最新版 天津大学乙醇脱水反应研究实验报告

最新版 天津大学乙醇脱水反应研究实验报告
最新版 天津大学乙醇脱水反应研究实验报告

乙醇脱水反应研究实验

一、实验目的

1.掌握乙醇脱水实验的反应过程和反应机理、特点,了解针对不同目的产物的

反应条件对正、副反应的影响规律和生成的过程。

2.学习气固相管式催化反应器的构造、原理和使用方法,学习反应器正常操作

和安装,掌握催化剂评价的一般方法和获得适宜工艺条件的研究步骤和方法。

3.学习动态控制仪表的使用,如何设定温度和加热电流大小,怎样控制床层温

度分布。

4.学习气体在线分析的方法和定性、定量分析,学习如何手动进样分析液体成

分。了解气相色谱的原理和构造,掌握色谱的正常使用和分析条件选择。

5.学习微量泵和蠕动泵的原理和使用方法,学会使用湿式流量计测量流体流量。

二、实验原理

1.实验仪器和药品:

乙醇脱水固定床反应器,精密微量液体泵,蠕动泵,锥形瓶,烧瓶。

1号气相色谱仪GC?910及1号计算机数据采集和处理系统:

载气1柱前压:0.03MPa载气流量:36ml/min

载气2柱前压:0.025MPa 载气流量:28ml/min

桥电流:100mA 讯号衰减比:6

柱箱温度:125℃

气化室温度:100℃

检测器温度:150℃

ZSM-5型分子筛乙醇脱水催化剂,分析纯乙醇,纯乙醚,蒸馏水。

2.反应机理:乙醇脱水生成乙烯和乙醚,是一个吸热、分子数增不变的可逆反

应。提高反应温度、降低反应压力,都能提高反应转化率。乙醇脱水可生成

乙烯和乙醚,但高温有利于乙烯的生在,较低温度时主要生成乙醚,有人解

释这大概是因为反应过程中生成的碳正离子比较活泼,尤其在高温,它的存

在寿命更短,来不及与乙醇相遇时已经失去质子变成乙烯.而在较低温度时,碳正离子存在时间长些,与乙醇分子相遇的机率增多,生成乙醚。有人认为

在生成产物的决定步骤中,生成乙烯要断裂C—H键,需要的活化能较高,所

以要在高温才有乙烯的生成。反应式如下:

主反应:C2H5OH→C2H4+H2O

副反应:2C2H5OH→C2H5OC2H5+H2O

3.催化机理:ZSM-5分子筛,因其具有亲油疏水性,在催化脱水性能方面更具有

优势。[1]乙醇脱水生成乙烯主反应的机理主要有2种:生成乙醇盐中间体和生成碳正离子中间体。Kondo等[2]和Haw等[3]用红外光谱和核磁共振检测到在低温条件下分子筛上中间产物乙醇盐中间体,并提出了乙醇制乙烯反应在分

子筛上的反应机理。图1为Kondo等提出的反应机理与传统的碳正离子中间

产物机理的对比图。

可看出,乙醇吸附在分子筛上,乙醇羟基上的氧原子和氢原子分别和分子筛

上的氢原子和氧原子形成氢键,然后脱去一分子水形成乙醇盐中间体,最后

生成乙烯分子,同时分子筛的B酸质子恢复原位。Aronson等认为乙醇脱水制乙烯反应是碳正离子模型。

4.实验过程原理:本实验采用ZSM-5分子筛为催化剂,在固定床反应器中进行

乙醇脱水反应研究,反应产物随着反应温度的不同,可以生成乙烯和乙醚。

温度越高,越容易生成乙烯,温度越低越容易生成乙醚。实验中,通过改变反应温度和反应的进料速度,可以得到不同反应条件下的实验数据,通过对气体和液体产物的分析,可以得到反应的最佳工艺条件和动力学方程。A、B、ФPOOT研究了在Al2O3上乙醇脱水的动力学,导出了一级反应速度方程式:

ν0ln

1

1?y

=α+βν0y

其中:ν0—乙醇的加料速度(毫克分子/分)

y—乙醇转化率(% )

由ν0ln1

1?y

~ν0y作图,可得一条等温直线,其中的截距为α。

在实验中,由于两个反应生成的产物乙醚和水留在了液体冷凝液中,而气体产物乙烯是挥发气体,进入尾气湿式流量计计量总体积后排出。

5.设备原理:

a)蠕动泵:目前作为商品出售的蠕动泵多为往复式柱塞泵。凸轮与连杆将电

机的圆周运动转变为柱塞杆的线性运动,在有单向阀的结构中,柱塞杆将

常压下储液瓶中的流动相吸至泵腔后再送出,其耐压可达41MPa。泵头通

常由两部分组成,单向阀和密封圈-柱塞杆。该单向阀一般由阀体、塑料

或陶瓷阀座和红宝石球组成。在压力的作用下宝石球离开阀座,流动相流

过单向阀;反之,在反向力的作用下,宝石球回到阀座上,此时流动相不

再流过单向阀。柱塞杆与密封圈:柱塞杆在泵头内做前后的往复运动,完

成将流动相吸入泵头然后再输出的过程。

b)湿式流量计:湿式流量计的构造如图2,流量计内有一个转鼓,转鼓被分

为四个体积相等的气室A、B、C、D,当气体通过进气口10到湿式流量中心

孔进入转鼓小室A,在气体的推动下,转鼓便以顺时针的方向旋转,随着A

气室漂浮出水面而升高,B气室因转鼓轴的移动而浸入水面,同时B气室中

气体从末端6排往空间5由出气口11导出,同时D气室随之上升,气体开始

进入D气室。由于各小气室的容积是一定的,故转鼓每转动一周,所通过

气体的体积是四个室容积的总和。由转鼓带动指针与计数器即可直接读出

气体的体积流量。

图2 湿式流量计

c)气相色谱法:气相色谱法是采用气体(载气)作为流动相的一种色谱法。当

流动相携带混合物流经色谱柱中的固定相是,由于与固定相之间的作用力

差异,因而使组分在柱内以不同的速度移动,依次流出色谱柱而得到分离。

选用合适的检测器予以检测,可得到电信号随时间变化的流出曲线,即色

谱图。根据色谱图中各组分色谱峰的出峰时间,可进行定性分析;根据峰

面积或峰高,可进行定量分析。

d)气相色谱仪:气相色谱仪的流程由六个部分组成,即气路系统、进样系统、

色谱分离系统、控温系统、检测系统、和数据处理系统。来自钢瓶的载气,

依次流经减压阀、净化干燥器、稳定压阀、转子流量计和进样气化室后,

进入色谱柱。流出色谱柱的载气夹带分离后的样品,经检测器的检测后放

空。检测器信号则送入数据处理系统记录并处理。

三、实验步骤及流程简图

图3 实验流程图

1. 在反应器底部放入少量岩棉,然后放入10~20cm 高的瓷环,准确量取瓷环高度并记

录,瓷环应预先在稀盐酸中浸泡,并经过水洗、高温烧结,以除去催化活性。

2. 用量筒量取20ml 催化剂,然后用天平称量出催化剂重量(约30g),并记录。

3. 将称量好的催化剂,缓慢、全部加入到反应器中,并轻微震动,然后记录催化剂高

度,确定催化剂在反应器内装填高度。

4.在催化剂上方继续加入瓷环,一直到反应管顶部,然后将反应器顶部密封。将反应

管放入到加热炉中,连接乙醇和水的进口,拧紧卡套。(1~4 步本次实验省略)

5. 按照实验要求,将反应器加热温度设定为150~350℃,预热器温度设定为120~160

℃(可以根据反应器温度调节)。

6.在温度达到并稳定在设定值后,开始加入乙醇。乙醇的加料速度分别为0.4、0.8、

1.2ml/min。

7. 反应进行10-20min 后,正式开始实验。先打开玻璃分离器下的阀门,放出分离器内

的液体,然后关闭阀门,同时记录湿式流量计读数,开始实验。应每隔10min 记录反应温度、炉内温度、预热温度、液体流量、湿式流量计流量等实验条件。

8. 每个流量下反应约30min 左右,可以由每组学生自己确定。然后放出分离器内的液体,并同时计量湿式流量计读数。用天平对液体产物准确称重,用色谱分析二次含量。

9.改变乙醇的加料速度为0.8,1.2ml/min,重复上述实验步骤,则得到不同乙醇的加料

速度时原料转化率、产物乙烯收率、副产物乙醚生成速率等,并根据动力学模型,可以得到反应速率常数。

四、实验现象及数据记录

表1 乙醇进料速度0.9 ml/min时的原始数据表

表2 乙醇进料速度0.6 ml/min时的原始数据表

表3 乙醇进料速度1.2 ml/min时的原始数据表

表4 配制标准溶液

表5 标准溶液

表6 进料0.6ml/min产品 1

表7 进料0.6ml/min产品2

表8 进料0.9ml/min产品1

表9 进料0.9ml/min产品2

表10 进料1.2ml/min产品 1

表11 进料1.2ml/min产品2

五、 数据处理

在实验中,应每隔一定时间记录反应器和预热器加热温度、催化剂床层温度。如有必要,也可以轻轻拉动反应器内的测温热电偶,测定催化剂床层的温度分布。

实验中,每次完成一个流量下的实验时,应记录实验前后产物湿式流量计的体积,同时称量反应时间内得到的液体产物的质量,并用气相色谱进行分析。

至少分析两次所得液体产物的组成,采用面积归一化法校正因子校正所得的含量,对液体进行物料恒算。

根据记录的数据,计算出原料乙醇的转化率,产物乙烯收率和选择性,副产物乙醚收率和选择性。

1. 质量相对校正因子的计算:

在标准溶液中

m 总=m 水+m 乙醇=5.53+15.86=21.39g

则有

15.86

21.39=f 乙醇,1′

×3750971×155449+f 乙醇,1

′×375097

f 乙醇,1

=1.19 15.86

21.39=f 乙醇,1′

×4046191×170345+f 乙醇,1

′×404619

f 乙醇,1

=1.21 f 乙醇

=

f 乙醇,1′+f 乙醇,2

′2

=1.19+1.21

2

=1.20

表12 质量相对校正因子表

2. 各样品中组分的计算:

以进料量为0.9ml/min 时的产品数据计算水为例:

ω

水,1=

f

A%

水,1

f

A%

水,1

+f

乙醇

A%

乙醇,1

+f

乙醚

A%

乙醚,1

×100%

=

1×20.28192

1×20.28192+1.20×61.63880+1.05×18.04209

×100%

=18.11%

ω

水,2=

f

A%

水,2

f

A%

水,2

+f

乙醇

A%

乙醇,2

+f

乙醚

A%

乙醚,2

×100%

=

1×20.76124

1×20.76124+1.20×61.30338+1.05×17.89934

×100%

=18.55%

ω

=

ω

水,1

水,2

2

=18.33%

数据汇总表如下:

表14 产品组成

3.产品的质量和气体流量的计算,及原料质量衡算:

以进料量为0.9ml/min时的产品数据计算为例:

产品质量 m3=m3′′?m3′=74.53?53.70=20.83 g 乙烯气体体积V3=4393.554?4392.802=0.752 L

乙烯物质的量n

3,乙烯=PV3

RT

=101.325×0.752

8.314×289

=0.032 mol

乙烯气体质量m

3,乙烯=n

3,乙烯

×M

乙烯

=0.888 g

原料总质量m=m3+m3,乙烯=21.718 g

同理,各产品质量数据表如下:

表15 产品质量数据表

4.各组分物质的量计算:

以进料量为0.9ml/min时的产品数据计算为例:

水的物质的量 n

3,水=

m3×ω

M

=20.83×0.1833

18

=0.21 mol

乙醇的物质的量n

3,乙醇=

m3×ω

乙醇

M

乙醇

=20.83×0.5701

46

=0.26 mol

乙醚的物质的量n

3,乙醚=

m3×ω

乙醚

M

乙醚

=20.83×0.2466

74

=0.07 mol

产物中各组分的物质的量见下表:

表16 各产物物质的量

5.各流速下转化率、乙烯收率、选择性:

以进料量为0.9ml/min时的产品数据计算为例:

原料乙醇物质的量n

乙醇=m M

乙醇

?=21.71846

?=0.472 mol

乙醇转化率X

乙醇=(n

乙醇

?n

3,乙醇

)n

乙醇

?×100%

=(0.472?0.26)0.472

?

=44.92%

乙烯收率Y

乙烯=n

3,乙烯

n

乙醇

?×100%=0.0350.472

?=7.41%

选择性S=Y

乙烯

X

乙醇

×100%=16.50%

各流量结果如下表:

表17 各流量下的转化率和收率

6.进料速度与反应结果:

0.2

0.3

0.4

0.5

0.6

0.7

图3 进料速度与转化率等的关系图

由公式:ν0ln 1

1?y =α+βν0y

其中:ν0—乙醇的加料速度(毫克分子/分) y —乙醇转化率(% )

由ν0ln 1

1?y ~ν0y 作图,见下图:

图4 一级反应速度方程式图

其中α=?0.0323≈0,b=0.7321,R2=0.9832

六、结果分析与讨论

由图3可知,随着进料速度的增大,反应的乙醇转化率、乙烯收率、乙烯选择性都减小。为方便分析,将反应器简化为管式反应器(PFR),且忽略温度和生成气体体积对空时的影响。反应器中主要进行以下反应:

主反应:C2H5OH→C2H4+H2O

副反应:2C2H5OH→C2H5OC2H5+H2O

将两个反应看出基元反应,则有:r1=k1c A,r2=k2c A2

因此有?R A=k1c A+k2c A2

所以V r

Q0

=τ=∫?dc A

k1c A+k2c A2

c A

c A,0=1

=1

k1

ln(k1

c A

+k2)+c =

1

k1

ln(

k1

c A,0(1?x A)

+k2)+c

可知当Q0增大时,τ减小,即x A减小。所以当增加进料速度时,乙醇转化率减小,与实验结果相符。

又有Y P=

c P

c A,0

=?1

c A,0

∫k1

k1+k2c A

c A

c A,0

dc A =

k1

2A,0

ln(

k2c A,0+k1

2A1

)

可知当Q0增大时,因为x A减小,所以c A增大,进而Y P减小。所以当增加进料速度时,乙烯的收率减小,与实验结果相符。

乙烯瞬时选择性为S=k1c A

k1c A+k2c A2=k1

k1+k2C A

可知,当C A增大时,S减小,与实验结果相符。

七、实验问题及思考

1.乙醇反应转化率的提高和那些因素有关系?详细说明原因。

乙醇的转化率和温度、压力、工艺过程、停留时间、催化剂的选择有关。温

度、压力影响反应平衡和动力性性质;工艺过程从根本上改变反应;空速影

响反应时间;催化剂的孔结构、结晶度、比表面积以及表面酸量,及活性位

和分子扩散影响反应。

2.怎样计算乙烯收率和选择性?应如何提高生成乙烯的选择性?

计算过程见第五节。可以通过提高温度和催化剂种类提高生成乙烯的选择性。

3.改变气相色谱的柱箱温度对分离效果有什么影响?怎样确定最适宜的分析条

件?

降低柱温可以提高色谱柱的选择性,提高柱温可以加快传质,缩短分离时间,提高柱效。实际工作中,试样的沸点是选择柱温的主要依据。

4.怎样对液体产物进行定性分析?

根据色谱图中各组分色谱峰的出峰时间,可进行定性分析。

5.怎样对液体产物定量分析?如何求取校正因子?

根据峰面积或峰高,可进行定量分析。校正因子求法见第五节。

6.怎样对整个反应过程进行物料恒算?应该注意哪些问题?

应该注意流股,以及流股的温度、组成、流量。

乙醇脱水

化工专业实验报告 实验名称:固定床乙醇脱水反应实验研究 实验人员:徐继盛同组人:赵乐、陈思聪、白帆 实验地点:天大化工技术实验中心630室 实验时间:2014年5月13号 年级2011 ;专业化学工程与工艺;组号10 ;学号3011207115 指导教师:冯荣秀 实验成绩: 天津大学化工技术实验中心印制

固定床乙醇脱水反应实验研究 一.实验目的 1.掌握乙醇脱水实验的反应过程和反应机理、特点,了解针对不同目的产物的反应条件对正、付反应的影响规律和生成的过程。 2.学习气固相管式催化反应器的构造、原理和使用方法,学习反应器正常操作和安装,掌握催化剂评价的一般方法和获得适宜工艺条件的研究步骤和方法。 3.动控制仪表的使用,如何设定温度和加热电流大小。怎样控制床层温度分布。 4.学习气体在线分析的方法和定性、定量分析,学习如何手动进样分析液体成分。了解气相色谱的原理和构造,掌握色谱的正常使用和分析条件选择。 5.学习微量泵和蠕动泵的原理和使用方法,学会使用湿式流量计测量流体流量。 二.实验原理 1.过程原理 乙烯是重要的基本有机化工产品.乙烯主要来源于石油化工,但是由乙醇脱水制乙烯在南非、非洲、亚洲的一些国家中仍占有重要地位.我国的辽源、苏州、兰州、南京、新疆等地的中小型化工企业由乙醇脱水制乙烯的工艺主要采用r—Al2,虽然其活性及选择性较好,但是反应温度较高,空速较低,能耗大。 乙醇脱水生成乙烯是一个吸热反应,生成乙醚是一个放热反应,分子数增不变的可逆反应。提高反应温度、降低反应压力,都能提高反应转化率。乙醇脱水可生成乙烯和乙醚,但高温有利于乙烯的生在,较低温度时主要生成乙醚,有人解释这大概是因为反应过程中生成的碳正离子比较活泼,尤其在高温,它的存在寿命更短,来不及与乙醇相遇时已经失去质子变成乙烯.而在较低温度时,碳正离子存在时间长些,与乙醇分子相遇的机率增多,生成乙醚。有人认为在生成产物的决定步骤中,生成乙烯要断裂C—H键,需要的活化能较高,所以要在高温才有和于乙烯的生成。 乙醇在催化剂存在下受热发生脱水反应,既可分子内脱水生成乙烯,也可分子问脱水生成乙醚.现有的研究报道认为,乙醇分子内脱水可看成单分子的消去反应,分子间脱水一般认为是双分子的亲核取代反应,这也是两种相互竞争的反应过程,具体反应式如下: C2H5OH → C2H4 + H2O (1)

固定床乙醇反应脱水

固定床乙醇反应脱水

实验四固定床乙醇脱水反应实验研究 一、实验目的 1. 掌握乙醇脱水实验的反应过程和反应机理、特点,了解针对不同目的产物的反应条件对正、副反应的影响规律和生成的过程。 2. 学习气固相管式催化反应器的构造、原理和使用方法,学习反应器正常操作和安装,掌握催化剂评价的一般方法和获得适宜工艺条件的研究步骤和方法。 3. 学习动态控制仪表的使用,如何设定温度和加热电流大小,怎样控制床层温度分布。 4. 学习气体在线分析的方法和定性、定量分析,学习如何手动进样分析液体成分。了解气相色谱的原理和构造,掌握色谱的正常使用和分析条件选择。 5. 学习微量泵和蠕动泵的原理和使用方法,学会使用湿式流量计测量流体流量。 二、实验原理 乙醇脱水生成乙烯,是一个吸热、分子数增不变的可逆反应。提高反应温度、降低反应压力,都能提高反应转化率。乙醇脱水可生成乙烯和乙醚,但高温有利于乙烯的生在,较低温度时主要

生成乙醚。乙醇在催化剂存在下受热发生脱水反应,既可分子内脱水生成乙烯,也可分子间脱水生成乙醚。现有的研究报道认为,乙醇分子内脱水可看成单分子的消去反应,分子间脱水一般认为是双分子的亲核取代反应,这也是两种相互竞争的反应过程,具体反应式如下: C2H5OH → C2H4 + H2O (1) C2H5OH → C2H5OC2H5 +H2O (2) 目前,在工业生产方面,乙醚绝大多数是由乙醇在浓硫酸液相作用下直接脱水制得。但生产设备会受到严重腐蚀,而且排出的废酸会造成严重的环境污染。因此,研究开发可以取代硫酸的新型催化体系已成为当代化工生产中普遍关注的问题。目前,在这方面的探索性研究已逐渐引起人们的注意,大多致力于固体酸催化剂的开发,主要集中在分子筛上,特别是ZSM-5分子筛。 研究发现,通过对反应热力学函数的计算分析可了解到乙醇脱水制乙烯、制乙醚是热效应相反的两个过程,升高温度有利于脱水制乙烯(吸热反应),而降低温度对脱水制乙醚更为有利(微放热反应),所以要使反应向要求的方向进行,

天津大学反应工程

笔试:反应工程(65分)(共5题) 第一题(12分)(2问):求连串反应第一步反应产物的最大收率和相应反应物的转化率。第二章的内容 第二题(16分)(2问):已知停留时间分布,用适当模型求转化率,我选的是多釜串联,先求的模型系数N。第五章的内容 第三题(16分)(2问):求绝热反应器的出口温度和催化剂的用量,涉及内扩散有效因子的公式,加上活塞流反应器模型公式,此题只要求列计算式,没有数据计算。第六,七章的内容 第四题(16分)(2问):求平行反应中目标反应产物的最大选择性,涉及求微商的问题,第二章的内容 第五题(5分)(此题要求用英语作答):根据反应机理推导反应速率方程,很简单,和书上的例题是一个难度 面试(分为综合面试(120分)和英语面试(15分)) 综合面试(120分)(今年抽题题目变难了)(两个信封各抽一道题,一个综合知识,一个实验(物化,化原,反应工程),我觉得大部分是实验吧)(在一个教室里,6个老师) 1.先简单的自我介绍(说下学校,专业,家乡,加上你觉得你有的优势,比如高分的同学可以说下自己初试的分数) 2.抽题(今年只能换一次,换题了不能因为不会又换回来,换题要谨慎,我换了嘿嘿) 我抽到的是 A.叙述吸收塔实验的内容 B.测湿度,只有温度计,没有湿度计,怎么办(当时大脑短路,没想到,复试完了之后,我觉得是测干球温度和湿球温度,用湿焓图即可) C.我换到的题目是:叙述用脉冲法测停留时间分布的思路 3.回答完了之后,老师追问了几个问题:停留时间测定还有哪些方法,其中怎样测示踪剂的浓度(大概都是和你抽到的题目有关) 4.最后老师问了我毕设,就这样 英语面试(15分)(3个老师)

实验三 乙醇脱水

实验三乙醇气相脱水制乙烯反应动力学 (本实验学时:7×1) 实验室小型管式炉加热固定床、流化床催化反应装置是有机化工、精细化工、石油化工等部门的主要设备,尤其在反应工程、催化工程及化工工艺专业中使用相当广泛。本实验是在固定床和流化床反应器中,进行乙醇气相脱水制乙烯,测定反应动力学参数。 固定床反应器内填充有固定不动的固体催化剂,床外面用管式炉加热提供反应所需温度,反应物料以气相形式自上而下通过床层,在催化剂表面进行化学反应。 流化床反应器内装填有可以运动的催化剂层,是一种沸腾床反应器。反应物料以气相形式自下而上通过催化剂层,当气速达到一定值后进入流化状态。反应器内设有档板、过滤器、丝网和瓷环(气体分布器)等内部构件,反应器上段有扩大段。反应器外有管式加热炉,以保证得到良好的流化状态和所需的温度条件。 反应动力学描述了化学反应速度与各种因素如浓度、温度、压力、催化剂等之间的定量关系。动力学在反应过程开发和反应器设计过程中起着重要的作用。它也是反应工程学科的重要组成部分。 在实验室中,乙醇脱水是制备纯净乙烯的最简单方法。常用的催化剂有: 浓硫酸液相反应,反应温度约170℃。 三氧化二铝气-固相反应,反应温度约360℃。 分子筛催化剂气-固相反应,反应温度约300℃。 其中,分子筛催化剂的突出优点是乙烯收率高,反应温度较低。故选用分子筛作为本实验的催化剂。 一、实验目的 1、巩固所学有关反应动力学方面的知识。 2、掌握获得反应动力学数据的手段和方法。 3、学会实验数据的处理方法,并能根据动力学方程求出相关的动力学参数值。 4、熟悉固定床和流化床反应器的特点及多功能催化反应装置的结构和使用方法,提高自身实验技能。 二、实验原理 乙醇脱水属于平行反应。既可以进行分子内脱水生成乙烯,又可以进行分子间脱水生成乙醚。一般而言,较高的温度有利于生成乙烯,而较低的温度有利于生成乙醚。因此,对于乙醇脱水这样一个复合反应,随着反应条件的变化,脱水过程的机理也会有所不同。借鉴前人在这方面所做的工作,将乙醇在分子筛催化剂作用下的脱水过程描述成: 2C2H5OH→C2H5OC2H5+H2O C2H5OH→C2H4+H2O 三、装置、流程及试剂 1、多功能催化反应实验装置介绍 该实验装置可进行加氢、脱氢、氧化、卤化、芳构化、烃化、歧化、氨化等各种催化反应的科研与教学。它能准确地测定和评价催化剂活性、寿命,找出最适宜的工艺条件,同时也能测取反应动力学和工业放大所需数据。本装置由反应系统和控制系统组成:

2012年天津大学化工学院考研复试《反应工程》试题

2012年天津大学化工学院考研复试《反应工程》试题 我参加了此次考试,感到录取无望,便在考场把题目抄在了准考证的背面偷偷带出来,打算二战时参考用。造化弄人,我调剂了,不打算再考,现在拿出来与大家分享。 复试总共200分,其中笔试65分,英语口试15分,综合面试120分。这套试题便是笔试试题,共65分。 一、等温下在活塞流反应器(PFR)中进行液相反应A P Q,其中P为目的产物。各反应均为一级反应,反应温度下反应速率常数分别为:k1=0.3h-1,,k2=0.2h-1,进料为纯A,其流量为Q0=10.0m3/h。计算P的最大收率及此时反应器的体积。(12分) 二、等温条件下,在某反应器中进行液相反应2A B γB=k1cA,A C+D γC=k2cA。B 为目的产物,反应速率常数k1=0.1h-1,k2=0.3h-1。进料为纯A,其浓度为2 Kmol/m3,处理量为10 m3/h,计算A的转化率和B的收率。已知有实验测得该反应器的停留时间分布为:。(16分) 三、常压下某绝热固定床反应器内进行气固相催化反应A P,该反应一级不可逆,基于床层体积的本证反应速率常数kV=681.3 exp(-5526/T)s-1。反应为放热反应,反应热为-50KJ/mol,反应混合物平均比热容为500J/(mol )。原料为纯A,要求A的最终转化率为90%。(1)若进料温度为300℃,试计算反应器的出口温度;(2)已知原料处理量为Q0,催化剂直径为dP,床层空隙率为ε,反应产物在催化剂孔道内有效扩散系数为De。忽略外扩散,试计算催化剂用量。不用计算出具体数值,写出计算思路及用到的主要公式。(16分)四、等温下进行如下液相反应A P γP=k1cA,A R γR=k2,A Q γQ=k3cA2,反应速率方程中浓度单位为Kmol/m3,k1=4.0h-1,k2=1.0Kmol/(m3 h),k3=1.0m3/(Kmol h)。原料为纯A,初始浓度为2Kmol/m3。(1)全回流,P为目的产物,P选择性最大为多少,此时A转化率多少?(2)若Q为目的产物,何种反应器好?(16分) 五、(一道关于吸附平衡的题目,要求用英文作答,很简单,5分)

(完整版)天津大学化学工程复试反应工程问答题

1.简述均相反应及其动力学的研究内容? 答:参与反应的各物质均处于同一个相内进行的化学反应称为均相反应。均相反应动力学是研究各种因素如温度、催化剂、反应物组成和压力等对反应速率、反应产物分布的影响,并确定表达这些影响因素与反应速率之间定量关系的速率方程。 2.简述链锁反应所具有的基本特征? 答:1)链反应具有三个阶段:链的引发、链的传播和链的终止; 2)链的引发和传播均需要通过游离原子或游离基; 3)游离原子和游离基均具有较高活性,容易受器壁或其它惰性物的作用而重新生成稳定的分子,从而使链反应终止。 3.简述理想反应器的种类? 答:通常所指的理想反应器有两类:理想混合(完全混合)反应器和平推流(活塞流或挤出流)反应器。所谓完全混合流反应器是指器内的反应流体瞬间达到完全混合,器内物料与反应器出口物料具有相同的温度和浓度。所谓平推流反应器是指器内反应物料以相同的流速和一致的方向进行移动,不存在不同停留时间的物料的混合,所有的物料在器内具有相同的停留时间。 4.简述分批式操作的完全混合反应器? 答:反应物料一次性投入反应器内,在反应过程中,不再向器内投料,也不出料,待达到反应要求的转化率后,一次性出料,每批操作所需生产时间为反应时间与非生产性时间之和,非生产性时间包括加料、排料和物料加热、冷却等用于非反应的一切辅助时间。 5.简述等温恒容平推流反应器空时、反应时间、停留时间三者关系? 答:空时是反应器的有效容积与进料流体的容积流速之比。反应时间是反应物料进入反应器后从实际发生反应的时刻起到反应达某一程度所需的反应时间。停留时间是指反应物进入反应器的时刻算起到离开反应器内共停留了多少时间。由于平推流反应器内物料不发生返混,具有相同的停留时间且等于反应时间,恒容时的空时等于体积流速之比,所以三者相等。 6.对于可逆放热反应如何选择操作温度? 答:1)对于放热反应,要使反应速率尽可能保持最大,必须随转化率的提高,按最优温度曲线相应降低温度; 2)这是由于可逆放热反应,由于逆反应速率也随反应温度的提高而提高,净反应速率出现一极大值;3)而温度的进一步提高将导致正逆反应速率相等而达到化学平衡。 7.对于反应,21A R C k r =,1E ;A S C k r 2=,2E ,当1E >2E 时如何选择操作温度可以提高产物的收率? 答:对于平行反应A RT E E A RT E RT E S R R C e k k C e k e k r r S 12212010/20/10---===,所以,当1E >2E 时应尽可能提高反应温度, 方可提高R 的选择性,提高R 的收率。 8.停留时间分布密度函数E (t )的含义? 答:在定常态下的连续稳定流动系统中,相对于某瞬间t=0流入反应器内的流体,在反应器出口流体的质点中,在器内停留了t 到t+dt 之间的流体的质点所占的分率为E (t )dt (②分)。 ?∞=0 0.1)(dt t E 。 9.停留时间分布函数F (t )的含义? 答:在定常态下的连续稳定流动系统中,相对于某瞬间t=0流入反应器内的流体 ,在出口流体中停留时间小于t 的物料所占的分率为F (t )。 ?=t dt t E t F 0)()(。 10.简述描述停留时间分布函数的特征值? 答:用两个最重要的特征值来描述——平均停留时间t 和方差2t σ。 1) t 定义式为:?∞ =0)(dt t tE t ,平均停留时间t 是E (t )曲线的分布中心,是E (t )曲线对于坐标原点的一 次矩,又称E (t )的数学期望。 2) 2 t σ是表示停留时间分布的分散程度的量,在数学上它是指对于平均停留时间的二次矩?∞ -=02 22)(t dt t E t t σ。 11.简述寻求停留时间分布的实验方法及其分类? 答:通过物理示踪法来测反应器物料的停留时间的分布曲线。所谓物理示踪是指采用一种易检测的无化学反应活性的物质按一定的输入方式加入稳定的流动系统,通过观测该示踪物质在系统出口的浓度随时间的变化来确定系统物料的停留时间分布。根据示踪剂输入方式的不同大致分为四种:脉冲法、阶跃法、周期示踪法和随机输入法。

乙醇脱水实验报告

乙醇脱水反应研究实验 一、实验目的 1. 掌握乙醇脱水实验的反应过程和反应机理、特点,了解针对不同目的产物的反应条件对正、副反应的影响规律和生成的过程。 2. 学习气固相管式催化反应器的构造、原理和使用方法,学习反应器正常操作和安装,掌握催化剂评价的一般方法和获得适宜工艺条件的研究步骤和方法。 3. 学习动态控制仪表的使用,如何设定温度和加热电流大小,怎样控制床层温度分布。 4. 学习气体在线分析的方法和定性、定量分析,学习如何手动进样分析液体成分。了解气相色谱的原理和构造,掌握色谱的正常使用和分析条件选择。 5. 学习微量泵和蠕动泵的原理和使用方法,学会使用湿式流量计测量流体流量。 二、实验原理 乙烯是重要的基本有机化工产品。乙烯主要来源于石油化工,但是由乙醇脱水制乙烯在南非、非洲、亚洲的一些国家中仍占有重要地位.我国的辽源、苏州、兰州、南京、新疆等地的中小型化工企业由乙醇脱水制乙烯的工艺主要采用-Al2O3,虽然其活性及选择性较好,但是反应温度较高,空速较低,能耗大。 乙醇脱水生成乙烯和乙醚,是一个吸热、分子数增不变的可逆反应。提高反应温度、降低反应压力,都能提高反应转化率。乙醇脱水可生成乙烯和乙醚,但高温有利于乙烯的生在,较低温度时主要生成乙醚,有人解释这大概是因为反应过程中生成的碳正离子比较活泼,尤其在高温,它的存在寿命更短,来不及与乙醇相遇时已经失去质子变成乙烯.而在较低温度时,碳正离子存在时间长些,与乙醇分子相遇的机率增多,生成乙醚。有人认为在生成产物的决定步骤中,生成乙烯要断裂C-H键,需要的活化能较高,所以要在高温才有利于乙烯的生成。 乙醇在催化剂存在下受热发生脱水反应,既可分子内脱水生成乙烯,也可分子间脱水生成乙醚。现有的研究报道认为,乙醇分子内脱水可看成单分子的消去反应,分子间脱水一般认为是双分子的亲核取代反应,这也是两种相互竞争的反应过程,具体反应式如下:C2H5OH—C2H4(g)+H2O(g) (1) C2H5OH—C2H5OC2H5(g)+H2O(g) (2) 目前,在工业生产方面,乙醚绝大多数是由乙醇在浓硫酸液相作用下直接脱水制得。但

天津大学反应工程第二版课后习题答案

检测方法及方法确认作业指导书 天津大学:《反应工程》(第二版) 习题答案 1 绪论 1.1 在银催化剂上进行甲醇氧化为甲醛的反应: 进入反应器的原料气中,甲醇︰空气︰水蒸气=2︰4︰1.3(摩尔比),反 应后甲醇的转化率(X)达72%,甲醛的收率(Y)为69.2%。试计算:(1 )反应的选择性(S);(2)反应器出口气体的组成(摩尔分率%)。 解:(1)由(1.7)式得反应的选择性为: (2)进入反应器的原料气中,甲醇︰空气︰水蒸气=2︰4︰1.3(摩尔比), 设甲醇的转化率为X A ,甲醛的收率为Y P ,根据(1.3)和(1.5)式可得反 应器出口甲醇、甲醛和二氧化碳的摩尔数n A 、n P 和n c 分别为: n A=n A0(1-X A)=7.672 mol,n P=n A0Y P=18.96 mol,n C=n A0(X A-Y P)=0.7672 mol 结合上述反应的化学计量式,水(n W )、氧气(n O )和氮气(n N )的摩尔数分别 为: n W=n W0+n P+2n C=38.30 mol n O=n O0-1/2n P-3/2n C=0.8788 mol n N=n N0=43.28 mol 组分摩尔数(mol)摩尔分率% CH 3 OH 7.672 6.983 HCHO 18.96 17.26 H 2 O 38.3 34.87 CO 2 0.7672 0.6983 O 2 0.8788 0.7999 N 2 43.28 39.39 组分摩尔分率y i0 摩尔数n i0 (mol) CH 3 OH 2/(2+4+1.3)=0.2740 27.40 空气4/(2+4+1.3)=0.5479 54.79 水 1.3/(2+4+1.3)=0.1781 17.81 总计 1.000 100.0

最新天津大学反应工程复试资料最全

天津大学反应工程复试资料最全 2014年3月27日星期四 各位学弟学妹你们好,我知道当你们在耐心看这文章的时候肯定是希望找到天津大学研究生考试复试反应工程的相关资料。作为过来人,我这次就把我搜寻好久的也是最全面的资料上传,节省学弟学妹们搜索的时间!! 需要注明的是:敢说是最全的资料,确实有点夸大,但是我的资料绝对足够你们应付复试的笔试环节了!我的资料来源于百度、论坛以及从天大过来人中购买的! 注意:对于报考化学工程专业的学生,可以百度查询“天津大学化工考研面试环节题库”(不是百分百的准,但是面试之前最好要背下来!!!) 第一份资料: 2013天大化学工程复试科目反应工程试题完整回忆 (8分)一、某气固相催化反应A+B→R的反应步骤如下:A+σ==Aσ;Aσ+B→R +σ。其中第二步为速率控制步骤,试推导该反应的动力学方程。 (8分)二、已知反应:A→P r P=k1c A;A→Q r Q=k2c A2。若P为目的产物,

采取哪种反应器为好?操作方式如何?说明你的理由。 (16分)三、某闭式反应器的停留时间分布密度函数如下:E(t) = 0 t<2.46 h = e2.46-t t≥2.46 h 拟在该反应器中进行如下一级连串不可逆反应:A→P→Q。反应速率常数分别为k1= 0.4h-1,k2=0.1h-1。A的初始浓度为1kmol/m3。 反应器的平均停留时间以及无因次方差σ θ2; (1)计算出口转化率; (2)估算P的收率。[个人想法:因返混较小,可用PFR估算之] (15分)四、某气固催化反应固定床于常压恒温条件下进行如下一级不可逆反应:A→P。已知:反应温度T=773.15K,速率常数kw=0.5 m3/(kg·h),催化剂颗粒密度1200 kg/m3,颗粒直径为0.6 cm,A的摩尔质量为60 g/mol,有效扩散系数De=3.5×10-3 cm2/s。 (1) 求内扩散有效因子η; (2) 如果生产要求P的产量为20吨/天,A的转化率达90%,试计算催化剂的用量。 (18分)五、某间歇釜在绝热条件下进行如下液相反应:A+B→P r P=k10exp(-E1/RT)c A;A→Q r Q=k20exp(-E2/RT)c A2。各反应的反应热均为-40 kJ/mol,反应液的平均比热为1600 kJ/(m3·K)。已知反应的初始温度为80℃,反应物的初始浓度c A0=c B0=2 kmol/m3,c P0=c Q0=0。

乙醇脱水反应实验步骤修订

实验十五流动法测定γ-Al2O3小球催化剂乙醇脱水的催化性能 1. 色谱条件设置 检测器:FID,色谱柱:Porapak-Q柱,柱温:160℃,气化室:170℃,FID:250℃,色谱载气:N2,流速:30~40 mL/min,对应柱前压在160℃时约为0.14~0.16MPa(载气流量已调好,一般不要再调)。加热带设定温度:130℃,六通阀:采样时间1 min,其它时间处于分析状态(防止液态物种在定量管中冷凝)。 等催化剂开始活化后打开色谱仪。先通载气(氮气),再打开色谱仪总开关,进入主界面设置色谱参数:柱温:160℃,气化室:170℃,FID:250℃,检测器:20℃。按“起始”开始升温。待温度稳定后,打开氢气发生器和空气发生器的开关,等流速稳定后,按下“点火”按钮(FID有两个,根据色谱连接情况按点火1或者2)。若要调节仪器的灵敏度,先按左边“检测”,再按“设置”,调节对应的FID的灵敏度(一般为7~9之间,正常情况下不需要调整)。开启计算机,打开N2000在线色谱工作站,对“实验信息”和“方法”作必要的修改后进入“数据采集”界面,点击“查看基线”图标,等待基线稳定。插上加热带电源插头,设定加热带温度为130℃。 2. 催化反应测定步骤 (1) 装样。拆开电炉下面反应管上缠绕的加热带至两通接头螺帽位置,用扳手松开反应管上面和下面气路连接螺帽,从反应装置中卸下反应管,将其中的石英砂和催化剂倒入回收塑料桶中,可用洗耳球吹干净反应管。量取2 mL活化后Al2O3催化剂小球,称重后装入反应管中,用不锈钢管轻敲反应器,使催化剂装填均匀。在反应管上部装填干净石英砂至距管口约7 cm 处,并轻轻敲实,然后将反应管接入反应装置,并用扳手旋紧上下的接头螺帽。重新缠绕加热带包裹好反应管的下端。 (2) 活化。在减压阀关闭状态下打开氮气钢瓶总阀(逆时针为开启),调节减压阀出口压力至0.3MPa(顺时针旋转),调节反应装置控制面板上“调压”旋钮,使压力显示为0.2MPa。将尾气的三通活塞转至通皂膜流量计的位置,调节“调流”旋钮,使皂膜流量计测出的反应载气流速为80 mL/min,然后将尾气的三通活塞转到通入排空管道的位置。打开控温仪开关,设定温度为400℃,将反应炉温度升至400℃,活化1 h。 (3) 反应。催化剂活化结束后,设置“控温”仪表温度为250℃,炉子开始降温。待“测温”仪表温度降至270℃左右时,即可打开平流泵。乙醇进样管下接一个小烧杯,按“FLOW”,输入较大的流速(>1mL/min),再按“RUN”,待进样管出口乙醇流量稳定后,按“PAU”停止。将乙醇进样管从上端插入反应管(需将原来的螺帽取下,换上带乙醇进样管的螺帽),拧紧密封螺帽,设置平流泵流量为0.15 mL/min,开始向反应器中通入乙醇。调节“控温”仪表温度设定值,使“测温”仪表温度(即催化剂床层温度)显示为250±2℃。待“测温”仪表温度稳定后,将色谱仪上六通阀手柄从"分析"位置转至"采样"位置,1 min后重新转至“分析”位置,同时点击色谱工作站的“采集数据”图标,进行在线分析。待相关产物峰完全出来后(大约5~7 min),点击色谱工作站中“停止采集”图标,图谱文件自动保存。该温度下采样分析两次。第二次采样后,当六通阀转至“分析”时,将“控温”仪表温度升高10℃,等“测温”仪表温度稳定后,重复上面的采样分析步骤(每个温度下可只采样分析一次),直至“测温”仪表温度升至300℃左右,停止实验。 (4) 停止实验。关闭恒流泵,将乙醇进样管(连螺帽)从反应管中取出,换上原来取下的螺帽,关闭“控温”仪表,继续用载气吹扫反应管。关闭氢气和空气发生器,按色谱仪面板上的“关闭控温”按钮,让色谱仪降温,15 min后可关闭色谱总开关和氮气钢瓶总阀。 3. 色谱定量方法 本次实验使用校正面积归一法计算乙醇脱水反应的转化率和选择性。其相对摩尔校正因子为(以乙醇为1计)乙烯:0.74 ;乙醛:1.40;乙醇:1.00;乙醚:0.47。由于2分子乙醇反应才能转化为1分子乙醚,计算摩尔关系时应在乙醚面积乘以校正因子的基础上再乘以2。

乙醇气相脱水制乙烯动力学实验

化工专业实验报告 实验名称:乙醇气相脱水制乙烯动力学实验 学院:化学工程学院 专业:化学工程与工艺 班级:化工班 姓名:学号 同组者姓名: 指导教师: 日期:

一、实验目的 1、巩固所学的有关动力学方面的知识; 2、掌握获得的反应动力学数据的方法和手段; 3、学会动力学数据的处理方法,根据动力学方程求出相应的参数值; 4、熟悉内循环式无梯度反应器的特点以及其它有关设备的使用方法,提高自己的实验技能。 二、实验原理 乙醇脱水属于平等反应。既可以进行分子内脱水成乙烯,又可以分子间脱水 生成乙醚。一般而言,较高的温度有利于生成乙烯,而较低的温度则有利于生成乙醚。 较低温度:O H H OC H C OH H C 25252522+→ 较高温度:O H H C OH H C 24252+→ 三、实验装置、流程及试剂 1.装置 本实验装置由三部分构成。 第一部分是有微量进料泵、氢气钢瓶、汽化器和取样六通阀组成的系统。 第二部分是反应系统。它是由一台内循环式无梯度反应器,温度控制器和显示仪表组成。 第三部分是取样和分析系统。包括取样六通阀,产品收集器和在线气相色谱信。 2.实验流程

内循环无梯度反应色谱实验装置流程示意图K3-进气旁路调节阀;K2-阀箱产物流量调节;K3-气液分离后尾气调节;J-进液排放三通阀;1-气体钢瓶;2-稳压阀;3-转子流量计;4-过滤器;5-质量流量计;6-缓冲器;7-压力传感器;8-预热器;9-预热炉;10-反应器;11-反应炉;12-马达;13-恒温箱;14-气液分离器;15-调压阀;16-皂膜流量计;17-加料泵 12 内循环无梯度反应色谱实验装置流程示意图 3.试剂和催化剂:无水乙醇,优级纯;分子筛催化剂,60~80目,重0.4g 。 四、实验步骤 1、打开H 2钢瓶使柱前压达到0.5kg/cm 2确认色谱检测中截气通过后启动色谱,柱温110℃,汽化室130℃,检测室温达到120℃,待温度稳定后,打开热导池——微电流放大器开关,桥电流至100mA ; 2、在色谱仪升温的同时,开启阀恒温箱加热器升温至110℃,开启保温加热器升温至180℃; 3、打开反应器温度控制开关,升温,同时向反应器冷却水夹套通冷却水; 4、打开微量泵,以小流量向气化器内通原料乙醇; 5、在200~380℃之间选择三个温度,测定每5分钟内反应后乙醇和水的质量并记录,每个温度测定2~3次。 五、数据处理 乙醇进料速度:0.3ml/min 乙醇每5min 内进料质量:1.5×0.79=1.185g

乙醇脱水实验报告

化工专业实验报告 实验名称:乙醇脱水反应研究实验 实验人员:xxxx 同组人:xxx xxx 实验地点:天大化工技术实验中心630 室 实验时间:2014年4月25日 班级/学号:11 级化材班 2 组xxxxxxxxxxx号实验成绩: 乙醇脱水反应研究实验

一、实验目的 1.掌握乙醇脱水实验的反应过程和反应机理、特点,了解针对不同目的产 物的反应条件对正、副反应的影响规律和生成的过程; 2.学习气固相管式催化反应器的构造、原理和使用方法,学习反应器正常 操作和安装,掌握催化剂评价的一般方法和获得适宜工艺条件的研究步 骤和方法; 3.学习动态控制仪表的使用,如何设定温度和加热电流大小,怎样控制床 层温度分布; 4.学习气体在线分析的方法和定性、定量分析,学习如何手动进样分析液 体成分。了解气相色谱的原理和构造,掌握色谱的正常使用和分析条件 选择; 5.学习微量泵和蠕动泵的原理和使用方法,学会使用湿式流量计测量流体 流量。 二、实验仪器和药品 乙醇脱水气固反应器,气相色谱及计算机数据采集和处理系统,精密微量液体泵,蠕动泵。ZSM-5型分子筛乙醇脱水催化剂,分析纯乙醇,蒸馏水。 三、实验原理 乙烯是重要的基本有机化工产品。乙烯主要来源于石油化工,但是由乙醇脱水制乙烯在南非、非洲、亚洲的一些国家中仍占有重要地位。 乙醇脱水生成乙烯和乙醚,是一个吸热、分子数增多的可逆反应。提高反应温度、降低反应压力,都能提高反应转化率。乙醇脱水可生成乙烯和乙醚,但高温有利于乙烯的生在,较低温度时主要生成乙醚,有人解释这大概是因为反应过程中生成的碳正离子比较活泼,尤其在高温,它的存在寿命更短,来不及与乙醇相遇时已经失去质子变成乙烯.而在较低温度时,碳正离子存在时间长些,与乙醇分子相遇的机率增多,生成乙醚。有人认为在生成产物的决定步骤中,生成乙烯要断裂C—H 键,需要的活化能较高,所以要在高温才有和于乙烯的生成。 乙醇在催化剂存在下受热发生脱水反应,既可分子内脱水生成乙烯,也可分子间脱水生成乙醚。现有的研究报道认为,乙醇分子内脱水可看成单分子的消去反应,分子间脱水一般认为是双分子的亲核取代反应,这也是两种相互竞争的反应过程,具体反应式如下: C2H5OH → C2H4 + H2O (1) C2H5OH → C2H5OC2H5 +H2O (2)

固定床乙醇脱水制乙烯反应研究的实验

固定床乙醇脱水制乙烯反应研究实验 学校:齐齐哈尔大学化学 学院:化学与化学工程学院 班级:化工112 马林福,何青云,张杰 化工113 贾楠,王丽博 指导教师:韩福忠 日期:2014年11月26日

固定床乙醇脱水制乙烯反应研究实验 贾楠,马林福,王丽博,何青云,张杰 (齐齐哈尔大学化学与化学工程学院,161006) 摘要:乙烯是重要的基本有机化工产品。在固定床反应器中进行乙醇脱水反应研究,反应产物随着反应温度的不同,可以生成乙烯和乙醚。温度越高,越容易生成乙烯,温度越低越容易生成乙醚。实验中,通过改变反应的进料速度,可以得到不同反应条件下的实验数据,可以得到反应温度下的最佳工艺条件。 关键词:乙烯;进料速度;固定床反应器;最佳工艺条件; Abstract:Ethylene is an important basic organic chemical products.For ethanol dehydration reactionresearch in a fixed bed reactor,reaction products can be ethylene or ether with a different reaction temperature in a chemical reaction that the higher temperature,the more tend to generate ethylene and the lower temperature,the more tend to generate ether.By changing the speed of incoming materials of reactions,the experimental datas dissective to get the best process conditions are obtained in a different reaction condition. Key words:ethylene;feed rate;fixed bed reactor;the best process conditions 1前言 乙醇脱水生成乙烯和乙醚,是一个吸热、分子数增不变的可逆反应。提高反应温度、降低反应压力,都能提高反应转化率。乙醇脱水可生成乙烯和乙醚,但高温有利于乙烯的生在,较低温度时主要生成乙醚,有人解释这大概是因为反应过程中生成的碳正离子比较活泼,尤其在高温,它的存在寿命更短,来不及与乙醇相遇时已经失去质子变成乙烯.而在较低温度时,碳正离子存在时间长些,与乙醇分子相遇的机率增多,生成乙醚。有人认为在生成产物的决定步骤中,生成乙烯要断裂C—H 键,需要的活化能较高,所以要在高温才有和于乙烯的生成。 乙醇在催化剂存在下受热发生脱水反应,既可分子内脱水生成乙烯,也可分子间脱水生成乙醚。现有的研究报道认为,乙醇分子内脱水可看成单分子的消去反应,分子间脱水一般认为是双分子的亲核取代反应,这也是两种相互竞争的反应过程,具体反应式如下: C2H5OH → C2H4 + H2O (1)

2固定床乙醇脱水实验步骤60分钟

实验三 气固相催化剂反应常压固定床实验 一、实验目的 1.掌握乙醇脱水实验的反应过程和反应机理、特点,了解针对不同目的产物的反应条件对正、付反应的影响规律和生成的过程。 2.学习气固相管式催化反应器的构造、原理和使用方法,学习反应器正常操作和安装,掌握催化剂评价的一般方法和获得适宜工艺条件的研究步骤和方法。 3.学习动态控制仪表的使用,如何设定温度和加热电流大小,怎样控制床层温度分布。 4.学习电磁计量泵的原理和使用方法,学会使用湿式流量计测量流体流量。 二、实验原理 乙醇脱水生成乙烯和乙醚,是一个吸热、分子数增不变的可逆反应。提高反应温度、降低反应压力,都能提高反应转化率。乙醇脱水可生成乙烯和乙醚,但高温有利于乙烯的生成,较低温度时主要生成乙醚,有人解释这大概是因为反应过程中生成的碳正离子比较活泼,尤其在高温,它的存在寿命更短,来不及与乙醇相遇时已经失去质子变成乙烯。而在较低温度时,碳正离子存在时间长些,与乙醇分子相遇的机率增多,生成乙醚。有人认为在生成产物的决定步骤中,生成乙烯要断裂C —H 键,需要的活化能较高,所以要在高温才有乙烯的生成。 乙醇在催化剂存在下受热发生脱水反应,既可分子内脱水生成乙烯,也可分子间脱水生成乙醚。本实验采用ZSM -5分子筛为催化剂,在固定床反应器中进行乙醇脱水反应研究,通过改变反应的进料速度,可以得到不同反应条件下的实验数据,通过对气体和液体产物的分析,可以得到在一定反应温度条件下的反应最佳工艺条件和动力学方程。反应机理为: 主反应: 25242C H OH C H +H O → 副反应: 25255222C H OH C H OH C +H O →

乙醇脱水反应研究

? 化工专业实验报告 实验名称:__乙醇脱水反应研究实验___ 实验人员:___骆加威同组人:__聂新宇吴锋 实验地点:天大化工技术实验中心__630___室 实验时间:___2012年3月29日 班级/学号:__2009级___化工2班___3009214146 学号 ___1 实验组号 指导老师:_____郭红宇 实验成绩:_________________

乙醇脱水反应研究实验 一、实验目的及要求 1.掌握乙醇脱水实验的反应过程和反应机理、特点,了解针对不同目的产 物的反应条件对正、副反应的影响规律和生成的过程; 2.学习气固相管式催化反应器的构造、原理和使用方法,学习反应器正常 操作和安装,掌握催化剂评价的一般方法和获得适宜工艺条件的研究步骤和方法; 3.学习动态控制仪表的使用,如何设定温度和加热电流大小,怎样控制床 层温度分布; 4.学习气体在线分析的方法和定性、定量分析,学习如何手动进样分析液体 成分。了解气相色谱的原理和构造,掌握色谱的正常使用和分析条件选择; 5.学习微量泵和蠕动泵的原理和使用方法,学会使用湿式流量计测量流体 流量。 二、实验原理 乙烯是重要的基本有机化工产品。乙烯主要来源于石油化工,但是由乙醇脱水制乙烯在南非、非洲、亚洲的一些国家中仍占有重要地位。 乙醇脱水生成乙烯和乙醚,是一个吸热、分子数增不变的可逆反应。提高反应温度、降低反应压力,都能提高反应转化率。乙醇脱水可生成乙烯和乙醚,但高温有利于乙烯的生在,较低温度时主要生成乙醚,有人解释这大概是因为反应过程中生成的碳正离子比较活泼,尤其在高温,它的存在寿命更短,来不及与乙醇相遇时已经失去质子变成乙烯.而在较低温度时,碳正离子存在时间长些,与乙醇分子相遇的机率增多,生成乙醚。有人认为在生成产物的决定步骤中,生成乙烯要断裂C—H 键,需要的活化能较高,所以要在高温才有和于乙烯的生成。 乙醇在催化剂存在下受热发生脱水反应,既可分子内脱水生成乙烯,也可分子间脱水生成乙醚。现有的研究报道认为,乙醇分子内脱水可看成单分

乙醇分馏实验报告

篇一:2013年有机化学实验一乙醇-水溶液的分馏 实验名称:实验一乙醇-水溶液的分馏 题目 做错一次扣2分 模块名称 你的回答 仪器选取 正确答案:直型冷凝管、酒精比重计、圆底烧瓶、出水管、分馏柱、电热碗、温度计、进水管、锥形瓶、接引管、量筒 做错次数:0 用户名: 权重 10 本模块得分[满 分100] 100 题目 做错一次扣2分模 块 试剂、耗材选取你的回答名称 正确答案:60%乙醇,2粒沸石做错次数:0 权重 10 本模块得分[满 分100] 100 题目 选错一次扣2分 你的回答 正确答案:h.用量筒称取100ml浓度为60%的乙醇水溶液。 f.将称取的100ml浓度为60%的乙醇水溶液倒入到250ml的圆底烧瓶中。 e.加入2粒 沸石,安装好分馏装置,打开冷凝水。 d.加热250ml的圆底烧瓶,至瓶内的乙醇溶液沸腾。a.乙醇蒸气慢慢升入分馏柱,此时要严格控制加热温度,使蒸汽缓慢上升到柱顶。 b.当蒸汽温度达到78℃时,开始收集 权重 10 本模块得分[满 分100] 模块名称 操作步骤 100馏出液,并保持馏出液的速度在每秒1-2滴。若已有前馏分馏出,此时要更换接受器。c.外界条件不变的条件下,当蒸汽温度持续下降时,可停止加热,所得馏出液约50~60ml。i.记录下馏出液的馏出温度范围和体积。 g.用酒精比重计测量乙醇馏出液的质量分数。 j.实验结束,将前馏分回收到回收瓶,残留 液倒入废液回收桶。 做错次数:0 题目 请单击本次实验目的前的复选框作出选择,答案不止一项。 a、学习分析天平的使用,巩固滴定管的使用。 b、掌握简单分馏操作方法。 实验报告--实c、学习酸碱指示剂的使用和滴定终点 验目的的判断。 d、学习naoh标准溶液的标定方法。 e、了解分馏的原理及其使用。

乙醇脱水实验报告材料

化工专业实验报告

实验名称:乙醇脱水反应研究实验 实验人员:xxxx 同组人:xxx xxx 实验地点:天大化工技术实验中心630 室 实验时间:2014年4月25日 班级/学号:11 级化材班2 组xxxxxxxxxxx号 实验成绩: 乙醇脱水反应研究实验 一、实验目的 1.掌握乙醇脱水实验的反应过程和反应机理、特点,了解针对不同目的产 物的反应条件对正、副反应的影响规律和生成的过程; 2.学习气固相管式催化反应器的构造、原理和使用方法,学习反应器正常 操作和安装,掌握催化剂评价的一般方法和获得适宜工艺条件的研究步 骤和方法; 3.学习动态控制仪表的使用,如何设定温度和加热电流大小,怎样控制床 层温度分布; 4.学习气体在线分析的方法和定性、定量分析,学习如何手动进样分析液 体成分。了解气相色谱的原理和构造,掌握色谱的正常使用和分析条件 选择; 5.学习微量泵和蠕动泵的原理和使用方法,学会使用湿式流量计测量流体 流量。

二、实验仪器和药品 乙醇脱水气固反应器,气相色谱及计算机数据采集和处理系统,精密微量液体泵,蠕动泵。ZSM-5型分子筛乙醇脱水催化剂,分析纯乙醇,蒸馏水。 三、实验原理 乙烯是重要的基本有机化工产品。乙烯主要来源于石油化工,但是由乙醇脱水制乙烯在南非、非洲、亚洲的一些国家中仍占有重要地位。 乙醇脱水生成乙烯和乙醚,是一个吸热、分子数增多的可逆反应。提高反应温度、降低反应压力,都能提高反应转化率。乙醇脱水可生成乙烯和乙醚,但高温有利于乙烯的生在,较低温度时主要生成乙醚,有人解释这大概是因为反应过程中生成的碳正离子比较活泼,尤其在高温,它的存在寿命更短,来不及与乙醇相遇时已经失去质子变成乙烯.而在较低温度时,碳正离子存在时间长些,与乙醇分子相遇的机率增多,生成乙醚。有人认为在生成产物的决定步骤中,生成乙烯要断裂C—H 键,需要的活化能较高,所以要在高温才有和于乙烯的生成。 乙醇在催化剂存在下受热发生脱水反应,既可分子内脱水生成乙烯,也可分子间脱水生成乙醚。现有的研究报道认为,乙醇分子内脱水可看成单分子的消去反应,分子间脱水一般认为是双分子的亲核取代反应,这也是两种相互竞争的反应过程,具体反应式如下: C2H5OH →C2H4 + H2O (1) C2H5OH →C2H5OC2H5 +H2O (2) 目前,在工业生产方面,乙醚绝大多数是由乙醇在浓硫酸液相作用下直

天津大学反应工程课程设计---氯乙烯合成

天津大学 课程设计 题目:100000吨/年PVC装置氯乙烯合成车间工艺设计完成期限:2014年2月24日到2014年3月14日 学院化工学院指导教师徐艳 专业分子科学与工程职称副教授 学生学号

目录 第一章文献综述 (4) 1.1氯乙烯和聚氯乙烯的发展状况 (4) 1.1.1氯乙烯 (4) 1.1.2聚氯乙烯 (4) 1.2生产工艺 (4) 1.2.1电石法生产PVC 生产工艺 (4) 1.2.2生产方法的比较 (5) 第二章氯乙烯合成工艺方案的确定 (5) 第三章物料衡算 (5) 3.1 设计依据 (6) 3.2 VCM流量 (7) 3.3 混合器 (8) 3.4 石墨冷却器 (10) 3.5 转化器 (11) 3.6 泡沫塔 (12) 3.7水洗塔 (12) 3.8 碱洗塔 (13) 3.9 机前冷却器 (13) 3.10 机后冷却器 (14) 3.11全凝器 (14) 3.12高沸塔 (16) 3.13低沸塔 (17) 第四章热量衡算 (18) 4.1 转化器 (18) 4.2 机前冷却器 (20) 4.3机后冷却器 (21) 4.4低沸塔 (22) 4.5低沸塔塔顶冷凝器 (22) 4.6低沸塔再沸器 (23)

第五章设备选型计算 (23) 5.1机前冷却器 (23) 5.2机后冷却器 (24) 5.3氯乙烯单体储罐 (24) 5.4氯乙烯单体压缩机 (24) 5.5转化器 (24) 第六章乙炔法氯乙烯合成过程中产生的“三废”及处理措施 (25) 参考文献 (26) 附件 (27)

第一章文献综述 1.1氯乙烯和聚氯乙烯的发展状况 氯乙烯是聚氯乙烯的中间体,也是生产聚氯乙烯的原料。而聚氯乙烯( PVC) 是世界五大通用合成树脂之一。 1.1.1氯乙烯 氯乙烯是制备聚氯乙烯及其共聚物的单体,也常称为氯乙烯单体( VCM) , 在世界上是与乙烯和氢氧化钠等并列的最重要的化工产品之一。氯乙烯沸点- 13.9℃; 在室温下是无色气体; 因存在不饱和双键, 很容易聚合, 能与乙烯、丙烯、醋酸乙烯酯、偏二氯乙烯、丙烯腈、丙烯酸酯等单体共聚。共聚产物可以制得各种性能的树脂, 加工成管材、板材、薄膜、塑料地板、各种压塑制品、建筑材料、涂料和合成纤维等[1]。 1.1.2聚氯乙烯 聚氯乙烯,英文简称PVC,是由氯乙烯在引发剂作用下聚合而成的热塑性树脂。PVC为无定形结构的白色粉末,支化度较小,具有较大的多分散性;无固定熔点,80~85℃开始软化,130℃变为粘弹态,160~180℃开始转变为粘流态;有较好的机械性能,抗张强度60MPa 左右,冲击强度5~10kJ/m2;有优异的介电性能。但对光和热的稳定性差,在100℃以上或经长时间阳光曝晒,就会分解而产生氯化氢,并进一步自动催化分解,引起变色,物理机械性能也迅速下降,在实际应用中必须加入稳定剂以提高对热和光的稳定性[2]。 1.2生产工艺 目前, 世界上氯乙烯的生产技术主要电石乙炔法、乙烯法等等。本次设计利用的方法是电石乙炔法。 1.2.1电石法生产PVC 生产工艺 由于我国具有丰富廉价的煤炭资源,用煤炭和石灰石生成碳化钙(电石)、然后电石加水生成乙炔的VCM 生产路线具有明显的成本优势。乙炔法氯乙烯合成工艺流程是:电石与水反应生成乙炔,乙炔与氯化氢在氯化汞的催化作用下合成氯乙烯[3]。 主要采用列管式固定床反应器。反应管径为57 mm, 管壁厚度为3.5 mm, 内装有平均尺寸为53×6 mm 的条状HgCl2 /AC 催化剂。乙炔与经过石墨冷凝器的氯化氢气体按一定比例在混合器中混合后进入石墨冷凝器中, 用- 35 ℃盐水间接冷却到- 14 ℃左右, 进入酸雾捕集器, 用硅油玻璃棉捕集酸雾使之生成盐酸, 放入盐酸贮槽。除去酸雾的干燥混合气体进入预热器, 由流量计控制从上部进入串联转化器组。后台反应器排出的粗氯乙烯气体在高温下带出的氯化汞在填充活性炭的除汞器中除去, 然后进入石墨冷凝器, 用0℃水间接冷却到

相关文档
最新文档