求数列的通项公式和前N项和的几种类型总结

求数列的通项公式和前N项和的几种类型总结
求数列的通项公式和前N项和的几种类型总结

32n a a a ???),,0为常数q p ≠:

= ++=

2n

数列通项公式、前n项和求法总结

一?数列通项公式求法总结: 1?定义法一一直接利用等差或等比数列的定义求通项。 特征:适应于已知数列类型(等差或者等比). 例].等差数列{%}是递增数列,前n项和为S”,且也,%5成等比数列,S5=a;.求数列{%}的通项公式. 变式练习: 1.等差数列{陽}中,吗=4,如=2為,求匕}的通项公式 2.在等比数列{%}中<2-4 =2,且2勺为3纠和他的等差中项,求数列}的首项、公比及前"项和. 2 ?公式法 求数列{a…}的通项①可用公式= 5,................ ""求解。 ①-昭......... n>2 特征:已知数列的前"项和s“与%的关系 例2?已知下列两数列{色}的前n项和S“的公式,求{?}的通项公式。

变式练习: 1.已知数列{%}的前n项和为且S产2n2+m n GN*,数列{"}满足山=41。审化+3, n^N*.求色,b「 2.已知数列{?}的前门项和S”= —丄“2+如(2皿),且久的最大值为8,试确泄常数k并求0”。2 3.已知数列仏}的前"项和$“=伫卩,心".求数列仏}的通项公式。 2 3 ?由递推式求数列通项法 类型1特征:递推公式为如="”+/(") 对策:把原递推公式转化为a n+1-a…= f(n),利用累加法求解。例3.已知数列{?… }满足a{=~, % = a n + -J—,求 a”。 2 ir +n

变式练习: 1.已知数列{色}满足a^=a n+2n + \9 q=l,求数列{色}的通项公式。 2?已知数列:? =皿 =5 +漆通项公式 类型2特征:递推公式为勺屮=/(〃)? 对策:把原递推公式转化为组 = /(〃),利用累乘法求解。例4.已知数列仏}满足=-, a n^=—a n9求% 3 ” + 1 变式练习: 1?已知数列{%}中,q=2, a n¥l=3n a n9求通项公式?。

数列通项公式专题讲座-基础版-xs

数列通项公式专题讲座 类型1 )(1n f a a n n +=+ 解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解 例:已知数列{}n a 满足211=a ,n n a a n n ++=+211,求n a 。 变式训练 1、(2004,全国I ,理22.本小题满分14分) 已知数列1}{1=a a n 中,且a 2k =a 2k -1+(-1)K , a 2k+1=a 2k +3k , 其中k=1,2,3,……. (I )求a 3, a 5; (II )求{ a n }的通项公式. 类型2 n n a n f a )(1=+ 解法:把原递推公式转化为 )(1n f a a n n =+,利用累乘法(逐商相乘法)求解。 例:已知数列{}n a 满足321= a ,n n a n n a 1 1+=+,求n a 。

变式训练 1.已知31=a ,n n a n n a 2 3131+-=+ )1(≥n ,求n a 。 2.在数列{n a }中,1a =1, (n+1)·1+n a =n ·n a ,求n a 的表达式。 三 类型3 q pa a n n +=+1(其中p ,q 均为常数, )0)1((≠-p pq ) 。 解法(待定系数法):把原递推公式转化为:)(1t a p t a n n -=-+,其中p q t -=1,再利用换元法转化为等比数列求解。 例:已知数列{}n a 中,11=a ,321+=+n n a a ,求n a . 变式训练 1.已知数}{n a 的递推关系为43 21+= +n n a a ,且11=a 求通项n a 。 2.已知数列{}n a 满足*111,21().n n a a a n N +==+∈ (I )求数列{}n a 的通项公式; (II )若数列{b n }滿足12111*444(1)(),n n b b b b n a n N ---=+∈ 证明:数列{b n }是等差数列;

求数列通项公式方法经典总结.doc

求数列通项公式方法 ( 1).公式法(定义法) 根据等差数列、等比数列的定义求通项 例: 1 已知等差数列 { a n } 满足: a 3 7, a 5 a 7 26 , 求 a n ; 2. 已知数列 { a n } 满足 a 1 2,a n a n 1 1(n 1) ,求数列 { a n } 的通项公式; 3. 数列 a n 满足 a 1 =8,a 4 2,且 a n 2 2a n 1 a n 0 ( n N ),求数列 a n 的 通项公式; 4. 已知数列 { a n } 满足 a 1 2, 1 1 2 ,求数列 a n 的通项公式; a n 1 a n 5. 设数列 { a n } 满足 a 1 0 且 1 1 ,求 { a n } 的通项公式 a n 1 1 1 1 a n 6. 已知数列 { a n } 满足 a n 1 2a n , a 1 1 ,求数列 { a n } 的通项公式。 a n 2 7. 等比数列 { a n } 的各项均为正数,且 2a 1 3a 2 2 9a 2 a 6 ,求数列 { a n } 的通 1, a 3 项公式 8. 已知数列 { a n } 满足 a 1 2, a n 3a n 1 (n 1) ,求数列 { a n } 的通项公式; 9. 已知数列 { a n } 满足 a 1 2,a 2 4且 a n 2 a n 2 N ),求数列 a n 的 a n 1 ( n 通项公式; 10. 已知数列 { a n } 满足 且 a n 1 5n 1 2( a n 5n ) ( n N ),求数列 a n 的通 a 1 2, 项公式;

求数列通项公式的常用方法(有答案)

求数列通项公式的常用方法 一、累加法 1.适用于:1()n n a a f n +=+ ----------这是广义的等差数列 累加法是最基本的二个方法之 一。 2.解题步骤:若1()n n a a f n +-=(2)n ≥, 则 21321(1) (2) () n n a a f a a f a a f n +-=-=-= 两边分别相加得 111 ()n n k a a f n +=-= ∑ 例1 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。 解:由121n n a a n +=++得121n n a a n +-=+则 11232211 2 ()()()()[2(1)1][2(2)1](221)(211)1 2[(1)(2)21](1)1(1)2(1)1 2 (1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-++ +?++?++=-+-++++-+-=+-+=-++= 所以数列{}n a 的通项公式为2 n a n =。 练习. 已知数列 } {n a 满足31=a , ) 2()1(1 1≥-+ =-n n n a a n n ,求此数列的通项公式. 答案:裂项求和 n a n 1 2- = 评注:已知a a =1,) (1n f a a n n =-+,其中f(n)可以是关于n 的一次函数、二次函

数、指数函数、分式函数,求通项 n a . ①若f(n)是关于n 的一次函数,累加后可转化为等差数列求和; ②若f(n)是关于n 的二次函数,累加后可分组求和; ③若f(n)是关于n 的指数函数,累加后可转化为等比数列求和; ④若f(n)是关于n 的分式函数,累加后可裂项求和。 二、累乘法 1. 适用于: 1()n n a f n a += ----------这是广义的等比数列,累乘法是最基本的二个方法之 二。 2.解题步骤:若 1()n n a f n a +=,则31212(1)(2)()n n a a a f f f n a a a +===,,, 两边分别相乘得,1 11 1()n n k a a f k a +==?∏ 例2 已知数列{}n a 满足112(1)53n n n a n a a +=+?=,,求数列{}n a 的通项公式。 解:因为112(1)53n n n a n a a +=+?=,,所以0n a ≠,则 1 2(1)5n n n a n a +=+,故1 32 112 21 12211(1)(2)21 (1)1 2 [2(11)5][2(21)5][2(21)5][2(11)5]32[(1)32]53 32 5 ! n n n n n n n n n n n n n a a a a a a a a a a n n n n n -------+-+++--= ??? ??=-+-+??+?+??=-?????=??? 所以数列{}n a 的通项公式为(1)1 2 325 !.n n n n a n --=??? 练习. 已知 1 ,111->-+=+a n na a n n ,求数列{an}的通项公式 答案: =n a ) 1()!1(1+?-a n -1.

数列的通项公式与前n项和的关系

数列的通项公式与前n 项和的关系 -CAL-FENGHAI.-(YICAI)-Company One1

1.(11辽宁T17) 已知等差数列{a n }满足a 2=0,a 6+a 8=-10 (I )求数列{a n }的通项公式; (II )求数列??????-12n n a 的前n 项和. 【测量目标】等差数列的通项,数列的通项公式{}n a 与前n 项和n S 的关系. 【难易程度】容易 【试题解析】(I )设等差数列{}n a 的公差为d ,由已知条件可得11 0,21210,a d a d +=??+=-? 解得11,1. a d =??=-? 故数列{}n a 的通项公式为2.n a n =-(步骤1) (II )设数列1{ }2n n a -的前n 项和为n S ,即211,22 n n n a a S a -=+++故11S =(步骤2) 12.2242n n n S a a a =+++ 所以,当1n >时, 1211111222211121()2422 121(1)22 n n n n n n n n n n n S a a a a a S a n n -------=+++--=-+++--=--- = .2 n n (步骤3) 所以1.2n n n S -= 综上,数列11 { }.22n n n n a n n S --=的前项和(步骤4) 2.(10上海T20) 已知数列{}n a 的前n 项和为n S ,且585n n S n a =--,n +∈N . (1)证明:{}1n a -是等比数列;

(2)求数列{}n S 的通项公式,并求出n 为何值时,n S 取得最小值,并说明理由. 【测量目标】数列的通项公式n a 与前n 项和n S 的关系. 【难易程度】中等 【试题解析】(1)当1n =时,114a =-;当2n 时,11551n n n n n a S S a a --=-=-++,()15116 n n a a -∴-=-,(步骤1) 又11150a -=-≠,∴数列{}1n a -是等比数列;(步骤2) (2)由(1)知:151156n n a -??-=- ??? ,得151156n n a -??=- ???,(步骤3) 从而()1575906n n S n n -+??=+-∈ ???N ;(步骤4) 解不等式1n n S S +<,得15265n -??< ???,562log 114.925n >+≈,(步骤5) ∴当15n 时,数列{}n S 单调递增;(步骤6) 同理可得,当15n 时,数列{}n S 单调递减; 故当15n =时,n S 取得最小值.(步骤7) 3.(09辽宁T14) 等差数列{}n a 的前n 项和为n S ,且53655,S S -=则4a = . 【测量目标】数列的通项公式{}n a 与前n 项和n S 的关系. 【难易程度】中等 【参考答案】13 【试题解析】∵11(1)2 n S na n n d =+-∴5131510,33S a d S a d =+=+. ∴5311114653060(1515)154515(3)15S S a d a d a d a d a -=+-+=+=+=. ∵53655,S S -=故413 a = . 4.(09全国II T19) 设数列{}n a 的前n 项和为,n S 已知11,a =142n n S a +=+

(完整版)常见递推数列通项公式的求法典型例题及习题

常见递推数列通项公式的求法典型例题及习题 【典型例题】 [例1] b ka a n n +=+1型。 (1)1=k 时,}{1n n n a b a a ?=-+是等差数列,)(1b a n b a n -+?= (2)1≠k 时,设)(1m a k m a n n +=++ ∴ m km ka a n n -+=+1 比较系数:b m km =- ∴ 1-= k b m ∴ }1{-+ k b a n 是等比数列,公比为k ,首项为11-+k b a ∴ 11)1(1-?-+=-+ n n k k b a k b a ∴ 1)1(11--?-+=-k b k k b a a n n [例2] )(1n f ka a n n +=+型。 (1)1=k 时,)(1n f a a n n =-+,若)(n f 可求和,则可用累加消项的方法。 例:已知}{n a 满足11=a ,)1(1 1+= -+n n a a n n 求}{n a 的通项公式。 解: ∵ 11 1)1(11+- =+= -+n n n n a a n n ∴ n n a a n n 1111--= -- 112121---=---n n a a n n 21 3132-- -=---n n a a n n …… 312123-= -a a 21112-=-a a 对这(1-n )个式子求和得: n a a n 111- =- ∴ n a n 1 2- =

(2)1≠k 时,当b an n f +=)(则可设)()1(1B An a k B n A a n n ++=++++ ∴ A B k An k ka a n n --+-+=+)1()1(1 ∴ ???=--=-b A B k a A k )1()1( 解得:1-=k a A ,2 )1(1-+-=k a k b B ∴ }{B An a n ++是以B A a ++1为首项,k 为公比的等比数列 ∴ 1 1)(-?++=++n n k B A a B An a ∴ B An k B A a a n n --?++=-11)( 将A 、B 代入即可 (3)n q n f =)((≠q 0,1) 等式两边同时除以1 +n q 得q q a q k q a n n n n 1 11+?=++ 令 n n n q a C = 则q C q k C n n 1 1+ =+ ∴ }{n C 可归为b ka a n n +=+1型 [例3] n n a n f a ?=+)(1型。 (1)若)(n f 是常数时,可归为等比数列。 (2)若)(n f 可求积,可用累积约项的方法化简求通项。 例:已知: 311= a ,1121 2-+-=n n a n n a (2≥n )求数列}{n a 的通项。 解:123537532521232121212233 2211+= ?--?--?+-=???-----n n n n n n n a a a a a a a a a a n n n n n n ΛΛ ∴ 1211231+= +? =n n a a n [例4] 11 --+?? =n n n a m a m k a 型。

求数列通项公式和前n项和的常用方法(含高考题精选)

求数列通项公式和前n 项和的常用方法 一、求数列通项公式的常用方法 1.公式法:等差数列或等比数列的通项公式。 2.归纳法:由数列前几项猜测出数列的通项公式,再用数学归纳法证明其正确性。 3.累乘法:利用3 21 121 (0,2)n n n n a a a a a a n a a a -=???≠≥型如: 1()n n a g n a += 4.构造新数列: 类型1累加法 )(1n f a a n n +=+ 类型2 累乘法 n n a n f a )(1=+ 类型3 q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq )。解法(待定系数法):把原递 推公式转化为:)(1t a p t a n n -=-+,其中p q t -=1,转化为等比数列求解。 类型4 n n n q pa a +=+1(其中p ,q 均为常数,)0)1)(1((≠--q p pq ) 。 (或1n n n a pa rq +=+,其中p ,q, r 均为常数) 解法:先在原递推公式两边同除以1 +n q ,得:q q a q p q a n n n n 111+?=++引入辅助数列{}n b (其中n n n q a b =),得:q b q p b n n 1 1+=+再待定系数法解决。 类型5 递推公式为n S 与n a 的关系式。(或()n n S f a =) 解法:1.利用?? ?≥???????-=????????????????=-) 2() 1(11n S S n S a n n n 2.升降标相减法 二、数列求和的常用方法 1.直接或转化等差、等比数列的求和公式求和 (1)等差数列求和公式:d n n na a a n S n n 2 ) 1(2)(11-+=+= (2)等比数列求和公式:?????≠--=--==) 1(11)1()1(111q q q a a q q a q na S n n n 2.错位相减法 设数列{}n a 的等比数列,数列{}n b 是等差数列,则求数列{}n n b a 的前n 项和n S 。 3.裂项求和法 (1)1 1 1)1(1+- =+=n n n n a n (2))121121(211)12)(12()2(2+--+=+-=n n n n n a n 等。4.分组求和法:对一类既不是等差数列,也不是等比数列的数列,若将这类数列适当拆开,可分为 几个等差、等比或常见的数列,然后分别求和,再将其合并。 5.逆序相加法 把数列正着写和倒着写再相加(即等差数列求和公式的推导过程的推广)

数列通项公式的求法教案

课 题:数列通项公式的求法 课题类型:高三第一轮复习课 授课教师:孙海明 1、知识目标:使学生掌握数列通项公式的基本求法:(1)利用公式求通项(2)累加法 求通项(3)累乘法求通项,并能灵活地运用。 2、能力目标:通过例题总结归纳数列通项公式基本求法,培养学生观察、辨析、运用的 综合思维能力,掌握由特殊到一般、无限化有限的化归转化的数学思想, 提高学生数学素质。 3、情感目标:通过本节的学习,进一步培养学生的“实践—认识—再实践”的辨证唯物 主义观点。 教学重点、难点: 重 点:数列通项公式的基本求法 难 点:复杂问题的化归转化 教学方法与教学手段: 教学方法:引导发现法(注重知识的发生过程,培养学生创新精神和实践能力) 教学手段:多媒体辅助教学 教学过程: 一、创设情境,引出课题: 1、数列在历年的高考中都占有非常重要的地位。以近三年的高考为例:每年都出一道选择或填空、一道解答题,总分值为17分,占高考总成绩的百分之十。所以,希望同学们认真总结归纳基本方法,灵活运用解题。请同学们思考解决数列问题的关键是什么?(同学们一起回答:通项公式),那么这节课我们就来总结一下数列通项公式的基本求法。 《板书标题:数列通项公式的求法》 [设计意图] 使学生掌握数列在高考中的地位,从而使学生对数列的学习引起足够的 重视,提高学习的积极性。 二、启发诱导、总结方法 1、利用公式求通项 《先给出例题,分析总结方法》 师生互动: 请同学分析叙述解题过程,老师板书。 {}{}{}{}的通项公式求且数列是各项都为正数的等比 为等差数列设高考卷一例、n n n n b a b a b a b a b a ,,13,21,1,,)07(355311=+=+=={}{}1 2223545322)1(212,202 74,1341,21210,,-==-+===>-===++=+=++=+>n n n n n b n n a d q q q q q d b a q d b a q q b d a ,,则所以所以(舍)因为或解得依题得的公比为等比数列的公差为解:设等差数列

数列通项公式方法大全很经典

1,数列通项公式的十种求法: (1)公式法(构造公式法) 例1 已知数列{}n a 满足1232n n n a a +=+?,12a =,求数列{}n a 的通项公式。 解:1232n n n a a +=+?两边除以12n +,得 113222n n n n a a ++=+,则113222 n n n n a a ++-= ,故数列{}2n n a 是以1 2 22a 11==为首项,以23 为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31 ()222 n n a n =-。 评注:本题解题的关键是把递推关系式1232n n n a a +=+?转化为 113222 n n n n a a ++-=,说明数列{}2n n a 是等差数列,再直接利用等差数列的通项公式求出3 1(1) 22 n n a n =+-,进而求出数列{}n a 的通项公式。 (2)累加法 例2 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。 解:由121n n a a n +=++得121n n a a n +-=+则 所以数列{}n a 的通项公式为2n a n =。 评注:本题解题的关键是把递推关系式121n n a a n +=++转化为121n n a a n +-=+,进而求出 11232211()()()()n n n n a a a a a a a a a ----+-+ +-+-+,即得数列{}n a 的通项公式。 变式:已知数列{}n a 满足112313n n n a a a +=+?+=,,求数列{}n a 的通项公式。 (3)累乘法 例3已知数列{}n a 满足112(1)53n n n a n a a +=+?=,,求数列{}n a 的通项公式。

求数列通项公式常用的七种方法

创作编号:GB8878185555334563BT9125XW 创作者: 凤呜大王* 求数列通项公式常用的七种方法 一、公式法:已知或根据题目的条件能够推出数列{}n a 为等差或等比数列,根据通项公式 ()d n a a n 11-+=或1 1-=n n q a a 进行求解. 例1:已知{}n a 是一个等差数列,且5,152-==a a ,求{}n a 的通项公式. 分析:设数列{}n a 的公差为d ,则?? ?-=+=+5411 1d a d a 解得???-==23 1d a ∴ ()5211+-=-+=n d n a a n 二、前n 项和法:已知数列{}n a 的前n 项和n s 的解析式,求n a . 例2:已知数列{}n a 的前n 项和12-=n n s ,求通项n a . 分析:当2≥n 时,1--=n n n s s a =( )( ) 32 321 ----n n =1 2 -n 而111-==s a 不适合上式,() () ???≥=-=∴-22111n n a n n 三、n s 与n a 的关系式法:已知数列{}n a 的前n 项和n s 与通项n a 的关系式,求n a . 例3:已知数列{}n a 的前n 项和n s 满足n n s a 3 1 1= +,其中11=a ,求n a . 分析: 13+=n n a s ① ∴ n n a s 31=- ()2≥n ② ①-② 得 n n n a a a 331-=+ ∴ 134+=n n a a 即 341=+n n a a ()2≥n 又1123 1 31a s a ==不适合上式 ∴ 数列{}n a 从第2项起是以 3 4 为公比的等比数列 ∴ 2 2 2343134--?? ? ??=? ? ? ??=n n n a a ()2≥n ∴()()??? ??≥?? ? ??==-23431112n n a n n 注:解决这类问题的方法,用具俗话说就是“比着葫芦画瓢”,由n s 与n a 的关系式,类比出1-n a 与 的关系式,然后两式作差,最后别忘了检验1a 是否适合用上面的方法求出的通项. 四、累加法:当数列{}n a 中有()n f a a n n =--1,即第n 项与第1-n 项的差是个有“规律”的数时, 可以用这种方法. 例4: ()12,011-+==+n a a a n n ,求通项n a 分析: 121-=-+n a a n n ∴ 112=-a a 323=-a a 534=-a a ┅ 321-=--n a a n n ()2≥n 以上各式相加得()()2 11327531-=-+++++=-n n a a n ()2≥n 又01=a ,所以()2 1-=n a n ()2≥n ,而01=a 也适合上式, ∴ ()2 1-=n a n ( ∈N n 五、累乘法:它与累加法类似 ,当数列{}n a 中有 ()1 n n a f n a -=,即第n 项与第1-n 项的商是个有“律”的数时,就可以用这种方法. 例5:111,1 n n n a a a n -==- ()2,n n N *≥∈ 求通项n a 分析: 11 n n n a a n -= - ∴11n n a n a n -=- ()2,n n N * ≥∈

高中数学复习——数列通项公式的十种求法及相应题目

高中数学复习——数列通项公式的十种求法及 相应题目 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

一、公式法 例1 已知数列{}n a 满足1232n n n a a +=+?,12a =,求数列{}n a 的通项公式。 解:1232n n n a a +=+?两边除以12n +,得 113222n n n n a a ++=+,则11 3 222 n n n n a a ++-=,故数列{}2n n a 是以1 2 22a 11==为首项,以23 为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222n n a n =-。 评注:本题解题的关键是把递推关系式1232n n n a a +=+?转化为 11 3 222 n n n n a a ++-=,说明数列{}2n n a 是等差数列,再直接利用等差数列的通项公式求出 3 1(1)22n n a n =+-,进而求出数列{}n a 的通项公式。 二、累加法 例2 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。 解:由121n n a a n +=++得121n n a a n +-=+则 11232211 2 ()()()()[2(1)1][2(2)1](221)(211)1 2[(1)(2)21](1)1 (1)2(1)1 2 (1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-++ +?++?++=-+-++++-+-=+-+=-++= 所以数列{}n a 的通项公式为2n a n =。 评注:本题解题的关键是把递推关系式121n n a a n +=++转化为 121n n a a n +-=+,进而求出11232211()()()()n n n n a a a a a a a a a ----+-+ +-+-+, 即得数列{}n a 的通项公式。 例3 已知数列{}n a 满足112313n n n a a a +=+?+=,,求数列{}n a 的通项公式。

求数列通项公式方法经典总结

求数列通项公式方法 (1).公式法(定义法) 根据等差数列、等比数列的定义求通项 例:1已知等差数列}{n a 满足:26,7753=+=a a a , 求n a ; 2.已知数列}{n a 满足)1(1,211≥=-=-n a a a n n ,求数列}{n a 的通项公式; 3.数列{}n a 满足1a =8,022124=+-=++n n n a a a a ,且 (* ∈N n ),求数列{}n a 的 通项公式; 4. 已知数列}{n a 满足21 1, 21 1=- =+n n a a a ,求数列{}n a 的通项公式; 5.设数列}{n a 满足01=a 且 111 111=---+n n a a ,求}{n a 的通项公式 6. 已知数列{}n a 满足112,12 n n n a a a a += =+,求数列{}n a 的通项公式。 7.等比数列}{n a 的各项均为正数,且13221=+a a ,622 39a a a =,求数列}{n a 的通项公式 8. 已知数列}{n a 满足)1(3,211≥===n a a a n n ,求数列}{n a 的通项公式; 9.已知数列}{n a 满足2 122142++=?==n n n a a a a a 且, (* ∈N n ),求数列{}n a 的 通项公式; 10.已知数列}{n a 满足,21=a 且1152(5)n n n n a a ++-=-(*∈N n ),求数列{}n a 的通 项公式; 11. 已知数列}{n a 满足,21=a 且115223(522)n n n n a a +++?+=+?+(*∈N n ),求 数列{}n a 的通项公式;

九类常见递推数列求通项公式方法

递推数列通项求解方法 类型一:1n n a pa q += +(1p ≠) 思路1(递推法):()123()n n n n a pa q p pa q q p p pa q q q ---??=+=++=+++=?? ......121(1n p a q p p -=++++ (2) 1 1)11n n q q p a p p p --??+=+?+ ? --?? 。 思路2(构造法):设()1n n a p a μμ++=+,即()1p q μ-=得1 q p μ= -,数列 {}n a μ+是以1a μ+为首项、p 为公比的等比数列,则1 111n n q q a a p p p -??+ =+ ?--??,即1111n n q q a a p p p -??=++ ? --?? 。 例1 已知数列{}n a 满足123n n a a -=+且11a =,求数列{}n a 的通项公式。 解:方法1(递推法): ()123232(23)3222333n n n n a a a a ---??=+=++=+++=?? (1) 22 3(122n -=++++ (2) 11 332 )12232112n n n --+??+=+?+=- ? --? ?。 方法2(构造法):设()12n n a a μμ++=+,即3μ=,∴数列{}3n a +是以134 a +=为首项、2为公比的等比数列,则113422n n n a -++=?=,即1 23n n a +=-。

1n n +思路1(递推法): 123(1)(2)(1)(3)(2)(1)n n n n a a f n a f n f n a f n f n f n ---=+-=+-+-=+-+-+-= …1 11 ()n i a f n -==+∑。 思路2(叠加法):1(1)n n a a f n --=-,依次类推有:12(2)n n a a f n ---=-、 23(3)n n a a f n ---=-、…、21(1)a a f -=,将各式叠加并整理得1 11 ()n n i a a f n -=-= ∑ ,即 1 11 ()n n i a a f n -==+ ∑ 。 例2 已知11a =,1n n a a n -=+,求n a 。 解:方法1(递推法):123(1)(2)(1)n n n n a a n a n n a n n n ---=+=+-+=+-+-+= ......1[23a =+++ (1) (1)(2)(1)]2 n i n n n n n n =++-+-+= = ∑ 。 方法2(叠加法):1n n a a n --=,依次类推有:121n n a a n ---=-、232n n a a n ---=-、…、 212a a -=,将各式叠加并整理得12 n n i a a n =-= ∑ ,12 1 (1)2 n n n i i n n a a n n ==+=+ = = ∑ ∑ 。

数列通项公式前n项和求法总结全

数列通项公式前n项和 求法总结全 YUKI was compiled on the morning of December 16, 2020

一.数列通项公式求法总结: 1.定义法 —— 直接利用等差或等比数列的定义求通项。 特征:适应于已知数列类型(等差或者等比). 例1.等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等比数列,2 55a S =.求数 列{}n a 的通项公式. 变式练习: 1.等差数列{}n a 中,71994,2,a a a ==求{}n a 的通项公式 2. 在等比数列{}n a 中,212a a -=,且22a 为13a 和3a 的等差中项,求数列{}n a 的首项、公比 及前n 项和. 2.公式法 求数列{}n a 的通项n a 可用公式???≥???????-=????????????????=-21 11n S S n S a n n n 求解。 特征:已知数列的前n 项和n S 与n a 的关系 例2.已知下列两数列}{n a 的前n 项和s n 的公式,求}{n a 的通项公式。 (1)13-+=n n S n 。 (2)12-=n s n 变式练习:

1. 已知数列{}n a 的前n 项和为n S ,且n S =2n 2+n ,n ∈N ﹡,数列{b }n 满足n a =4log 2n b +3,n ∈N ﹡.求n a ,n b 。 2. 已知数列{}n a 的前n 项和21 2n S n kn =-+(*k N ∈),且S n 的最大值为8,试确定常数k 并求n a 。 3. 已知数列{}n a 的前n 项和*∈+=N n n n S n ,2 2.求数列{}n a 的通项公式。 3.由递推式求数列通项法 类型1 特征:递推公式为 ) (1n f a a n n +=+ 对策:把原递推公式转化为)(1n f a a n n =-+,利用累加法求解。 例3. 已知数列{}n a 满足211= a ,n n a a n n ++=+211,求n a 。 变式练习: 1. 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。 2.已知数列: 求通项公式 类型2 特征:递推公式为 n n a n f a )(1=+ 对策:把原递推公式转化为 )(1 n f a a n n =+,利用累乘法求解。 例4. 已知数列{}n a 满足321= a ,n n a n n a 1 1+=+,求n a 。 变式练习:

史上最全的数列通项公式的求法13种

最全的数列通项公式的求法 数列是高考中的重点内容之一,每年的高考题都会考察到,小题一般较易,大题一般较难。而作为给出数列的一种形式——通项公式,在求数列问题中尤其重要。本文给出了求数列通项公式的常用方法。 一、直接法 根据数列的特征,使用作差法等直接写出通项公式。 二、公式法 ①利用等差数列或等比数列的定义求通项 ②若已知数列的前n 项和n S 与n a 的关系,求数列{}n a 的通项n a 可用公式 ?? ?≥???????-=????????????????=-2 1 11n S S n S a n n n 求解. (注意:求完后一定要考虑合并通项) 例2.①已知数列{}n a 的前n 项和n S 满足1,)1(2≥-+=n a S n n n .求数列{}n a 的通项公式. ②已知数列{}n a 的前n 项和n S 满足2 1n S n n =+-,求数列{}n a 的通项公式. ③ 已知等比数列{}n a 的首项11=a ,公比10<

数列通项公式的十种方法(已打)

递推式求数列通项公式常见类型及解法 对于由递推式所确定的数列通项公式问题,通常可通过对递推式的变形转化成等差数列或等比数列,也可以通过构8造把问题转化。下面分类说明。 一、型 例1. 在数列{a n}中,已知,求通项公式。 解:已知递推式化为,即, 所以 。 将以上个式子相加,得 ,

所以。 二、型 例2. 求数列的通项公式。解:当, 即 当,所以。

三、型 例3. 在数列中,,求。解法1:设,对比 ,得。于是,得 ,以3为公比的等比数列。 所以有。 解法2:又已知递推式,得 上述两式相减,得,因此,数列是以 为首项,以3为公比的等比数列。 所以,所以 。

四、型 例4. 设数列,求通项公式。 解:设,则, , 所以, 即。 设这时,所以。 由于{b n}是以3为首项,以为公比的等比数列,所以有。 由此得:。 说明:通过引入一些尚待确定的系数转化命题结构,经过变形与比较,把问题转化成基本数列(等差或等比数列)。

五、型 例5. 已知b≠0,b≠±1,,写出用n和b表示a n的通项公式。 解:将已知递推式两边乘以,得 ,又设, 于是,原递推式化为,仿类型三,可解得,故。 说明:对于递推式,可两边除以,得 ,引入辅助数列 ,然后可归结为类型三。

六、型 例6. 已知数列,求。 解:在两边减去。 所以为首项,以 。 所以令上式,再把这个等式累加,得 。所以。 说明:可以变形为,就是 ,则可从,解得,于是是公比为的等比数列,这样就转化为前面的类型五。 等差、等比数列是两类最基本的数列,是数列部分的重点,自然也是高考考查的热点,而考查的目的在于测试灵活运用知识的能力,这个“灵活”往往集中在“转化”的水平上。 转化的目的是化陌生为熟悉,当然首先是等差、等比数列,根据不同的递推公式,采用相应的变形手段,达到转化的目的。

数列通项公式和前n项和的常见解题方法

一、 观察法:已知数列的前几项,要求写出数列的一个通项公式 例1、求下列数列的一个通项公式。 ①1 3572,4,8,165101520 -- ②1,0,1,0 ③3,33,333,3333 ④11,103,1005,10007 二、定义法:主要应用于可定性为等差或等比数列的类型,可直接利用等差或等比数列的通项公式进行求解。例2、求下列数列的通项公式 ①已知数列{}a n 中() *112,3n n a a a n N +==+∈求通项公式。 ②已知{}a n 中a 13=-且n n a a 21=+求此数列的通项公式。 ③已知等比数列2,a ,a +4,…写出其通项a n 的表达式. ④已知数列{}n a 中,满足a 1=6,a 1+n +1=2(a n +1) (n ∈N + ),则数列{}n a 的通项公式 三、 递推关系式形如1()n n a a f n +=+ (其中()f n 不是常数函数) 此类问题要利用累加法, 利用公式121321()()()n n n a a a a a a a a -=+-+-+???+-来求解. 例.若在数列{}n a 中,31=a ,n a a n n +=+1,求通项n a 。 变式:(1)数列{a n }满足a 1=1且132(2),n n n a a n n a -=+-≥求 (2)数列{a n }满足a 1=1且11(2),2 n n n n a a n a -=+ ≥求 四、 递推关系式形如1()n n a a f n += (其中()f n 不是常数函数) 此类问题要利用累乘法,利用公式321121n n n a a a a a a a a -=??? 来求解. 例.在数列{}n a 中,11=a ,n n n a a 21=+(* N n ∈),求通项n a 。 变式:若1124,n n n a a a n ++==,求n a 五、 (构造数列法) 递推关系式形如 1n n a pa q +=+(,,1,0)q p p q ≠≠为常数且 此类问题可化为1()11n n q q a p a p p ++=+--,即数列{}1 n q a p +-是一个以p 为公比的等比数列. 例.已知数列{}n a 满足*111,21().n n a a a n N +==+∈求数列{}n a 的通项公式 变式:115,23n n n a a a a -==+且,求 六、利用前n 项和S n 求通项 利用{11,1 ,2n n a n n S S n a -=-≥= ,一定要验证首项。 例:已知下列两数列}{n a 的前n 项和s n 的公式,求}{n a 的通项公式。 (1)223n S n n =-。 (2)12-=n s n (2)若数列{a n }的前n 项和S n =32 a n -3,求{a n }的通项公式.

相关文档
最新文档