1、电磁学发展的历史回顾

1、电磁学发展的历史回顾
1、电磁学发展的历史回顾

1、电磁学发展的历史回顾

早在公元前770年的春秋时代,中国人就发现了天然磁石,在东汉时代中国人发明了指南针,公元前120年前西汉刘安等编篆的《淮南子》中描述了“阴阳相薄为雷,激扬为电”。北宋时期陈微显描述了磁屏蔽现象,并有磁石治疗耳病的记载。17世纪(牛顿年代)法国旅行家卡?戴马甘兰游离中国后对中国的避雷针进行了描述“中国屋宇顶上龙头中有伸出的金属龙舌,舌根有细铁丝直通地下,使房屋不受雷电的破坏作用”。虽然中国人发明较早,却无人去深入总结。在我们的教科书里全是洋名,不见华名,因为中国古人注重发现,但不大注重理论总结与宣传。

1800年伏打给英国皇家学会会长班克斯写信介绍了电池的原理和构造。使之成为至今众所周知的伏打电池。

1820年初奥斯芯发现电流的磁效应,并进行了深入研究和总结,而且首先传到德国和法国,在电磁学领域里,无人不晓奥斯芯这个大名。

1820年10月毕奥和萨伐尔发表了关于载流长直导线的磁场的实验结果,经过数学家拉普拉斯的帮助,总结出电流元在空间某点处产生的磁感应强度的规律d d 0I r 2μI l 4πr

=

?B e e ,称之为毕奥-萨伐尔-拉普拉斯定律,简称毕-萨定律。

1824年12月安培发现两传导电流之间的相互作用,并从毕-萨定律出发,描述了磁场环路公式0L L d I μ?=∑? B l ,称之为安培环路定律。 1832年法拉第发现磁铁与导体之间的感应,并认为是在导体中产生了感生电动势d d U =-l t

?Φ?? 。法拉第还在静电测量方面和电镀领域作出了显著贡献。 1834年楞茨却认为是在导体中产生了感生电流I 。由于感生电动势U ?与感生电流I 体现在欧姆定律sdU Idl σ=-方程的两端,哪一个是因? 哪是一个果?这正如当时哲学界所争论的鸡蛋与小鸡的因果关系一样,谁也说不清楚。

1840年法拉第做了静电感应实验,麻绳系着一电量为Q 的带电体,并放入金属桶内,结果发现,金属桶外壁的电量也为Q ,然后,他用多个较大的金属桶套在外层,测量结果是:最外层桶的带电量仍为Q ,这是著名的桶实验。当时被认为电是分布在整个以太空间的。爱因斯坦曾充满感情的说:“对于我们,法拉第的一些概念,可以说是同我们母亲的奶一道吮吸来的。他的伟大和大胆是难以估量的”

1856年麦克斯韦在《论法拉第力线》一文中指出:当磁铁运动时,自由空间的磁状态发生改变,在以太空间产生了电动力E (后来称E 为电场),沿E 的环线积分便是感生电动势l

d e ò?=E l (或dU );对E 求取欧姆定律的微分形式,便是感生电流(密度)σ=J E 。因

此,他认为感应中的本质是在以太空间产生了E ,感应电动势和感应电流只是电动力E 的

表现形式。这样似乎平息了楞慈定律与法拉第定律之间“原因”与“结果”的哲学争议。

1862年麦克斯韦提出漩涡电场的概念,对感生电动力强度是 t A E ?=-

?(当时A 称为磁紧张态,后来称A 为矢量磁位),两边取旋度运算便有t A E ??汛汛=- t

B ?=-?,从此感生电场是漩涡场。

1865年麦克斯韦根据法拉第的桶实验,提出:电性既不是点也不是面或体,而是分布在整个空间的电位移,可见的介质和不可见的以太被电动力扭拉之后形成了电位移,电位移是位移电流的先兆,总结法拉第的桶实验得知,所谓电,它是分布在整个自由空间的物理量,流入金属球a 中的电流并没有结束,而是继续流向四面八方,球a 中的电量即没增加也没减少,因电荷守恒而使得S 面上的电流连续;改造安培环流定律,引入空间电连续定律,并把泊松方程推广到整个自由空间而得到D H J J 汛=+。从此麦克斯韦的旋度方程组形成,意指:

时变电场感生出磁场与时变磁场感生出电场,同生共死的交替传播,预言以太空间有电磁波存在。

1888年赫兹通过一对放电球的实验证实了电磁波的存在,即证实了麦克斯韦的预言,使麦克斯韦的“互生场”理论一举成名。于是人们承认了麦克斯韦旋度方程组,因为当时没有其它理论讨论自由空间的电波问题。

1892年洛仑兹在他的有关电子论的论文中首先提出了电荷在磁场中运动时受磁力e F V B =?的作用,当时他是通过理论推导而得到的,后来被大量物理实验所证明。 从1895年起,物理学中又产生一种发人深思的新情况。汤姆生(J .J .Thomson )把原子分解为更微小的质点,这些质点更分解为带电的单位,其质量被解释为仅是电磁动量的一个因子而已。“电”真仿佛可以对物理科学中的一切现象给予最后的和充分的解释了。

1896年洛仑兹提出电子论,创建了金属电子理论。相应地在导体内金属电子切割磁力线时受洛仑兹磁力而沿着导线漂移,形成感应电流,其感生电流的密度ne =J ν(这里n 是单位体积中的电子数,e 是电子电量,ν是金属电子在磁力F 作用下的飘移速度)。洛仑兹还批评麦克斯韦而指出“麦克斯韦从不相信电荷体,总是以他的电位移代替电荷,人们也很难理解他指的电荷是什么,他也从不问及电磁场是怎么产生的,在他的理论中,似乎电磁场来自无穷远处,一种不需要源的场,……电荷的运动才是产生一切电磁场的根源”。[再根据欧姆定律的微分形式d d l σ=-U J ,便得到导体内感生电动势d d l σ

=-J U 。其本质是受力。] 1897年(麦克斯韦去世后的第18年,亥姆霍尔芝和赫芝去世后的第3年),J ·J 汤姆逊发现电子,证实了洛仑兹的电子论的正确性。

1905年爱因斯坦总结麦克斯韦电动力学,以麦克斯韦的旋度电场理论为依据而论述相对论,在他发表的首文中写道:根据麦克斯韦电动力学,当线圈禁止而磁铁运动时,空间磁场随时间改变,在线圈中产生了电流;而当磁铁禁止而线圈运动时,空间磁场并没有随时间

改变,但线圈中仍然产生了电流,可见,空间本不该对称,它是相对的。

1905年,爱因斯坦根据洛仑兹电子论、J·J汤姆逊对电子的发现,考察光电二极管并联想到黑体辐射中的量子假设而提出波粒二象性。人们开始研究光电效应的应用。在18世纪,人们关于电只知道存在电荷,它们相互吸引或排斥跟它们的距离的平方成反比。在引力学说领域,实质上,我们知道某种与此相似的东西——重物的相互作用定律,仅此而已。但是,电的学说在一个半世纪内已经得出了电磁场概念。

爱因斯坦说:‘相对论是从场的问题兴起的。由于旧理论的矛盾与不一致,迫使我把新的性质归之于自然界的一切现象的舞台——时空连续区。’‘场,用来描写物理现象最重要的不是带电体,也不是粒子,而是带电体之间与粒子之间的空间中的场,这需要很大的科学想象力才能理解。’对于电磁场,‘现在唯一的出路,便是认定空间具有一种发送电磁波的物理性能,而不过分顾虑这句话有何真正意义。’(《物理学的进化》)

第一章免疫学发展简史及其展望

第一章 免疫学发展简史及其展望 第一节 免疫学简介 本节为浅近简介免疫学的最基本内含,免疫系统的功能及其功能产生过程的特点,这些内容将在以后的各章中会逐步介绍。 一、免疫系统的基本功能 机体是多种器官系统组成,各自执行专职功能,如呼吸系统主要执行气体交换,呼出CO2,吸入O2,供新陈代谢需要;免疫系统则执行免疫功能,保卫机体免受生物体的侵害。为使医学生在学习免疫学课程之始,即对免疫学有初步印象,本章将简介免疫学基本概念,并从免疫学发展过程理解这些概念的形成,开拓、发展及取得的成就,从而成为一门生命科学前沿的一门医学免疫学科。 免疫(immunity)即通常所指免除疫病(传染病)及抵抗多种疾病的发生。这种通俗认识在科学上的含意则包括:免疫由机体内的免疫系统执行,免疫系统具有:(1)免疫防御功能:防止外界病原体的入侵及清除已入侵的病原体及有害的生物性分子;(2)免疫监视功能(immunological surveillance),监督机体内环境出现的突变细胞及早期肿瘤,并予以清除;(3)免疫耐受:免疫系统对自身组织细胞表达的抗原(解释见后)不产生免疫应答,不导致自身免疫病,反之,对外来病原体及有害生物分子表达的抗原,则产生免疫应答,予以清除,从这层功能上说,免疫系统具有“区分自我及非我”功能;(4)调节功能:免疫系统参与机体整体功能的调节,与神经系统及内分泌系统连接,构成神经-内分泌-免疫网络调节系统,不仅调节机体的整体功能,亦调节免疫系统本身的功能。 二、免疫应答的特点 免疫系统是由免疫器官(胸腺、骨髓、脾、淋巴结等)、免疫组织(黏膜相关淋巴组织)、免疫细胞(吞噬细胞、自然杀伤细胞、T及B淋巴细胞)及免疫分子(细胞表面分子、抗体细胞因子、补体等等)组成。体内的免疫细胞通常处于静止状态,细胞必须被活化,经免疫应答过程,产生免疫效应细胞,释放免疫效应分子,才能执行免疫功能。免疫细胞分为两类:(1)固有免疫应答细胞,如单核-巨噬细胞,自然杀伤细胞,多形核中性粒细胞等等,这类细胞经其表面表达的受体,能识别一种分子,这种分子表达于多种病原体表面,如单核-巨噬细胞表面的Toll样受体(Toll-like receptor 4, TLR4)能识别脂多糖(LPS),它表达于多种Gram-肠道杆菌表面,经受体-配基作用,固有免疫细胞被活化,迅速执行免疫效应,吞噬杀伤病原体,并释放细胞因子,如干扰素(IFN),抑制病毒复制,这类细胞在病原体入侵早期,即发挥免疫防御作用,称固有免疫(innate immunity)。固有免疫应答不经历克隆扩增,不产生免疫记忆。(2)适应性免疫应答细胞:即淋巴细胞,包括T细胞及B细胞,这类细胞是克隆分布的,每一克隆的细胞,表达一种识别抗原受体,特异识别天然大分子中的具有特殊结构的小分子(如蛋白中的多肽、糖中的寡糖、类脂中的脂酸、核酸中的核苷酸片段)。这些能被T或B细胞受体特异识别的小分子,我们称之为抗原(antigen, Ag)。T 细胞识别的主要是蛋白中的多肽,但T细胞不能直接识别游离的多肽,它们必须与主要组织相容性复合体(MHC)编码分子组成抗原肽-MHC分子复合物,表达于抗原提呈细胞表面,才能与T细胞受体结合,使相应克隆的T细胞开始活化。但要使T细胞充分活化,尚须抗原提

电磁学的发展及生活生产中的应用

电磁学的发展及生活生产中的应用摘要:电磁学核心及发展,电磁学应用(磁悬浮列车、电磁炮) 关键字:电磁学、磁悬浮、电磁炮 引言: 随着电话,电视等电子产品的广泛应用,电磁学也日益受到人们的重视。内容: 简单的说来,电磁学核心只有四个部份:库伦定律、安培定律、法拉第定律与麦克斯威方程式。并且顺序也一定如此。这可以说与电磁学的历史发展平行。其原因也不难想见;没有库伦定律对电荷的观念,安培定律中的电流就不容易说清楚。不理解法拉第的磁感生电,也很难了解麦克斯威的电磁交感。因此,要了解电磁学的应用就必须先了解它的发展。 早期,由于磁现象曾被认为是与电现象独立无关的,同时也由于磁学本身的发展和应用,如近代磁性材料和磁学技术的发展,新的磁效应和磁现象的发现和应用等等,使得磁学的内容不断扩大,所以磁学在实际上也就作为一门和电学相平行的学科来研究了。 电子的发现,使电磁学和原子与物质结构的理论结合了起来,洛伦兹的电子论把物质的宏观电磁性质归结为原子中电子的效应,统一地解释了电、磁、光现象。电磁学的进一步发展促进了电磁在生活技术当中的应用。 (一)民用--磁悬浮列车 1911年,俄国托木斯克工艺学院的一位教授曾根据电磁作用原理,设计并制成一个磁垫列车模型。该模型行驶时不与铁轨直接接触,而是利用电磁排斥力使车辆悬浮而与铁轨脱离,并用电动机驱动车辆快速前进。 1960年美国科学家詹姆斯?鲍威尔和高登?丹提出磁悬浮列车的设计,利用

强大的磁场将列车提升至离轨几十毫米,以时速300公里行驶而不与轨道发生摩擦。遗憾的是,他们的设计没有被美国所重视,而是被日本和德国捷足先登。德国的磁悬浮列车采用磁力吸引的原理,克劳斯?马菲公司和MBB公司于1971年研制成常导电磁铁吸引式磁浮模型试验车。 随着超导和高温超导热的出现,推动了超导磁悬浮列车的研制。1987年3月,日本完成了超导体磁悬浮列车的原型车,其外形呈流线形,车重17吨,可载44人,最高时速为420公里。车上装备的超导体电磁铁所产生的电磁力与地面槽形导轨上的线圈所产生的电磁力互相排斥,从而使车体上浮。槽形导轨两侧的线圈与车上电磁铁之间相互作用,从而产生牵引力使车体一边悬浮一边前进。由于是悬空行驶,因而基本上不作用车轮。但在起动时,还需有车轮做辅助支撑,这和飞机起降时需要轮子相似。这列超导磁悬浮列车由于试验线路太短,未能充分展示出空的卓越性能。 (二)军用—电磁炮 早在1845年,查尔斯?惠斯通就制作出了世界第一台磁阻直流电动机,并用它把金属棒抛射到20米远。此后,德国数学家柯比又提出了用电磁推进方法制造“电气炮”的设想。而第一个正式提出电磁发射(电磁炮)概念并进行试验的是挪威奥斯陆大学物理学教授伯克兰。他在1901年获得了“电火炮”专利。1920年,法国的福琼?维莱普勒发表了《电气火炮》文章。德国的汉斯莱曾将10克弹丸用电磁炮加速到1.2公里,秒的初速。1946年,美国的威斯汀豪斯电气公司建成了一个全尺寸的电磁飞机弹射器,取名“电拖”。 到20世纪70年代,随着脉冲功率技术的兴起和相关科学技术的发展,电磁发射技术取得了长足的进步。澳大利亚国立大学的查里德?马歇尔博士运用新技术,把3克弹丸加速到了5.9公里,秒。这一成就从实验上证明了用电磁力把物体推进到超高速度是可行的。他的成就1978年公布后,使世界相关领域的科学家振奋不

电磁学发展简史

电磁学发展简史 07 电联毛华超 一.早期的电磁学研究 早期的电磁学研究比较零散,下面按照时间顺序将主要事件列出如下:1650年,德国物理学家格里凯在对静电研究的基础上,制造了第一台摩擦起电机。1720年,格雷研究了电的传导现象,发现了导体与绝缘体的区别,同时也发现了静电感应现象。1733年,杜菲经过实验区分出两种电荷,称为松脂电和玻璃电,即现在的负电和正电。他还总结出静电相互作用的基本特征,同性排斥,异性相吸。1745年,荷兰莱顿大学的穆欣布罗克和德国的克莱斯特发明了一种能存储电荷的装置-莱顿瓶,它和起电机一样,意义重大,为电的实验研究提供了基本的实验工具。1752年,美国科学家富兰克林对放电现象进行了研究,他冒着生命危险进行了著名的风筝实验,发明了避雷针。1777年,法国物理学家库仑通过研究毛发和金属丝的扭转弹性而发明了扭秤。1785-1786年,他用这种扭秤测量了电荷之间的作用力,并且从牛顿的万有引力规律得到启发,用类比的方法得到了电荷相互作用力与距离的平反成反比的规律,后来被称为库仑定律在早期的电磁学研究中,还值得提到的一个科学家是大家都已经在中学物理课本中学过的欧姆定律的创立者-欧姆。欧姆,1787年3月16日生于德国埃尔兰根城,父亲是锁匠。父亲自学了数学和物理方面的知识,并教给少年时期的欧姆,唤起了欧姆对科学的兴趣。16岁时他进入埃尔兰根大学研究数学、物理与哲学,由于经济困难,中途缀学,到1813年才完成博士学业。欧姆是一个很有天才和科学抱负的人,他长期担任中学教师,由于缺少资料和仪器,给他的研究工作带来不少困难,但他在孤独与困难的环境中始终坚持不懈地进行科学研究,自己动手制作仪器。欧姆对导线中的电流进行了研究。他从傅立叶发现的热传导规律受到启发,导热杆中两点间的热流正比于这两点间的温度差。因而欧姆认为,电流现象与此相似,猜想导线中两点之间的电流也许正比于它们之间的某种驱动力,即现在所称的电动势,并且花了很大的精力在这方面进行研究。开始他用伏打电堆作电源,但是因为电流不稳定,效果不好。后来他接受别人的建议改用温差电池作电源,从而保证了电流的稳定性。但是如何测量电流的大小,这在当时还是一个没有解决的难题。开始,欧姆利用电流的热效应,用热胀冷缩的方法来测量电流,但这种方法难以得到精确的结果。后来他把奥斯特关于电流磁效应的发现和库仑扭秤结合起来,巧妙地设计了一个电流扭秤,用一根扭丝悬挂一磁针,让通电导线和磁针都沿子午线方向平行放置。再用铋和铜温差电池,一端浸在沸水中,另一端浸在碎冰中,并用两个水银槽作电极,与铜线相连。当导线中通过电流时,磁针的偏转角与导线中的电流成正比。实验中他用粗细相同、长度不同的八根铜导线进行了测量,得出了欧姆定律,也就是通过导体的电流与电势差成正比与电阻成反比。这个结果发表于1826年,次年他又出版了《关于电路的数学研究》,给出了欧姆定律的理论推导。欧姆定律发现初期,许多物理学家不能正确理解和评价这一发现,并遭到怀疑和尖锐的批评。研究成果被忽视,经济极其困难,使欧姆精神抑郁。直到1841年英国皇家学会授予他最高荣誉的科普利金牌,才引起德国科学界的重视。 二.安培和法拉第奠定了电动力学基础 1820年间,奥斯特在给学生讲课时,意外地发现了电流的小磁针偏转的现象。当导线通电流时,小磁针产生了偏转。这个消息传到巴黎后,启发了法国物理学家安培。他思考,既然磁与磁之间、电流与磁之间都有作用力,那么电流与电流之间是否也存在作用力呢?他重复了奥斯特的实验,几天后向巴黎科学院提交了第一篇论文,提出了磁针转动方向与电流

电磁学发展史简述

绪论 一、电磁学发展史简述 1概述 早期,由于磁现象曾被认为是与电现象独立无关的,同时也由于磁学本身的发展和应用,如近代磁性材料和磁学技术的发展,新的磁效应和磁现象的发现和应用等等,使得磁学的内容不断扩大,所以磁学在实际上也就作为一门和电学相平行的学科来研究了。 电磁学从原来互相独立的两门科学(电学、磁学)发展成为物理学中一个完整的分支学科,主要是基于两个重要的实验发现,即电流的磁效应和变化的磁场的电效应。这两个实验现象,加上麦克斯韦关于变化电场产生磁场的假设,奠定了电磁学的整个理论体系,发展了对现代文明起重大影响的电工和电子技术。 麦克斯韦电磁理论的重大意义,不仅在于这个理论支配着一切宏观电磁现象(包括静电、稳恒磁场、电磁感应、电路、电磁波等等),而且在于它将光学现象统一在这个理论框架之内,深刻地影响着人们认识物质世界的思想。

电子的发现,使电磁学和原子与物质结构的理论结合了起来,洛伦兹的电子论把物质的宏观电磁性质归结为原子中电子的效应,统一地解释了电、磁、光现象。 和电磁学密切相关的是经典电动力学,两者在内容上并没有原则的区别。一般说来,电磁学偏重于电磁现象的实验研究,从广泛的电磁现象研究中归纳出电磁学的基本规律;经典电动力学则偏重于理论方面,它以麦克斯韦方程组和洛伦兹力为基础,研究电磁场分布,电磁波的激发、辐射和传播,以及带电粒子与电磁场的相互作用等电磁问题,也可以说,广义的电磁学包含了经典电动力学。 2电学发展简史 “电”一词在西方是从希腊文琥珀一词转意而来的,在中国则是从雷闪现象中引出来的。自从18世纪中叶以来,对电的研究逐渐蓬勃开展。它的每项重大发现都引起广泛的实用研究,从而促进科学技术的飞速发展。 现今,无论人类生活、科学技术活动以及物质生产活动都已离不开电。随着科学技术的发展,某些带有专门知识的研究内容逐渐独立,形成专门的学科,如电子学、电工学等。电学又可称为电磁学,是物理学中颇具重要意义的基础学科。

电磁学发展史简述

电磁学发展史简述

————————————————————————————————作者:————————————————————————————————日期: 2

绪论 一、电磁学发展史简述 1概述 早期,由于磁现象曾被认为是与电现象独立无关的,同时也由于磁学本身的发展和应用,如近代磁性材料和磁学技术的发展,新的磁效应和磁现象的发现和应用等等,使得磁学的内容不断扩大,所以磁学在实际上也就作为一门和电学相平行的学科来研究了。 电磁学从原来互相独立的两门科学(电学、磁学)发展成为物理学中一个完整的分支学科,主要是基于两个重要的实验发现,即电流的磁效应和变化的磁场的电效应。这两个实验现象,加上麦克斯韦关于变化电场产生磁场的假设,奠定了电磁学的整个理论体系,发展了对现代文明起重大影响的电工和电子技术。 麦克斯韦电磁理论的重大意义,不仅在于这个理论支配着一切宏观电磁现象(包括静电、稳恒磁场、电磁感应、电路、电磁波等等),而且在于它将光学现象统一在这个理论框架之内,深刻地影响着人们认识物质世界的思想。 3

电子的发现,使电磁学和原子与物质结构的理论结合了起来,洛伦兹的电子论把物质的宏观电磁性质归结为原子中电子的效应,统一地解释了电、磁、光现象。 和电磁学密切相关的是经典电动力学,两者在内容上并没有原则的区别。一般说来,电磁学偏重于电磁现象的实验研究,从广泛的电磁现象研究中归纳出电磁学的基本规律;经典电动力学则偏重于理论方面,它以麦克斯韦方程组和洛伦兹力为基础,研究电磁场分布,电磁波的激发、辐射和传播,以及带电粒子与电磁场的相互作用等电磁问题,也可以说,广义的电磁学包含了经典电动力学。 2电学发展简史 “电”一词在西方是从希腊文琥珀一词转意而来的,在中国则是从雷闪现象中引出来的。自从18世纪中叶以来,对电的研究逐渐蓬勃开展。它的每项重大发现都引起广泛的实用研究,从而促进科学技术的飞速发展。 现今,无论人类生活、科学技术活动以及物质生产活动都已离不开电。随着科学技术的发展,某些带有专门知识的研究内容逐渐独立,形成专门的学科,如电子学、电工学等。电学又可称为电磁学,是物理学中颇具重要意义的基础学科。 4

电磁学的历史

电磁学发展简史 一. 早期的电磁学研究 早期的电磁学研究比较零散,下面按照时间顺序将主要事件列出如下:1650年,德国物理学家格里凯在对静电研究的基础上,制造了第一台摩擦起电机。1720年,格雷研究了电的传导现象,发现了导体与绝缘体的区别,同时也发现了静电感应现象。1733年,杜菲经过实验区分出两种电荷,称为松脂电和玻璃电,即现在的负电和正电。他还总结出静电相互作用的基本特征,同性排斥,异性相吸。1745年,荷兰莱顿大学(图1)的穆欣布罗克和德国的克莱斯特发明了一种能存储电荷的装置-莱顿瓶,它和起电机一样,意义重大,为电的实验研究提供了基本的实验工具。1752年,美国科学家富兰克林对放电现象进行了研究,他冒着生命危险进行了著名的风筝实验,发明了避雷针。 1777年,法国物理学家库仑通过研究毛发和金属丝的扭转弹性而发明了扭秤,如图2所示。1785-1786年,他用这种扭秤测量了电荷之间的作用力,并且从牛顿的万有引力规律得到启发,用类比的方法得到了电荷相互作用力与距离的平反成反比的规律,后来被称为库仑定律。

在早期的电磁学研究中,还值得提到的一个科学家是大家都已经在中学物理课本中学过的欧姆定律的创立者-欧姆。欧姆,1787年3月16日生于德国埃尔兰根城,父亲是锁匠。父亲自学了数学和物理方面的知识,并教给少年时期的欧姆,唤起了欧姆对科学的兴趣。16岁时他进入埃尔兰根大学研究数学、物理与哲学,由于经济困难,中途缀学,到1813年才完成博士学业。欧姆是一个很有天才和科学抱负的人,他长期担任中学教师,由于缺少资料和仪器,给他的研究工作带来不少困难,但他在孤独与困难的环境中始终坚持不懈地进行科学研究,自己动手制作仪器。 欧姆对导线中的电流进行了研究。他从傅立叶发现的热传导规律受到启发,导热杆中两点间的热流正比于这两点间的温度差。因而欧姆认为,电流现象与此相似,猜想导线中两点之间的电流也许正比于它们之间的某种驱动力,即现在所称的电动势,并且花了很大的精力在这方面进行研究。开始他用伏打电堆作电源,但是因为电流不稳定,效果不好。后来他接受别人的建议改用温差电池作电源,从而保证了电流的稳定性。但是如何测量电流的大小,这在当时还是一个没有解决的难题。开始,欧姆利用电流的热效应,用热胀冷缩的方法来测量电流,但这种方法难以得到精确的结果。后来他把奥斯特关于电流磁效应的发现和库仑扭秤结合起来,巧妙地设计了一个电流扭秤,用一根扭丝悬挂一磁针,让通电导线和磁针都沿子午线方向平行放置。再用铋和铜温差电池,一端浸在沸水中,另一端浸在碎冰中,并用两个水银槽作电极,与铜线相连。当导线中通过电流时,磁针的偏转角与导线中的电流成正比。实验中他用粗细相同、长度不同的八根铜导线进行了测量,得出了欧姆定律,也就是通过导体的电流与电势差成正比与电阻成反比。这个结果发表于1826年,次年他又出版了《关于电路的数学研究》,给出了欧姆定律的理论推导。

电磁场理论发展史(DOC 6页)

电磁场理论发展史(DOC 6页)

电磁场理论发展史 引言 载法拉弟发现电磁感应现象的那一年,英国诞生了一位伟大的科学家——麦克斯韦,他因创立电磁场理论而成为十九世纪最伟大的物理学家.麦克斯韦创立电磁场理论系统而完整地概括了电磁场的基本规律,并预言了电磁波的存在。 一、历史的前奏 在麦克斯韦以前,解释电磁相互作用有两种相互对立的观点.一种是超距作用学说.即在研究两个电荷之间相互作用力时,忽略中介空间的作用,电荷会超越空间距离而互相作用,库仑、韦伯、安培等人都是主张用超距作用学说来解释电磁相互作用的.这种学说当时拥有数学基础.另一种是媒递作用学说.认为空间有一种能传递电力的媒质(称作以太)存在,电荷间通过媒质互相作用.法拉弟通过实验揭露了空间媒质的重要作用,他认为在空间媒质中充满了电力线,即通过场来传递,但媒递作用学说还没有数学基础,不易被人接受.也使其发展受到了阻碍.麦克斯韦功绩就在于建立了电磁场理论并促进了它的发展.他中学时曾在数学和诗歌比赛中获第一名,这显示了他的数学才华与丰富的想象力方面的潜力.他年轻时曾读过法拉弟的《电学实验研究》,对法拉弟的物理思想(如电力线和场的思想)十分推崇,同时也发现了它的弱点.麦克斯韦对电磁相互作用的超距观点早就表示“不能接受即时传播的思想”,在法拉弟的物理思想影响下,他决心“为法拉弟的场概念提供数学方法的基础”. 二、麦克斯韦创立电磁场理论 麦克斯韦创立电磁场理论可分为三个阶段: 第一阶段,统一已知电磁定律 麦克斯韦于1856年发表了他的第一篇论文《论法拉弟的力线》,在这篇文章中,他试图用数学语言精确地表述法拉弟的力线概念,他采用数学推论与物理类比相结合的方法,以假想流体的力学模型去模拟电磁现象.他说:“借助于这种类比,我试图以一种方便的和易于处理的形式为研究电现象提供必要的数学观念”他的目标是想据此统一已知的电磁学定律.麦克斯韦为达到此目的,他运用了“建立力学模型——引出基本公式——进行数学引伸推导”的解决科学问题的思路和方法. 第一步,建立力学模型 首先运用类比方法,麦克斯韦把电磁现象和力学现象做了类比,认为可以建立一种不可压缩流体的力学模型来模拟电磁现象.这种流体模型为:一是没有惯性,因而也就没有质量;二是不可压缩;三是可以从无产生,又可消失.显然这是一种假设理想流体.麦克斯韦在这篇文章中写道:“我企图把一个在空间画力线的清楚概念摆在一个几何学家的面前,并利用一个流体的流线的概念,说明如何画出这些流线来”“力线的切线方向就是电场力的方向,

电磁场理论发展历史及其在现代科技中的应用

电磁场理论发展历史及其在现代科技中的应用 摘要:电磁场理论在现代科技中有着广泛的应用。现代电子技术如通讯、广播、导航、雷达、遥感、测控、嗲面子对抗、电子仪器和测量系统,都离不开电磁场的发射,控制、传播和接收;从工业自动化到地质勘测,从电力、交通等工业农业到医疗卫生等国民经济领域,几乎全都涉及到电磁场理论的应用。不仅如此,电磁学一直是,将来仍是新兴科学的孕育点。在本文中主要介绍电磁场理论发现和发展的历史以及在现代科技中的也应用。 关键词:电磁学电磁场理论现代科技 对电磁场现象的研究是从十六世纪下半叶英国伊莉莎白女王的试医官吉尔伯特开始,然而他的研究方法很原始,基本上是定性地对现象的总结。对电磁场的近代研究是从十八世纪的卡文迪许、库伦开始,他们开创了用测量仪器对电磁场现象做定量的规律,引起了电磁场从定性到定量的飞跃。 库仑定律的建立基于英国科学家卡文迪许在1772年做的一个一个电学实验,他用一个金属球壳使之带电,发现电荷全部分布在球壳的外表面,球腔中任何一点都没有电的作用。库伦定律揭示了电荷间的静电作用力与它们之间的距离平方成反比。安培在假设了两个电流元之间的相互作用力沿着它们的连线之间的作用力正比于它们的长度和电流强度,而与它们之间的距离的平方成反比的公式,即提出了著名的安培环路定理。基于这与牛顿万有引力定律十分类似,.泊松、.高斯等人仿照引力理论,对电磁现象也引入了各种场矢量,如电场强度、电通量密度(电位移矢量)、磁场强度、磁通密度等,并将这些量表示为空间坐标的函数。但是当时对这些量仅是为了描述方便而提出的数学手段,实际上认为电荷之间或电流之间的物理作用是超距作用。 直到M.法拉第,他认为场是真实的物理存在,电力或磁力是经过场中的力线逐步传递的,最终才作用到电荷或电流上。他在1831年发现了著名的电磁感应定律,并用磁力线的模型对定律成功地进行了阐述,但是电磁感应定律的确认是在1851年,这一过程花了20年。1846年,M.法拉第还提出了光波是力线振动的设想,为以后麦克斯韦从数学上建立电磁场理论奠定了基础。.麦克斯韦继承并发展了法拉第的这些思想,仿照流体力学中的方法,采用严格的数学形式,将电

电机发展历史年鉴

电机的发展大体上可以分为四个阶段:(1)直流电机;(2)交流电机;(3)控制电机;(4)特种电机。 1820年,丹麦物理学家奥斯特(Oersted)发现了电流在磁场中受机械力的作用,即电流的磁效应。 1821年,英国科学家法拉第(Faraday)总结了载流导体在磁场内受力并发生机械运动的现象,法拉第的试验模型可以认为是现代直流电动机的雏形。 1824年,阿拉果(Arago)发现了旋转磁场,为交流感应电动机的发明奠定了基础。当时阿拉果(Arago)转动一个悬挂着的磁针,在磁针外围环绕一个金属圆环,以研究磁针旋转时圆环所起的阻尼作用,这就是首次利用机械力所产生的旋转磁场。 1825年,发现了阿拉果旋转现象,根据作用力和反作用力的原理,利用外绕金属圆环的旋转,阿拉果使悬挂的磁针得到一定的偏转,这个现象实质上就是以后多相感应电动机的工作基础。 1831年,法拉第发现了电磁感应定律,并发明了单极直流电机。 1832年,人们知道了单相交流发电机。由于生产上没什么需要,加上当时科学水平的限制,人们对交流电还不很了解,所以交流电机实质上没什么发展。 1833年,法国发明家皮克西(Pixii)制成了第一台旋转磁极式直流发电机,主要利用了磁铁和线圈之间的相对运动和一个换向装置,这就是现代直流发电机的雏形。楞次已经证明了电机的可逆原理。 1833~1836年,美国人奥蒂斯设计和制造了第一台ARBOR步进电机生产率为35米3/时。 1834年,俄国物理学家雅可比(Якоби)设计并制成了第一台实用的直流电动机,该电动机有15瓦,由一组静止的磁极和一组可以转动的磁极组成;依靠两组磁极之间的电磁力和换向器的换向作用,得到了连续的旋转运动。 1838年,雅可比把改进的直流电动机装在一条小船上。 1850年,美国发明家佩奇(Page)制造了一台10马力的直流电动机,用来驱动有轨电车。 1851年,辛斯坦得首先提出(1863年再次由华尔德提出)电流代替永磁来励磁,使磁场得以初步加强。由希奥尔特首先提出(1866~1867年再次由华尔德和西门子提出)用蓄电池他励发展到自励,最终地解决了加强励磁的问题。 1857年,英国电学家惠斯通(Wheatstone)发明了用伏打电池励磁的发电机。

免疫学发展简史

薇免疫学发展简史 芈 芄分三个时期:①经验免疫学时期(公元前400年?18世纪末);②免疫学科建立时期(19世纪?1975年);③现代免疫学时期(1975年至今)。 莁一、经验免疫学时期(公元前400年?18世纪末) 羈(一)天花的危害 螆天花是一种古老的、世界流行的烈性传染病,死亡率可高达25%?40%,我 国民间早有生了孩子算一半,得了天花才算全”的说法。患天花痊愈后留下永久的疤痕,但可获得终身免疫。 肃16世纪由于西班牙殖民者侵略,将天花传播到美洲,墨西哥土著人从16世 纪初(1518年)的2000?3000万人到16世纪末减少到100万人,阿茨特克帝国消亡。16世纪中期之后向南进发,在美洲中部毁灭了玛雅和印加文明,随后又毁灭了秘鲁。 蒁(二)人痘苗接种 荿1.人痘苗接种实践: 蒇中医称天花为“痘疮”据史书记载人痘苗接种预防天花的方法是在公元前约400年由我们中华民族的祖先建立的。Zinsser微生物学(1988):发明于中国2000 多年之前。 螂明庆隆年间(1567?1572); 16?17世纪人痘苗接种预防天花已在全国普遍展开。清康熙27年(1688)俄国曾派医生到北京学习种痘技术。并经丝绸之路东传至朝鲜、日本和东南亚国家,西传至欧亚、北非及北美各国。 薁1700年传入英国/Momtagu夫人在英国积极推广人痘苗接种中起了重要的作用。 蝿1721?1722年天花在英国爆发流行期间,英国皇家学会在国王的特许下,主持进行了用犯人和孤儿做人痘苗接种的试验,均获得了成功,试验者无一人死于

天花。在此基础上,1722年给英国威尔士王子的两个女儿(一个9岁,一个11 岁)也进行了人痘苗接种,也都获得成功。 羅2.人痘苗接种意义:有三个方面: 袄①能有效预防天花。 蚁②在接种方法、痘苗的制备和保存建立了一整套完整的科学方法,为以后疫 苗的发展提供了丰富的经验和借鉴。 羆清代吴谦所著的《医宗金鉴?幼科种痘心法要旨》(1742年)中介绍了四种接种法:痘衣法-痘浆法-旱苗法-水苗法。并指出这些方法的优劣:“水苗为上,旱苗次之,痘衣多不应验,痘浆太涉残忍。” 蚇对痘苗保存指出:“若遇热则气泄,日久则气薄,触污秽则气不清,藏不洁则气不正,此蓄苗之法。” “须贮新磁瓶内,上以物密覆之,置之洁净之所,清凉之处。” 薃痘苗有“时苗”和“熟苗”之分,开始采用的痘痂叫时苗,经人体接种传代后制备的叫熟苗。清代朱奕梁编著的《种痘心法》中写道:“其苗传种愈久,则药力之提拔愈清。人工之选炼愈熟,火毒汰尽,精气独存,所以万全而无害也。若‘时苗’ 能连种七次,精加选炼,则为‘熟苗',不可不知。” 蚁③“以毒攻毒”的思想对防治疾病意义深远。 莇首届诺贝尔医学奖获得者贝林(Emil von Behring)深受“以毒攻毒”这种观念的影响,开创了抗毒素免疫治疗的方法。他说:“中国人远在两千年前即知’以毒攻毒’的医理,这是合乎现代科学的一句古训!” 肅(三)牛痘苗接种 莂英国乡村医生琴纳(Edward Jenne)1798发明牛痘苗接种,1804年传入中国。牛痘接种预防天花既安全又有效,是一划时代的发明。 螀他于1796年9月17日给一个8岁男孩的右臂划痕接种了牛痘,两天后男孩感到有些不适,可是很快就好了。6周后再接种天花患者的痘浆,未发生天花。以后又继续试验,证实了牛痘苗接种预防天花的作用。于1798年公布了他的研 究论文。

免疫学发展简史及其展望

免疫学练习题 绪论部分 一、名词解释 1.免疫 2.固有性免疫 3.适应性免疫 二、选择题 A型题 1.免疫是指 A.机体抗感染的过程 B.机体识别和排除抗原性异物的过程 C.机体对病原微生物的防御过程 D.机体清除自身衰老死亡细胞的过程 E.机体清除自身突变细胞的能力 2.免疫监视功能低下时易发生: A.自身免疫病 B.超敏反应 C.肿瘤 D.免疫缺陷病 E.移植排斥反应 3.免疫对机体 A.有利 B.有害 C.有利又有害 D.无利也无害 E.正常情况下有利,某些条件下有害 4.免疫防御功能有缺陷可表现为 A.免疫缺陷病 B.自身免疫病 C.超敏反应 D.免疫耐受性 E.恶性肿瘤 5.免疫功能过于强烈时可表现为 A.自身免疫病 B.超敏反应 C.恶性肿瘤 D.免疫缺陷病, E.免疫耐受性 6.免疫系统不包括 A.免疫器官 B.免疫组织 C.免疫分子 D.免疫细胞 7.人患传染病后产生的免疫属于 A.人工被动免疫 B.自然自动免疫 C.人工自动免疫 D.非持异性免疫 E.自然被动免疫 8.给人注射胎盘球蛋白属于 A.人工被动免疫 B.人工自动免疫 C.自然自动免疫 D.非持异性免疫 E.自然被动免疫 9.以下哪种属于死疫苗 A.鸡霍乱杆菌疫苗 B.炭疽杆菌疫苗 C.破伤风杆菌抗毒素 D.狂犬病病毒 E.白喉杆菌抗毒素 10.可清除突变细胞,防止肿瘤发生的免疫功能是 A.免疫防御功能 B.免疫监视功能 C.免疫耐受功能 D.免疫调节功能 E.以上均不是 X型题 11.适应性免疫 A.有特异性,无记忆性 B.无特异性,有记忆性 C.后天接触抗原获得 D.先天遗传获得 E.有特异性和记忆性 12.由T、B淋巴细胞介导免疫称为 A.固有性免疫 B.特异性免疫 C.获得性免疫 D.非特异性免疫 E.适应性免疫 13.以下属于人工被动免疫的方法是 A.用白喉杆菌抗毒素治疗白喉 B.用炭疽杆菌疫苗预防和治疗炭疽病 C.接种牛痘预防天花 D.用破伤风杆菌抗毒素治疗破伤风 E.用破伤风杆菌类毒素免疫动物 14.免疫功能的正常表现有 A.清除病变细胞 B.抗病毒 C.自身稳定

电磁场理论发展史

电磁场理论 在法拉弟发现电磁感应现象的那一年,英国诞生了一位伟大的科学家--麦克斯韦,他因创立电磁场理论而成为十九世纪最伟大的物理学家.麦克斯韦创立电磁场理论的思路与方法大致如下. 一、历史的前奏 在麦克斯韦以前,解释电磁相互作用有两种相互对立的观点.一种是超距作用学说.即在研究两个电荷之间相互作用力时,忽略中介空间的作用,电荷会超越空间距离而互相作用,库仑、韦伯、安培等人都是主张用超距作用学说来解释电磁相互作用的.这种学说当时拥有数学基础.另一种是媒递作用学说.认为空间有一种能传递电力的媒质(称作以太)存在,电荷间通过媒质互相作用.法拉弟通过实验揭露了空间媒质的重要作用,他认为在空间媒质中充满了电力线,即通过场来传递,但媒递作用学说还没有数学基础,不易被人接受.也使其发展受到了阻碍.麦克斯韦功绩就在于建立了电磁场理论并促进了它的发展.他中学时曾在数学和诗歌比赛中获第一名,这显示了他的数学才华与丰富的想象力方面的潜力.他年轻时曾读过法拉弟的《电学实验研究》,对法拉弟的物理思想(如电力线和场的思想)十分推崇,同时也发现了它的弱点.麦克斯韦对电磁相互作用的超距观点早就表示"不能接受即时传播的思想",在法拉弟的物理思想影响下,他决心"为法拉弟的场概念提供数学方法的基础". 二、麦克斯韦创立电磁场理论 麦克斯韦创立电磁场理论可分为三个阶段: 第一阶段,统一已知电磁定律 麦克斯韦于1856年发表了他的第一篇论文《论法拉弟的力线》,在这篇文章中,他试图用数学语言精确地表述法拉弟的力线概念,他采用数学推论与物理类比相结合的方法,以假想流体的力学模型去模拟电磁现象.他说:"借助于这种类比,我试图以一种方便的和易于处理的形式为研究电现象提供必要的数学观念"他的目标是想据此统一已知的电磁学定律.麦克斯韦为达到此目的,他运用了"建立力学模型--引出基本公式--进行数学引伸推导"的解决科学问题的思路和方法. 第一步,建立力学模型 首先运用类比方法,麦克斯韦把电磁现象和力学现象做了类比,认为可以建立一种不可压缩流体的力学模型来模拟电磁现象.这种流体模型为:一是没有惯性,因而也就没有质量;二是不可压缩;三是可以从无产生,又可消失.显然这是一种假设理想流体.麦克斯韦在这篇文章中写道:"我企图把一个在空间画力线的清楚概念摆在一个几何学家的面前,并利用一个流体的流线的概念,说明如何画出这些流线来""力线的切线方向就是电场力的方向,力线的密度表示电场力的大小".他企图阐明电力线和电力线所在空间之间的几何关系.他还试图通过类比凭借已知的力学公式推导出电磁学公式,寻求这两种不同的现象在数学形式上的类似. 第二步,引出基本公式 早在1842年,W·汤姆逊就曾把拉普拉斯的势函数的二阶微分方程,普遍用于热、电和磁的运动,建立了这三种相似现象的数学联系.1847年,他又在不可压缩流体的流线连续性基础上,论述了电磁现象和流体力学现象的共同性.麦克斯韦正是吸收了W·汤姆逊这种类比方法,把它发展成为研究各种力线的重要工具.例如麦克斯韦把电学中的势等效于流

电磁学发展简史

电磁学发展简史 班级:XXXXXX 姓名:XXX 学号:XXXXXX 一.早期的电磁学研究 早期的电磁学研究比较零散,下面按照时间顺序将主要事件列出如下:1650年,德国物理学家格里凯在对静电研究的基础上,制造了第一台摩擦起电机。1720年,格雷研究了电的传导现象,发现了导体与绝缘体的区别,同时也发现了静电感应现象。1733年,杜菲经过实验区分出两种电荷,称为松脂电和玻璃电,即现在的负电和正电。他还总结出静电相互作用的基本特征,同性排斥,异性相吸。1745年,荷兰莱顿大学的穆欣布罗克和德国的克莱斯特发明了一种能存储电荷的装置-莱顿瓶,它和起电机一样,意义重大,为电的实验研究提供了基本的实验工具。1752年,美国科学家富兰克林对放电现象进行了研究,他冒着生命危险进行了著名的风筝实验,发明了避雷针。1777年,法国物理学家库仑通过研究毛发和金属丝的扭转弹性而发明了扭秤。1785-1786年,他用这种扭秤测量了电荷之间的作用力,并且从牛顿的万有引力规律得到启发,用类比的方法得到了电荷相互作用力与距离的平反成反比的规律,后来被称为库仑定律在早期的电磁学研究中,还值得提到的一个科学家是大家都已经在中学物理课本中学过的欧姆定律的创立者-欧姆。欧姆,1787年3月16日生于德国埃尔兰根城,父亲是锁匠。父亲自学了数学和物理方面的知识,并教给少年时期的欧姆,唤起了欧姆对科学的兴趣。16岁时他进入埃尔兰根大学研究数学、物理与哲学,由于经济困难,中途缀学,到1813年才完成博士学业。欧姆是一个很有天才和科学抱负的人,他长期担任中学教师,由于缺少资料和仪器,给他的研究工作带来不少困难,但他在孤独与困难的环境中始终坚持不懈地进行科学研究,自己动手制作仪器。欧姆对导线中的电流进行了研究。他从傅立叶发现的热传导规律受到启发,导热杆中两点间的热流正比于这两点间的温度差。因而欧姆认为,电流现象与此相似,猜想导线中两点之间的电流也许正比于它们之间的某种驱动力,即现在所称的电动势,并且花了很大的精力在这方面进行研究。开始他用伏打电堆作电源,但是因为电流不稳定,效果不好。后来他接受别人的建议改用温差电池作电源,从而保证了电流的稳定性。但是如何测量电流的大小,这在当时还是一个没有解决的难题。开始,欧姆利用电流的热效应,用热胀冷缩的方法来测量电流,但这种方法难以得到精确的结果。后来他把奥斯特关于电流磁效应的发现和库仑扭秤结合起来,巧妙地设计了一个电流扭秤,用一根扭丝悬挂一磁针,让通电导线和磁针都沿子午线方向平行放置。再用铋和铜温差电池,一端浸在沸水中,另一端浸在碎冰中,并用两个水银槽作电极,与铜线相连。当导线中通过电流时,磁针的偏转角与导线中的电流成正比。实验中他用粗细相同、长度不同的八根铜导线进行了测量,得出了欧姆定律,也就是通过导体的电流与电势差成正比与电阻成反比。这个结果发表于1826年,次年他又出版了《关于电路的数学研究》,

免疫学发展简史

免疫学发展简史 分三个时期:①经验免疫学时期(公元前400年~18世纪末);②免疫学科建立时期(19世纪~1975年);③现代免疫学时期(1975年至今)。 一、经验免疫学时期(公元前400年~18世纪末) (一)天花的危害 天花是一种古老的、世界流行的烈性传染病,死亡率可高达25%~40%,我国民间早有“生了孩子算一半,得了天花才算全”的说法。患天花痊愈后留下永久的疤痕,但可获得终身免疫。 16世纪由于西班牙殖民者侵略,将天花传播到美洲,墨西哥土著人从16世纪初(1518年)的2000~3000万人到16世纪末减少到100万人,阿茨特克帝国消亡。16世纪中期之后向南进发,在美洲中部毁灭了玛雅和印加文明,随后又毁灭了秘鲁。 (二)人痘苗接种 1.人痘苗接种实践: 中医称天花为?痘疮?,据史书记载人痘苗接种预防天花的方法是在公元前约400年由我们中华民族的祖先建立的。Zinsser微生物学(1988):发明于中国2000多年之前。 明庆隆年间(1567~1572);16~17世纪人痘苗接种预防天花已在全国普遍展开。清康熙27年(1688)俄国曾派医生到北京学习种痘技术。并经丝绸之路东传至朝鲜、日本和东南亚国家,西传至欧亚、北非及北美各国。 1700年传入英国/Momtagu夫人在英国积极推广人痘苗接种中起了重要的作用。 1721~1722年天花在英国爆发流行期间,英国皇家学会在国王的特许下,主持进行了用犯人和孤儿做人痘苗接种的试验,均获得了成功,试验者无一人死于天花。在此基础上,1722年给英国威尔士王子的两个女儿(一个9岁,一个11岁)也进行了人痘苗接种,也都获得成功。 2.人痘苗接种意义:有三个方面: ①能有效预防天花。 ②在接种方法、痘苗的制备和保存建立了一整套完整的科学方法,为以后疫苗的发展提供了丰富的经验和借鉴。 清代吴谦所著的《医宗金鉴〃幼科种痘心法要旨》(1742年)中介绍了四种接种法:痘衣法-痘浆法-旱苗法-水苗法。并指出这些方法的优劣:?水苗为上,旱苗次之,痘衣多不应验,痘浆太涉残忍。? 对痘苗保存指出:?若遇热则气泄,日久则气薄,触污秽则气不清,藏不洁则气不正,此蓄苗之法。??须贮新磁瓶内,上以物密覆之,臵之洁净之所,清凉之处。? 痘苗有?时苗?和?熟苗?之分,开始采用的痘痂叫时苗,经人体接种传代

电磁场与电磁波的历史与发展

电磁场与电磁波的历史与发展 一、历史的前奏 静磁现象和静电现象: 公元前6、7世纪发现了磁石吸铁、磁石指南以及摩擦生电等现象。1600年英国医生吉尔伯特发表了《论磁、磁体和地球作为一个巨大的磁体》的论文。使磁学从经验转变为科学。书中他也记载了电学方面的研究。 静电现象的研究要困难得多,因为一直没有找到恰当的方式来产生稳定的静电和对静电进行测量。只有等到发明了摩擦起电机,才有可能对电现象进行系统的研究,这时人类才开始对电有初步认识。 1785年库仑公布了用扭秤实验得到电力的平方反比定律,使电学和磁学进入了定量研究的阶段。 1780年,伽伐尼发现动物电,1800年伏打发明电堆,使稳恒电流的产生有了可能,电学由静电走向动电,导致1820年奥斯特发现电流的磁效应。于是,电学与磁学彼此隔绝的情况有了突破,开始了电磁学的新阶段。 19世纪二、三十年代成了电磁学大发展的时期。 首先对电磁作用力进行研究的是法国科学家安培,他在得知奥斯特发现之后,重复了奥斯特的实验,提出了右手定则,并用电流绕地球内部流动解释地磁的起因。接着他研究了载流导线之间的相互作用,建立了电流元之间的相互作用规律——安培定律。与此同时,比奥 沙伐定律也得到发现。 英国物理学家法拉第对电磁学的贡献尤为突出。1831年发现电磁感应现象,进一步证实了电现象与磁现象的统一性。法拉第坚信电磁的近距作用,认为物质之间的电力和磁力都需要由媒介传递,媒介就是电场和磁场。 电流磁效应的发现,使电流的测量成为可能。1826年欧姆(Georg Simon Ohm,1784—1854)因而确定了电路的基本规律——欧姆定律。 及至1865年,麦克斯韦把法拉第的电磁近距作用思想和安培开创的电动力学规律结合在一起,用一套方程组概括电磁规律,建立了电磁场理论,预测了光的电磁性质,终于实现了物理学史上第二次理论大综合。 爱因斯坦在纪念麦克斯韦100周年的文集中写道: “自从牛顿奠定理论物理学的基础以来,物理学的公理基础的最伟大的变革,是由法拉第和麦克斯韦在电磁现象方面的工作

电磁学发展史简述

电磁学发展史简述 早期,由于磁现象曾被认为就就是与电现象独立无关得,同时也由于磁学本身得发展与应用,如近代磁性材料与磁学技术得发展新得磁效应与磁现象得发现与应用等等,使得磁学得内容不断扩大,所以磁学在实际上也就作为一门与电学相平行得学科来硏究了。 电磁学从原来互相独立得两门科学(电学、磁学)发展成为物理学中一个完整得分支学科注要就就是基于两个重要得实验发现,即电流得磁效应与变化得磁场得电效应。这两个实验现象,加上麦克斯韦关于变化电场产生磁场得假设,奠走了电磁学得整个理论体系,发展了对现代文明起重大影响得电工与电子技术。 麦克斯韦电磁理论得重大意义,不仅在于这个理论支配着一切宏观电磁现象(包括静电、稳恒磁场、电磁感应、电路、电磁波等等),而且在于它将光学现象统一在这个理论框架之内,深刻地影响着人们认识物质世界得思想。

电子得发现,使电磁学与原子与物质结构得理论结合了起来,洛伦兹得电子论把物质得宏观电磁14质归结为原子中电子得效应,统一地解释了电、磁、光现象。 与电磁学密切相关得就就是经典电动力学,两者在内容上并没有原则得区别。一般说来,电磁学偏重于电磁现象得实验硏究,从广泛得电磁现象研究中归纳出电磁学得基本规律;经典电动力学则偏重于理论方面,它以麦克斯韦方程组与洛伦兹力为基础,硏究电磁场分布「电磁波得激发、辐射与传播, 以及带电粒子与电磁场得相互作用等电磁问题,也可以说,广义得电磁学包含了经典电动力学。 2电学发展简史 “电“ 一词在西方就就是从希腊文琥珀一词转意而来得, 在中国则就就是从雷闪现象中引出来得。自从18世纪中叶以来,对电得硏究逐渐蓬勃开展。它得每项重大发现都引起广泛得实用硏究,从而促进科学技术得飞速发展。 现今,无论人类生活、科学技术活动以及物质生产歸都已离不开电。随着科学技术得发展,某些带有专门知识得硏究内容逐渐独立,形成专门得学科,如电子学、电工学等。电学又可称为电磁学,就就是物理学中颇具重要意义得基础学科。 有关电得记载可追溯到公元前6世纪。早在公元前5 8 5 年,希腊哲学家泰勒斯已记载了用木块摩擦过得琥珀能够吸引碎草

电磁场的发展过程

电磁学的发展 历史概述 静磁现象和静电现象: 公元前6、7世纪发现了磁石吸铁、磁石指南以及摩擦生电等现象。1600年英国医生吉尔伯特发表了《论磁、磁体和地球作为一个巨大的磁体》的论文。使磁学从经验转变为科学。书中他也记载了电学方面的研究。 静电现象的研究要困难得多,因为一直没有找到恰当的方式来产生稳定的静电和对静电进行测量。只有等到发明了摩擦起电机,才有可能对电现象进行系统的研究,这时人类才开始对电有初步认识。 1785年库仑公布了用扭秤实验得到电力的平方反比定律,使电学和磁学进入了定量研究的阶段。 1780年,伽伐尼发现动物电,1800年伏打发明电堆,使稳恒电流的产生有了可能,电学由静电走向动电,导致1820年奥斯特发现电流的磁效应。于是,电学与磁学彼此隔绝的情况有了突破,开始了电磁学的新阶段。 19世纪二、三十年代成了电磁学大发展的时期。 首先对电磁作用力进行研究的是法国科学家安培,他在得知奥斯特发现之后,重复了奥斯特的实验,提出了右手定则,并用电流绕地球内部流动解释地磁的起因。接着他研究了载流导线之间的相互作用,建立了电流元之间的相互作用规律——安培定律。与此同时,比奥 沙伐定律也得到发现。 英国物理学家法拉第对电磁学的贡献尤为突出。1831年发现电磁感应现象,进一步证实了电现象与磁现象的统一性。法拉第坚信电磁的近距作用,认为物质之间的电力和磁力都需要由媒介传递,媒介就是电场和磁场。 电流磁效应的发现,使电流的测量成为可能。1826年欧姆(Georg Simon Ohm,1784—1854)因而确定了电路的基本规律——欧姆定律。 及至1865年,麦克斯韦把法拉第的电磁近距作用思想和安培开创的电动力学规律结合在一起,用一套方程组概括电磁规律,建立了电磁场理论,预测了光的电磁性质,终于实现了物理学史上第二次理论大综合。 爱因斯坦在纪念麦克斯韦100周年的文集中写道: “自从牛顿奠定理论物理学的基础以来,物理学的公理基础的最伟大的变革,是由法拉第和麦克斯韦在电磁现象方面的工作所引起的”。“这样一次伟大

相关文档
最新文档