第1章信号与系统的基本概念

合集下载

信号与系统基本概念

信号与系统基本概念

(1)
o t0
t
(t)(t
t0 )dt 0, (t
1 t0 )
31
冲激函数的性质
为了信号分析的需要,人们构造了 t 函数,它属于广 义函数。就时间 t 而言, t 可以当作时域连续信号处
理,因为它符合时域连续信号运算的某些规则。但由于
t 是一个广义函数,它有一些特殊的性质。
1.抽样性 2.奇偶性
41
系统方框图(基本元件)
1.加法器 e1t
r t
e1t r t
2.乘法器
e2 t e1 t
e2 t
e2t rt e1t e2 t
r t
rt e1t e2 t
3.微分器
et
d
r t
d
rt de(t)
dt
4.积分器
et
rt
t
r(t) e( )d
42
§1.6 线性时不变系统
线性系统与非线性系统
线性系统:指具有线性特性的系统。
线性:指均匀性,叠加性。
均匀性(齐次性):
et rt ket krt
叠加性:
e1(t ) e2 (t )
r1 r2
(t) (t )
e1(t )
e2
(t)
r1(t )
r2
(t
)
43
判断方法
先线性运算,再经系统=先经系统,再线性运算
若 HC1 f1t C2 f2t C1H f1t C2H f2t
(t)具有筛选f (t)在t 0处函数值的性质 (t t0 )具有筛选f (t)在t t0处函数值的性质 33
奇偶性
(t) (t)
•由定义2,矩形脉冲本身是偶函数,故极限

信号与系统概念公式总结

信号与系统概念公式总结

信号与系统概念,公式集:第一章:概论1.信号:信号是消息的表现形式。

(消息是信号的具体内容)2.系统:由若干相互作用和相互依赖的事物组合而成的具有特定功能的整体。

第二章:信号的复数表示:1.复数的两种表示方法:设C 为复数,a 、b 为实数。

常数形式的复数C=a+jb a 为实部,b 为虚部;或C=|C|e j φ,其中,22||b a C +=为复数的模,tan φ=b/a ,φ为复数的辐角。

(复平面)2.欧拉公式:wt j wt e jwtsin cos +=(前加-,后变减) 第三章:正交函数集及信号在其上的分解1.正交函数集的定义:设函数集合)}(),(),({21t f t f t f Fn =如果满足:ni K dt t f j i dt t f t f iT T i T T j i 2,1)(0)()(21212==≠=⎰⎰则称集合F 为正交函数集 如果n i K i,2,11==,则称F 为标准正交函数集。

如果F 中的函数为复数函数条件变为:ni K dt t f t f ji dt t f t f iT T i i T T j i 2,1)()(0)()(2121**==⋅≠=⋅⎰⎰其中)(*t f i 为)(t f i 的复共轭。

2.正交函数集的物理意义:一个正交函数集可以类比成一个坐标系统;正交函数集中的每个函数均类比成该坐标系统中的一个轴; 在该坐标系统中,一个函数可以类比成一个点;点向这个坐标系统的投影(体现为该函数与构成坐标系的函数间的点积)就是该函数在这个坐标系统中的坐标。

3.正交函数集完备的概念和物理意义: 如果值空间中的任一元素均可以由某正交集中的元素准确的线性表出,我们就称该正交集是完备的,否则称该正交集是不完备的。

如果在正交函数集()()()()t g n ,t g ,t g ,t g 321之外,不存在函数x (t )()∞<<⎰2120t t dt t x ,满足等式:()()⎰=210t t i dt t g t x ,则此函数集称为完备正交函数集。

信号与系统基础知识-精选.pdf

信号与系统基础知识-精选.pdf

时间(电压从 10%上升至 90%的时间)和过冲(百分比)等特征量,表述测量系统的特性,上升时间和过
冲越小,系统特性越好。其中电压上升时间反映了系统的响应速度,小的上升时间对应快的响应速度。如果
被测电压快速变化,而测量系统的响应特性相对较慢,则必然产生较大的测量误差。
信号与系统分析的另一种方法是频域分析。信号频域分析的基本原理是把信号分解为不同频率三角信
f (t) 0
F (k 1) k1
t
0
图 1-2 周期矩形波信号的时域和频域
信号和系统分析还有复频域分析的方法,对于连续信号和系统,基于拉普拉斯变换,称为
s 域分析;对
于离散信号和系统,基于 z变换,称为 z 域分析。基于复频域分析,能够得到信号和系统响应的特征参数,
即频率和衰减,分析系统的频率响应特性和系统稳定性等;复频域分析也能简化系统分析,将在时域分析
信号和系统分析的最基本的任务是获得信号的特点和系统的特性。系统的分析和描述借助于建立系统
输入信号和输出信号之间关系,因此信号分析和系统分析是密切相关的。
系统的特性千变万化,其中最重要的区别是线性和非线性、时不变和时变。这些区别导致分析方法的
重要差别。本课程的内容限于线性时不变系统。
我们最熟悉的信号和系统分析方法是时域分析, 即分析信号随时间变化的波形。 例如, 对于一个电压测
f a (t ) 是一个电压信号或电
流信号,它作用在一个 1Ω 电阻上时所消耗的能量为信号能量。
一个离散信号 f d ( n) 的能量定义为
Ed
n
2
fd (n)
当 f d ( n) 为复信号时,
2
fd (n)
f d (n) fd (n) 。

信号与系统的概念

信号与系统的概念

f
[
n N
],
0,
n为N整倍数 其它
1.4 信号的基本运算 1.4.1 两信号相加
两信号相加,是指两信号对应时刻的信号值(函数 值)相加,得到一个新的信号。
f (t) f1(t) f2 (t) 或 f [n] f1[n] f2[n] (1.4.1)
f1(t) 1
1
0
1
t
(a) 信号f1(t)波形
(1.2.5)
可以看出,复信号是由两个实信号a(t )和 (t )构成的, 当然也可看成是由两个实信号 和i(t) 构q(成t) 的,且
i(t) a(t) cos((t)) q(t) a(t)sin((t))

a(t) i2(t) q2(t) tan[(t)] q(t)
i(t)
1.2.4 周期信号与非周期信号
t
(a) 信号 f (t)的波形
0 1/ 2 1
t
(b) 信号 f (2t)的波形
0
1
2
3
4
t
(c) 信号 f (1 t)的波形 2
图1.3.3 信号 f (t)及其尺度变换
2. 离散时间信号的展宽和压缩
设离散时间信号 f [n] 的波形如图1.3.4(a)所示, 其时间展宽 倍的N情况可表示为
f1[n]
抽样信号(函数)
Sa(t) sin(t) t
抽样信号是信号处理中的一个重要信
号,在t 0时,函数取得最大值1,
而在t k 时(为非零整数),函数
Sa(t)
值为0,如图1.2.5所示。
1
(1.2.3)
4 3 2
0
2 3 4
t
图1.2.5

第1章_信号与系统的基本概念_1.5信号的分解与合成

第1章_信号与系统的基本概念_1.5信号的分解与合成
n =1 ∞
∞ ∞
将信号分解为正交函数分量的研究 方法, 方法,在信号与系统理论中占有重 要的地位,是本课程的重要内容, 要的地位,是本课程的重要内容, 在第2章和第 章讨论。 章和第3章讨论 在第 章和第 章讨论。
信号的分解与合成: 信号的分解与合成: (1)直流分量与交流分量: x(t ) = x D + x A (t t ) = x e (t ) + x o (t ) )偶分量与奇分量: (3)脉冲分量:x(t ) = ∫−∞ x(τ )δ (t − τ )dτ = x(t ) ∗ δ (t ) )脉冲分量: (4)阶跃分量:x(t ) = ∫−∞ x' (τ )u (t − τ )dτ = x' (t ) ∗ u (t ) )阶跃分量: (5)正交函数分量: x(t ) = ∑ a nϕ n (t ) )正交函数分量:
第1章 信号的基本概念与运算
1.5 信号的分解与合成
信号的分解与合成: 信号的分解与合成: 为了便于研究信号传输和信号处理的问题, 为了便于研究信号传输和信号处理的问题, 往往将信号分解为比较简单(或基本的) 往往将信号分解为比较简单(或基本的)的 信号分量之和。 信号分量之和。 这种分析方法, 这种分析方法,类似于力学问题中的和力与 分力的概念。 分力的概念。 信号可以从不同的角度进行分解。 信号可以从不同的角度进行分解。

《信号与系统》课件第1章 (3)

《信号与系统》课件第1章 (3)
41
4. 指数信号 指数信号的一般数学表达式为
f(t)=Aest
根据式中s的不同取值,可以分下列两种情况讨论: (1) s=σ时,此时为实指数信号,即
(1-23)
f(t)=Aeσt
(1-24)
当σ>0时,信号呈指数规律增长;当σ<0时,信号随指数规律
衰减;当σ=0时,指数信号变成恒定不变的直流信号,如图1-
16所示。
42
图1-16 实指数信号
43
(2) s=σ+jω,此时为复指数信号。利用欧拉公式,可以进 一步表示为
(1-25) 可见,复指数信号的实部和虚部都是振幅按指数规律变化的 正弦振荡,当σ>0(σ<0)时,其实部和虚部的振幅按指数规律增 长(衰减);当σ=0时,复指数信号变为虚指数信号
(1-26) 此时信号的实部和虚部都是等幅振荡的正弦波。复指数信号 虚部的波形如图1-17所示。
f(t)δ(t)=f(0)δ(t)
若f(t)在t=t0时连续,则有
f(t)δ(t-t0)=f(t0)δ(t-t0)
(1-16) (1-17)
36
对上面两式取积分,可得到下面两个重要的积分结果: (1-18) (1-19)
式(1-19)说明,δ(t)函数可以把信号f(t)在某时刻的值采样(筛选) 出来,这就是δ(t)的筛选性。
11
图1-4 非周期能量信号
12
图1-5 非周期功率信号
13
图1-6 非功率非能量信号
14
1.2.2 几种常用的基本信号 1. 单位斜变信号 斜变信号是指从某一时刻开始随时间成正比例增加的信
号。斜变信号也称斜坡信号。若斜变信号增长的变化率为1, 斜变的起始点发生在t=0时刻,就称其为单位斜变信号(如图 1-7所示),其数学表达式为

《信号与系统教案》课件

《信号与系统教案》课件第一章:信号与系统导论1.1 信号的概念与分类讲解信号的定义和特性介绍常见信号的分类,如连续信号、离散信号、模拟信号和数字信号等1.2 系统的概念与分类讲解系统的定义和特性介绍常见系统的分类,如线性系统、非线性系统、时不变系统等1.3 信号与系统的研究方法讲解信号与系统的研究方法,如数学分析、仿真实验等第二章:连续信号与系统2.1 连续信号的基本性质讲解连续信号的定义和特性,如连续性、周期性、对称性等2.2 连续信号的运算介绍连续信号的基本运算,如加法、乘法、积分等2.3 连续系统的基本性质讲解连续系统的基本性质,如线性、时不变性等第三章:离散信号与系统3.1 离散信号的基本性质讲解离散信号的定义和特性,如离散性、周期性、对称性等3.2 离散信号的运算介绍离散信号的基本运算,如加法、乘法、求和等3.3 离散系统的基本性质讲解离散系统的基本性质,如线性、时不变性等第四章:模拟信号处理4.1 模拟信号处理的基本方法讲解模拟信号处理的基本方法,如滤波、采样、量化等4.2 模拟滤波器的设计与分析介绍模拟滤波器的设计方法,如巴特沃斯滤波器、切比雪夫滤波器等讲解滤波器的频率响应、阶数等特性分析4.3 模拟信号处理的应用讲解模拟信号处理在实际应用中的案例,如音频处理、通信系统等第五章:数字信号处理5.1 数字信号处理的基本方法讲解数字信号处理的基本方法,如离散余弦变换、快速傅里叶变换等5.2 数字滤波器的设计与分析介绍数字滤波器的设计方法,如IIR滤波器、FIR滤波器等讲解滤波器的频率响应、阶数等特性分析5.3 数字信号处理的应用讲解数字信号处理在实际应用中的案例,如图像处理、语音识别等第六章:信号与系统的时域分析6.1 线性时不变系统的时域特性讲解线性时不变系统的时域特性,如叠加原理和时移特性6.2 常用时域分析方法介绍常用时域分析方法,如单位脉冲响应、零输入响应和零状态响应6.3 时域分析在实际应用中的案例讲解时域分析在实际应用中的案例,如信号的滤波、去噪等第七章:信号与系统的频域分析7.1 傅里叶级数与傅里叶变换讲解傅里叶级数的概念和性质介绍傅里叶变换的定义和性质,包括连续傅里叶变换和离散傅里叶变换7.2 频域分析方法介绍频域分析方法,如频谱分析、滤波器设计等7.3 频域分析在实际应用中的案例讲解频域分析在实际应用中的案例,如通信系统、音频处理等第八章:信号与系统的复频域分析8.1 拉普拉斯变换和Z变换讲解拉普拉斯变换的概念和性质介绍Z变换的定义和性质8.2 复频域分析方法介绍复频域分析方法,如系统函数分析、滤波器设计等8.3 复频域分析在实际应用中的案例讲解复频域分析在实际应用中的案例,如数字通信系统、信号的调制与解调等第九章:信号与系统的状态空间分析9.1 状态空间模型的概念和性质讲解状态空间模型的定义和性质,如状态向量、状态方程和输出方程等9.2 状态空间分析方法介绍状态空间分析方法,如状态预测、状态估计等9.3 状态空间分析在实际应用中的案例讲解状态空间分析在实际应用中的案例,如控制系统的设计和分析等第十章:信号与系统的应用案例分析10.1 通信系统中的应用讲解信号与系统在通信系统中的应用,如信号的调制与解调、信道编码与解码等10.2 音频处理中的应用讲解信号与系统在音频处理中的应用,如音频信号的滤波、均衡等10.3 图像处理中的应用讲解信号与系统在图像处理中的应用,如图像的滤波、边缘检测等重点解析信号与系统的基本概念及其分类信号与系统的研究方法连续信号与系统的性质和运算离散信号与系统的性质和运算模拟信号处理的基本方法和应用数字信号处理的基本方法和应用信号与系统的时域分析方法及其应用信号与系统的频域分析方法及其应用信号与系统的复频域分析方法及其应用信号与系统的状态空间分析方法及其应用信号与系统在不同领域中的应用案例分析难点解析信号与系统理论的数学基础和抽象概念的理解不同信号与系统分析方法的相互转换和应用信号与系统在实际工程应用中的复杂性和挑战高频信号处理和数字信号处理的算法优化和实现状态空间分析方法的数学推导和系统设计的实践应用。

信号与系统PPT全套课件


T T

T
f (t ) dt
f (t ) dt
2
2
(1.1-1)
1 P lim T 2T

T
T
( 1.1-2 )
上两式中,被积函数都是f ( t )的绝对值平方,所以信号能量 E 和信号功率P 都是非负实数。 若信号f ( t )的能量0 < E < , 此时P = 0,则称此信号 为能量有限信号,简称能量信号(energy signal)。 若信号f ( t )的功率0 < P < , 此时E = ,则称此信 号为功率有限信号,简称功率信号(power signal)。 信号f ( t )可以是一个既非功率信号,又非能量信号, 如单位斜坡信号就是一个例子。但一个信号不可能同时既是 功率信号,又是能量信号。
1.3 系统的数学模型及其分类
1.3.1 系统的概念 什么是系统( system )?广义地说,系统是由若干相互作用 和相互依赖的事物组合而成的具有特定功能的整体。例如, 通信系统、自动控制系统、计算机网络系统、电力系统、水 利灌溉系统等。通常将施加于系统的作用称为系统的输入激 励;而将要求系统完成的功能称为系统的输出响应。 1.3.2 系统的数学模型 分析一个实际系统,首先要对实际系统建立数学模型,在数 学模型的基础上,再根据系统的初始状态和输入激励,运用 数学方法求其解答,最后又回到实际系统,对结果作出物理 解释,并赋予物理意义。所谓系统的模型是指系统物理特性 的抽象,以数学表达式或具有理想特性的符号图形来表征系 统特性。
2.连续信号和离散信号 按照函数时间取值的连续性划分,确定信号可分为连续时 间信号和离散时间信号,简称连续信号和离散信号。 连续信号( continuous signal)是指在所讨论的时间内,对 任意时刻值除若干个不连续点外都有定义的信号,通常用f ( t ) 表示。 离散信号(discrete signal)是指只在某些不连续规定的时刻 有定义,而在其它时刻没有定义的信号。通常用 f(tk) 或 f(kT) [简写 f(k )] 表示,如图1.1-2所示。图中信号 f (tk) 只在t k = -2, -1, 0, 1, 2, 3,…等离散时刻才给出函数值。

(完整版)信号与系统的重点、难点及疑点

信号与系统的重点、难点及疑点第一章 信号与系统的基本概念1、信号、信息与消息的差别?答:消息:待传送的一种以收发双方事先约定的方式组成的符号,如语言、文字、图像、数据等;信号:随时间变化的与消息一一对应的物理量;信息:所接收到的未知内容的消息,即传输的信号是带有信息的。

2、在绘制信号波形时应注意哪些方面内容?答:应注意信号的基本特征,标出信号的初值,终值及一些关键值,如极大值和极小值等,同时注意阶跃信号,冲激信号的特点等。

3、什么是奇异信号?答:函数本身有不连续点或其导数或积分有不连续点的这类函数统称为奇异信号或奇异函数。

较为重要的两种奇异信号是单位冲激信号δ(t )和单位阶跃信号u(t )。

4、什么是单位阶跃信号?单位阶跃信号在0t =处的值是多少?答:单位阶跃信号也是一类奇异信号,定义为:10()00t u t t >⎧=⎨<⎩ 它可以表示单边信号,持续时间有限信号,在信号处理中起着重要的作用。

在郑君里这本书中单位阶跃信号在0t =处没有定义。

5、单位冲激信号的物理意义是什么?答:冲激信号:它是一种奇异函数,它表达的是一类幅度很强,但作用时间很短的物理现象。

其重要特性是筛选性,即:()()()(0)(0)t x t dt t x dt x δδ∞∞-∞-∞==⎰⎰ 6、为什么要对信号进行分解?常用的分解方法有哪些?答:为了便于研究信号的传输和处理问题,往往将信号分解为一些简单的信号之和。

分解角度不同,可以分解为不同的分量。

常用的分解方法有:直流分量与交流分量;偶分量与奇分量;无穷多个时刻具有不同幅度的阶跃函数的和;无穷多个时刻具有不同强度的冲激函数的和;实部分量与虚部分量;正交函数分量。

7、如何判断系统是因果系统还是非因果系统?答:若系统的输出只与该时刻及以后的激励有关,而与该时刻的激励信号无关,则该系统为因果系统。

8、什么样的系统是线性时不变系统?答:同时满足线性(包括叠加性和均匀性)以及时不变特性的系统,称为线性时不变系统。

信号与系统基本概念和分类

信号与系统基本概念和分类在现代通信领域,信号与系统是一门基础而重要的学科。

理解信号与系统的基本概念和分类对于深入研究通信原理和系统设计至关重要。

本文将介绍信号与系统的基本概念和分类,并探讨其在实际应用中的重要性。

一、信号的基本概念信号是信息的载体,可以通过某种形式或载体传递。

信号的基本概念包括以下几个方面:1. 信号的定义:信号是随时间变化的物理量。

它可以是连续的、离散的、周期的或非周期的。

2. 信号的特征:信号可以通过其振幅、频率、相位、时间等特征进行描述。

这些特征可以在频域或时域中进行观察和分析。

3. 信号的分类:信号可以分为连续信号和离散信号。

连续信号在时间和幅度上都是连续变化的,例如声音信号、电压信号等;离散信号在时间和幅度上都是离散变化的,例如数字信号、脉冲信号等。

二、系统的基本概念系统是对信号进行处理或传输的过程或设备。

理解系统的基本概念可以帮助我们分析和设计复杂的通信系统。

以下是系统的基本概念:1. 系统的定义:系统是由一组有序的组件或部件构成,它们相互作用或协作以实现特定的功能。

2. 系统的输入与输出:系统接受输入信号,并根据某种规则对其进行处理,产生输出信号。

3. 系统的状态:系统的状态是系统在某一时刻的描述,可以用于描述系统的性能和行为。

三、信号与系统的分类信号与系统可以根据不同的特征进行分类。

以下是几种常见的分类方式:1. 按信号的数学表示方式分类:a. 连续时间信号:用函数描述,例如正弦信号、指数信号等。

b. 离散时间信号:用序列描述,例如单位样本序列、冲激序列等。

2. 按系统的输入输出关系分类:a. 线性系统:输出与输入之间存在线性关系,满足叠加原理。

b. 非线性系统:输出与输入之间不存在线性关系,不满足叠加原理。

3. 按系统的时变性分类:a. 时不变系统:系统的性质不随时间改变。

b. 时变系统:系统的性质随时间改变。

四、信号与系统的应用信号与系统的理论和方法在现代通信领域有着广泛的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

连续信号举例
15
… -2
-8 -6 -4
2020年1月8日1时11分
f1 (k )
A
f1(k )

Asin

4
k


5 6 78
01 2 3 4
k
-A
f2 (k )
基础 基础
4选1
二阶网络函数的模拟
基础
一阶、二阶系统的特性测试
综合
系统稳定性分析
综合
3选1
系统极点对系统频响的影响
综合
学时2Βιβλιοθήκη 2222
2
2
2
4
4
4
6
2020年1月8日1时11分
考核方式
考试(闭卷)。 其中:出勤情况考核、作业情况考核占10%,实 验考核占20%,期末考试考核占70%。
7
2020年1月8日1时11分
2020年1月8日1时11分
信号与系统 电子教案
蔡燕 2010年9月
1
学习目的与意义
2020年1月8日1时11分
“信号与系统”课程是高等院校本科电子信息类 各专业的必修课,是“电路分析”课程后的又一门 重要的主干课程,是今后从事相关电路设计、系统 设计的重要理论基础。因此,长期以来都是电类、 通信类、自动控制等专业硕士研究生入学专业考试 课程之一。学好这门课程对今后参加实际工作或进 一步深造有重大意义!
2
2020年1月8日1时11分
本课程与其他课程的联系
★先修课程:大学物理、高等数学、电路分析、 积分变换。
★后续课程:数字信号处理、传感器原理及应 用、自动控制原理、电子设计基础、电子系统 设计、现代通信技术等专业课程。
3
教材及教学资料
2020年1月8日1时11分
(1) 《信号与系统》(第二版),陈生潭等编,西安电子科大出版社, 2001。 (2)《信号与系统(第二版)》(上、下册),郑君里等编,高等教育出 版社,2000。 (3)《信号与系统》,ALAN V.OPPENHEIM等编,刘树棠译,西安交通 大学出版社;2001。 (4)《信号与系统分析》,张明友等,电子科大出版社, (5)《信号与线性系统》,吴大正编,高等教育出版社,1986。 (6)《信号与系统教程》,燕庆明编,高等教育出版社,2004。
总体学习基本要求
(1)掌握信号分析的方法,特别是要熟练掌握信号频谱的分 析方法以及熟悉一般信号的时域特性与频域特性间的关系。 (2)掌握线性时不变系统的分析法,特别要熟练掌握时域分 析中卷积积分法和变换域分析法中的傅立叶变换法、拉普拉斯 变换法和z变换法。 (3)理解系统函数的性质,特别要充分理解系统函数极点和 零点与系统的时域特性和频域特性的关系,并掌握系统稳定性 的一般判别方法。 (4)了解系统的状态空间描述方法和了解状态方程的解法。
ut Um sint
如: 打靶、投硬币
13
2020年1月8日1时11分
1.1 信号的描述与分类
1.1.2 信号的分类及表示方法
2、连续信号与离散信号 连续信号:在规定的时间内,除若干不连续点 之外,任意确定时刻都有确定的函数值。 离散信号:只在某些不连续的规定瞬间给出函 数值,其他时间未定义。 数字信号:离散信号的幅度也被限制为离散值。
(4)熟悉系统的基本特性(线性、时不变性和因果性)和分类。
(5)初步理解线性时不变系统的同一观点和方法。
◆学习重点:
常用信号的性质
线性系统的性质及应用。
9
1.0 信号与系统
2020年1月8日1时11分
1. 信号的概念
消息(message):通过一定的媒体表达的感觉、思想、 意见等(声音、文字、图像、符号…)
3. 信号与系统举例
输入信号 (激励)
系统
输出信号 (响应)
消息 (广播节目)
信号 转换器(Ⅰ)
调制 发射机
解调 接收机
信号 转换器(Ⅱ)
无线电广播系统的组成
消息 (广播节目)
11
2020年1月8日1时11分
1.1 信号的描述与分类
1.1.1 信号的描述
信号是消息的表现形式,通常体现为随若 干变量而变化的某种物理量。
◆写出数学表达式(一般是时间的函数) ◆绘出函数图象(一般称为波形) ◆频谱分析(傅里叶级数) ◆正交变换(傅里叶变换等) ◆其他方法
12
2020年1月8日1时11分
1.1 信号的描述与分类
1.1.2 信号的分类及表示方法
1、确定信号与随机信号 确定信号:表示为一确定时间的函数(规则) 随机信号:信号在确定时刻没有确定的值,但在 某一时间范围内服从特定规律。
14
f1(t) A
2020年1月8日1时11分
1.1 信号的描述与分类
f2(t) 1
f3(t) A
£-2 £-1
01
2t
o
£-A
t
o t0
t
(a)
正弦信号
f1(t) Asin(t)
(b)
阶跃信号
(c)
指数信号
f2(t) (t)
Ae (t t0 )
f3
(t
)


0
t t0 t t0
合计
学时 8 8 14 14 6
8 10 68
5
2020年1月8日1时11分
参考学时分配(68+12)
实验项目名称
实验项目层次
选做性质
常用信号分类与观察
基础
必做
信号分解与合成
基础
必做
零输入响应零状态响应 卷积(Convolve)算法实验
基础 基础
2选1
信号的采样与恢复
基础
无失真传输系统 模拟滤波器分析
信号(signal):物质的运动形式或状态的变化。(声、
光、电、力、振动、流量、温度…通过传感器转换为电信号 )
信息(information):消息中的具体内容,是能消除 那些不确定性内容的东西。
2. 系统的概念
是指若干相互间有联系的事物组合而成并具有特定功
能的整体。
10
1.0 信号与系统
2020年1月8日1时11分
8
2020年1月8日1时11分
第 1 章 信号与系统的基本概念
◆学习目标:
(1)了解信号的定义、分类和基本运算。熟悉信号的波形变换;翻转、 平移和展缩。
(2)掌握信号 (t) 、 (t) 、 (k) 和 (k)的定义和性质,以及它们之间
的关系。
(3)了解系统、系统的状态和状态变量、系统输入输出模型和状态 空间模型的定义。
4
2020年1月8日1时11分
参考学时分配(68+12)
章次 第 1 章 信号与系统的基本概念 第 2 章 连续信号与系统的时域分析 第 3 章 连续信号与系统的频域分析 第 4 章 连续系统的s域分析 第 5 章 离散信号与系统的时域分析 第 6 章 离散信号与系统的频域分析 第 7 章 离散信号与系统的z域分析
相关文档
最新文档