换元前后的等价性. 三个要素函数的三要素是:定义域、值域和对应关系.值域是由函数的定义域和对应关系所确定的.两个函数的定义域和对应关系完全一致时,则认为两个函数相等.函数是特殊的映射,映射f :A →B 的三要素是两个集合A 、B 和对应关系f .双基自测1.函数f (x )=log 2(3x +1)的值域为( ).A .(0,+∞)B .[0,+∞)C .(1,+∞)D .[1,+∞) 2.若f (x )=1log 12(2x +1),则f (x )的定义域为( ).A.⎝ ⎛⎭⎪⎫-12,0B.⎝ ⎛⎦⎥⎤-12,0C.⎝ ⎛⎭⎪⎫-12,+∞ D .(0,+∞) 3.下列各对函数中,表示同一函数的是( ).A .f (x )=lg x 2,g (x )=2lg x B .f (x )=lg x +1x -1,g (x )=lg(x +1)-lg(x -1)C .f (u )=1+u1-u ,g (v )= 1+v1-vD .f (x )=(x )2,g (x )=x 2 4.某学校要召开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于6时再增选一名代表.那么,各班可推选代表人数y 与该班人数x 之间的函数关系用取整函数y =[x ]([x ]表示不大于x 的最大整数)可以表示为( ).A .y =⎣⎢⎡⎦⎥⎤x 10 B .y =⎣⎢⎡⎦⎥⎤x +310C .y =⎣⎢⎡⎦⎥⎤x +410 D .y =⎣⎢⎡⎦⎥⎤x +510 5.函数y =f (x )的图象如图所示.那么,f (x )的定义域是________;值域是________;其中只与x 的一个值对应的y 值的范围是________.考向一 求函数的定义域【例1】►求下列函数的定义域: (1)f (x )=|x -2|-1log 2(x -1);(2)f (x )=ln (x +1)-x 2-3x +4.【训练1】 (1)已知f (x )的定义域为⎣⎢⎡⎦⎥⎤-12,12,求函数y =f ⎝ ⎛⎭⎪⎫x 2-x -12的定义域;(2)已知函数f (3-2x )的定义域为[-1,2],求f (x )的定义域.考向二 求函数的解析式【例2】►(1)已知f ⎝ ⎛⎭⎪⎫2x +1=lg x ,求f (x );(2)定义在(-1,1)内的函数f (x )满足2f (x )-f (-x )=lg(x +1),求函数f (x )的解析式.【训练2】 (1)已知f (x )是二次函数,若f (0)=0,且f (x +1)=f (x )+x +1,试求f (x )的表达式.(2)已知f (x )+2f (1x )=2x +1,求f (x ).考向三 分段函数【例3】设函数f (x )=⎩⎨⎧21-x,x ≤1,1-log 2x ,x >1,则满足f (x )≤2的x 的取值范围是( ).A .[-1,2]B .[0,2]C .[1,+∞)D .[0,+∞)【训练3】已知实数a ≠0,函数f (x )=⎩⎨⎧2x +a ,x <1,-x -2a ,x ≥1.若f (1-a )=f (1+a ),则a 的值为________.阅卷报告1——忽视函数的定义域【问题诊断】 函数的单调区间是函数定义域的子区间,所以求解函数的单调区间,必须先求出函数的定义域.如果是复合函数,应该根据复合函数单调性的判断方法,首先判断两个简单函数的单调性,根据同增异减的法则求解函数的单调区间.由于思维定势的原因,考生容易忽视定义域,导致错误.【防范措施】研究函数的任何问题时,把求函数的定义域放在首位,即遵循“定义域优先”的原则.【示例】►求函数y=log 13(x2-3x)的单调区间.【试一试】求函数f(x)=log2(x2-2x-3)的单调区间.第2讲函数的单调性与最值【2013年高考会这样考】1.考查求函数单调性和最值的基本方法.2.利用函数的单调性求单调区间.3.利用函数的单调性求最值和参数的取值范围.【复习指导】本讲复习首先回扣课本,从“数”与“形”两个角度来把握函数的单调性和最值的概念,复习中重点掌握:(1)函数单调性的判断及其应用;(2)求函数最值的各种基本方法;对常见题型的解法要熟练掌握.基础梳理1.函数的单调性(1)单调函数的定义增函数 减函数定义一般地,设函数f (x )的定义域为I .如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1,x 2当x 1<x 2时,都有 ,那么就说函数f (x )在区间D 上是增函数当x 1<x 2时,都有 ,那么就说函数f (x )在区间D 上是减函数图象 描述自左向右图象是上升的自左向右图象是下降的(2)单调区间的定义若函数f (x )在区间D 上是增函数或减函数,则称函数f (x )在这一区间上具有(严格的)单调性,区间D 叫做f (x )的单调区间. 2.函数的最值前提设函数y =f (x )的定义域为I ,如果存在实数M 满足条件 .①对于任意x ∈I ,都有f (x )≤M ; ①对于任意x ∈I ,都有f (x )≥M ;②存在x 0∈I ,使得f (x 0)=M②存在x 0∈I ,使得f (x 0)=M . 结论M 为最大值M 为最小值一个防范函数的单调性是对某个区间而言的,所以要受到区间的限制.例如函数y =1x 分别在(-∞,0),(0,+∞)内都是单调递减的,但不能说它在整个定义域即(-∞,0)∪(0,+∞)内单调递减,只能分开写,即函数的单调减区间为(-∞,0)和(0,+∞),不能用“∪”连接. 两种形式设任意x 1,x 2∈[a ,b ]且x 1<x 2,那么①f (x 1)-f (x 2)x 1-x 2>0⇔f (x )在[a ,b ]上是增函数;f (x 1)-f (x 2)x 1-x 2<0⇔f (x )在[a ,b ]上是减函数.②(x 1-x 2)[f (x 1)-f (x 2)]>0⇔f (x )在[a ,b ]上是增函数;(x 1-x 2)[f (x 1)-f (x 2)]<0⇔f (x )在[a ,b ]上是减函数. 两条结论(1)闭区间上的连续函数一定存在最大值和最小值.当函数在闭区间上单调时最值一定在端点取到.(2)开区间上的“单峰”函数一定存在最大(小)值. 四种方法函数单调性的判断(1)定义法:取值、作差、变形、定号、下结论.(2)复合法:同增异减,即内外函数的单调性相同时,为增函数,不同时为减函数.(3)导数法:利用导数研究函数的单调性. (4)图象法:利用图象研究函数的单调性.双基自测1.设f (x )为奇函数,且在(-∞,0)内是减函数,f (-2)=0,则xf (x )<0的解集为 A .(-2,0)∪(2,+∞) B .(-∞,-2)∪(0,2) C .(-∞,-2)∪(2,+∞) D .(-2,0)∪(0,2)2.已知函数f (x )=e x -1,g (x )=-x 2+4x -3.若有f (a )=g (b ),则b 的取值范围为( ).A .[2-2,2+2]B .(2-2,2+2)C .[1,3]D .(1,3)3.已知f (x )为R 上的减函数,则满足f ⎝ ⎛⎭⎪⎫⎪⎪⎪⎪⎪⎪1x <f (1)的实数x 的取值范围是( ).A .(-1,1)B .(0,1)C .(-1,0)∪(0,1)D .(-∞,-1)∪(1,+∞) 4.函数f (x )=log 5(2x +1)的单调增区间是______. 5.若x >0,则x +2x 的最小值为________.考向一函数的单调性的判断【例1】►试讨论函数f(x)=xx2+1的单调性.【训练1】讨论函数f(x)=axx-1(a≠0)在(-1,1)上的单调性.考向二利用已知函数的单调区间求参数的值(或范围)【例2】►已知函数f(x)=x2+ax(a>0)在(2,+∞)上递增,求实数a的取值范围.【训练2】函数y=x-5x-a-2在(-1,+∞)上单调递增,则a的取值范围是A.a=-3 B.a<3 C.a≤-3 D.a≥-3考向三 利用函数的单调性求最值【例3】►已知函数f (x )对于任意x ,y ∈R ,总有f (x )+f (y )=f (x +y ),且当x >0时,f (x )<0,f (1)=-23. (1)求证:f (x )在R 上是减函数; (2)求f (x )在[-3,3]上的最大值和最小值.【训练3】 已知定义在区间(0,+∞)上的函数f (x )满足f ⎝ ⎛⎭⎪⎫x 1x 2=f (x 1)-f (x 2),且当x >1时,f (x )<0. (1)求f (1)的值; (2)判断f (x )的单调性;(3)若f (3)=-1,求f (x )在[2,9]上的最小值.规范解答2——如何解不等式恒成立问题【问题研究】在恒成立的条件下,如何确定参数的范围是历年来高考考查的重点内容,近年来在新课标地区的高考命题中,由于三角函数、数列、导数知识的渗透,使原来的分离参数法、根的分布法增添了思维难度,因而含参数不等式的恒成立问题常出现在综合题的位置.【解决方案】解决这类问题的关键是将恒成立问题进行等价转化,使之转化为函数的最值问题,或者区间根的分布问题,进而运用最值原理或者区间根原理使问题获解,常用方法还有函数性质法,分离参数法等.【示例】►(本题满分12分)已知函数f(x)=x2-2ax+2,当x∈[-1,+∞)时,f(x)≥a 恒成立,求a的取值范围.【试一试】当x∈(1,2)时,不等式x2+mx+4<0恒成立,则m的取值范围是_____ 第3讲函数的奇偶性与周期性【2013年高考会这样考】1.判断函数的奇偶性.2.利用函数奇偶性、周期性求函数值及求参数值.3.考查函数的单调性与奇偶性的综合应用.【复习指导】本讲复习时应结合具体实例和函数的图象,理解函数的奇偶性、周期性的概念,明确它们在研究函数中的作用和功能.重点解决综合利用函数的性质解决有关问题.基础梳理1.奇、偶函数的概念一般地,如果对于函数f(x)的定义域内任意一个x,都有,那么函数f(x)就叫做偶函数.一般地,如果对于函数f(x)的定义域内任意一个x,都有,那么函数f(x)就叫做奇函数.奇函数的图象关于原点对称;偶函数的图象关于y轴对称.2.奇、偶函数的性质(1)奇函数在关于原点对称的区间上的单调性,偶函数在关于原点对称的区间上的单调性。

函数的性质

函数的性质

一、单调性1)定义说明:①函数的单调性与定义的区间有关,它是函数的局部性质②因函数的单调性是对区间而言,单独点没有增减变化,所以考虑区间的单调性时,可以不包括端点③初等函数均可分段单调2)函数的单调性与函数的图象之间的关系①()f x 是增(减)函数⇔图象自左到右上升(下降)②图象的峰(谷)⇔函数增(减)变减(增)点⇔函数的极大(小)值点 3)确定函数单调区间的常用方法有: ①观察法;②图象法(即通过画出函数图象,观察图象,确定单调区间); ③定义法(取值、作差、变形、定号、下结论); ④求导法(以后学习)二、奇偶性和周期性1)奇函数、偶函数的定义说明①一个函数有奇偶性的必要条件是它的定义域关于原点对称. ②函数不一定具有奇偶性.③函数的奇偶性是整个定义域上的性质.(整体性质) ④注意点:a.常数函数的奇偶性:(1)()()0f x c c =≠⇒偶函数(2)()0f x =⇒奇且偶函数b.判定奇偶性时,灵活应用等价形式,如:()()()()0,1f x f x f x f x ±-==±-等2)函数的奇、偶性与函数的图像:①函数()f x 是奇函数⇔函数图像关于原点对称; ②函数()f x 是偶函数⇔函数图像关于y 轴对称. 3)判断方法以及常用结论①判断函数的奇偶性,一般有三种方法:(1)定义法;(2)图象法;(3)性质法. ②三条结论a.若有()()2f a x f x -=或()()2f x f a x -=+,则()y f x =的图象关于直线x a =对称.b.若有()()2f a x f x -=,且()()2f b x f x -=(其中a b <),则:()y f x =是以()2b a -为周期的周期函数.c.若()()f x a f x +=-或()()1f x a f x +=或()()1f x a f x +=-,那么函数()f x 是周期函数,其中一个周期为2T a =;d.若()()()f x a f x b a b +=+≠,那么函数()f x 是周期函数,其中一个周期为2T a b =-.三、复合函数单调性1)明白复合函数的构成原理:如果y 是x 的函数()y f g x =⎡⎤⎣⎦,这时y 叫做x 的复合函数,其中u 叫做中间变量,()y f u =叫做外层函数,()u g x =叫做内层函数.只有当外层函数()f u 的定义域与内层函数()g x 的值域的交集非空时才能构成复合函数()y f g x =⎡⎤⎣⎦.2)单调性规律:同增异减,即内外函数的单调性相同时,为增函数,不同时为减函数.四、总结提高如何解决奇偶性、单调性、周期性的交汇问题(尽量画示意图) 1)函数的奇偶性主要体现为()f x 与()f x -的相等或相反关系,函数的周期性主要体现为()f x T +与()f x 的关系,它们都与()f x 有关,函数的周期性常常通过函数的奇偶性得到.函数的奇偶性体现的是一种对称关系,在解题时,往往需借助函数的奇偶性或周期性来确定函数在另一区间上的单调性,即实现区间的转换,再利用单调性来解决相关问题.2)单调性与奇偶性之间的关系:奇函数在关于原点对称的区间上的单调性相同; 偶函数在关于原点对称的区间上的单调性相反;一、函数单调性证明与判断1)方法:①函数单调性的定义② 利用函数和、差、积、商的判断法则 2)类型:① 一般函数单调性证明 ② 抽象函数单调性证明 ③ 复合函数单调性讨论 3)步骤:①取值12,x x 且12x x < ② 作差()()12f x f x -③ 变形(通常因式分解或配方) ④ 定号⑤ 下结论(注意要强调在哪个区间) 【题干】试讨论函数()21xf x x =+的单调性 【答案】当(),1x ∈-∞-和()1,x ∈+∞时,()f x 是减函数.当()1,0x ∈-和()0,1x ∈时,()f x 是增函数【解析】∵0x >时,()211112x f x x x x ==≤=++,当且仅当1x =时“=”成立,在()0,1x ∈时,()f x 时增函数,()1,x ∈+∞时,()f x 是减函数,当0x <时,()211112x f x x x x==≤=-++,当且仅当1x =-时“=”成立∴在(),1x ∈-∞-时,()f x 时减函数,()1,0x ∈-时,()f x 是增函数,在0x =时,()00f =;综上,当(),1x ∈-∞-和()1,x ∈+∞时,()f x 是减函数.当()1,0x ∈-和()0,1x ∈时,()f x 是增函数.【点评】【题干】已知函数()f x 为R 上的减函数,则满足()11f f x ⎛⎫< ⎪⎝⎭的实数x 的取值范围是() A.()1,1-B. ()0,1C. ()()1,00,1-D. ()(),11,-∞-+∞【答案】C 【解析】由已知得11x>解得10x -<<或01x << 【点评】【题干】设0a >,()x x e af x a e=+是R 上的偶函数. (1)求a 的值;(2)证明()f x 在()0,+∞上为增函数. 【答案】(1)1a =(2)见解析【解析】(1)依题意,对一切x R ∈,有()()f x f x -=,即1x xx x e a ae ae a e+=+. ∴11x x a e a e ⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭0=对一切x R ∈成立,则10a a -=,∴1a =±, ∵0a >,∴1a =(2)(定义法)设120x x <<,则()()12121211xxx x f x f x e e e e -=-+- ()()212112112211111x x x x x x x x x x x e e e e e e e +-++-⎛⎫=--=- ⎪⎝⎭,由10x >,20x >,210x x ->,得120x x +>,2110x x e -->,2110x x e +-<,∴()()120f x f x -<,即()()12f x f x <,∴()f x 在()0,+∞上为增函数.(导数法)∵1a =,()0,x ∈+∞,∴()()21110xx xx x xe f x e e e e e '-⎛⎫'=+=-=> ⎪⎝⎭,∴()f x 在()0,+∞上为增函数 【点评】本题用了两种方法:定义法和导数法,相比之下导数法比定义法更为简洁. 【题干】已知()f x 是定义在R 上的增函数,对x R ∈有()0f x >,且()51f =,设()()()1F x f x f x =+,讨论()F x 的单调性,并证明你的结论 【答案】见解析【解析】这是抽角函数的单调性问题,应该用单调性定义解决 在R 上任取1x 、2x ,设12x x <,∴()()21f x f x >,()()()()()()21212111]F x F x f x f x f x f x ⎡⎤-=+-+⎢⎥⎣⎦()()()()211211f x f x f x f x ⎡⎤=--⎡⎤⎢⎥⎣⎦⎣⎦,∵()f x 是R 上的增函数,且()101f =, ∴当10x <时()01f x <<,而当10x >时()1f x >;若125x x <<, 则()()1201f x f x <<<, ①∴()()1201f x f x <⋅<,∴()()12110f x f x -<,∴()()21F x F x <;②若215x x >>,则()()211f x f x >>,∴()()121f x f x >,∴()()12110f x f x ->,∴()()21F x F x >;综上,()F x 在(),5-∞减函数,在()5+∞,为增函数.【点评】该题属于判断抽象函数的单调性.抽象函数问题是函数学习中一类比较特殊的问题,其基本能力是变量代换、换元等,应熟练掌握它们的这些特点.【题干】已知函数()f x 对任意实数x ,y 均有()()()f x y f x f y +=+.且当0x >时,()0f x >,试判断()f x 的单调性,并说明理由.【答案】见解析【解析】根据题目所给条件,原型函数为()0y kx k =>.此为增函数.类比其证明方法可得:设12,x x ∈R ,且12x x <,则210x x ->,故()210f x x ->. ∴()()21f x f x -=()()2111f x x x f x -+-⎡⎤⎣⎦()()()2111f x x f x f x =-+-()210f x x =->,∴()()12f x f x <.故()f x 在(),-∞+∞上为增函数.【点评】【题干】已知给定函数()f x 对于任意正数x ,y 都有()f xy =()f x ⋅()f y ,且()0f x ≠,当1x >时,()1f x <.试判断()f x 在()0,+∞上的单调性,并说明理由.【答案】见解析【解析】根据题目所给条件,此函数的原型函数可以为y =.显然此函数在()0,+∞上是减函数.对于x ∈()0,+∞有()20f x ff⎡⎤==≥⎣⎦,又()0f x ≠,∴()0f x >.设1x ,2x ∈()0,+∞,且12x x <.则()()()()()2211211211111x x f x f f x f x x x x f f x f x f x x ⎛⎫⎛⎫⋅ ⎪ ⎪⎛⎫⎝⎭⎝⎭===< ⎪⎝⎭, ∴()()12f x f x >,故()f x 在()0,+∞上为减函数. 【点评】二、含参函数单调性证明与判断1)注意:单调区间一定要在定义域内.可分为两类:一类是由参数的范围判定其单调性;一类是给单调性求参数范围,其解法是定义或导数法(以后学)得到恒成立的不等式,结合定义域求出参数的取值范围. 2)总结提高:关键是将恒成立问题进行等价转化,使之转化为函数的最值问题,或者区间根的分布问题,进而运用最值原理或者区间根原理使问题获解,常用方法还有函数性质法,分离参数法等. 【题干】判定函数()()()21,11axf x x x =∈--的单调性. 【答案】0a >时,()1,1-为减函数;0a <时,()1,1-为增函数 【解析】12:11x x ∀-<<<,()()1212221211ax ax f x f x x x -=--- ()()()22121212221211a x x x x x x xx --+=--()()()()12212212111a x x x x xx +-=--,∵1211x x -<<<,∴1211x x -<<,210x x ->,∴2110x -<,2210x -<,∴()()()()211222121011x x x x xx -+>--,∴0a >时,()()12f x f x >,()f x 为()1,1-上减函数;0a <时,()()12f x f x <,()f x 为()1,1-上增函数.【点评】定义法证明函数单调性的步骤必须相当熟悉(取值,作差,变形,定号,下结论).注意:一般将()()12f x f x -尽量化成几个因式的积商的形式,或者几个非负代数和的形式,便于判号. 【题干】讨论函数()()01axf x a x =≠-在()1,1-上的单调性. 【答案】0a ∴<时,()f x 在()1,1-上为增函数时,0a >时()f x 在()1,1-上为减函数.【解析】()1a f x a x =+-,()f x 的图像由反比例函数ay x=,向右平移1个,单位在向上或下平移||a 单位得到的,因为0a <时,ay x=在(),0-∞和()0,+∞上分别为增函数,0a >时,ay x=在(),0-∞和()0,+∞上分别为减函数,0a ∴<时,()f x 在()1,1-上为增函数,0a >时,()f x 在()1,1-上为减函数 【点评】【题干】已知()()314,1log ,1aa x a x f x x x -+<⎧⎪=⎨≥⎪⎩是(),-∞+∞上的减函数,求a 的取值范围.【答案】1173a ≤<【解析】由题意可列不等式组:01310a a <<⎧⎨-<⎩,且()3140a a -+≥,解得1173a ≤<【点评】此类题型是给出单调性求参数的取值范围。

第二章 2·2函数的单调性与最值

第二章  2·2函数的单调性与最值

1.函数单调性的定义增函数减函数定义设函数y=f(x)的定义域为A,区间M⊆A,如果取区间M中任意两个值x1,x2,改变量Δx=x2-x1>0,则当Δy=f(x2)-f(x1)>0时,就称函数y=f(x)在区间M上是增函数Δy=f(x2)-f(x1)<0时,就称函数y=f(x)在区间M上是减函数图象自左向右看图象是上升的自左向右看图象是下降的2.如果一个函数在某个区间M上是增函数或是减函数,就说这个函数在这个区间M上具有单调性,区间M 称为单调区间.3.函数的最值前提设函数y=f(x)的定义域为I,如果存在实数M满足条件(1)对于任意的x∈I,都有f(x)≤M;(2)存在x0∈I,使得f(x0)=M.(3)对于任意的x∈I,都有f(x)≥M;(4)存在x0∈I,使得f(x0)=M.结论M为最大值M为最小值【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)在增函数与减函数的定义中,可以把“任意两个自变量”改为“存在两个自变量”.(×)(2)对于函数f(x),x∈D,若x1,x2∈D且(x1-x2)·[f(x1)-f(x2)]>0,则函数f(x)在D上是增函数.(√)(3)函数y =f (x )在[1,+∞)上是增函数,则函数的单调递增区间是[1,+∞).( × ) (4)函数y =1x 的单调递减区间是(-∞,0)∪(0,+∞).( × )(5)所有的单调函数都有最值.( × )(6)对于函数y =f (x ),若f (1)<f (3),则f (x )为增函数.( × )1.(2014·北京)下列函数中,在区间(0,+∞)上为增函数的是( ) A .y =x +1 B .y =(x -1)2 C .y =2-x D .y =log 0.5(x +1) 答案 A解析 A 项,函数y =x +1在[-1,+∞)上为增函数,所以函数在(0,+∞)上为增函数,故正确;B 项,函数y =(x -1)2在(-∞,1)上为减函数,在[1,+∞)上为增函数,故错误;C 项,函数y =2-x =(12)x 在R上为减函数,故错误;D 项,函数y =log 0.5(x +1)在(-1,+∞)上为减函数,故错误. 2.若函数f (x )=|2x +a |的单调递增区间是[3,+∞),则a 的值为( ) A .-2 B .2 C .-6 D .6 答案 C解析 由图象易知函数f (x )=|2x +a |的单调增区间是[-a 2,+∞),令-a2=3,∴a =-6.3.若函数y =ax 与y =-bx 在(0,+∞)上都是减函数,则y =ax 2+bx 在(0,+∞)上是( )A .增函数B .减函数C .先增后减D .先减后增答案 B解析 由y =ax 在(0,+∞)上是减函数,知a <0; 由y =-bx 在(0,+∞)上是减函数,知b <0.∴y =ax 2+bx 的对称轴x =-b2a<0, 又∵y =ax 2+bx 的开口向下,∴y =ax 2+bx 在(0,+∞)上是减函数.故选B. 4.(教材改编)已知函数f (x )=2x -1,x ∈[2,6],则f (x )的最大值为________,最小值为________. 答案 2 25解析 可判断函数f (x )=2x -1在[2,6]上为减函数,所以f (x )max =f (2)=2,f (x )min =f (6)=25.5.(教材改编)已知函数f (x )=x 2-2ax -3在区间[1,2]上具有单调性,则实数a 的取值范围为________________________________________________________________________. 答案 (-∞,1]∪[2,+∞)解析 函数f (x )=x 2-2ax -3的图象开口向上,对称轴为直线x =a ,画出草图如图所示.由图象可知函数在(-∞,a ]和[a ,+∞)上都具有单调性,因此要使函数f (x )在区间[1,2]上具有单调性,只需a ≤1或a ≥2,从而a ∈(-∞,1]∪[2,+∞).题型一 确定函数的单调性(区间)命题点1 给出具体解析式的函数的单调性例1 (1)下列函数中,在区间(0,+∞)上为增函数的是( ) A .y =ln(x +2) B .y =-x +1 C .y =(12)x D .y =x +1x(2)函数f (x )=log 12(x 2-4)的单调递增区间是( )A .(0,+∞)B .(-∞,0)C .(2,+∞)D .(-∞,-2)(3)y =-x 2+2|x |+3的单调增区间为________. 答案 (1)A (2)D (3)(-∞,-1],[0,1] 解析 (1)y =ln(x +2)的增区间为(-2,+∞), ∴在区间(0,+∞)上为增函数.(2)因为y =log 12t 在定义域上是减函数,所以求原函数的单调递增区间,即求函数t =x 2-4的单调递减区间,结合函数的定义域,可知所求区间为(-∞,-2).(3)由题意知,当x ≥0时,y =-x 2+2x +3=-(x -1)2+4;当x <0时,y =-x 2-2x +3=-(x +1)2+4, 二次函数的图象如图.由图象可知,函数y =-x 2+2|x |+3在(-∞,-1],[0,1]上是增函数. 命题点2 解析式含参函数的单调性例2 试讨论函数f (x )=axx -1(a ≠0)在(-1,1)上的单调性.解 设-1<x 1<x 2<1, f (x )=a ⎝⎛⎭⎪⎫x -1+1x -1=a ⎝⎛⎭⎫1+1x -1,f (x 1)-f (x 2)=a ⎝⎛⎭⎫1+1x 1-1-a ⎝⎛⎭⎫1+1x 2-1=a (x 2-x 1)(x 1-1)(x 2-1),由于-1<x 1<x 2<1,所以x 2-x 1>0,x 1-1<0,x 2-1<0, 故当a >0时,f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 函数f (x )在(-1,1)上递减;当a <0时,f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 函数f (x )在(-1,1)上递增.综上,当a >0时,f (x )在(-1,1)上单调递减;当a <0时,f (x )在(-1,1)上单调递增. 引申探究若本题中的函数变为f (x )=axx 2-1 (a >0),则f (x )在(-1,1)上的单调性如何?解 设-1<x 1<x 2<1, 则f (x 1)-f (x 2)=ax 1x 21-1-ax 2x 22-1 =ax 1x 22-ax 1-ax 2x 21+ax 2(x 21-1)(x 22-1)=a (x 2-x 1)(x 1x 2+1)(x 21-1)(x 22-1) ∵-1<x 1<x 2<1,∴x 2-x 1>0,x 1x 2+1>0,(x 21-1)(x 22-1)>0. 又∵a >0,∴f (x 1)-f (x 2)>0, ∴函数在(-1,1)上为减函数.思维升华 确定函数单调性的方法:(1)定义法和导数法,证明函数单调性只能用定义法和导数法;(2)复合函数法,复合函数单调性的规律是“同增异减”;(3)图象法,图象不连续的单调区间不能用“∪”连接.已知a >0,函数f (x )=x +ax(x >0),证明:函数f (x )在(0,a ]上是减函数,在[a ,+∞)上是增函数.证明 方法一 任意取x 1>x 2>0,则 f (x 1)-f (x 2)=⎝⎛⎭⎫x 1+a x 1-⎝⎛⎭⎫x 2+a x 2=(x 1-x 2)+⎝⎛⎭⎫a x 1-a x 2=(x 1-x 2)+a (x 2-x 1)x 1x 2=(x 1-x 2)⎝⎛⎭⎫1-a x 1x 2.当a ≥x 1>x 2>0时,x 1-x 2>0,1-ax 1x 2<0,有f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),此时,函数f (x )=x +ax (a >0)在(0,a ]上为减函数;当x 1>x 2≥a 时,x 1-x 2>0,1-ax 1x 2>0, 有f (x 1)-f (x 2)>0,即f (x 1)>f (x 2),此时,函数f (x )=x +ax(a >0)在[a ,+∞)上为增函数;综上可知,函数f (x )=x +ax (a >0)在(0,a ]上为减函数,在[a ,+∞)上为增函数.方法二 f ′(x )=1-a x 2,令f ′(x )>0,则1-ax2>0,解得x >a 或x <-a (舍).令f ′(x )<0,则1-ax 2<0,解得-a <x <a .∵x >0,∴0<x <a .故f (x )在(0,a ]上为减函数,在[a ,+∞)上为增函数.题型二 函数的最值例3 已知函数f (x )=x 2+2x +ax ,x ∈[1,+∞),a ∈(-∞,1].(1)当a =12时,求函数f (x )的最小值;(2)若对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围. 解 (1)当a =12时,f (x )=x +12x +2在[1,+∞)上为增函数,f (x )min =f (1)=72.(2)f (x )=x +ax+2,x ∈[1,+∞).①当a ≤0时,f (x )在[1,+∞)内为增函数. 最小值为f (1)=a +3.要使f (x )>0在x ∈[1,+∞)上恒成立,只需a +3>0,即a >-3,所以-3<a ≤0. ②当0<a ≤1时,f (x )在[1,+∞)上为增函数, f (x )min =f (1)=a +3.所以a +3>0,a >-3,所以0<a ≤1.综上所述,f (x )在[1,+∞)上恒大于零时,a 的取值范围是(-3,1]. 思维升华 求函数最值的常用方法(1)单调性法:先确定函数的单调性,再由单调性求最值;(2)图象法:先作出函数的图象,再观察其最高点、最低点,求出最值;(3)换元法:对比较复杂的函数可通过换元转化为熟悉的函数,再用相应的方法求最值.(1)函数f (x )=⎩⎪⎨⎪⎧1x ,x ≥1,-x 2+2,x <1的最大值为________.(2)已知函数f (x )=1a -1x (a >0,x >0),若f (x )在⎣⎡⎦⎤12,2上的值域为[12,2],则a =________. 答案 (1)2 (2)25解析 (1)当x ≥1时,函数f (x )=1x 为减函数,所以f (x )在x =1处取得最大值,为f (1)=1;当x <1时,易知函数f (x )=-x 2+2在x =0处取得最大值,为f (0)=2. 故函数f (x )的最大值为2.(2)由反比例函数的性质知函数f (x )=1a -1x (a >0,x >0)在⎣⎡⎦⎤12,2上单调递增, 所以⎩⎪⎨⎪⎧f ⎝⎛⎭⎫12=12,f (2)=2,即⎩⎨⎧1a -2=12,1a -12=2,解得a =25.题型三 函数单调性的应用 命题点1 比较大小 例4 已知函数f (x )=log 2x +11-x,若x 1∈(1,2),x 2∈(2,+∞),则( ) A .f (x 1)<0,f (x 2)<0 B .f (x 1)<0,f (x 2)>0 C .f (x 1)>0,f (x 2)<0 D .f (x 1)>0,f (x 2)>0 答案 B解析 ∵函数f (x )=log 2x +11-x 在(1,+∞)上为增函数,且f (2)=0,∴当x 1∈(1,2)时,f (x 1)<f (2)=0, 当x 2∈(2,+∞)时,f (x 2)>f (2)=0, 即f (x 1)<0,f (x 2)>0.命题点2 解不等式例5 已知函数f (x )为R 上的减函数,则满足f ⎝⎛⎭⎫⎪⎪⎪⎪1x <f (1)的实数x 的取值范围是( ) A .(-1,1) B .(0,1) C .(-1,0)∪(0,1) D .(-∞,-1)∪(1,+∞)答案 C解析 由f (x )为R 上的减函数且f ⎝⎛⎭⎫⎪⎪⎪⎪1x <f (1),得⎩⎪⎨⎪⎧⎪⎪⎪⎪1x >1,x ≠0,即⎩⎪⎨⎪⎧|x |<1,x ≠0.∴-1<x <0或0<x <1.命题点3 求参数范围例6 (1)如果函数f (x )=ax 2+2x -3在区间(-∞,4)上是单调递增的,则实数a 的取值范围是( ) A .a >-14 B .a ≥-14C .-14≤a <0D .-14≤a ≤0(2)已知f (x )=⎩⎪⎨⎪⎧(2-a )x +1,x <1,a x ,x ≥1,满足对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0成立,那么a 的取值范围是________.答案 (1)D (2)[32,2)解析 (1)当a =0时,f (x )=2x -3,在定义域R 上是单调递增的,故在(-∞,4)上单调递增; 当a ≠0时,二次函数f (x )的对称轴为x =-1a ,因为f (x )在(-∞,4)上单调递增, 所以a <0,且-1a ≥4,解得-14≤a <0.综合上述得-14≤a ≤0.(2)由已知条件得f (x )为增函数, ∴⎩⎪⎨⎪⎧2-a >0,a >1,(2-a )×1+1≤a ,解得32≤a <2,∴a 的取值范围是[32,2).思维升华 函数单调性应用问题的常见类型及解题策略(1)比较大小.比较函数值的大小,应将自变量转化到同一个单调区间内,然后利用函数的单调性解决. (2)解不等式.在求解与抽象函数有关的不等式时,往往是利用函数的单调性将“f ”符号脱掉,使其转化为具体的不等式求解.此时应特别注意函数的定义域. (3)利用单调性求参数.①视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数; ②需注意若函数在区间[a ,b ]上是单调的,则该函数在此区间的任意子集上也是单调的; ③分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值.(1)f (x )是定义在(0,+∞)上的单调增函数,满足f (xy )=f (x )+f (y ),f (3)=1,当f (x )+f (x -8)≤2时,x 的取值范围是( ) A .(8,+∞) B .(8,9]C .[8,9]D .(0,8)(2)若f (x )=-x 2+2ax 与g (x )=ax +1在区间[1,2]上都是减函数,则a 的取值范围是( )A .(-1,0)∪(0,1)B .(-1,0)∪(0,1]C .(0,1)D .(0,1]答案 (1)B (2)D解析 (1)2=1+1=f (3)+f (3)=f (9),由f (x )+f (x -8)≤2,可得f [x (x -8)]≤f (9),因为f (x )是定义在(0,+∞)上的增函数,所以有⎩⎪⎨⎪⎧x >0,x -8>0,x (x -8)≤9,解得8<x ≤9.(2)由f (x )=-x 2+2ax 在[1,2]上是减函数可得[1,2]⊆[a ,+∞),∴a ≤1. ∵y =1x +1在(-1,+∞)上为减函数,∴由g (x )=ax +1在[1,2]上是减函数可得a >0,故0<a ≤1.1.确定抽象函数单调性解函数不等式典例 (12分)函数f (x )对任意的m 、n ∈R ,都有f (m +n )=f (m )+f (n )-1,并且x >0时,恒有f (x )>1. (1)求证:f (x )在R 上是增函数; (2)若f (3)=4,解不等式f (a 2+a -5)<2.思维点拨 (1)对于抽象函数的单调性的证明,只能用定义.应该构造出f (x 2)-f (x 1)并与0比较大小.(2)将函数不等式中的抽象函数符号“f ”运用单调性“去掉”是本题的切入点.要构造出f (M )<f (N )的形式. 规范解答(1)证明 设x 1,x 2∈R ,且x 1<x 2,∴x 2-x 1>0, ∵当x >0时,f (x )>1,∴f (x 2-x 1)>1.[2分] f (x 2)=f [(x 2-x 1)+x 1]=f (x 2-x 1)+f (x 1)-1,[4分] ∴f (x 2)-f (x 1)=f (x 2-x 1)-1>0⇒f (x 1)<f (x 2), ∴f (x )在R 上为增函数.[6分](2)解 ∵m ,n ∈R ,不妨设m =n =1, ∴f (1+1)=f (1)+f (1)-1⇒f (2)=2f (1)-1,[8分] f (3)=4⇒f (2+1)=4⇒f (2)+f (1)-1=4⇒3f (1)-2=4, ∴f (1)=2,∴f (a 2+a -5)<2=f (1),[10分] ∵f (x )在R 上为增函数,∴a 2+a -5<1⇒-3<a <2,即a ∈(-3,2).[12分]解函数不等式问题的一般步骤:第一步:(定性)确定函数f (x )在给定区间上的单调性; 第二步:(转化)将函数不等式转化为f (M )<f (N )的形式;第三步:(去f )运用函数的单调性“去掉”函数的抽象符号“f ”,转化成一般的不等式或不等式组; 第四步:(求解)解不等式或不等式组确定解集;第五步:(反思)反思回顾.查看关键点,易错点及解题规范.温馨提醒 本题对函数的单调性的判断是一个关键点.不会运用条件x >0时,f (x )>1,构造不出f (x 2)-f (x 1)=f (x 2-x 1)-1的形式,便找不到问题的突破口.第二个关键应该是将不等式化为f (M )<f (N )的形式.解决此类问题的易错点:忽视了M 、N 的取值范围,即忽视了f (x )所在的单调区间的约束.[方法与技巧]1.利用定义证明或判断函数单调性的步骤 (1)取值;(2)作差;(3)定量;(4)判断.2.确定函数单调性有四种常用方法:定义法、导数法、复合函数法、图象法,也可利用单调函数的和差确定单调性.3.求函数最值的常用求法:单调性法、图象法、换元法. [失误与防范]1.分段函数单调性不仅要考虑各段的单调性,还要注意衔接点.2.函数在两个不同的区间上单调性相同,一般要分开写,用“,”或“和”连接,不要用“∪”.A 组 专项基础训练 (时间:35分钟)一、选择题1.下列四个函数中,在区间(0,1)上是减函数的是( ) A .y =log 2xB .y =x 13C .y =-⎝⎛⎭⎫12xD .y =1x 答案 D解析 y =log 2x 在(0,+∞)上为增函数;y =x 13在(0,+∞)上是增函数;y =⎝⎛⎭⎫12x 在(0,+∞)上是减函数,y =-⎝⎛⎭⎫12x 在(0,+∞)上是增函数;y =1x 在(0,+∞)上是减函数,故y =1x 在(0,1)上是减函数.故选D. 2.已知函数y =log 2(ax -1)在(1,2)上单调递增,则实数a 的取值范围是( ) A .(0,1]B .[1,2]C .[1,+∞)D .[2,+∞) 答案 C解析 要使y =log 2(ax -1)在(1,2)上单调递增,则a >0且a -1≥0,∴a ≥1.3.已知函数y =f (x )的图象关于x =1对称,且在(1,+∞)上单调递增,设a =f ⎝⎛⎭⎫-12,b =f (2),c =f (3),则a ,b ,c 的大小关系为( ) A .c <b <a B .b <a <c C .b <c <a D .a <b <c 答案 B解析 ∵函数图象关于x =1对称,∴a =f ⎝⎛⎭⎫-12=f ⎝⎛⎭⎫52,又y =f (x )在(1,+∞)上单调递增, ∴f (2)<f ⎝⎛⎭⎫52<f (3),即b <a <c .4.若函数f (x )=x 2-2x +m 在 [3,+∞)上的最小值为1,则实数m 的值为( ) A .-3 B .-2 C .-1 D .1 答案 B解析 ∵f (x )=(x -1)2+m -1在[3,+∞)上为单调增函数,且f (x )在[3,+∞)上的最小值为1, ∴f (3)=1,即22+m -1=1,m =-2.5.已知函数f (x )=2ax 2+4(a -3)x +5在区间(-∞,3)上是减函数,则a 的取值范围是( ) A .(0,34) B .(0,34]C .[0,34)D .[0,34]答案 D解析 当a =0时,f (x )=-12x +5,在(-∞,3)上是减函数, 当a ≠0时,由⎩⎪⎨⎪⎧a >0,-4(a -3)4a ≥3,得0<a ≤34,综上a 的取值范围是0≤a ≤34.二、填空题6.已知函数f (x )=x 2-2x -3,则该函数的单调增区间为________. 答案 [3,+∞)解析 设t =x 2-2x -3,由t ≥0,即x 2-2x -3≥0, 解得x ≤-1或x ≥3.所以函数的定义域为(-∞,-1]∪[3,+∞).因为函数t =x 2-2x -3的图象的对称轴为x =1,所以函数在(-∞,-1]上单调递减,在[3,+∞)上单调递增.又因为y =t 在[0,+∞)上单调递增,所以函数f (x )的增区间为[3,+∞).7.已知函数f (x )=⎩⎪⎨⎪⎧ x 2+12a -2,x ≤1,a x -a ,x >1,若f (x )在(0,+∞)上单调递增,则实数a 的取值范围为________.答案 (1,2]解析 由题意,得12+12a -2≤0,则a ≤2,又a x -a 是增函数,故a >1,所以a 的取值范围为1<a ≤2. 8.函数f (x )=⎝⎛⎭⎫13x -log 2(x +2)在区间[-1,1]上的最大值为________.答案 3解析 由于y =⎝⎛⎭⎫13x 在R 上递减,y =log 2(x +2)在[-1,1]上递增,所以f (x )在[-1,1]上单调递减,故f (x )在[-1,1]上的最大值为f (-1)=3.三、解答题9.已知f (x )=x x -a(x ≠a ). (1)若a =-2,试证明f (x )在(-∞,-2)内单调递增;(2)若a >0且f (x )在(1,+∞)上单调递减,求a 的取值范围.(1)证明 任设x 1<x 2<-2,则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2 =2(x 1-x 2)(x 1+2)(x 2+2). ∵(x 1+2)(x 2+2)>0,x 1-x 2<0,∴f (x 1)<f (x 2),∴f (x )在(-∞,-2)上单调递增.(2)解 任设1<x 1<x 2,则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a =a (x 2-x 1)(x 1-a )(x 2-a ). ∵a >0,x 2-x 1>0,∴要使f (x 1)-f (x 2)>0,只需(x 1-a )(x 2-a )>0在(1,+∞)上恒成立,∴a ≤1.综上所述,a 的取值范围是(0,1].10.设函数y =f (x )是定义在(0,+∞)上的函数,并且满足下面三个条件:①对任意正数x ,y ,都有f (xy )=f (x )+f (y );②当x >1时,f (x )<0;③f (3)=-1.(1)求f (1),f (19)的值; (2)如果不等式f (x )+f (2-x )<2成立,求x 的取值范围.解 (1)令x =y =1易得f (1)=0.而f (9)=f (3)+f (3)=-1-1=-2,且f (9)+f ⎝⎛⎭⎫19=f (1)=0,故f ⎝⎛⎭⎫19=2. (2)设0<x 1<x 2,则x 2x 1>1,f ⎝⎛⎭⎫x 2x 1<0, 由f (xy )=f (x )+f (y )得f (x 2)=f ⎝⎛⎭⎫x 1·x 2x 1=f (x 1)+f ⎝⎛⎭⎫x 2x 1<f (x 1), 所以f (x )是减函数.由条件①及(1)的结果得:f [x (2-x )]<f ⎝⎛⎭⎫19,其中0<x <2,由函数f (x )在R 上单调递减,可得⎩⎪⎨⎪⎧ x (2-x )>19,0<x <2,由此解得x 的取值范围是⎝⎛⎭⎫1-223,1+223. B 组 专项能力提升(时间:20分钟)11.函数f (x )=|x -2|x 的单调减区间是( )A .[1,2]B .[-1,0]C .[0,2]D .[2,+∞) 答案 A解析 由于f (x )=|x -2|x =⎩⎪⎨⎪⎧x 2-2x ,x ≥2,-x 2+2x ,x <2. 结合图象可知函数的单调减区间是[1,2].12.定义新运算:当a ≥b 时,a b =a ;当a <b 时,ab =b 2,则函数f (x )=(1x )x -(2x ),x ∈[-2,2]的最大值等于( )A .-1B .1C .6D .12答案 C解析 由已知,得当-2≤x ≤1时,f (x )=x -2,当1<x ≤2时,f (x )=x 3-2.∵f (x )=x -2,f (x )=x 3-2在定义域内都为增函数.∴f (x )的最大值为f (2)=23-2=6.13.(2015·山东)定义运算“⊗”:x ⊗y =x 2-y 2xy (x ,y ∈R ,xy ≠0),当x >0,y >0时,x ⊗y +(2y )⊗x 的最小值为________.答案 2解析 由题意,得x ⊗y +(2y )⊗x =x 2-y 2xy +(2y )2-x 22yx =x 2+2y 22xy ≥2x 2·2y 22xy=2,当且仅当x =2y 时取等号. 14.已知函数f (x )=lg(x +a x-2),其中a 是大于0的常数. (1)求函数f (x )的定义域;(2)当a ∈(1,4)时,求函数f (x )在[2,+∞)上的最小值;(3)若对任意x ∈[2,+∞)恒有f (x )>0,试确定a 的取值范围.解 (1)由x +a x -2>0,得x 2-2x +a x>0, 当a >1时,x 2-2x +a >0恒成立,定义域为(0,+∞),当a =1时,定义域为{x |x >0且x ≠1}, 当0<a <1时,定义域为{x |0<x <1-1-a 或x >1+1-a }.(2)设g (x )=x +a x-2,当a ∈(1,4),x ∈[2,+∞)时, g ′(x )=1-a x 2=x 2-a x2>0恒成立, 所以g (x )=x +a x-2在[2,+∞)上是增函数. 所以f (x )=lg ⎝⎛⎭⎫x +a x -2在[2,+∞)上是增函数. 所以f (x )=lg ⎝⎛⎭⎫x +a x -2在[2,+∞)上的最小值为f (2)=lg a 2. (3)对任意x ∈[2,+∞)恒有f (x )>0,即x +a x-2>1对x ∈[2,+∞)恒成立. 所以a >3x -x 2,令h (x )=3x -x 2,而h (x )=3x -x 2=-⎝⎛⎭⎫x -322+94在x ∈[2,+∞)上是减函数, 所以h (x )max =h (2)=2,所以a >2.。

高三数学集体备课记录《函数的单调性与最值》

高三数学集体备课记录《函数的单调性与最值》

高三数学(理)集体备课记录实施教学过程一、考点知识自主梳理1.函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数f(x)的定义域为I,如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是增函数当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间D上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的(2)单调区间的定义如果函数y=f(x)在区间D上是增函数或减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间.2.函数的最值前提设函数y=f(x)的定义域为I,如果存在实数M满足条件(1)对于任意的x∈I,都有f(x)≤M;(2)存在x0∈I,使得f(x0)=M(3)对于任意的x∈I,都有f(x)≥M;(4)存在x0∈I,使得f(x0)=M结论M为最大值M为最小值思考辨析判断下面结论是否正确(请在括号中打“√”或“×”)(1)在增函数与减函数定义中,可把“任意两个自变量”改为“存在两个自变量”.( )(2)对于函数f(x),x∈D,若x1,x2∈D且(x1-x2)·[f(x1)-f(x2)]>0,则函数f(x)在D上是增函数.( )(3)函数y=f(x)在[1,+∞)上是增函数,则函数的单调递增区间是[1,+∞).( )(4)函数y=的单调递减区间是(-∞,0)∪(0,+∞).( )(5)所有的单调函数都有最值.( )(6)对于函数y=f(x),若f(1)<f(3),则f(x)为增函数.( )二、考点突破与题型探究题型一确定函数的单调性(区间)命题点1 给出具体解析式的函数的单调性例1 (1)下列函数中,在区间(0,+∞)上为增函数的是( )A.y=ln(x+2) B.y=-C.y=()x D.y=x+(2)函数f(x)=log(x2-4)的单调递增区间是( )A.(0,+∞) B.(-∞,0) C.(2,+∞) D.(-∞,-2)(3)y=-x2+2|x|+3的单调增区间为________.命题点2 解析式含参函数的单调性例2 试讨论函数f(x)=(a≠0)在(-1,1)上的单调性.引申探究若本题中的函数变为f(x)=(a>0),则f(x)在(-1,1)上的单调性如何?思维升华确定函数单调性的方法:(1)定义法和导数法,证明函数单调性只能用定义法和导数法;(2)复合函数法,复合函数单调性的规律是“同增异减”;(3)图象法,图象不连续的单调区间不能用“∪”连接.题型二函数的最值例3 已知函数f(x)=,x∈[1,+∞),a∈(-∞,1].(1)当a=时,求函数f(x)的最小值;(2)若对任意x∈[1,+∞),f(x)>0恒成立,试求实数a的取值范围.思维升华求函数最值的常用方法:(1)单调性法:先确定函数的单调性,再由单调性求最值;(2)图象法:先作出函数的图象,再观察其最高点、最低点,求出最值;(3)换元法:对比较复杂的函数可通过换元转化为熟悉的函数,再用相应的方法求最值.题型三函数单调性的应用命题点1 比较大小例4 已知函数f(x)=log2x+,若x1∈(1,2),x2∈(2,+∞),则( )A.f(x1)<0,f(x2)<0 B.f(x1)<0,f(x2)>0 C.f(x1)>0,f(x2)<0 D.f(x1)>0,f(x2)>0命题点2 解不等式例5 已知函数f(x)为R上的减函数,则满足f<f(1)的实数x的取值范围是( )A.(-1,1) B.(0,1) C.(-1,0)∪(0,1) D.(-∞,-1)∪(1,+∞)命题点3 求参数范围例6 (1)如果函数f(x)=ax2+2x-3在区间(-∞,4)上是单调递增的,则实数a的取值范围是( )A.a>-B.a≥-C.-≤a<0 D.-≤a≤0(2)已知f(x)=满足对任意x1≠x2,都有>0成立,那么a的取值范围是________.思维升华函数单调性应用问题的常见类型及解题策略(1)比较大小.比较函数值的大小,应将自变量转化到同一个单调区间内,然后利用函数的单调性解决.(2)解不等式.在求解与抽象函数有关的不等式时,往往是利用函数的单调性将“f”符号脱掉,使其转化为具体的不等式求解.此时应特别注意函数的定义域.(3)利用单调性求参数.①视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数;②需注意若函数在区间[a,b]上是单调的,则该函数在此区间的任意子集上也是单调的;③分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值.三、课时小结答题模板1.确定抽象函数单调性解函数不等式典例(12分)函数f(x)对任意的m、n∈R,都有f(m+n)=f(m)+f(n)-1,并且x>0时,恒有f(x)>1.(1)求证:f(x)在R上是增函数;(2)若f(3)=4,解不等式f(a2+a-5)<2.思维点拨(1)对于抽象函数的单调性的证明,只能用定义.应该构造出f(x2)-f(x1)并与0比较大小.(2)将函数不等式中的抽象函数符号“f”运用单调性“去掉”是本题的切入点.要构造出f(M)<f(N)的形式.解函数不等式问题的一般步骤:第一步:(定性)确定函数f(x)在给定区间上的单调性;第二步:(转化)将函数不等式转化为f(M)<f(N)的形式;第三步:(去f)运用函数的单调性“去掉”函数的抽象符号“f”,转化成一般的不等式或不等式组;第四步:(求解)解不等式或不等式组确定解集;第五步:(反思)反思回顾.查看关键点,易错点及解题规范.温馨提醒本题对函数的单调性的判断是一个关键点.不会运用条件x>0时,f(x)>1,构造不出f(x2)-f(x1)=f(x2-x1)-1的形式,便找不到问题的突破口.第二个关键应该是将不等式化为f(M)<f(N)的形式.解决此类问题的易错点:忽视了M、N的取值范围,即忽视了f(x)所在的单调区间的约束.方法与技巧1.利用定义证明或判断函数单调性的步骤(1)取值;(2)作差;(3)定量;(4)判断.2.确定函数单调性有四种常用方法:定义法、导数法、复合函数法、图象法,也可利用单调函数的和差确定单调性.3.求函数最值的常用求法:单调性法、图象法、换元法.失误与防范1.分段函数单调性不仅要考虑各段的单调性,还要注意衔接点.2.函数在两个不同的区间上单调性相同,一般要分开写,用“,”或“和”连接,不要用“∪”.四、课后作业《练出高分》 P273—274。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

核心考点十二 含参函数在区间上具有单调性、无单调性或存在单调
区间,求参数范围
思路提示:
1、已知函数在区间上单调递增或单调递减,转化为导函数恒大于等于零或恒小于等于零,先分析导函数的性质及图像特点,如一次函数最值,开口向上抛物线最大值,开口向下抛物线最小值等都在区间端点上考虑;
2、已知区间上函数不单调,转化为导函数在区间上存在变号零点,通常利用分析变量法求解参变量范围;
3、已知函数在区间上存在单调递增或单调递减区间,转化为导函数在区间上大于零或小于零有解。

方向一:含参函数在区间上具有单调性,求参数的范围
解法突破:函数)(x f 在给定的区间上单调递增,转化为其导函数0)('≥x f 在区间上恒成立,进而转化为)('x f 在区间上最大值大于等于0,同理若)(x f 在区间上单调递减,转化为导函数0)('≤x f 在区间上恒成立,进而转化为)('x f 在区间上的最大值小于等于0. 例1、已知函数ax x x x f -+=2
ln )(,若函数)(x f 在其定义域上为增函数,求a 的取值范围。

变式1、已知函数)(1ln )(为实数a ax x
x x f ++=,(1)当0=a 时,求)(x f 的最小值;(2)若)(x f 在),2[+∞上是单调函数,求a 的取值范围。

变式2、设21)(ax e x f x +=,其中0>a ,(1)当3
4=a 时,求)(x f 的极值点;(2)若)(x f 为R 上的单调函数,求a 的取值范围。

解法突破:含参函数在给定区间上不单调,即含参函数在给定区间上存在极值点,即导函数在区间上存在变号零点,若能直接求解极值点的话,将其限定在给定区间上建立不等关系,求解参变量的取值范围;若不易求解极值点,应分离自变量与参变量,转化为函数的最值,但要注意变号零点并非零点。

例2、已知函数1)5()1()(2
3-++-+=x k x k x x f ,其中R k ∈,若函数)(x f 在区间)3,0(上不单调,求k 的取值范围。

解法突破:含参函数)(x f 在区间],[b a 上存在单调递增区间,则0)('>x f 在区间],[b a 上有解⇔)('x f 的最大值大于0在],[b a 上成立。

含参函数)(x f 在区间],[b a 上存在单调递减区间,则0)('<x f 在区间],[b a 上有解⇔)('x f 的最小值小于0在],[b a 上成立。

例3、设函数ax x x x f 22131)(23++-
=,(1)若函数)(x f 在),3
2(+∞上存在单调递增区间,求a 的取值范围;(2)当20<<a 时,函数)(x f 在]4,1[上的最小值为316-,求函数)(x f 在该区间上的最大值。

变式、已知函数R m x x x m x f ∈-+=,3
)(23,且函数)(x f 在),2[+∞上存在单调递减区间,求实数m 的取值范围。

相关文档
最新文档