高中数学不等式证明典型例题(精选.)

高中数学不等式证明典型例题(精选.)
高中数学不等式证明典型例题(精选.)

不等式证明典型例题

例1 若10<-(0>a 且1≠a ).

分析1 用作差法来证明.需分为1>a 和10<a 时, 因为 11,110>+<-

所以 )1(log )1(log x x a a +-- )1(log )1(log x x a a +---= 0)1(log 2

>--=x a .

(2)当10<+<-

所以 )1(log )1(log x x a a +-- )1(log )1(log x x a a ++-=0)1(log 2

>-=x a .

综合(1)(2)知)1(log )1(log x x a a +>-.

分析2 直接作差,然后用对数的性质来去绝对值符号. 解法2 作差比较法.

因为 )1(log )1(log x x a a +-- a

x a x lg )

1lg(lg )1lg(+-

-=

[])1lg()1lg(lg 1

x x a +--=

[])1lg()1lg(lg 1x x a +---=0)1lg(lg 12>--=x a

, 所以)1(log )1(log x x a a +>-. 例2 设0>>b a ,求证:.a

b b

a b a b a >

证明:b a a b b

a a

b b a b a b a

b

a b a ---=?=)( ∵0>>b a ,∴.0,1>->b a b

a ∴1)(>-b

a b a . ∴a b b a b a b a .1>

又∵0>a

b

b a , ∴.a

b b

a b a b a >.

例3 对于任意实数a 、b ,求证

444

()22

a b a b ++≥(当且仅当a b =时取等号) 证明:∵ 222a b ab +≥(当且仅当22

a b =时取等号) 两边同加4

4

4

4

2

22

():2()()a b a b a b ++≥+,

即:

44222

()22

a b a b ++≥ (1)

又:∵ 22

2a b ab +≥(当且仅当a b =时取等号) 两边同加2

2

2

2

2

():2()()a b a b a b ++≥+

222

()22

a b a b ++≥ ∴ 2224

()()22

a b a b ++≥ (2) 由(1)和(2)可得444

()22

a b a b ++≥(当且仅当a b =时取等号). 例4 已知a 、b 、c R +

∈,1a b c ++=,求证111

9.a b c

++≥ 证明:∵1a b c ++=

∴ 111a b c ++a b c a b c a b c

a b c

++++++=++

(1)(1)(1)b c a c a b a a b b c c =++++++++3()()()b a c a c b

a b a c b c

=++++++

2b a a b +≥=,同理:2c a a c +≥,2c b

b c

+≥。 ∴

111

32229.a b c

++≥+++= 例5 已知c b a >>,求证:a

c c b b a -+

-+-1

11>0. 证明一:(分析法书写过程)

为了证明

a

c c b b a -+

-+-1

11>0 只需要证明c b b a -+

-11>c

a -1

∵c b a >>∴0,0>->->-c b b a c a

c b c a b a ---1,11 >0∴c b b a -+

-11>c a -1

成立 ∴a

c c b b a -+

-+-111>0成立 证明二:(综合法书写过程)

∵c b a >> ∴0,0>->->-c b b a c a

b a -1>

c a -1 c b -1>0 ∴c b b a -+-11>c a -1成立 ∴a

c c b b a -+-+-1

11>0成立

例6 若0,0a b >>,且2c a b >+,求证:c a c <<

证明:为要证c a c <<

只需证a c <-< 即证a c -<

也就是2

2

()a c c ab -<-,即证2

2a ac ab -<-,即证2()ac a a b >+,

∵0,2,0a c a b b >>+>,

∴2

a b

c +>

≥2c ab >即有20c ab ->, 又 由2c a b >+可得2()ac a a b >+成立,

∴ 所求不等式c a c << 例7 若233=+b a ,求证2≤+b a .

证法一:假设2>+b a ,则)(2))((2

2

2

2

3

3

b ab a b ab a b a b a +->+-+=+,

而23

3=+b a ,故1)(22<+-b ab a .

∴ab b a ab 2122≥+>+.从而1

2<+<+ab b a . ∴4222)(222<+<++=+ab ab b a b a . ∴2<+b a . 这与假设矛盾,故2≤+b a .

证法二:假设2>+b a ,则b a ->2,

故3333)2(2b b b a +->+=,即261282b b +->,即0)1(2<-b , 这不可能.从而2≤+b a .

证法三:假设2>+b a ,则8)(3)(333>+++=+b a ab b a b a . 由233=+b a ,得6)(3>+b a ab ,故2)(>+b a ab . 又2))((2233=+-+=+b ab a b a b a ,

∴))(()(22b ab a b a b a ab +-+>+. ∴ab b ab a <+-22,即0)(2<-b a . 这不可能,故2≤+b a .

例8 设x 、y 为正数,求证33322y x y x +>+. 分析:用综合法证明比较困难,可试用分析法.

证明:要证33322y x y x +>+,只需证233322)()(y x y x +>+, 即证6336642246233y y x x y y x y x x ++>+++,

化简得334224233y x y x y x >+,0)323(2222>+-y xy x y x . ∵0334422+-y xy x . ∴0)323(2222>+-y xy x y x .∴原不等式成立.

例9 已知2122≤+≤y x ,求证32

1

22≤+-≤y xy x . 证明:从条件看,可用三角代换,但需要引入半径参数r .

∵2122≤+≤y x ,

∴可设θ=cos r x ,θ=sin r y ,其中π≤θ≤≤≤2021,

r . ∴)2sin 2

1

1(cos sin 22222θ-

=θθ-=+-r r r y xy x . 由232sin 21121≤θ-≤,故22223

)2sin 211(21r r r ≤θ-≤. 而21212≥r ,3232≤r ,故32

1

22≤+-≤y xy x . 例10 设n 是正整数,求证121

211121<+++++≤n n n .

分析:要求一个n 项分式n

n n 21

2111+

++++ 的范围,它的和又求不出来,可以采用“化整为零”的方法,观察每一项的范围,再求整体的范围.

证明:由),,2,1(2n k n k n n =>+≥,得n

k n n 1

121<+≤.

当1=k 时,n n n 1

1121<+≤;

当2=k 时,n n n 1

2121<+≤

…… 当n k =时,n

n n n 1

121<+≤.

∴1212111221=<+++++≤=n

n n n n n n . 例11 已知0>>b a ,求证:b

b a ab b a a b a 8)(28)(2

2-<

-+<-. 证明:欲证b b a ab b a a b a 8)(28)(2

2-<

-+<-, 只须证b

b a ab b a a b a 4)(24)(2

2-<

-+<-. 即要证2

2

22)(2???

? ??-<-

即要证

b

b a b a a

b a 22-<

-<-. 即要证

b

b a a

b a 212+<

<+,

即要证

b

b a a

b a +<

<+2. 即要证121+<

<+

b

a a

b ,即

b

a

a b <

<1. 即要证

b

a

a b <<1 (*) ∵0>>b a ,∴(*)显然成立,

故b

b a ab b a a b a 8)(28)(22-<

-+<- 例12 如果x ,y ,z R ∈,求证:332332332888y x z x z y z y x z y x ++≥++. 证明:∵242424888)()()(z y x z y x ++=++

444444x z x y y x ++≥

222222222)()()(x z z y y x ++=

222222222222y x x z x z z y z y y x ?+?+?≥ 222222)()()(y zx x yz z xy ++= z xy y zx y zx x yz x yz z xy 222222?+?+?≥ 332332332y x z x z y z y x ++=.

∴332332332888y x z x z y z y x z y x ++≥++.

例13 已知10<

1

. 证明:假设a c c b b a )1()1()1(---,,三数都大于4

1, 即41)1(>

-b a ,41)1(>-c b ,4

1)1(>-a c . 又∵10<

∴21)1(>-b a ,21)1(>-c b ,2

1

)1(>-a c .

∴2

3

)1()1()1(>-+-+-a c c b b a ①

又∵21)1(b a b a +-≤-,21)1(c b c b +-≤-,2

1)1(a

c a c +-≤-.

以上三式相加,即得:

2

3

)1()1()1(≤?-+?-+?-a c c b b a ②

显然①与②相矛盾,假设不成立,故命题获证.

例14 已知a 、b 、c 都是正数,求证:??

?

??-++≤???

??-+33322abc c b a ab b a .

证法一:要证??

?

??-++≤-??? ??+33322abc c b a ab b a , 只需证332abc c b a ab b a -++≤-+,

即332abc c ab -≤-,移项,得332abc ab c ≥+. 由a 、b 、c 为正数,得332abc ab ab c ab c ≥++=+. ∴原不等式成立.

证法二:∵a 、b 、c 为正数,

3333abc ab ab c ab ab c =?≥++∴.

即332abc ab c ≥+,故332abc c ab -≤-.

332abc c b a ab b a -++≤-+∴,

??

?

??-++≤-??? ??+∴33322abc c b a ab b a . 说明:题中给出的

2b a +,ab ,3

c b a ++,3abc ,只因为a 、b 、c 都是正数,形式同算术平均数与几何平均数定理一样,不加分析就用算术平均数与几何平均数定理来求证,问题就不好解决了.

例15 已知0>a ,0>b ,且1=-b a .求证:1)1

)(1(10<+-

b a a a . 证明:令θ=2se

c a ,θ=2tan b ,且2

<θ<,

则)tan 1

(tan )sec 1(sec sec 1)1)(1(12

θ+θ?θ-θθ=+-b

b a a a )sin cos cos sin ()cos cos 1(

cos 2θθ

+θθ?θ-θθ= θ=θ

θ?θθ?θ=sin cos sin 1cos sin cos 22

∵20π

<θ<,∴1sin 0<θ<,即1)1)(1(10<+-

n

x x x ?>+++1

2)1)(1(.

证明:∵x 是不等于1的正数, ∴021>>+x x ,

∴n n n x x 2)1(>+. ① 又021>>+n n x x . ② 将式①,②两边分别相乘得

n n n n n x x x x ??>++22)1)(1(, ∴n n n n x x x ?>+++12)1)(1(.

例17 已知,x ,y ,z +∈R ,且1=++z y x ,求证3≤++z y x .

证明:要证3≤++

z y x , 只需证3)(2≤+++++yz xz xy z y x ,

只需证1≤+

+yz xz xy .∵x ,y ,z +∈R ,

∴xy y x 2≥+,xz z x 2≥+,yz z y 2≥+, ∴)(2)(2yz xz xy z y x ++≥++,

∴1≤++yz xz xy 成立. ∴3≤++z y x .

例18 求证2131211222<++++

n

. 证明:∵

)2(111)1(11112≥--=-

n n n n n n , ∴ +???

??-+??? ??-+<++++3121211111312112

22n 212111<-=??

? ??--+n n n .

例19 在ABC ?中,角A 、B 、C 的对边分别为a ,b ,c ,若B C A 2≤+,求证4442b c a ≤+. 分析:因为涉及到三角形的边角关系,故可用正弦定理或余弦定理进行边角的转化. 证明:∵B B C A 2≤-π=+,∴2

1

cos 3≤π≥

B B ,. 由余弦定理得ac c a B ac c a b -+≥-+=22222cos 2 ∴ac b c a +≤+222, ∴22222442)(c a c a c a -+=+

=)2)(2(2222ac c a ac c a -+++ ])12([])12([22ac b ac b --?++≤ 22242c a b ac b -?+= 44222)(b b b ac ≤+--=

一元二次不等式:

一元一次不等式的解法:(依据、步骤、注意的问题,利用数轴表示)

例1、已知关于x 的不等式在(–2,0)上恒成立,求实数a 的取值范围. 例2.关于x 的不等式 对所有实数x ∈R 都成立,求a 的取值范围.

式02>--a ax x 的解集为),(+∞-∞,则实数a 的

例3、若关于x 的不等取值范围是______________;若关于x 的不等式32-≤--a ax x 的解集不是空集,则实数a 的取值范围是______________。(-4,0), (][)+∞-∞-,26,

几个重要不等式 (1)0,0||,2≥≥∈a a R a 则若

(2))2||2(2,2222ab ab b a ab b a R b a ≥≥+≥+∈+或则、若(当仅当a=b 时取等号)

(3)如果a ,b

.2

a b +(当仅当a=b 时取等号)一正、二定、三相等.

,3

a b c a b c R +++∈(4)若、、则

a=b=c 时取等号)

0,2b a

ab a b >+≥(5)若则(当仅当a=b 时取等号)

2222(6)0||;||a x a x a x a x a x a x a a x a >>?>?<->

或 (7)||||||||||||,b a b a b a R b a +≤±≤-∈则、若

常用不等式

(1

2211

a b a b

+≥≥≥+(根据目标不等式左右的运算结构选用); (2)a 、b 、c ∈R ,222a b c ab bc ca ++≥++(当且仅当a b c ==时,取等号); (3)若0,0a b m >>>,则

b b m

a a m

+<

+(糖水的浓度问题)。如 如果正数a 、b 满足3++=b a ab ,则ab 的取值范围是_________(答:[)9,+∞)

常用不等式的放缩法:①21111111

(2)1(1)

(1)1n n n n n n n n n

n

-=

=-≥++--

1)2n n

n n =

=≥+-利用函数的单调

简单的一元高次不等式的解法:标根法:其步骤是:(1)分解成若干个一次因式的积,并使每一个因式中

最高次项的系数为正;(2)将每一个一次因式的根标在数轴上,从最大根的右上方依次通过每一点画

曲线;并注意奇穿过偶弹回;(3)根据曲线显现()f x 的符号变化规律,写出不等式的解集。 如(1)

解不等式2

(1)(2)0x x -+≥。(答:{|1x x ≥或2}x =-);

(2)不等式(0x -的解集是____(答:{|3x x ≥或1}x =-);

(3)设函数()f x 、()g x 的定义域都是R ,且()0f x ≥的解集为{|12}x x ≤<,()0g x ≥的解集为?,则不等式()()0f x g x >的解集为______(答:(,1)[2,)-∞+∞)

; )1(log 22

++-=ax ax y

(4)要使满足关于x 的不等式0922<+-a x x (解集非空)的每一个x 的值至少满足不等式

08603422<+-<+-x x x x 和中的一个,则实数a 的取值范围是______.(答:81[7,

)8

) 分式不等式的解法:先移项使右边为0,再通分并将分子分母分解因式,并使每一个因式中最高次项的系

数为正,最后用标根法求解。解分式不等式时,一般不能去分母,但分母恒为正或恒为负时可去分母。 如(1)解不等式

2

5123

x

x x -<---(答:(1,1)(2,3)-); (2)关于x 的不等式0>-b ax 的解集为),1(+∞,则关于x 的不等式02

>-+x b

ax 的解集为_____(答:),2()1,(+∞--∞ ). 绝对值不等式的解法:

(1)分段讨论法(最后结果应取各段的并集):如21--+x x >a 在R x ∈上有解,则a 的取值范围是(()3,∞-)

(2)利用绝对值的定义;a x a )0a (a x <<-?><, a x a x )0a (a x >->或

(3)数形结合;如解不等式|||1|3x x +->(答:(,1)

(2,)-∞-+∞)

(4)两边平方:如若不等式|32||2|x x a +≥+对x R ∈恒成立,则实数a 的取值范围为______。(答:4{}3

) 含参不等式的解法:求解通法是“定义域为前提,函数增减性为基础,分类讨论是关键.”注意解完之后要写上:“综上,原不等式的解集是…”。注意:按参数讨论,最后按参数取值分别说明其解集;但若按未知数讨论,最后应求并集. 如(1)若2log 13a

<,则a 的取值范围是__________(答:1a >或2

03

a <<)

; (2)解不等式

2

()1ax x a R ax >∈-

(答:0a =时,{|x 0}x <;0a >时,1{|x x a >

或0}x <;0a <时,1

{|0}x x a

<<或0}x <) 提醒:(1)解不等式是求不等式的解集,最后务必有集合的形式表示;(2)不等式解集的端点值往往是不等式对应方程的根或不等式有意义范围的端点值。如关于x 的不等式0>-b ax 的解集为)1,(-∞,则不等式

02

>+-b

ax x 的解集为__________(答:

(-1,2)) 含绝对值不等式的性质:

a b 、同号或有0?||||||a b a b +=+≥||||||||a b a b -=-; a b 、异号或有0?||||||a b a b -=+≥||||||||a b a b -=+.

如设2

()13f x x x =-+,实数a 满足||1x a -<,求证:|()()|2(||1)f x f a a -<+

不等式的恒成立,能成立,恰成立等问题:不等式恒成立问题的常规处理方式?(常应用函数方程思想和“分

离变量法”转化为最值问题,也可抓住所给不等式的结构特征,利用数形结合法) 1).恒成立问题

若不等式()A x f >在区间D 上恒成立,则等价于在区间D 上()min f x A > 若不等式()B x f <在区间D 上恒成立,则等价于在区间D 上()max f x B <

如(1)设实数,x y 满足2

2

(1)1x y +-=,当0x y c ++≥时,c 的取值范围是______(答:

)

1,+∞); (2)不等式a x x >-+-34对一切实数x 恒成立,求实数a 的取值范围_____(答:1a <);

(3)若不等式)1(122

->-x m x 对满足2≤m 的所有m 都成立,则x 的取值范围_____(答:

(712-,312

+));

(4)若不等式n

a n n

1)1(2)1(+-+<-对于任意正整数n 恒成立,则实数a 的取值范围是_____(答:

3

[2,)2

-); (5)若不等式22210x mx m -++>对01x ≤≤的所有实数x 都成立,求m 的取值范围.(答:

12

m >-

) 2).能成立问题

若在区间D 上存在实数x 使不等式()A x f >成立,则等价于在区间D 上()max f x A >; 若在区间D 上存在实数x 使不等式()B x f <成立,则等价于在区间D 上的()min f x B <.如

已知不等式a x x <-+-34在实数集R 上的解集不是空集,求实数a 的取值范围____(答:1a >) 两个重要函数:|||1|3x x +-> 函数y=x+x

1

练习:

1、已若1x >,求4231

x x ++-的最小值. 已知x <45,求函数y=4x-2+541-x 的最大值

2、知,R x y +

∈且19

1x y

+=,则x y +的最小值是_____________.若21x y +=,则24x y +的最小值是______

3、知a ,b ,c ,d 均为实数,有下列命题: <1>若ab bc ad >->00,,则

c a

d b ->0;<2>若ab c a d

b

>->00,,则bc ad ->0

2(1)4

()(1)1x f x x x ++=>-+ <3>若bc ad c a d

b

->->00,

,则ab >0其中正确命题是()

4.求函数的最小值.

5、求证:2

22

1111223

n +

+++

< 2

31124(1)2(1)(1)()22327

x x x x x -=?--≤= 二元一次不等式组与简单线性规划问题

1.二元一次不等式表示的平面区域:直线l : ax+by+c=0把直角坐标平面分成了三个部分: (1)直线l 上的点(x,y )的坐标满足ax+by+c=0

(2)直线l 一侧的平面区域内的点(x,y )的坐标都满足ax+by+c>0 (3)直线l 另一侧的平面区域内的点(x,y )的坐标满足ax+by+c<0

所以,只需在直线l 的某一侧的平面区域内,任取一特殊点(x 0 , y 0),从a 0x+b 0y+c 值的正负,即可判断不等式表示的平面区域。

2.线性规划:如果两个变量x,y 满足一组一次不等式,求这两个变量的一个线性函数的最大值或最小值,称这个线性函数为目标函数,称一次不等式组为约束条件,像这样的问题叫作二元线性规划问题。其中,满足约束条件的解(x,y)称为可行解,由所有可行解组成的集合称为可行域,使目标函数取得最大值和最小值的可行解称为这个问题的最优解。

3.线性规划问题应用题的求解步骤:(1)先写出决策变量,找出约束条件和线性目标函数;

(2)作出相应的可行域;(3)确定最优解 例题分析:

例1.若A 为不等式组0

02x y y x ≤??

≥??-≤?

表示的平面区域,则当a 从-2连续变化到1时,动直线x y a +=扫过A

中的那部分区域的面积为 ( )

A .

34 B .1 C .7

4

D .5 例2.如果点P 在平面区域??

???≥-≤-+≥+-012020

22y y x y x 上,点O 在曲线1)2(2

2=++y x 上,

那么的||PQ 最小值为()

(A)

23

(B)

15

4- (C)122- (D)12- 例3、已知实数,x y 满足30

25000

x y x y x y +-≥??+-≤?

?≥??≥?,则2y x -的最大值是_________.

1、点P (x ,y )在直线4x + 3y = 0上,且满足-14≤x -y ≤7,则点P 到

坐标原点距离的取值范围是() A. [0,5] B. [0,10] C. [5,10] D. [5,15]

2.已知变量x y ,满足约束条件20170x y x x y -+??

??+-?

≤,

≥,≤,则y x 的取值范围是()

A .???

???6,5

9 B .[)965?

?-∞+∞ ?

?

?

,,

C .(][)36-∞+∞,,

D .[36],

3.设D 是不等式组????

???≥≤≤≥+≤+1

,40,32102y x y x y x ,

表示的平面区域,则D 中的点P (x ,y )到直线x +y =10距离的最大值是.

4.已知1,

10,220x x y x y ≥??-+≤??--≤?

则22

x y +的最小值是.

例1.C; 例2. A; 例3、___0_____.1、B; 2.A; 3.24; 4. 5 ;

最新文件 仅供参考 已改成word 文本 。 方便更改

高中不等式的证明方法

不等式的证明方法 不等式的证明是高中数学的一个难点,证明方法多种多样,近几年高考出现较为形式较为活跃,证明中经常需与函数、数列的知识综合应用,灵活的掌握运用各种方法是学好这部分知识的一个前提,下面我们将证明中常见的几种方法作一列举。 注意ab b a 22 2 ≥+的变式应用。常用2 222b a b a +≥ + (其中+ ∈R b a ,)来解决有关根式不等式的问题。 一、比较法 比较法是证明不等式最基本的方法,有做差比较和作商比较两种基本途径。 1、已知a,b,c 均为正数,求证: a c c b b a c b a ++ +++≥++1 11212121 证明:∵a,b 均为正数, ∴ 0) (4)(44)()(14141)(2 ≥+=+-+++=+-+-b a ab b a ab ab b a a b a b b a b a b a 同理 0)(41 4141)(2 ≥+= +-+-c b bc c b c b c b ,0) (414141)(2 ≥+=+-+-c a ac a c a c a c 三式相加,可得 01 11212121≥+-+-+-++a c c b b a c b a ∴a c c b b a c b a ++ +++≥++111212121 二、综合法 综合法是依据题设条件与基本不等式的性质等,运用不等式的变换,从已知条件推出所要证明的结论。 2、a 、b 、),0(∞+∈c ,1=++c b a ,求证: 31222≥ ++c b a 证:2 222)(1)(3c b a c b a ++=≥++?∴ 2222)()(3c b a c b a ++-++0 )()()(222222222222≥-+-+-=---++=a c c b b a ca bc ab c b a 3、设a 、b 、c 是互不相等的正数,求证:)(4 4 4 c b a abc c b a ++>++ 证 : ∵ 2 2442b a b a >+ 2 2442c b c b >+ 2 2442a c a c >+∴ 222222444a c c b b a c b a ++>++ ∵ c ab c b b a c b b a 2 2222222222=?>+同理:a bc a c c b 222222>+ b ca b a a c 222222>+ ∴ )(222222c b a abc a c c b b a ++>++ 4、 知a,b,c R ∈,求证: )(22 2 2 2 2 2 c b a a c c b b a ++≥++ ++ + 证明:∵ ) (2 2 2 2 2 2 2 2)(22b a b a b a b a ab ab +≥++≥+∴≥+

高中数学集合典型例题

-- -- 集 合 1.集合概念 元素:互异性、无序性、确定性 2.集合运算 全集U:如U =R 交集:}{B x A x x B A ∈∈=且 并集:}{B x A x x B A ∈∈=?或 补集:}{A x U x x A C U ?∈=且 3.集合关系 空集A ?φ 子集B A ?:任意B x A x ∈?∈ B A B B A B A A B A ??=??= 注:数形结合---文氏图(即韦恩图、Ve nn 图)、数轴 典型例题 1. 集合(){}0,=+=y x y x A ,(){}2,=-=y x y x B ,则=B A 2. 已知集合{}R x x y y P ∈+-==,22,{}R x x y x Q ∈+-==,2,那么Q P 等于 3. 设(){}R b b x b x x A ∈=++++=,0122,求A 中所有元素之和. 4. 已知集合{}24,3,22++=a a A ,{}a a a B --+=2,24,7,02,且{}7,3=B A ,求a 的值. 5. 已知(){}011=+-=x m x A ,{}0322=--=x x x B ,若B A ?,则m 的值为 6. 已知{}121-≤≤+=m x m x A ,{}52≤≤-=x x B ,若B A ?,求实数m 的取值范围. 7. 设全集{}32,3,22-+=a a S ,{}2,12-=a A ,{}5=A C S ,求a 的值. 8. 若{}Z n n x x A ∈==,2,{}Z n n x x B ∈-==,22,试问B A ,是否相等. 9. 已知(){}a x y y x M +==,,(){}2,22=+=y x y x N ,求使得φ=N M 成立的实数a 的取值范围. 10. 设集合{}R x x x x A ∈=+=,042,(){}R x R a a x a x x B ∈∈=-+++=,,011222,若A B ?,求实数a 的取值范围. 11. 设R U =,集合{}R x a ax x x A ∈=+-+=,03442,(){}R x a x a x x B ∈=+--=,0122,{}R x a ax x x C ∈=-+=,0222,若C B A ,,中至少一个不是空集,求实数a 的取值范围. 12. 设集合(){}01,2=--=x y y x A ,(){} 05224,2=+-+=y x x y x B ,(){==y y x C ,}b kx +,是否存在N b k ∈,,使得()φ=C B A ?若存在,请求出b k ,的值;若不存在,请说明理由.

不等式典型例题之基本不等式的证明

5.3、不等式典型例题之基本不等式的证明——(6例题) 雪慕冰 一、知识导学 1.比较法:比较法是证明不等式的最基本、最重要的方法之一,它是两个实数大小顺序和运算性质的直接应用,比较法可分为差值比较法(简称为求差法)和商值比较法(简称为求商法). (1)差值比较法的理论依据是不等式的基本性质:“a-b≥0a≥b;a-b≤0a≤b”.其一般步骤为:①作差:考察不等式左右两边构成的差式,将其看作一个整体;②变形:把不等式两边的差进行变形,或变形为一个常数,或变形为若干个因式的积,或变形为一个或几个平方的和等等,其中变形是求差法的关键,配方和因式分解是经常使用的变形手段;③判断:根据已知条件与上述变形结果,判断不等式两边差的正负号,最后肯定所求证不等式成立的结论.应用范围:当被证的不等式两端是多项式、分式或对数式时一般使用差值比较法. (2)商值比较法的理论依据是:“若a,b∈R + ,a/b≥1a≥b;a/b≤1a≤b”.其一般步骤为:①作商:将左右两端作商;②变形:化简商式到最简形式;③判断商与1的大小关系,就是判定商大于1或小于1.应用范围:当被证的不等式两端含有幂、指数式时,一般使用商值比较法. 2.综合法:利用已知事实(已知条件、重要不等式或已证明的不等式)作为基础,借助不等式的性质和有关定理,经过逐步的逻辑推理,最后推出所要证明的不等式,其特点和思路是“由因导果”,从“已知”看“需知”,逐步推出“结论”.即从已知A逐步推演不等式成立的必要条件从而得出结论B. 3.分析法:是指从需证的不等式出发,分析这个不等式成立的充分条件,进而转化为判定那个条件是否具备,其特点和思路是“执果索因”,即从“未知”看“需知”,逐步靠拢“已知”.用分析法证明书写的模式是:为了证明命题B成立,只需证明命题B1为真,从而有…,这只需证明B2为真,从而又有…,……这只需证明A为真,而已知A为真,故B必为真.这种证题模式告诉我们,分析法证题是步步寻求上一步成立的充分条件. 4.反证法:有些不等式的证明,从正面证不好说清楚,可以从正难则反的角度考虑,即要证明不等式A>B,先假设A≤B,由题设及其它性质,推出矛盾,从而肯定A>B.凡涉及到的证明不等式为否定命题、惟一性命题或含有“至多”、“至少”、“不存在”、“不可能”等词语时,可以考虑用反证法. 5.换元法:换元法是对一些结构比较复杂,变量较多,变量之间的关系不甚明了的不等式可引入一个或多个变量进行代换,以便简化原有的结构或实现某种转化与变通,给证明带来新????

高中数学典型例题详解和练习- 求分段函数的导数

求分段函数的导数 例 求函数?????=≠=0 ,00 ,1sin )(2 x x x x x f 的导数 分析:当0=x 时因为)0(f '存在,所以应当用导数定义求)0(f ',当 0≠x 时,)(x f 的关系式是初等函数x x 1 sin 2,可以按各种求导法同求它的导数. 解:当0=x 时,01sin lim 1 sin lim ) 0()(lim )0(0200 ===-='→?→?→?x x x x x x f x f f x x x 当 ≠x 时, x x x x x x x x x x x x x x x f 1 cos 1sin 2)1cos 1(1sin 2)1(sin 1sin )()1sin ()(22222-=-+='+'='=' 说明:如果一个函数)(x g 在点0x 连续,则有)(lim )(0 0x g x g x x →=,但如 果我们不能断定)(x f 的导数)(x f '是否在点00=x 连续,不能认为 )(lim )0(0 x f f x →='. 指出函数的复合关系 例 指出下列函数的复合关系. 1.m n bx a y )(+=;2.32ln +=x e y ; 3.)32(log 322+-=x x y ;4.)1sin(x x y +=。 分析:由复合函数的定义可知,中间变量的选择应是基本函数的结构,解决这类问题的关键是正确分析函数的复合层次,一般是从最外层开始,由外及里,一层一层地分析,把复合函数分解成若干个常

见的基本函数,逐步确定复合过程. 解:函数的复合关系分别是 1.n m bx a u u y +==,; 2.2,3,ln +===x e v v u u y ; 3.32,log ,322+-===x x v v u y u ; 4..1,sin ,3x x v v u u y +=== 说明:分不清复合函数的复合关系,忽视最外层和中间变量都是基本函数的结构形式,而最内层可以是关于自变量x 的基本函数,也可以是关于自变量的基本函数经过有限次的四则运算而得到的函数,导致陷入解题误区,达不到预期的效果. 求函数的导数 例 求下列函数的导数. 1.43)12(x x x y +-=;2.2 211x y -= ; 3.)3 2(sin 2π +=x y ;4.21x x y +=。 分析:选择中间变量是复合函数求导的关键.必须正确分析复合函数是由哪些基本函数经过怎样的顺序复合而成的,分清其间的复合关系.要善于把一部分量、式子暂时当作一个整体,这个暂时的整体,就是中间变量.求导时需要记住中间变量,注意逐层求导,不遗漏,而其中特别要注意中间变量的系数.求导数后,要把中间变量转换成自变量的函数.

高一数学集合练习题及答案-经典

升腾教育高一数学 满分150分 姓名 一、选择题(每题4分,共40分) 1、下列四组对象,能构成集合的是 ( ) A 某班所有高个子的学生 B 著名的艺术家 C 一切很大的书 D 倒数等于它自身的实数 2、集合{a ,b ,c }的真子集共有 个 ( ) A 7 B 8 C 9 D 10 3、若{1,2}?A ?{1,2,3,4,5}则满足条件的集合A 的个数是 ( ) A. 6 B. 7 C. 8 D. 9 4、若U={1,2,3,4},M={1,2},N={2,3},则C U (M ∪N )= ( ) A . {1,2,3} B. {2} C. {1,3,4} D. {4} 5、方程组 1 1x y x y +=-=- 的解集是 ( ) A .{x=0,y=1} B. {0,1} C. {(0,1)} D. {(x,y)|x=0或y=1} 6、以下六个关系式:{}00∈,{}0??,Q ?3.0, N ∈0, {}{},,a b b a ? , {}2 |20,x x x Z -=∈是空集中,错误的个数是 ( ) A 4 B 3 C 2 D 1 8、设集合A=} { 12x x <<,B=} { x x a <,若A ?B ,则a 的取值范围是 ( ) A } { 2a a ≥ B } { 1a a ≤ C } { 1a a ≥ D } { 2a a ≤ 9、 满足条件M U }{1=}{ 1,2,3的集合M 的个数是 ( ) A 1 B 2 C 3 D 4

二、填空题 11、若}4,3,2,2{-=A ,},|{2 A t t x x B ∈==,用列举法表示B 12、集合A={x| x 2 +x-6=0}, B={x| ax+1=0}, 若B ?A ,则a=__________ 13、设全集U={ } 2 2,3,23a a +-,A={}2,b ,C U A={} 5,则a = ,b = 。 14、集合{}33|>-<=x x x A 或,{}41|><=x x x B 或,A B ?=____________. 三、解答题 17、已知集合A={x| x 2 +2x-8=0}, B={x| x 2 -5x+6=0}, C={x| x 2 -mx+m 2 -19=0}, 若B ∩C ≠Φ,A∩C=Φ,求m 的值 18、已知二次函数f (x )=2 x ax b ++,A=}{ }{ ()222x f x x ==,试求 f ()x 的解析式 19、已知集合{}1,1A =-,B=} { 2 20x x ax b -+=,若B ≠?,且A B A ?= 求实数 a , b 的值。

证明基本不等式的方法

2.2 证明不等式的基本方法——分析法与综合法 ●教学目标:1、理解综合法与分析法证明不等式的原理和思维特点. 2、理解综合法与分析法的实质,熟练掌握分析法证明不等式的方法与步骤. ●教学重点:综合法与分析法证明不等式的方法与步骤 ●教学难点:综合法与分析法证明不等式基本原理的理 ●教学过程: 一、复习引入: 1、复习比较法证明不等式的依据和步骤? 2、今天学习证明不等式的基本方法——分析法与综合法 二、讲授新课: 1、综合法:一般地,从已知条件出发,利用定义、公理、定理、性质等,经过一系列的推理、论证而得出命题成立,这种证明方法叫做综合法综合法又叫顺推证法或由因导果法。 用综合法证明不等式的逻辑关系是:例1、已知a,b,c是不全相等的正数,求证: . 分析:观察题目,不等式左边含有“a2+b2”的形式,我们可以创设运用基本不等式:a2+b2≥2ab;还可以这样思考:不等式左边出现有三次因式:a2b,b2c,c2a,ab2,bc2,ca2的“和”,右边有三正数a,b,c的“积”,我们可以创设运用重要不等式:a3+b3+c3≥3abc.(教师引导学生,完成证明) 解:∵a>0,b2+c2≥2bc∴由不等式的性质定理4,得a(b2+c2)≥2abc.① 同理b(c2+a2)≥2abc,②c(a2+b2)≥2abc.③ 因为a,b,c为不全相等的正数,所以以上三式不能全取“=”号,从而①,②,③三式也不能全取“=”号. 由不等式的性质定理3的推论,①,②,③三式相加得:a(b2+c2)+b(c2+a2)+c(a2+b2)>6abc. 点评:(1)综合法的思维特点是:由因导果,即由已知条件出发,利用已知的数学定理、性质和公式,推出结论的一种证明方法。基本不等式以及一些已经得证的不等式往往与待证的不等式有着这样或那样的联系,作由此及彼的联想往往能启发我们证明的方向.尝试时贵在联想,浮想联翩,思潮如涌。 (2)在利用综合法进行不等式证明时,要善于直接运用或创设条件运用基本不等式,其中拆项、并项、分解、组合是变形的重要技巧. 变式训练:已知a,b,c是不全相等的正数,求证:例2、已知且,求证:分析:观察要证明的结论,左边是个因式的乘积,右边是2的次方,再结合,发现如果能将左边转化为的乘积,问题就能得到解决。 2、分析法:从要证的结论出发,逐步寻求使它成立的充分条件,直至所需条件为已知条件或一个明显成立的事实(定义、公理或已证明的定理、性质等),从而得出要证的命题成立,这种证明方法叫做分析法这是一种执果索因的思考和证明方法。 ①用分析法证明不等式的逻辑关系是:②分析法论证“若A则B”这个命题的模式是:为了证明命题B为真,这只需要证明命题B1为真,从而有……这只需要证明命题B2为真,从而又有……这只需要证明命题A为真,而已知A为真,故B必真。 例3.求证:分析:观察结构特点,可以利用分析法。 点评:①分析法的思维特点是:执果索因.对于思路不明显,感到无从下手的问题宜用分析法探究证明途径.另外,不等式的基本性质告诉我们可以对不等式做这样或那样的变形,分析时贵在变形,不通思变,变则通! ②证明某些含有根式的不等式时,用综合法比较困难,常用分析法. ③在证明不等式时,分析法占有重要的位置.有时我们常用分析法探索证明的途径,然后用综

高中数学基本不等式证明

不等式证明基本方法 例1 :求证:221a b a b ab ++≥+- 分析:比较法证明不等式是不等式证明的最基本的方法,常用作差法和作商法,此题用作差法较为简便。 证明:221()a b a b ab ++-+- 2221[()(1)(1)]02 a b a b =-+-+-≥ 评注:1.比较法之一(作差法)步骤:作差——变形——判断与0的关系——结论 2.作差后的变形常用方法有因式分解、配方、通分、有理化等,应注意结合式子的形式,适当选 用。 例2:设c b a >>,求证:b a a c c b ab ca bc 2 22222++<++ 分析:从不等式两边形式看,作差后可进行因式分解。 证明:)(222222b a a c c b ab ca bc ++-++ =)()()(a b ab c a ca b c bc -+-+- =)()]()[()(a b ab c b b a ca b c bc -+-+-+- =))()((a c c b b a --- c b a >>Θ,则,0,0,0<->->-a c c b b a ∴0))()((<---a c c b b a 故原不等式成立 评注:三元因式分解因式,可以排列成一个元的降幂形式: =++-++)(222222b a a c c b ab ca bc )())(()(2a b ab b a b a c a b c -++-+-,这样容易发现规律。 例3 :已知,,a b R +∈求证:11()()2()n n n n a b a b a b ++++≤+ 证明:11()()2()n n n n a b a b a b ++++-+ 11n n n n a b ab a b ++=+-- ()()n n a b a b a b =-+- ()()n n a b b a =--

放缩法证明不等式的基本策略

放缩法”证明不等式的基本策略 近年来在高考解答题中, 常渗透不等式证明的内容, 而不等式的证明是高中数学中的一个难点, 以考察学生逻辑思维能力以及分析问题和解决问题的能力。特别值得一 提的是,高考中可以用 证明不等式的频率很高,它是思考不等关系的朴素思想和基本出发点 能体现出创造性。 放缩法”它可以和很多知识内容结合, 而且要恰到好处,目标往往要从证明的结论考察,放缩时要注意适度, 些高考试题,例谈 放缩”的基本策略,期望对读者能有所帮助。 1、添加或舍弃一些正项(或负项) 2、先放缩再求和(或先求和再放缩) 子分母均取正值的分式。如需放大,则只要把分子放大或分母缩小即可;如需缩小,则只要把分子缩小或 分母放大即可。 3、先放缩,后裂项(或先裂项再放缩) n J k 例 3、已知 a n =n ,求证:k=1 a k V 3- 它可 放缩法” ,有极大的迁移性,对它的运 用往往 对应变能力有较高的要求。 因为放缩必须有目标, 否则就不能同向传递。下面结合一 例1、已知 a n 2n 1(n N ).求证: a 1 a ^ a 2 a 3 丑(n N a n 1 ). 证明:Q 皀 a k 1 2k 1 2k 1 2(2k1 1) 1 3.2k 2k 2 1,2,..., n. a_ a 2 a 2 a 3 a n a n 1 1 ( 1 1 二(二 二 1 a_ 3 a 2 a 2 a 3 多项式的值变小。由于证 若多项式中加上一些正的值,多项式的值变大, 多项式中加上一些负的值, 明不等式的需要,有时需要舍去或添加一些项,使不等式一边放大或缩小,利用不等式的传递性,达到证 明的目的。本题在放缩时就舍去了 2k 2,从而是使和式得到化简 例2、函数f (x ) =±- 1 4x ,求证: (1)+f ( 2) +…+f (n ) 证明:由 f(n)= 羊7=1-- 1 4n 1 得 f (1) +f (2) + …+f (n ) n 2(1 4 1 1 丄 2 21 2 22 1 1 * 芦 >1 此题不等式左边不易求和 ,此时根据不等式右边特征 ,先将分子变为常数,再对分母进行放缩,从而对 左边可以进行求和.若分子, 分母如果同时存在变量时 ,要设法使其中之一变为常量,分式的放缩对于分

经典不等式证明的基本方法

不等式和绝对值不等式 一、不等式 1、不等式的基本性质: ①、对称性: 传递性:_________ ②、 ,a+c >b+c ③、a >b , , 那么ac >bc ; a >b , ,那么ac <bc ④、a >b >0, 那么,ac >bd ⑤、a>b>0,那么a n >b n .(条件 ) ⑥、 a >b >0 那么 (条件 ) 2、基本不等式 定理1 如果a, b ∈R, 那么 a 2+b 2≥2ab. 当且仅当a=b 时等号成立。 定理2(基本不等式) 如果a ,b>0,那么 当且仅当a=b 时,等号成立。即两个正数的算术平均不小于它们的几何平均。 结论:已知x, y 都是正数。(1)如果积xy 是定值p ,那么当x=y 时,和x+y 有最小值 ; (2)如果和x+y 是定值s ,那么当x=y 时,积xy 有最大值 小结:理解并熟练掌握基本不等式及其应用,特别要注意利用基本不等式求最值时, 一 定要满足“一正二定三相等”的条件。 3、三个正数的算术-几何平均不等式 二、绝对值不等式 1、绝对值三角不等式 实数a 的绝对值|a|的几何意义是表示数轴上坐标为a 的点A 到原点的距离: a b b a c a c b b a >?>>,R c b a ∈>,0>c 0> d c 2,≥∈n N n 2,≥∈n N n 2 a b +≥2 1 4 s 3 ,,3a b c a b c R a b c +++∈≥==定理如果,那么当且仅当时,等号成立。 即:三个正数的算术平均不小于它们的几何平均。2122,,,,n n n a a a a a n a a ++≥=== 11把基本不等式推广到一般情形:对于n 个正数a 它们的算术平均不小于它们的几何平均,即: 当且仅当a 时,等号成立。

高中数学必修一集合经典习题

集合练习题 一、选择题(每小题5分,计5×12=60分) 1.下列集合中,结果是空集的为() (A)(B) (C)(D) 2.设集合,,则() (A)(B) (C)(D) 3.下列表示①②③④中,正确的个数为( ) (A)1 (B)2 (C)3 (D)4 4.满足的集合的个数为() (A)6 (B) 7 (C) 8 (D)9 5.若集合、、,满足,,则与之间的关系为() (A)(B)(C)(D) 6.下列集合中,表示方程组的解集的是() (A)(B)(C)(D) 7.设,,若,则实数的取值范围是() (A)(B)(C)(D) 8.已知全集合,,,那么 是() (A)(B)(C)(D) 9.已知集合,则等于() (A)(B) (C)(D) 10.已知集合,,那么() (A)(B)(C)(D) 11.如图所示,,,是的三个子集,则阴影部分所表示的集合是()

(A)(B) (C)(D) 12.设全集,若,, ,则下列结论正确的是() (A)且(B)且 (C)且(D)且 二、填空题(每小题4分,计4×4=16分) 13.已知集合,,则集合 14.用描述法表示平面内不在第一与第三象限的点的集合为 15.设全集,,,则的值为 16.若集合只有一个元素,则实数的值为三、解答题(共计74分) 17.(本小题满分12分)若,求实数的值。 18.(本小题满分12分)设全集合,, ,求,,, 19.(本小题满分12分)设全集,集合与集合,且,求,

20.(本小题满分12分)已知集合 , ,且 ,求实数 的取值范围。 21.(本小题满分12分)已知集合 , , ,求实数的取值范围 22.(本小题满分14分)已知集合 , ,若 ,求实数的取值范围。 已知集合}31{≤≤-=x x A ,},{2A x y x y B ∈==,},2{A x a x y y C ∈+==,若满足B C ?, 求实数a 的取值范围. 已知集合}71{<<=x x A ,集合}521{+<<+=a x a x B ,若满足 }73{<<=x x B A ,求 实数a 的值.

分析法证明不等式

分析法证明不等式 山东 林 博 分析法是不等式证明的基本方法,但它不失为不等式证明的重要方法.下面以几道不等式证明题作为分析法的范例加以阐释. 例1 已知:a b c +∈R ,,, 求证:3223a b a b c ab abc +++????-3- ? ????? ≤. 分析:这道题从考查思维的角度来看,方法基本,只要从分析法入手———步步变形,问题极易解决. 证明:为了证明3223a b a b c ab abc +++????-3- ? ????? ≤, 只需证明323ab c abc --≤, 即证明332abc c ab c ab ab +=++≤. 而3333c ab ab c ab ab abc ++=≥成立,且以上各步均可逆, ∴32323a b a b c ab abc +++????-- ? ????? ≤. 点评:分析法是思考问题的一种基本方法,容易找到解决问题的突破口. 例2 已知关于x 的实系数方程2 0x ax b ++=有两个实根αβ,,证明: (1)如果||2α<,||2β<,那么2||4a b <+,且||4b <; (2)如果2||4a b <+,且||4b <,那么||2α<,||2β<. 分析:本题涉及参数较多,应注意它们之间的等量关系. 证明:∵αβ,是方程20x ax b ++=的两个实根, ∴a αβ+=-,b αβ=. (1)欲证2||4a b <+,且||4b <. 只要证2||4αβαβ+<+,且||4αβ<, 而||2α<,||2β<,从而有||4αβ+<,40αβ+>. 故只要证224()(4)αβαβ+<+,只要证22(4)(4)0αβ-->.

高一数学集合典型例题、经典例题

《集合》常考题型 题型一、集合元素的意义+互异性 例.设集合 {0} 例.已知A ={2,4,a 3-2a 2-a +7},B ={1,a +3,a 2-2a +2,a 3+a 2+3a +7},且A ∩B ={2,5},则A ∪B =____________________________ 解:∵A∩B={2,5},∴5∈A. ∴a 3-2a 2-a +7=5解得a =±1或a =2. ①若a =-1,则B ={1,2,5,4},则A∩B={2,4,5},与已知矛盾,舍去. ②若a =1,则B ={1,4,1,12}不成立,舍去. ③若a =2,则B ={1,5,2,25}符合题意.则A ∪B ={1,2,4,5,25}. 题型二、空集的特殊性 例.已知集合{}{}25,121A x x B x m x m =-<≤=-+≤≤-,且BA , 则实数m 的取值范围为_____________ 例.已知集合{}R x x ax x A ∈=++=,012,{} 0≥=x x B ,且φ=B A I , 求实数a 的取值范围。 解:①当0a =时,{|10,}{1}A x x x R =+=∈=-,此时{|0}A x x ≥=ΦI ; ②当0a ≠时,{|0}A x x ≥=ΦQ I ,A ∴=Φ或关于x 的方程2 10ax x ++=的根均为负数. (1)当A =Φ时,关于x 的方程210ax x ++=无实数根, 140a ?=-<,所以14a > . (2)当关于x 的方程210ax x ++=的根均为负数时, 12121401010a x x a x x a ???=-≥??+=-?? 140a a ?≤?????>?104a <≤. 综上所述,实数a 的取值范围为{0}a a ≥. 题型三、集和的运算 例.设集合S ={x |x >5或x <-1},T ={x |a

浅谈高中数学不等式的证明方法

浅谈高中数学不等式的证明方法 姜堰市罗塘高级中学 李鑫 摘要:不等式是中学数学的重要知识,本文介绍了几种不等式的证明方法,并举例进一步加强对各种不等式的理解。 关键字:比较法,分析法,综合法,反证法,放缩法,数学归纳法,换元法,均值不等式,柯西不等式,导数法 不等式在中学数学中占有重要地位,因此在历年高考中颇为重视。由于不等式的形式各异, 所以证明没有固定的程序可循,技巧多样,方法灵活,因此有关不等式的证明是中学数学的难点之一。本文从不等式的各个方面进行讲解和研究。 一.比较法 所谓比较法,就是通过两个实数a 与b 的差或商的符号(范围)确定a 与b 大小关系的方法,即通过“0a b ->,0a b -=,0a b -<;或1a b >,1a b =,1a b <”来确定a ,b 大小关系的方法,前者为作差法,后者为作商法。 例1 已知:0>a ,0>b ,求证:ab b a ≥+2. 分析:两个多项式的大小比较可用作差法 证明 02 )(2222 ≥-=-+=-+b a ab b a ab b a , 故得 ab b a ≥+2 . 例2 设0>>b a ,求证:a b b a b a b a >. 分析:对于含有幂指数类的用作商法 证明 因为 0>>b a , 所以 1>b a ,0>- b a . 而 1>??? ??=-b a a b b a b a b a b a , 故 a b b a b a b a > 二.分析法 从求证的不等式出发,分析这个不等式成立的充分条件,把证明这个不等式的问题转化为证明这些条件是否具备的问题,如果能够肯定这些条件都已具备,那么就可以判定所证的不等式成立,这种方法叫做分析法。

不等式的证明分析法与综合法习题

2.3不等式的证明(2)——分析法与综合法习题 知能目标锁定 1.掌握分析法证明不等式的方法与步骤,能够用分析法证明一些复杂的不等式; 2.了解综合法的意义,熟悉综合法证明不等式的步骤与方法; 重点难点透视 1.综合法与分析法证明不等式是重点,分析法是证明不等式的难点. 方法指导 1. 分析法 ⑴分析法是证明不等式的一种常用方法.它的证明思路是:从未知,看需知,逐步靠已知.即”执果索因”. ⑵分析法证明的逻辑关系是:结论A B B B B n ????? 21 (A 已确认). ⑶用分析法证题一定要注意书写格式,并保证步步可逆. ⑷用分析法探求方向,逐步剥离外壳,直至内核.有时分析法与综合法联合使用.当不等式两边有多个根式或多个分式时,常用分析法. 2. 综合法 ⑴综合法的特点是:由因导果.其逻辑关系是:已知条件 B B B B A n ????? 21(结论),后一步是前一步的必要条件. ⑵在用综合法证题时要注意两点:常用分析法去寻找证题思路,找出从何处入手,将不等式变形,使其结构特点明显或转化为容易证明的不等式. 一.夯实双基 1.若a>2,b>2,则ab 与a+b 的大小关系是ab( )a+b A.= B. < C.> D.不能确定 2.0>>a b 设,则下列不等式中正确的是( ) A.0 lg >b a B.a b a b ->- C. a a a a ++< +211 D. 1 1++< a b a b

3.若a,b,c + ∈R ,且a+b+c=1,那么 c b a 111+ + 有最小值( ) A.6 B.9 C.4 D.3 4.设2 6,37,2-=-== c b a ,那么a,b,c 的大小关系是( ) c b a A >>. b c a B >>. c a b C >>. a c b D >>. 5.若x>y>1,则下列4个选项中最小的是( ) A. 2 y x + B. y x xy +2 C.xy D. )11(21y x + 二.循序厚积 6.已知两个变量x,y 满足x+y=4,则使不等式m y x ≥+ 41恒成立的实数m 的取值范 围是________; 7.已知 a,b 为正数,且a+b=1则22+++b a 的最大值为_________; 8.若a,b,c + ∈R ,且a+b+c=1,则c b a ++的最大值是__________; 9.若xy+yz+zx=1,则222z y x ++与1的关系是__________; 10. b a n b a m b a -= - = >>,,0若,则m 与n 的大小关系是______. 三、提升能力 11. a 、b 、c 、d 是不全相等的正数,求证:(a b+cd)(ac+bd)>abcd 12.设x>0,y>0,求证: 2 2 y x y x +≤ + 13.已知a,b + ∈R ,且a+b=1,求证:2 25)1()1(2 2 ≥ + ++ b b a a .

集合经典例题总结

集合经典例题讲解 集合元素的“三性”及其应用 集合的特征是学好集合的基础,是解集合题的关键,它主要指集合元素的确定性、互异性和无序性,这些性质为我们提供了解题的依据,特别是元素的互异性,稍有不慎,就易出错. 例1 已知集合A={a ,a +b ,a +2b },B={a ,a q ,a 2q }, 其中a 0≠,A=B,求q 的值. 例2 设A={x∣2 x +(b+2)x+b+1=0,b∈R },求A中所有元素之和. 例3 已知集合 =A {2,3,2a +4a +2}, B ={0,7, 2 a +4a -2,2-a },且A B={3,7},求a 值. 分析: 集合易错题分析 1.进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解. 2.你会用补集的思想解决有关问题吗? 3.求不等式(方程)的解集,或求定义域(值域)时,你按要求写成集合的形式了吗? 1、忽略φ的存在: 例题1、已知A={x|121m x m +≤≤-},B={x|25x -≤≤},若A ?B ,求实数m 的取值范围. 2、分不清四种集合:{}()x y f x =、{}()y y f x =、{},)()x y y f x =(、{}()()x g x f x ≥的区别. 例题2、已知函数()x f y =,[]b a x ,∈,那么集合()()[]{}(){}2,,,,=∈=x y x b a x x f y y x 中元素的个数

为…………………………………………………………………………( ) (A ) 1 (B )0 (C )1或0 (D ) 1或2 3、搞不清楚是否能取得边界值: 例题3、A={x|x<-2或x>10},B={x|x<1-m 或x>1+m}且B ?A ,求m 的范围. 例4、已知集合 {}R x x y y P ∈+-==,22,{}R x x y x Q ∈+-==,2,那么Q P 等于 ( ) A.(0,2),(1,1) B.{(0,2),(1,1)} C. {1,2} D.{}2≤y y 集合与方程 例1、已知 {}φ=∈=+++=+R A R x x p x x A ,,01)2(2,求实数p 的取值范 围。 例2、已知集合 (){}(){}20,01,02,2≤≤=+-==+-+=x y x y x B y mx x y x A 和, 如果φ≠B A ,求实数a 的取值范围。 例3、已知集合()(){} 30)1()1(,,123,2=-+-=??????+=--=y a x a y x B a x y y x A ,若 φ=B A ,求实数a 的值。

高中数学不等式的几种常见证明方法(县二等奖)

高中数学不等式的几种常见证明方法 摘 要:不等式是中学数学的重要知识,考察学生对不等式理论熟练掌握的程度也是衡量学生数学水平的重要方面,同时,不等式也是高中数学的基础,因此,在每年的数学高考题中,有关不等式的相关题目都有所出现,本文介绍了几种不等式的证明方法,并举例进一步加强对各种不等式的理解. 关键字:不等式;数学归纳法;均值;柯西不等式 一、比较法 所谓比较法,就是通过两个实数a 与b 的差或商的符号(范围)确定a 与b 大小关系的方法,即通过“0a b ->,0a b -=,0a b -<;或1a b >,1a b =,1a b <”来确定a ,b 大小关系的方法,前者为作差法,后者为作商法. 例 1 设,x y R ∈,求证:224224x y x y ++≥+. 证明: 224224x y x y ++-- =2221441x x y y -++-+ =22(1)(21)x y -+- 因为 2(1)0x -≥, 2(21)0y -≥ ∴ 22(1)(21)0x y -+-≥ ∴2242240x y x y ++--≥ ∴224224x y x y ++≥+ 例 2 已知:a >b >c >0, 求证:222a b c a b c ??>b c a c b c a b c +++??. 证明:222a b c b c a c b c a b c a b c +++????=222a b c b a c c b c a b c ------?? >222a b c b a c c b c c c c ------??

=0c =1 222a b c b c a c b c a b c a b c +++??∴??>1 ∴222a b c a b c ??>b c a c b c a b c +++?? 二、分析法 分析法:从求证的不等式出发,分析这个不等式成立的充分条件,把证明这个不等式的问题转化为证明这些条件是否具备的问题,如果能够肯定这些条件都已具备,那么就可以判定所证的不等式成立. 例 3 求证3< 证明: 960+>> 5456<成立∴原不等式成立运用分析法时,需积累一些解题经验,总结一些常规思路,这样可以克服无目的的乱写,从而加强针对性,较快地探明解题的途径. 三、综合法 从已知或证明过的不等式出发,根据不等式的性质及公理推导出欲证的不等式,这种证明方法叫做综合法. 例 4 已知,a b R +∈,1a b +=,求证:221125()()2 a b a b +++≥ 证明:∵ 1a b += ∴ 1=22222()22()a b a b ab a b +=++≤+ ∴ 221 2 a b +≥

高一数学集合练习题及答案经典

发散思维培训班测试题 一、选择题(每题4分,共40分) 1、下列四组对象,能构成集合的是 ( ) A 某班所有高个子的学生 B 著名的艺术家 C 一切很大的书 D 倒数等于它自身的实数 2、集合{a ,b ,c }的真子集共有 个 ( ) A 7 B 8 C 9 D 10 3、若{1,2}?A ?{1,2,3,4,5}则满足条件的集合A 的个数是 ( ) A. 6 B. 7 C. 8 D. 9 4、若U={1,2,3,4},M={1,2},N={2,3},则C U (M ∪N )= ( ) A . {1,2,3} B. {2} C. {1,3,4} D. {4} 5、方程组 1 1x y x y +=-=- 的解集是 ( ) A .{x=0,y=1} B. {0,1} C. {(0,1)} D. {(x,y)|x=0或y=1} 6、以下六个关系式:{}00∈,{}0??,Q ?3.0, N ∈0, {}{},,a b b a ? ,{}2|20,x x x Z -=∈是空集中,错误的个数是 ( ) A 4 B 3 C 2 D 1 7、点的集合M ={(x,y)|xy≥0}是指 ( ) A.第一象限内的点集 B.第三象限内的点集 C. 第一、第三象限内的点集 D. 不在第二、第四象限内的点集

8、设集合A=}{12x x <<,B=}{x x a <,若A ?B ,则a 的取值范围是 ( ) A }{2a a ≥ B }{1a a ≤ C }{1a a ≥ D } {2a a ≤ 9、 满足条件M }{1=}{1,2,3的集合M 的个数是 ( ) A 1 B 2 C 3 D 4 10、集合{}|2,P x x k k Z ==∈,{}|21,Q x x k k Z ==+∈, {}|41,R x x k k Z ==+∈,且,a P b Q ∈∈,则有 ( ) A a b P +∈ B a b Q +∈ C a b R +∈ D a b +不属于P 、Q 、R 中的任意一个 二、填空题 11、若}4,3,2,2{-=A ,},|{2 A t t x x B ∈==,用列举法表示B 12、集合A={x| x 2+x-6=0}, B={x| ax+1=0}, 若B ?A ,则a=__________ 13、设全集U={}22,3,23a a +-,A={}2,b ,C U A={} 5,则a = ,b = 。 14、集合{}33|>-<=x x x A 或,{}41|><=x x x B 或,A B ?=____________. 15、已知集合A={x|20x x m ++=}, 若A ∩R=?,则实数m 的取值范围是 16、50名学生做的物理、化学两种实验,已知物理实验做得正确得有40人,化学实验做得正确得有31人,两种实验都做错得有4人,则这两种实验都做对的有 人. 三、解答题 17、已知集合A={x| x 2+2x-8=0}, B={x| x 2-5x+6=0}, C={x| x 2-mx+m 2-19=0}, 若B ∩C ≠Φ,A∩C=Φ,求m 的值 18、已知二次函数f (x )=2x ax b ++,A=}{}{ ()222x f x x ==,试求 f ()x 的解析式

不等式证明的常用基本方法(自己整理)

证明不等式的基本方法 导学目标:1.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.2.会用比较法、综合法、分析法、反证法、放缩法证明比较简单的不等式. [自主梳理] 1.三个正数的算术—几何平均不等式:如果a ,b ,c>0,那么_________________________,当且仅当a =b =c 时等号成立. 2.基本不等式(基本不等式的推广):对于n 个正数a 1,a 2,…,a n ,它们的算术平均不小于它们的几何平均,即a 1+a 2+…+a n n ≥n a 1·a 2·…·a n ,当且仅当__________________时等 号成立. 3.证明不等式的常用五种方法 (1)比较法:比较法是证明不等式最基本的方法,具体有作差比较和作商比较两种,其基本思想是______与0比较大小或______与1比较大小. (2)综合法:从已知条件出发,利用定义、______、______、性质等,经过一系列的推理、论证而得出命题成立,这种证明方法叫综合法.也叫顺推证法或由因导果法. (3)分析法:从要证明的结论出发,逐步寻求使它成立的________条件,直至所需条件为已知条件或一个明显成立的事实(定义 、公理或已证明的定理、性质等),从而得出要证的命题成立为止,这种证明方法叫分析法.也叫逆推证法或执果索因法. (4)反证法 ①反证法的定义 先假设要证的命题不成立,以此为出发点,结合已知条件,应用公理、定义、定理、性质等,进行正确的推理,得到和命题的条件(或已证明的定理、性质、明显成立的事实等)矛盾的结论,以说明假设不正确,从而证明原命题成立,我们把它称为反证法. ②反证法的特点 先假设原命题不成立,再在正确的推理下得出矛盾,这个矛盾可以是与已知条件矛盾,或与假设矛盾,或与定义、公理、定理、事实等矛盾. (5)放缩法 ①定义:证明不等式时,通过把不等式中的某些部分的值________或________,简化不等式,从而达到证明的目的,我们把这种方法称为放缩法. ②思路:分析观察证明式的特点,适当放大或缩小是证题关键. 题型一 用比差法与比商法证明不等式 1.设t =a +2b ,s =a +b 2 +1,则s 与t 的大小关系是( A ) A.s≥t B.s>t C.s≤t D.s0;②a 2+b 2≥2(a-b-1);③a 2+3ab>2b 2;④,其中所有恒成立的不等式序号是 ② . ②【解析】①a=0时不成立;②∵a 2 +b 2 -2(a-b-1)=(a-1)2 +(b+1)2 ≥0,成立;③a=b=0时不成立;④a=2,b=1时不成立,故恒成立的只有②.

相关文档
最新文档