四川省成都市高新南区2017-2018学年八年级数学上期中试题含答案
2017—2018学年度八年级数学上学期期中试卷包括答案

2017 — 2018 学年度八年级数学上学期期中试卷考试时间:120 分钟满分: 150 分题号一二三总分得分一、选择题。
(每题 4 分,共 40 分。
)1、有四条线段,长分别是 3 厘米, 5 厘米, 7 厘米,9 厘米,假如用这些线段构成三角形,能够构成不一样的三角形的个数为()A. 5B. 4C. 3D.22、如图,小林从P 点向西直走12m 后,向左转,转动的角度为α,再走12m,这样重复,P,则α =()小林共走了108m回到点A. 40 o B .50 o C . 80 o D.不存在3.判断:①三角形的三个内角中最多有一个钝角,②三角形的三个内角中起码有两个锐角,③有两个内角为 50°和 20°的三角形必定是钝角三角形,④直角三角形中两锐角的和为90°,此中判断正确的有().A.1 个个个个4、若一个多边形的内角和为1080°,则这个多边形的边数是()A. 6B. 7C. 8D. 95、如图,某同学把一块三角形的玻璃打坏成三片,此刻他要到玻璃店去配一块完整同样形状的玻璃.那么最省事的方法是带()A.带①去B.带②去C.带③去D.带①②去2 题图 5 题图 6 题图6、如图, a、 b、 c 分别表示△ ABC的三边长,则下边与△ABC必定全等的三角形是()A.B.C.D.ABM≌△ CDN的是 ().7、如图,已知MB=ND,∠MBA=∠NDC,以下条件中不可以判断△A.∠ M=∠N B.AM∥CN C . AB=CD D. AM=CN7 题图8 题8、如图,已知 C、D分别在 OA、OB上,而且 OA=OB,OC=OD,图AD和 BC订交于 E,则图中全等三角形的对数是( ).A. 3B. 4C. 5D. 69、如图 12.1-10 ,△ ABC≌△ FED,则以下结论错误的选项是()A. EC=BDB.EF∥ABC. DF=BDD.AC∥FD10、如图,在△ ABC 中, CD是 AB边上的高,BE均分∠ ABC,交 CD于点 E, BC= 5, DE=2,则△ BCE的面积等于 ( )A. 10B. 7C. 5D. 49 题图10 题图13 题图二、填空题。
2017-2018学年新人教版八年级上期中数学试卷及答案

2017-2018学年新人教版八年级上期中数学试卷及答案2017-2018学年新人教版八年级(上)期中数学试卷时间:120分钟分值:100分一、选择题:本大题共10小题,每小题3分,共30分。
将答案填在表格内。
1.在下列各电视台的台标图案中,是轴对称图形的是()A.B.C.D.2.以下列各组线段为边,能组成三角形的是()A.2cm,3cm,5cmB.3cm,3cm,6cmC.5cm,8cm,2cmD.4cm,5cm,6cm3.已知直角三角形中30°角所对的直角边为2cm,则斜边的长为()A.2cmB.4cmC.6cmD.8cm4.如图所示,∠B=∠D=90°,BC=CD,∠1=40°,则∠2=()A.40°B.50°C.45°D.60°5.如图,把长方形ABCD沿EF对折后使两部分重合,若∠AEF=110°,则∠1=()A.30B.35C.40°D.50°6.一个三角形三个内角之比为1:3:5,则最小的角的度数为()A.20°B.30°C.40°D.60°7.下列图形中有稳定性的是()A.正方形B.长方形C.直角三角形D.平行四边形8.正n边形的内角和等于1080°,则n的值为()A.7B.8C.9D.109.AC=A′C′,在△ABC与△A′B′C′中,已知∠A=∠A′,下列说法错误的是()A.若添加条件AB=A′B′,则△ABC与△A′B′C′全等B.若添加条件∠C=∠C′,则△ABC与△A′B′C′全等C.若添加条件∠B=∠B′,则△ABC与△A′B′C′全等D.若添加条件BC=B′C′,则△ABC与△A′B′C′全等10.如图,∠A=15°,AB=BC=CD=DE=EF,则∠DEF等于()A.90°B.75°C.70°D.60°二、填空题:本大题共8小题,每小题2分,共16分。
2017-2018学年成都市高新区八年级(上)期中数学试卷 (含解析)

2017-2018学年成都市金牛区八年级(上)期中数学试卷(考试时间:120分钟满分:150分)A卷(共100分)一.选择题(共10小题,共30分)1.下列各数①﹣3.14 ②π③④⑤中,无理数的个数是()A.2 B.3 C.4 D.52.在平面直角坐标系中,点P(﹣1,1)位于()A.第一象限B.第二象限C.第三象限D.第四象限3.下列语句中正确的是()A.9的算术平方根是3 B.9的平方根是3C.﹣9的平方根是﹣3 D.9的算术平方根是±34.满足下列条件的△ABC,不是直角三角形的是()A.b2=a2﹣c2B.∠C=∠A﹣∠BC.∠A:∠B:∠C=3:4:5 D.a:b:c=12:13:55.有一长、宽、高分别为5cm、4cm、3cm的木箱,在它里面放入一根细木条(木条的粗细、形变忽略不计)要求木条不能露出木箱.请你算一算,能放入的细木条的最大长度是()A.cm B.cm C.cm D.cm6.若点P(a,b)在第三象限,则M(﹣ab,﹣a)应在()A.第一象限B.第二象限C.第三象限D.第四象限7.要使二次根式有意义,字母x必须满足的条件是()A.x≤2 B.x<2 C.x≤﹣2 D.x<﹣28.若函数y=(m﹣1)x|m|﹣5是一次函数,则m的值为()A.±1 B.﹣1 C.1 D.29.某一次函数的图象经过点(1,2),且y随x的增大而减小,则这个函数的表达式可能是()A.y=2x+4 B.y=3x﹣1 C.y=﹣3x+1 D.y=﹣2x+410.如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上且与AE重合,则CD等于()A.2cm B.3cm C.4cm D.5cm二.填空题(共16分)11.若三角形的边长分别为6、8、10,则它的最长边上的高为.12.已知一个正数的平方根是2x和x﹣6,这个数是.13.若点M(a﹣3,a+4)在x轴上,则点M的坐标是.14.已知函数y=kx+b(k≠0)的图象与y轴交点的纵坐标为﹣2,且当x=2时,y=1.那么此函数的解析式为.三、解答题(共54分)15.(12分)计算①×÷②﹣+③+(﹣1)(+1)﹣(﹣2)﹣1.16.(8分)求下列各式中的x:①x2+5=7 ②(x﹣1)3+64=0.17.(6分)如图,每个小方格都是边长为1的小正方形,△ABC的位置如图所示,你能判断△ABC是什么三角形吗?请说明理由.18.(8分)对于长方形OABC,O为平面直角坐标系的原点,A点在x轴的负半轴上,C点在y轴的正半轴上,点B(m,n)在第二象限.且m,n满足+(n﹣3)2=0(1)求点B的坐标;并在图上画出长方形OABC;(2)在画出的图形中,若过点B的直线BP与长方形OABC的边交于点P,且将长方形OABC的面积分为1:4两部分,求点P的坐标.19.(10分)已知一次函数y=kx+b的图象经过点(1,4)和(2,2).(1)求这个一次函数;(2)画出这个函数的图象,与x轴的交点A、与y轴的交点B;并求出△AOB的面积;(3)在第四象限内,直线AB上有一点C使△AOC的面积等于△AOB的面积,请求出点C的坐标.20.(10分)矩形ABCD中,AB=10,BC=6,点E在线段AB上.点F在线段AD上(1)沿EF折叠,使A落在CD边上的G处(如图),若DG=3,求AF的长;求AE的长;(2)若按EF折叠后,点A落在矩形ABCD的CD边上,请直接写出AF的范围.B卷(50分)一、填空题.(每题4分,共20分)21.已知x是的整数部分,y是的小数部分,则的平方根为.22如图,圆柱底面半径为2cm,高为9πcm,点A、B分别是圆柱两底面圆周上的点,且A、B在同一母线上,用一棉线从A顺着圆柱侧面绕3圈到B,求棉线最短为cm.23.如图所示,数轴上表示2,的对应点分别为C、B,点C是AB的中点,则点A表示的数是.24.直线y=﹣x+4与x轴、y轴分别交于点A、B,M是y轴上一点,若将△ABM沿AM折叠,点B恰好落在x轴上,则点M的坐标为.25.如图,△OB1A2、△OB2A3、△OB3A4、…△OB n A n+1都是等边三角形,其中B1A1、B2A2、…B n A n都与x轴垂直,点A1、A2、…A n都在x轴上,点B1、B2、…B n都在直线y=x上,已知OA1=1,则点B3的坐标为(4,4),点B n的坐标为.二、解答题(共30分)26.(8分)已知实数x,y满足y=++3,(1)求的平方根;(2)求﹣的值.27.(10分)如图,在平面直角坐标系中,直线L是第一、三象限的角平分线.(1)由图观察易知A(0,2)关于直线l的对称点A′的坐标为(2,0),请在图中分别标明B(5,3)、C (﹣2,5)关于直线l的对称点B′、C′的位置,并写出他们的坐标:B′、C′;(2)结合图形观察以上三组点的坐标,直接写出坐标面内任一点P(a,b)关于第一、三象限的角平分线l的对称点P′的坐标为;(3)已知两点D(1,﹣3)、E(﹣1,﹣4),试在直线L上画出点Q,使△QDE的周长最小,并求△QDE周长的最小值.28.(12分)定义:如图①,点M、N把线段AB分割成AM、MN和BN,若以AM、MN、BN为边的三角形是一个直角三角形,则称点M,N是线段AB的勾股分割点.(1)已知点M、N是线段AB的勾股分割点,若AM=2,MN=3,求BN的长;(2)如图②,在等腰直角△ABC中,AC=BC,∠ACB=90°,点M、N为边AB上两点,满足∠MCN=45°,求证:点M、N是线段AB的勾股分割点;阳阳同学在解决第(2)小题时遇到了困难,陈老师对阳阳说:要证明勾股分割点,则需设法构造直角三角形,你可以把△CBN绕点C逆时针旋转90°试一试.请根据陈老师的提示完成第(2)小题的证明过程;(3)在(2)的问题中,若∠ACM=15°,AM=1,CM=+1.求BM的长.(提示:在直角三角形中,30°角所对的直角边等于斜边的一半.)参考答案与试题解析1.【解答】解:无理数有②③,共2个,故选:A.2.【解答】解:点P(﹣1,1)位于第二象限.故选:B.3.【解答】解:A、9的算术平方根为3,正确;B、9的平方根为3或﹣3,错误;C、﹣9没有平方根,错误;D、9的算术平方根为3,错误,故选:A.4.【解答】解:A、由b2=a2﹣c2得a2=c2+b2符合勾股定理的逆定理,故是直角三角形;B、由三角形三个角度数和是180°及∠C=∠A﹣∠B解得∠A=90°,故是直角三角形;C、由∠A:∠B:∠C=3:4:5,及∠A+∠B+∠C=180°得∠A=45°,∠B=60°,∠C=75°,没有90°角,故不是直角三角形;D、由a:b:c=12:13:5得b2=a2+c2符合勾股定理的逆定理,故是直角三角形.故选:C.5.【解答】解:由题意可知FG=5cm、EF=4cm、CG=3cm,连接EG、CE,在直角△EFG中,EG===cm,在Rt△EGC中,EG=cm,CG=3cm,由勾股定理得CE====5cm,故选:C.6.【解答】解:∵点P(a,b)在第三象限,∴a<0,b<0,∴﹣a>0,﹣ab<0,∴点M(﹣ab,﹣a)在第二象限.故选:B.7.【解答】解:∵二次根式有意义,∴2﹣x≥0,解得x≤2.故选:A.8.【解答】解:根据题意得,|m|=1且m﹣1≠0,解得m=±1且m≠1,所以,m=﹣1.故选:B.9.【解答】解:设一次函数关系式为y=kx+b,∵图象经过点(1,2),∴k+b=2;∵y随x增大而减小,∴k<0.即k取负数,满足k+b=2的k、b的取值都可以.故选:D.10.【解答】解:在RT△ABC中,∵AC=6,BC=8,∴AB===10,△ADE是由△ACD翻折,∴AC=AE=6,EB=AB﹣AE=10﹣6=4,设CD=DE=x,在RT△DEB中,∵DE2+EB2=DB2,∴x2+42=(8﹣x)2∴x=3,∴CD=3.故选:B.11.【解答】解:∵三角形三边的长分别为6、8和10,62+82=100=102,∴此三角形是直角三角形,边长为10的边是最大边,设它的最大边上的高是h,∴6×8=10h,解得,h=4.8.12.【解答】解:∵一个正数的平方根是2x和x﹣6,∴2x+x﹣6=0,解得x=2,∴这个数的正平方根为2x=4,∴这个数是16.故答案为:16.13.【解答】解:∵M(a﹣3,a+4)在x轴上,∴a+4=0,解得a=﹣4,∴a﹣3=﹣4﹣3=﹣7,∴M点的坐标为(﹣7,0).故答案为(﹣7,0).14.【解答】解:将(0,﹣2)与(2,1)代入y=kx+b得:,解得:k=,b=﹣2,则函数解析式为y=x﹣2,故答案为:y=x﹣2.15.【解答】解:①原式===15;②原式=4﹣+2=;③原式=﹣+3﹣1+=2.16.【解答】(1)x2=2x=±(2)(x﹣1)3=﹣64x﹣1=﹣4x=﹣317.【解答】解:△ABC是直角三角形.在直角△ABF、直角△BCD、直角△ACE中,根据勾股定理即可得到:AB==;BC==;AC==5;则AC2=BC2+AB2∴△ABC是直角三角形.18.【解答】解:(1)∵m,n满足+(n﹣3)2=0,∴m=﹣5,n=3,∴B(﹣5,3),长方形OABC如图所示,(2)当点P在OA上时,设P(x,0)(x<0),∵S△ABP:S四边形BCOP=1:4,∴S△ABP=S矩形OABC,即×3×(5+x)=×3×5,解得x=﹣3,∴P(﹣3,0);当点P在OC上时,设P(0,y)(y>0),∵S△CBP:S四边形BPOA=1:4,∴S△CBP=S矩形OABC,即×5×(3﹣y)=×3×5,解得y=,∴P(0,).19.【解答】解:(1)∵一次函数y=kx+b的图象经过点(1,4)和(2,2).∴,解得,∴这个一次函数的解析式为y=﹣2x+6;(2)令y=0可得﹣2x+6=0,解得x=3,∴A点坐标为(3,0),令x=0可得y=6,∴B点坐标为(0,6),函数图象如图:△AOB的面积为:×3×6=9;(3)设C(t,﹣2t+6),∵△AOC的面积等于△AOB的面积,∴•3•|﹣2t+6|=9,解得t1=6,t2=0(舍去),∴C点坐标为(6,﹣6).20.【解答】解:(1)设AF=x,则FG=x,在Rt△DFG中,x2=(6﹣x)2+32解得x=,所以AF=过G作GH⊥AB于H,设AE=y,则GE=y﹣3.在Rt△EHG中,∴y2=62+(y﹣3)2,解得y=,AE=(2)若沿EF翻折后,点A落在矩形ABCD的CD边上,假设A点翻折后的落点为P,则P应该在以E为圆心,EA长为半径的圆上.要保证P在矩形ABCD的CD边上,CD与圆相切,BC与圆也要相切,则满足关系式:,求得≤AF≤6.21.【解答】解:由题意可得:3=,∴x=3,y=﹣3,则=32=9,而9的平方根为±3.故答案为:±3.22.【解答】解:圆柱体的展开图如图所示:用一棉线从A顺着圆柱侧面绕3圈到B的运动最短路线是:AC →CD→DB;即在圆柱体的展开图长方形中,将长方形平均分成3个小长方形,A沿着3个长方形的对角线运动到B的路线最短;∵圆柱底面半径为2cm,∴长方形的宽即是圆柱体的底面周长:2π×2=4πcm;又∵圆柱高为9πcm,∴小长方形的一条边长是3πcm;根据勾股定理求得AC=CD=DB=5πcm;∴AC+CD+DB=15πcm;故答案为:15π.23.【解答】解:∵数轴上表示2,的对应点分别为C、B,∴BC=,∵点C是AB的中点,∴AC=BC=,∴点A表示的数为2﹣()=4﹣.24.【解答】解:如右图所示,设沿直线AM将△ABM折叠,点B正好落在x轴上的C点,A(3,0),B(0,4),则有AB=AC,又OA=3,OB=4,∴AB=5,故求得点C的坐标为:(﹣2,0).再设M点坐标为(0,b),则CM=BM=4﹣b,∵CM2=CO2+OM2,∴b=,∴M(0,),此外当AM为角BAO的外角平分线时,如图1,设OM=m,由折叠知,AB'=AB=5,B'M=BM,BM=OB+OM=4+m,∴OB'=8,B'M=4+m根据勾股定理得,64+m2=(4+m)2,∴m=6,∴M(0,﹣6)故答案为:(0,)或(0,﹣6).25.【解答】解:∵△OB1A2、△OB2A3、△OB3A4、…△OB n A n+1都是等边三角形,OA1=1,∴A1B1=,OA2=2=21,则A2B2=2,OA3=4=22,同理,A n B n=2n﹣1,OA n=2n﹣1,故点B n的坐标为(2n﹣1,2n﹣1)故答案为:(2n﹣1,2n﹣1).26.【解答】解:由题意得,x﹣2≥0且2﹣x≥0,所以,x≥2且x≤2,所以,x=2,y=3,(1)==6,的平方根是±;(2)﹣,=﹣,=,=﹣4.27.【解答】解:(1)如图,由点关于直线y=x轴对称可知:B'(3,5),C'(5,﹣2),故答案为:(3,5)、(5,﹣2)(2)由(1)的结果可知,坐标平面内任一点P(a,b)关于第一、三象限的角平分线l的对称点P′的坐标为(b,a),故答案为:(b,a);(3)由(2)得,D(1,﹣3)关于直线l的对称点D'的坐标为(﹣3,1),连接D'E交直线l于点Q,此时点Q到D、E两点的距离之和最小,D'E==,DE==,∴△QDE周长的最小值+.28.【解答】(1)解:①当MN为最大线段时,∵点 M、N是线段AB的勾股分割点,∴BN===;②当BN为最大线段时,∵点M、N是线段AB的勾股分割点,∴BN===,综上所述:BN=或;(2)①证明:连接MN′,∵∠ACB=90°,∠MCN=45°,∴∠BCN+∠ACM=45°,∵∠ACN'=∠BCN,∴∠MCN'=∠ACN′+∠ACM=∠BCN+∠ACM=45°=∠MCN,在△MCN和△MCN′中,,∴△MCN≌△MCN'(SAS),∴MN'=MN,∵∠CAN′=∠CAB=45°,∴∠MAN′=90,AN′2+AM2=MN′2,即BN2+AM2=MN2,∴点M、N是线段AB的勾股分割点;(3)如图,过N作于NH⊥CM于H.则∠NHM=90°,∠NMH=60°,设HM=x,则MN=2x,HN=x.得x+x=+1,∴x=1,∴MN=2.由(2)得结论BN2+AM2=MN2,BN=.∴BM=BN+MN=2+。
2017-2018学年成都市高新区八年级(上)期末数学试卷(含解析#..

2017-2018学年成都市高新区八年级(上)期末数学试卷(考试时间:12。
分钟满分:150 分)A 卷(共100分)一,选择题(每小题3分,共30分)-27的立方根是( )D・们A.-3 B. 3 C.±32.点P (3, -4)关于y 轴的对称点P'的坐标是A.(・3,・4)B. (3, 4)C.(・3, 4)3.A.2和3之间 B. 3和4之间 C.4和5之间D. 5和6之间如图,直线.1/12, Zl=40° , Z2=75° ,则Z3=(4.A. 55° B. 60° C.65° D. 70°估计J3+1的值在()) D.(・ 4, 3)5.如图,等腰ZXABC 的三边的长分别是5cm 、5cm 、6cm,则它的面积是( )A.15cm 2B. 12cm'C.25---cm 2D. 24cm 6.A.x=0 ,y=-2一 5已知」都是方程ax-y=b 的解,则a 的值是( y=3 B. 1 C. 5 D.一2和7)7.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩/m 1.50 1.60 1.65 1.70 1.751.80人数232341则这些运动员成绩的中位数、众数分别为()A. 1.65. 1.70B. 1.65. 1.75C. 1.70. 1.75D. 1.70. 1.708.若Jx-y与x+y+1互为相反数,则xy的值为()9.对于函数y=・3x+l,下列说法不正确的是()A.它的图象必经过点(1,-2)B.它的图象经过第一、二、四象限C.当x>L时.y<03D.它的图象与直线y=3x平行10,如图,长方体的长为15,宽为10,高为20,点B高点C的距再为5,—只蚂蚁如果要沿若长方体的表面从点A爬到点B,需要爬行的最短距离是()B.25C.1蛎+5D.35填空题(每小题3分,共15分)二,11-4(-4)2=-----12.如图.以数轴的单位长线段为边作一个正方形,以数轻的原点为旋转中心,将过原点的对角线顺时针旋转,使对角线的另一端点落在数轴正半轴的点A处,则点A表示的数是・—•---r----~-10L L4213.已知点A(3a+5,a-3)在二,四象限的角平分线上,则a=.14.点M(a,b),N(c,d)都在正比例函数y=-2x的图象上,若aVc,则b d.(填"或=)15.下列命题:①如果两个角相等,那么它们是对项角;②如果aMb,bUc,那么a^c;③三角形三个内角的和等于180°:④两边分别相等且其中一组相等边的对角也相等的两个三角形全等.其中是假令题的有(只填序号).三、解答题(共55分)16.(20分)(1)计算:调-1-血(2)解方程组:①仔-尸-4I4x-5y=-23②eb巫若y-52=24x+3y=6517.(6分)如图,一条直线分别与直线BE、直线CE、直线BF、直线CF相交于点A、G、H,D,且Z1=Z2> ZB=ZC>求证:ZA=ZD.2D18.(7分)用二元一次方程组求解:某商场购进商品后,加价40%作为销售价,商场搞优惠促销,决定由顾客抽签确定折扣.某顾客购买甲、乙两种商品,分别抽到七折和九折,共付款399元.两种商品原销售价之和为490元.则两种商品进价分别为多少元?19.(10分)某校为了解学生的安全意识情况,在全校范围内随机抽取部分学生进行问卷调查,根据调查结果,把学生的安全意识分成“淡薄”“一般"“较强”“很强''四个层次,并绘制成如下两幅尚不完整的统计图:字生安全叟m情况扇形统计囹学生安全意识情况条秫计囹根据以上信息,解答下列问鹿:(1)这次调查一共抽取了名学生.在扇形统计图中,“淡ir.北在的扇形对应的圆心角的度数是,其中安全意识为“很强"的学生占被调查学生总数的百分比是;(2)请将条形统计图补充完整;(3)该校有2400名学生,现要对安全意识为“淡薄"“一般”的学生强化安全教育,根据调查结果,估计全校需要强化安全教育的学生约有多少名?20.(12分)如图.在平面直角坐标系中,直线L:y=-*x+b与直线I2: y=kx相交于点B(m,-4).直线.h与x轴交于点A(-6,0).(1)求b.m v k的值;(2)若第一象限内有一点P(3,2),连接AP,BP,求ZkABP的面积;(3)在直线L上是否存在一点Q,使得以A,B,Q为顶点的三角形为等腰三角形?若存在,请直接写出点Q的坐标;若不存在•请说明理由.备用图B 卷(50分)一、填空题(每小题4分,共20)X "y 71、 有相同的解,则m・n 的值是nx+(ni-l )y=222.若关于x, y 的方程组21.已知金’、=云可’则代数式7y+xy2的值为mx+ny=4.x+y=-323.满足a 2+b 2=c 2的三个正整数,称为勾股数.若正整数a. n 满足(n+l )」,这样的三个整数a.n, n+1 (如:3. 4, 5或5, 12, 13)我们称它们为一组“完美勾股数”,当nV150时,共有 组这 样的“完美勾股数24.如图,在/XABC 中,NA=5O 。
2017-2018学年八年级数学上学期期中考试原(含答案)

2017-2018学年上学期期中原创卷A卷八年级数学(考试时间:120分钟试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
5.考试范围:人教版第11~13章。
第Ⅰ卷一、选择题(本大题共15小题,每小题3分,共45分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.已知三角形的两边长分别为4 cm和9 cm,则下列长度的四条线段中能作为三角形的第三边的是A.13 cm B.6 cm C.5 cm D.4 cm2.中国汽车工业经过100 多年的发展,已成为世界上规模大和重要的产业之一,下面是我国部分汽车标志图形,其中不是轴对称图形是A B C D△的高的是3.下面四个图形中,线段BE是ABCA.B.C.D.4.如果正多边形的一个内角是140°,则这个多边形是A.正十边形B.正九边形C.正八边形D.正七边形5.下列说法不正确的是A.三角形的一个外角等于两个内角的和B.三角形具有稳定性C .四边形的内角和与外角和相等D .角是轴对称图形6.如图,ABC BAD △≌△,点A 和点B ,点C 和点D 是对应点.如果AB =6厘米,BD =5厘米,AD =4厘米,那么BC 的长是 A .6 cmB .5 cmC .4 cmD .不能确定7.如图,ABC △中,AB AC =,点D 在AC 边上,且BD BC AD ==,则A ∠的度数为 A .36°B .45°C .54°D .72°8.如图,在ABC △中,∠BAC =56°,∠ABC =74°,BP 、CP 分别平分∠ABC 和∠ACB ,则∠BPC =A .102°B .112°C .115°D .118°9.如图,在ABC △中, AB AC =, 36A ∠=︒, BD 、CE 分别是ABC ∠、BCD ∠的角平分线,则图中的等腰三角形有 A .5个B .4个C .3个D .2个10.在ABC △和A B C '''△中,下面能得到ABC A B C '''△≌△的条件是A .AB A B AC AC B B =''=''∠=∠',, B . AB A B BC B C A A =''=''∠=∠',, C .AC AC BC B C C C =''=''∠=∠',,D .AC AC BC B C B B =''=''∠=∠',,11.如图,BD 是∠ABC 的平分线,DE ⊥AB 于E ,AB =36 cm,BC =24 cm, 2120cm ABC S =△,DE 长是A .4 cmB . 4.8 cmC . 5 cmD .无法确定12.使两个直角三角形全等的条件是A .一个锐角对应相等B .两个锐角对应相等C .一条边对应相等D .斜边及一条直角边对应相等 13.如图,已知40AOB ∠=︒,在AOB ∠的两边OA OB 、上分别存在点Q 、点P ,过点Q 作直线QR OB ∥,当OP QP =时,∠PQR 的度数是 A .60°B .80°C .100°D .120°14.如图,ABC △的面积为10 cm 2,AP 垂直∠B 的平分线BP 于点P ,则PBC △的面积为A .4 cm 2B .5 cm 2C .6 cm 2D .7 cm 215.如图,已知点B 、C 、D 在同一条直线上,ABC △和CDE △都是等边三角形.BE 交AC 于F ,AD 交CE 于G .则下列结论中错误的是A .AD =BEB .BE ⊥AC C . CFG △为等边三角形D . FG ∥BC第Ⅱ卷二、填空题(本大题共6小题,每小题3分,共18分)16.如图,ABC △中,∠B =45°,∠C =72°,则∠1的度数为__________.17.一个四边形,截一刀后得到的新多边形的内角和为__________. 18.若等腰三角形的一个角为80︒,则顶角为__________.19.已知点A (2a +3b ,−2)和A '(−1,3a +b )关于y 轴对称,则a +b 的值为__________.20.如图,ABC △中,90C ∠=︒,60BAC ∠=︒,AD 是角平分线,若8BD =,则CD 等于__________.21.如图,在四边形ABCD 中,∠A =90°,AD =4,连接BD ,BD ⊥CD ,∠ADB =∠C .若P 是BC 边上一动点,则DP 长的最小值为__________.三、解答题(本大题共7小题,共57分.解答应写出文字说明、证明过程或演算步骤)22.(本小题满分7分)如果a 、b 、c 是ABC △的三边,满足(b ﹣3)2+|c ﹣4|=0,a 为奇数,求ABC △的周长.23.(本小题满分7分)如图,,100,75AB CD A C ∠=︒∠=︒∥,∠1∶∠2=5∶7,求∠B 的度数.24.(本题满分8分)已知:如图,在ABC △中, D 为BC 上的一点, AD 平分EDC ∠,且E B ∠=∠, DE DC =.求证: AB AC =.25.(本小题满分8分)如图,在长度为1个单位长度的小正方形组成的正方形网格中,点A 、B 、C 在小正方形的顶点上.(1)在图中画出与直线l 成轴对称的A B C '''△; (2)线段CC ′被直线l ; (3)ABC △的面积为 ;(4)在直线l 上找一点P ,使PB+PC 的长最短.26.(本小题满分9分)如图,已知在四边形ABCD 中,点E 在AD 上,∠BCE =∠ACD =90°,∠BAC =∠D ,BC =CE .(1)求证:AC =CD ;(2)若AC =AE ,求∠DEC 的度数.27.(本小题满分9分)如图,在Rt ABC △中,∠A =90°,AB=AC=4 cm ,若O 是BC 的中点,动点M 在AB 上移动,动点N在AC上移动,且AN=BM .(1)证明:OM = ON;(2)在点M,N运动的过程中,四边形AMON的面积是否发生变化,若发生变化,请说明理由;若不变,请你求出四边形AMON的面积.△边AB上一动点(不与A,B重合)分别过点A,B向直线CD作垂28.(本小题满分9分)已知点D是ABC线,垂足分别为E,F,O为边AB的中点.(1)如图1,当点D与点O重合时,AE与BF的位置关系是____________,OE与OF的数量关系是__________;(2)如图2,当点D在线段AB上不与点O重合时,试判断OE与OF的数量关系,并给予证明;(3)如图3,当点D在线段BA的延长线上时,此时(2)中的结论是否成立?请画出图形并写出主要证明思路.(备注:直角三角形中,斜边上的中线等于斜边的一半)2017-2018学年上学期期中原创卷A卷八年级数学答案一、选择题(本大题共15小题,每小题3分,共45分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.已知三角形的两边长分别为4 cm和9 cm,则下列长度的四条线段中能作为三角形的第三边的是A.13 cm B.6 cm C.5 cm D.4 cm【答案】B2.中国汽车工业经过100 多年的发展,已成为世界上规模大和重要的产业之一,下面是我国部分汽车标志图形,其中不是轴对称图形是A B C D【答案】C△的高的是3.下面四个图形中,线段BE是ABCA.B.C.D.【答案】D4.如果正多边形的一个内角是140°,则这个多边形是A.正十边形B.正九边形C.正八边形D.正七边形【答案】B5.下列说法不正确的是A.三角形的一个外角等于两个内角的和B.三角形具有稳定性C.四边形的内角和与外角和相等D.角是轴对称图形【答案】A△≌△,点A和点B,点C和点D是对应点.如果AB=6厘米,BD=5厘米,AD=4厘米,6.如图,ABC BAD那么BC的长是A.6 cm B.5 cm C.4 cm D.不能确定【答案】B解:∵△ABC≌△BAD,对应为点A对点B,点C对点D,∴AC=BD∵BD=5cm(已知)∴AC=5cm故选B.7.如图,△ABC中,AB=AC,点D在AC边上,且BD=BC=AD,则∠A为A.36° B.45° C.54° D.72°【答案】A∵BD=BC=AD,AC=AB,∴∠A=∠ABD,∠C=∠ABC=∠CDB,设∠A=x°,则∠ABD=∠A=x°,∴∠C=∠ABC=∠CDB=∠A+∠ABD=2x°∵∠A+∠C+∠ABC=180°∴x+2x+2x= 180,∴x=36,∴∠A=36° .故选B .△中,∠BAC=56°,∠ABC=74°,BP、CP分别平分∠ABC和∠ACB,则∠BPC= 8.如图,在ABCA.102°B.112°C.115°D.118°【答案】D∵∠BAC=56°,∠A+∠ABC+∠ACB= 180°,∴∠ABC+∠ACB2=62°∵BP 、CP 分别平分∠ABC 和∠ACB , ∴∠BPC +∠ABC+∠ACB2= 180°∴∠BPC=118° .9.如图,在ABC △中, AB AC =, 36A ∠=︒, BD 、CE 分别是ABC ∠、BCD ∠的角平分线,则图中的等腰三角形有 A .5个B .4个C .3个D .2个【答案】A10.在ABC △和A B C '''△中,下面能得到ABC A B C '''△≌△的条件是A .AB A B AC AC B B =''=''∠=∠',, B . AB A B BC B C A A =''=''∠=∠',, C .AC AC BC B C C C =''=''∠=∠',,D .AC AC BC B C B B =''=''∠=∠',, 【答案】C11.如图,BD 是∠ABC 的平分线,DE ⊥AB 于E ,AB =36cm ,BC =24cm ,2120cm ABC S =△,DE 长是( )A .4 cmB . 4.8 cmC . 5 cmD .无法确定【答案】A12.使两个直角三角形全等的条件是( )A .一个锐角对应相等B .两个锐角对应相等C .一条边对应相等D .斜边及一条直角边对应相等 【答案】D13.如图,已知∠AOB=40°,在∠AOB 的两边OA 、OB 上分别存在点Q 、点P ,过点Q 作直线QR ∥OB ,当OP=QP 时,∠PQR ∠的度数是( ) A .60°B .80°C .100°D .120°【答案】C14.如图,ABC △的面积为10 cm 2,AP 垂直∠B 的平分线BP 于点P ,则PBC △的面积为A .4 cm 2B .5 cm 2C .6 cm 2D .7 cm 2【答案】B15.如图,已知点B 、C 、D 在同一条直线上,ABC △和CDE △都是等边三角形.BE 交AC 于F ,AD 交CE 于G .则下列结论中错误的是A .AD =BEB .BE ⊥AC C . CFG △为等边三角形D . FG ∥BC【答案】B第Ⅱ卷二、填空题(本大题共6小题,每小题3分,共18分)16.如图,ABC △中,∠B =45°,∠C =72°,则∠1的度数为__________.【答案】117°解:∵∠1是OABC 的外角,且∠B=45°,∠C=72° ∴∠1=∠A+∠B=45°+72°=117° . 故答案为: 117°17.一个四边形,截一刀后得到的新多边形的内角和为__________.【答案】180°或360°或540°解:∵一个四边形截一刀后得到的多边形可能是三角形,可能是四边形,也可能是五边形,∴内角和为180°或360°或540°故答案为:180°或360°或540°18.若等腰三角形的一个角为80 ,则顶角为__________.【答案】80°或20°解:(1 )当80°的角是顶角时,顶角是80°;(2 )当80°的角是底角时,顶角的度数是:180°-80°- 80°= 100°- 80°=20°综上,可得等腰三角形的顶角是20°或80°故选:C.19.已知点A(2a+3b,−2)和A'(−1,3a+b)关于y轴对称,则a+b的值为__________.【答案】0解:∵点A( 2a+3b,−2 )和点A′ (−1 ,3a+b )关于y轴对称∴2a+3b=1,3a+b=−2∴2 ( 2a+3b ) +3a+b=1×2+ (−2 ) =0∴a+b=020.如图,△ABC中,∠C =90°,∠BAC=60°,AD是角平分线,若BD=8,则CD等于__________.【答案】4解:∵∠C=90°,∠BAC=60°∴∠B=30°∵AD是角平分线∴∠DAB=∠CAD=∠B=30°∴AD=BD=8∴CD=12AB=4 故答案为:421.如图,在四边形ABCD 中,∠A =90°,AD =4,连接BD ,BD ⊥CD ,∠ADB =∠C .若P 是BC 边上一动点,则DP 长的最小值为__________.【答案】4解:根据垂线段最短,当DP ⊥BC 的时候, DP 的长度最小,∵BD ⊥CD ,即∠BDC=90°,又∠A=90°∴∠A=∠BDC ,又∠ADB=∠C∴∠ABD=∠CBD ,又DA ⊥BA , DP ⊥BC∴AD=DP ,又AD=4∴DP=4故答案为: 4三、解答题(本大题共7小题,共57分.解答应写出文字说明、证明过程或演算步骤)22.(本小题满分7分)如果a 、b 、c 是△ABC 的三边,满足(b ﹣3)2+|c ﹣4|=0,a 为奇数,求ABC △的周长.【答案】解: ∵ (b −3)2≥0,|c −4|≥0且(b −3)2 +|c −4|=0 ,∴(b −3)2=0,|c −4|=0,∴b =3 , c =4∵4−3<a <4+3且a 为奇数,∴a =3或5当a =3时,△ABC 的周长是3+4+3=10当a =5时,△ABC 的周长是3+4+5=1223.(本小题满分7分)如图,,100,75AB CD A C ∠=︒∠=︒∥,∠1∶∠2=5∶7,求∠B 的度数.【答案】解:设∠1=5x °,∠2=7x °,在△ABE 中,∠B =180°−∠A −∠2=180°−100°−7x °=80°−7x °在△CDE 中,∠CDE =180°−∠C −∠1−∠2=180°−75°−5x °−7x °=105°− 12x °, ∵AB//CD ,∴∠B=∠CDE ,∴80°−7x°=105°− 12x°解得:x =5,∴∠B =80°−7x °=45°24.(本题满分8分)已知:如图,在△ABC 中, D 为BC 上的一点, AD 平分∠EDC ,且E B ∠=∠, DE DC =.求证: AB AC =.【答案】证明:∵AD 平分∠EDC∴∠ADE=∠ADC ,在△AED 和△ACD 中{DE =DC∠ADE =∠ADC AD =AD∴△AED ≌△ACD ( SAS )∴∠C=∠E又∵∠E=∠B∴∠C=∠B∴AB=AC25.(本小题满分8分)如图,在长度为1个单位长度的小正方形组成的正方形网格中,点A 、B 、C 在小正方形的顶点上.(1)在图中画出与直线l 成轴对称的A B C '''△;(2)线段CC ′被直线l ;(3)ABC △的面积为 ;(4)在直线l 上找一点P ,使PB+PC 的长最短.【答案】( 1 )无(2)垂直平分(3) 3(4)无26.(本小题满分9分)如图,已知在四边形ABCD 中,点E 在AD 上,∠BCE =∠ACD =90°,∠BAC =∠D ,BC =CE .(1)求证:AC =CD ;(2)若AC =AE ,求∠DEC 的度数.【答案】解: ∵∠BCE=∠ACD=90°∴∠3+∠4=∠4+∠5∴∠3=∠5在△ABC 和△DEC 中,{∠l =∠D∠3=∠5BC =CE∴△ABC ≌△DEC ( AAS ),∴AC=CD ;(2 ) ∵∠ACD=90°,AC=CD ,∴∠2=∠D=45°∵AE=AC∴∠4=∠6=67.5°∴∠DEC=180°-∠6=112.5°.27.(本小题满分9分)如图,在Rt ABC△中,∠A=90°,AB=AC=4 cm,若O是BC的中点,动点M在AB上移动,动点N在AC上移动,且AN=BM .(1)证明:OM = ON;(2)在点M,N运动的过程中,四边形AMON的面积是否发生变化,若发生变化,请说明理由;若不变,请你求出四边形AMON的面积.【答案】解:(1)连接OA∵∠A=90°,AB=AC又∵O是BC的中点∴OA=OB=OC,(直角三角形中,斜边上的中线是斜边的一半)∴∠CAO=∠BAO=45°在△ONA和△OMB中{OA=OB∠CAO=∠BAO AN=BM∴△ONA≌△OMB ( SAS)∴OM=ON ( 全等三角形的对应边相等)(2)不变,理由如下:由上知△ONA≌△OMB∴S△ONA=S△OMB∴S四边形ANOM=S△ONA+S△OMA=S△OMB+S△OMA=S△OAB∴S四边形ANOM=S△OAB=12S△ABC=4(cm2)28.(本小题满分9分)已知点D 是ABC △边AB 上一动点(不与A ,B 重合)分别过点A ,B 向直线CD 作垂线,垂足分别为E ,F ,O 为边AB 的中点.(1)如图1,当点D 与点O 重合时,AE 与BF 的位置关系是____________,OE 与OF 的数量关系是__________;(2)如图2,当点D 在线段AB 上不与点O 重合时,试判断OE 与OF 的数量关系,并给予证明;(3)如图3,当点D 在线段BA 的延长线上时,此时(2)中的结论是否成立?请画出图形并写出主要证明思路. (备注:直角三角形中,斜边上的中线等于斜边的一半)【答案】解:(1)如图1,当点D 与点O 重合时,AE 与BF 的位置关系是AE//BF , OE 与OF 的数量关系是OE=OF ,理由是:∵O 为AB 的中点∴AQ=BO∵AE ⊥CO, BF ⊥CO∴AE//BF ,∠AEO=∠BFO=90°在△AEO 和△BFO 中{∠AOE =∠BOF∠AEO =∠BFO AO =BO∴△AEO ≌△BFO ,∴OE=OF ,故答案:AE//BF ;OE=OF(2)OE=OF证明:延长EO 交BF 于M∵由(1)知:AE//BF∴∠AEO=∠BMO在△AEO 和△BMO 中{∠AOE =∠BOM∠AEO =∠BMO AO =BO∴△AEO ≌△BMO∴EO=MO∵∠BFE=90°∴OE=OF(3)当点D在线段BA(或AB)的延长线上时,此时(2)中的结论成立,证明:延长EO交FB于M,∵由(1)知:AE//BF∴∠AEO=∠BMO在△AEO和△BMO中{∠AOE=∠BOM∠AEO=∠BMOAO=BO∴△AEO≌△BMO∴EO=DO∵∠BFE=90°∴OE=OF。
2017—2018学年部分学校八年级(上)期中考试数学试卷参考答案

G
A
B y E F O D x
(2)过 A 作 AD⊥AE 交 EF 延长线于 D
过 D 作 DK⊥x 轴于 K ∵∠FEA=45°,∴AE=AD ∴可证△AEG≌△DAK,∴D(1,3) 设 F(0,y) ∵S 梯形 EGKD=S 梯形 EGOF+S 梯形 FOKD 1 1 1 (3 4) 7 ( y 4) 6 (3 y) 2 2 2 22 y 7 22 F (0, ) 7
2017-2018 学年部分学校八年级(上)期中考试 数学参考答案
一、选择题 (30 分)
1 2 3 4 5 6 7 8 9 10
C
B
C
D
B
C
B
C
A
A
二、填空题 (18 分) 11. 14. 班 级
密
5 80
12. 15.
八 (5,0)
13. 16.
SSS 12 或 6
17、(8 分) 解:设∠A=x 度,则∠B=2x 度,∠C=x-20° 在△ABC 中,∠A+∠B+∠C=180° ∴x+2x+x-20=180° ∴x=50° 即∠A=50°
∴△ABO≌△AEO(ASA) ∴AB=AE,∵AB=AD,AC=AE,∴AC=AD,
C
(3 )
40°或 20°
E
24、(12 分)
y F O x
(1)过 E 点作 EG⊥x 轴于 G
∵B(0,-4),E(-6,4),∴OB=EG=4 在△AEG 和△ABO 中 EGA BOA 90 EAG BAO EG BO ∴△AEG≌△ABO(AAS),∴AE=AB ∴A 为 BE 中点
A D
20172018学年四川省成都市高新南区八年级数学上期中试题含答案
四川省成都市高新南区2017-2018学年八年级数学上学期期中试题(时间:120分钟,总分:150分)A 卷(共100分)一.选择题(共10小题,共30分)1.下列各数①﹣3.14 ② π ③④227 ) A .2 B .3 C .4 D .5 2.在平面直角坐标系中,点P (﹣1,1)位于( )A .第一象限B .第二象限C .第三象限D .第四象限3.下列语句中正确的是( )A .9的算术平方根是±3B .9的平方根是3C .﹣9的平方根是﹣3D .9的算术平方根是34.满足下列条件的△ABC ,不是直角三角形的是( )A .b 2=a 2﹣c 2B .∠C =∠A ﹣∠BC .∠A :∠B :∠C =3:4:5D .a :b :c =12:13:55.有一长、宽、高分别为5cm 、4cm 、3cm 的木箱,在它里面放入一根细木条(木条的粗细、形变忽略不计)要求木条不能露出木箱.请你算一算,能放入的细木条的最大长度是( )A C . D .6.若点P (a ,b )在第三象限,则M (-ab ,-a )应在 ( )A .第一象限B .第二象限C .第三象限D .第四象限7.要使二次根式x 2有意义,字母x 必须满足的条件是( )A .x ≤2B .x <2C .x ≤﹣2D .x <﹣28.若函数y =(m ﹣1)x |m|﹣5是一次函数,则m 的值为( )A .±1B .﹣1C .1D .2 9.某一次函数的图象经过点(1,2),且y 随x 的增大而减小,则这个函数的表达式可能是( )A .y =2x +4B .y=3x ﹣1C .y =﹣3x +1D .y =﹣2x +410.一块直角三角形的纸片,两直角边AC =6cm,BC =8cm ,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( )A. 5cmB.4cmC. 3cmD.2cm二.填空题(共4小题,共16分)11.若三角形的边长分别为6、8、10,则它的最长边上的高为 . (10题图) 12.一个正数的平方根是2x 和x -6,则这个正数是 .13.若点M (a ﹣3,a +4)在x 轴上,则点M 的坐标是 .14.已知函数y =kx +b (k ≠0)的图象与y 轴交点的纵坐标为﹣2,且当x =2时,y =1.那么此函数的解析式为 .三.计算题(共5个小题,20分)15.计算①65027÷⨯ ②123148+-③13)2()13)(13(81---+-+- 16.求下列各式中的x :①x 2+5=7 ②(x ﹣1)3+64=0.四、解答题(共5个小题,34分)17.如图,每个小方格都是边长为1的小正方形,△ABC 的位置如图所示,你能判断△ABC 是什么三角形吗?请说明理由.(6分)(17题图)18. 对于长方形OABC ,O 为平面直角坐标系的原点,A 点在x轴的负半轴上,C 点在y 轴的正半轴上,点B (m ,n )在第二象限.且m ,n 满足0)3(52=-++n m(1)求点B 的坐标;并在图上画出长方形OABC ;(2)在画出的图形中,若过点B 的直线BP 与长方形OABC 的边交于点P ,且将长方形OABC 的面积分为1:4两部分,求点P 的坐标.(8分) (第18题图)五、(每小题10分,共20分)19.已知一次函数y =kx +b 的图象经过点(1,4)和(2,2).(第20题图)(1)求这个一次函数;(2)画出这个函数的图象,与x 轴的交点A、与y轴的交点B;并求出△AOB的面积;(3)在第四象限内,直线AB上有一点C使△AOC的面积等于△AOB的面积,请求出点C的坐标.20.矩形ABCD中,AB=10,BC=6,点E在线段AB上.点F在线段AD上(1)沿EF折叠,使A落在CD边上的G处(如图),若DG=3,求AF的长;求AE的长;(2)若按EF折叠后,点A落在矩形ABCD的CD边上,请直接写出AF的范围.B卷(共50分)一、填空题.(每题4分,共20分)21.已知x是10的整数部分,y是10的小数部分,则()110--xy的平方根为_______.22..如图,圆柱底面周长为4cm,高为9cm,点A、B分别是圆柱两底面圆周上的点,且A、B在同一母线上,用一棉线从A顺着圆柱侧面绕3圈到B,(第22题图)求棉线最短为cm.23.如图,数轴上表示25,的对应点分别为C、B,点C是AB的中点,则点A表示的数是______.(第23图题)24.直线434+-=xy与x轴、y轴分别交于点A、B,M是y轴上一点,若将△ABM沿AM折叠,点B恰好落在x轴上,则点M的坐标为。
2017-2018学年成都七中实验学校八年级(上)期中数学试卷(含解析)
2017-2018学年成都七中实验学校八年级(上)期中数学试卷(考试时间:120分钟满分:150分)A卷(共100分)一、选择题(每小题3分,共30分)1.在下列各数3π、0、0.2、、0.601600160001、、,无理数的个数是()A.4 B.3 C.2 D.12.下列运算正确的是()A.B.|﹣3|=3 C.D.3.在平面直角坐标系中,位于第二象限的点是()A.(﹣2,﹣3)B.(2,4)C.(﹣2,3)D.(2,3)4.若等腰三角形腰长为10cm,底边长为16cm,那么它的面积为()A.48cm2B.36cm2C.24cm2D.12cm25.下列结果错误的个数是()①=±2;②的算术平方根是4;③12的算术平方根是;④(﹣π)2的算术平方根是π.A.1个B.2个C.3个D.4个6.汽车由重庆驶往相距400千米的成都,如果汽车的平均速度是100千米/时,那么汽车距成都的路程s (千米)与行驶时间t(小时)的函数关系用图象表示为()A.B.C.D.7.一次函数y=kx﹣k(k<0)的图象大致是()A.B.C.D.8.已知点M(3,﹣4),在x轴上有一点与M的距离为5,则该点的坐标为()A.(6,0)B.(0,1)C.(0,﹣8)D.(6,0)或(0,0)9.点M在x轴的上方,距离x轴5个单位长度,距离y轴3个单位长度,则M点的坐标为()A.(5,3)B.(﹣5,3)或(5,3)C.(3,5)D.(﹣3,5)或(3,5)10.在平面直角坐标系中,平行四边形ABCD的顶点A,B,D的坐标分别是(0,0),(5,0),(2,3),则顶点C的坐标是()A.(3,7)B.(5,3)C.(7,3)D.(8,2)二、填空题(每小题4分,共20分)11.(的平方根是,27的立方根是.12.如果|2a﹣5|与互为相反数,则ab=.13.比较大小,填>或<号: 11; 32.14.对于一次函数y=2x﹣5,如果x1<x2,则y1y2(填“>”、“=”、“<”).15.一艘小船早晨8:00出发,它以8海里/时的速度向东航行,1小时后,另一艘小船以12海里/时的速度向南航行,则上午10:00,两小船相距海里.三、解答题(共50分)16.(16分)计算题:(1)﹣9+×(2)+(π﹣3.14)0(3)(﹣2)3+(2004﹣)0﹣|﹣| (4)(+)(﹣)+(﹣)217.(8分)解下列方程:(1)144x2=25(2)﹣100(x﹣1)2=(﹣4)318.(6分)在平面直角坐标系中,△ABC的位置如图所示,请解答下列问题.(1)将△ABC向下平移3个单位长度,得到△A1B1C1;(2)作出△ABC关于y轴对称图形△A2B2C2,画出△A2B2C2,并写出A2的坐标.19.(6分)一个正比例函数与一个一次函数的图象交于点A(3,4),且OA=OB.求:(1)这两个函数的表达式;(2)△AOB的面积S.20.(6分)某人从A城出发,前往离A城30千米的B城.现在有三种车供他选择:①自行车,其速度为15千米/时;②三轮车,其速度为10千米/时;③摩托车,其速度为40千米/时.(1)用哪些车能使他从A城到达B城的时间不超过2小时,请说明理由;(2)设此人在行进途中离B城的路程为s千米,行进时间为t小时,就(1)所选定的方案,试写出s与t 的函数关系式(注明自变量t的取值范围),并在下面给出的平面直角坐标系中画出此函数的图象.21.(8分)如图,直线y=kx﹣1与x轴、y轴分别交于B、C两点,且OB=OC.(1)求B点的坐标和k的值.(2)若点A(x,y)是第一象限内直线y=kx﹣1的一个动点,试写出△AOB的面积与x的函数关系式.(3)当点A运动到什么位置时,△AOB的面积是.B卷(50分)一、填空题:(每小题4分,共20分)22.已知x、y为实数,y=+2,则3x+4y=.23.已知a、b、c为△ABC的三边长,则=.24.直线y=2x+3与y=3x﹣2b的图象交x轴上同一点,则b=.25.如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,将Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,点B经过的路径为,则图中阴影部分的面积是.26.如图,点Q在直线y=﹣x上运动,点A的坐标为(2,0),当线段AQ最短时,点Q的坐标为.二、解答题:(共计30分)27.(8分)某公司到果园基地购买某种优质水果,慰问医务工作者,果园基地对购买量在3000千克以上(含3000千克)的有两种销售方案,甲方案:每千克9元,由基地送货上门.乙方案:每千克8元,由顾客自己租车运回,已知该公司租车从基地到公司的运输费为5000元.(1)分别写出该公司两种购买方案的付款y(元)与所购买的水果质量x(千克)之间的函数关系式,并写出自变量x的取值范围.(2)依据购买量判断,选择哪种购买方案付款最少?并说明理由.28.(10分)如图1,分别以直角三角形ABC三边为边向外作三个正方形,其面积分别用S1、S2、S3表示,则不难证明S1=S2+S3.(1)如图2,分别以直角三角形ABC三边为直径向外作三个半圆,其面积分别用S1、S2、S3表示,设BC=a,AC=b,AB=c,证明:S1=S2+S3.(2)如图3,分别以直角三角形ABC三边为边向外作三个正三角形,其面积分别用S1、S2、S3表示,请你确定S1、S2、S3之间的关系.(不必证明)(3)若分别以直角三角形ABC三边为边向外作三个正多边形,其面积分别用S1、S2、S3表示,请你猜想S1、S2、S3之间的关系?.(不必证明)29.(12分)如图所示,在平面直角坐标系中,直线y=x+1与分别交x轴于点B和点C,点D是直线与y轴的交点.(1)求点B、C、D的坐标;(2)设M(x,y)是直线y=x+1上一点,△BCM的面积为S,请写出S与x的函数关系式;来探究当点M 运动到什么位置时,△BCM的面积为10,并说明理由.(3)线段CD上是否存在点P,使△CBP为等腰三角形,如果存在,直接写出P点的坐标;如果不存在,请说明理由.参考答案与试题解析1.【解答】解:,∴无理数有3π,共2个.故选:C.2.【解答】解:A、C、=2,故选项错误;B、|﹣3|=3,故选项正确;D、9不能开三次方,故选项错误.故选:B.3.【解答】解:根据第二象限的点的坐标的特征:横坐标符号为负,纵坐标符号为正,各选项中只有C(﹣2,3)符合,故选C.4.【解答】解:过A作AD⊥BC于D,∵AB=AC=10cm,BC=16cm,∴BD=DC=8cm,由勾股定理得:AD=6cm,所以△ABC的面积为×BC×AD=×16cm×6cm=48cm2,故选:A.5.【解答】解:①=2,此算式错误;②的算术平方根是2,此结论错误;③12的算术平方根是,此结论正确;④(﹣π)2的算术平方根是π,此结论正确.故符合题意的是①②,故选:B.6.【解答】解:根据题意可知s=400﹣100t(0≤t≤4),∴与坐标轴的交点坐标为(0,400),(4,0).要注意x、y的取值范围(0≤t≤4,0≤y≤400).故选:C.7.【解答】解:∵k<0,∴﹣k>0,∴一次函数y=kx﹣k的图象经过第一、二、四象限,故选:A.8.【解答】解:该点与M点的距离是5,则这点就是以M点为圆心,以5为半径的圆与x轴的交点,如图:过M作x轴的垂线,垂足是N,则ON=3,MN=4.根据勾股定理就可以求得OM=5,则O就是圆与x轴的一个交点,则O坐标是(0,0);设另一个交点是A,MN⊥OA,则本题满足垂径定理,AN=ON=3.∴点A的坐标是(6,0).故选:D.9.【解答】解:∵点距离x轴5个单位长度,∴点M的纵坐标是±5,又∵这点在x轴上方,∴点M的纵坐标是5;∵点距离y轴3个单位长度即横坐标是±3,∴M点的坐标为(﹣3,5)或(3,5).故选:D.10.【解答】解:已知A,B,D三点的坐标分别是(0,0),(5,0),(2,3),∵AB在x轴上,∴点C与点D的纵坐标相等,都为3,又∵D点相对于A点横坐标移动了2﹣0=2,∴C点横坐标为2+5=7,∴即顶点C的坐标(7,3).故选:C.11.【解答】解:=4,4的平方根为±2;27的立方根为3,故答案为:±2;312.【解答】解:∵|2a﹣5|与互为相反数,∴|2a﹣5|+=0,∴2a﹣5=b+2=0,∴a=,b=﹣2,∴ab=﹣5.故答案为﹣5.13.【解答】解:∵<,∴<11;∵3=,2=,∴3>2.故答案为:<,>.14.【解答】解:∵k=2>0,∴y随x的增大而增大.∵x1<x2,∴y1<y2.15.【解答】解:在直角△OAB中,OB=2×8=16海里.OA=12海里,根据勾股定理:AB===20海里.故答案为:20.16.【解答】解:(1)原式=3﹣3+6=6;(2)原式=+1=3+1=4;(3)原式=﹣8+﹣=﹣8;(4)原式=3﹣2+3+2﹣2=6﹣2.17.【解答】解:(1)方程变形得:x2=,开平方得:x=±,解得:x1=,x2=﹣;(2)方程变形得:(x﹣1)2=,开平方得:x﹣1=或x﹣1=﹣,解得:x1=,x2=.18.【解答】解:(1)如图所示:△A1B1C1即为所求;(2)如图所示:△A2B2C2即为所求,A2的坐标(2,3).19.【解答】解:(1)设直线OA的解析式为y=kx,把A(3,4)代入得4=3k,解得k=,所以直线OA的解析式为y=x;∵A点坐标为(3,4),∴OA==5,∴OB=OA=5,∴B点坐标为(0,﹣5),设直线AB的解析式为y=ax+b,把A(3,4)、B(0,﹣5)代入得,解得,∴直线AB的解析式为y=3x﹣5;(2)△AOB的面积S=×5×3=.20.【解答】解:(1)∵30÷15=2,30÷10=3,30÷40=,∴此人可选骑自行车或摩托车.(2)s=30﹣15t,(0≤t≤2)或s=30﹣40t,(0≤t≤)对于s=30﹣15t,(0≤t≤20①t 0 2s 30 0对于s=30﹣40t,(0≤t≤)②t 0s 30 021.【解答】解:(1)令y=kx﹣1中x=0,则y=﹣1,∴C(0,﹣1),OC=1.∵OB=OC,∴OB=,∴点B的坐标为(,0),把B(,0)代入y=kx﹣1中,得0=k﹣1,解得:k=2.(2)∵点A(x,y)是第一象限内直线y=2x﹣1的一个动点,∴A(x,2x﹣1)(x>),∴S=•OB•y=×(2x﹣1)=x﹣(x>).(3)当S=时,分两种情况:①当点A在x轴上方时,有x﹣=,解得:x=1,∴y=2x﹣1=1,∴A(1,1);②当点A在x轴下方时,有﹣×y=,解得:y=﹣1,∴x==0,∴A(0,﹣1).故当点A的坐标为(1,1)或(0,﹣1)时,△AOB的面积为.22.【解答】解:由题意得:,解得:x=4,则y=2,3x+4y=12+8=20,故答案为:20.23.【解答】解:原式=|a﹣b+c|+|a﹣b﹣c|,∵a、b、c为△ABC的三边长,∴a+c>b,即a﹣b+c>0;a<b+c,即a﹣b﹣c<0,∴原式=a﹣b+c﹣(a﹣b﹣c)=a﹣b+c﹣a+b+c=2c.故答案为:2c.24.【解答】解:令2x+3=0,则x=﹣,把x=﹣代入方程3x﹣2b=0得:3×(﹣)﹣2b=0,解得:b=﹣.25.【解答】解:∵∠ACB=90°,AC=BC=1,∴AB=,∴S扇形ABD==.又∴Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,∴Rt△ADE≌Rt△ACB,∴S阴影部分=S△ADE+S扇形ABD﹣S△ABC=S扇形ABD=.故答案为:.26.【解答】解:过A作AB⊥直线y=﹣x于B点,过B作BC⊥x轴于C点,如图,∵直线y=﹣x为第二、四象限的角平分线,∴∠AOB=45°,∴△AOB为等腰直角三角形,而点A的坐标为(2,0),即OA=2,∴BC=OC=OA=1,∴B点坐标为(1,﹣1),所以当点Q运动到B点时,线段AQ最短,此时Q的坐标为(1,﹣1).故答案为(1,﹣1).27.【解答】解:(1)甲方案:每千克9元,由基地送货上门,根据题意得:y=9x;x≥3000,乙方案:每千克8元,由顾客自己租车运回,已知该公司租车从基地到公司的运输费为5000元,根据题意得:y=8x+5000;x≥3000.(2)根据题意可得:当9x=8x+5000时,x=5000,当购买5000千克时两种购买方案付款相同,当大于5000千克时,9x>8x+5000,∴甲方案付款多,乙付款少,当小于5000千克时,9x<8x+5000,∴甲方案付款少,乙付款多.28.【解答】解:(1)∵S3=AC2,S2=BC2,S1=AB2,∴AC2+BC2=AB2,即b2+a2=c2,在Rt△ABC中,∵b2+a2=c2,∴S2+S3=S1.(2)S1=S2+S3.理由:由题意可得出:S1=AB2,S2=BC2,S3=AC2,∴则S1=c2,S2=a2,S3=b2∴S2+S3=(a2+b2)=c2=S1,即S1=S2+S3.(3)由(1)(2)可得出:S1=S2+S3.29.【解答】(1)解:把y=0代入y=x+1得:0=x+1,∴x=﹣1,∴B(﹣1,0),当x=0时,y=﹣x+3=0,∴D(0,3),把y=0代入y=﹣x+3得:0=﹣x+3,∴x=4,∴C(4,0),答:B(﹣1,0),C(4,0),D(0,3).(2)解:BC=4﹣(﹣1)=5,∵M(x,y)在y=x+1上,∴M(x,x+1),过M作MN⊥x轴于N,①当M在x轴的上方时,MN=x+1,∴S=BC×MN=×5×(x+1)=x+;②当M在x轴的下方时,MN=|x+1|=﹣x﹣1,∴S=BC×MN=×5×(﹣x﹣1)=﹣x﹣;把s=10代入得:10=x+得:x=3,x+1=4;把s=10代入y=﹣x﹣得:x=5=﹣5,x+1=﹣4;∴M(3,4)或(﹣5,﹣4)时,s=10;即S与x的函数关系式是,点M运动到(3,4)或(﹣5,﹣4)时,△BCM的面积为10.(3)解:由勾股定理得:CD==5,有三种情况:①CB=CP=5时,此时P与D重合,P的坐标是(0,3);②BP=PC时,此时P在BC的垂直平分线上,P的横坐标是x==,代入y=﹣x+3得:y=,∴P(,);③BC=BP时,设P(x,﹣x+3),根据勾股定理得:(x+1)2+=52,解得:x=﹣,x=4,∵P在线段CD上,∴x=﹣舍去,当x=4时,与C重合,舍去,∴存在点P,使△CBP为等腰三角形,P点的坐标是(0,3)或(,).。
2017-2018学年成都市高新区八年级(上)月考数学试卷(12月份)(含解析)
2017-2018学年成都市高新区八年级(上)12月月考数学试卷(考试时间:120分钟满分:150分)A卷(共100分)一.选择题(每小题3分,共30分)1.在函数y=中,自变量x的取值范围是()A.x≥2 B.x≥﹣2 C.x>2 D.x>﹣22.下列实数中是无理数的是()A.B.0.212121 C.3πD.3.若点P(x,y)在第四象限内,且满足|x|=5,|y|=3,则点P的坐标是()A.(5,﹣3)B.(﹣5,3)C.(5,3)D.(﹣5,﹣3)4.在△ABC中,∠C=90°,且a=9,c=41,则b为()A.50 B.32 C.42 D.405.下列各图象中,不是y关于x的函数图象的是()A.B.C.D.6.甲、乙、丙、丁四人进行射箭测试,每人10次射箭成绩的平均数都是8.9环,方差分别是S甲2=0.65,S乙2=0.55,S丙2=0.50,S丁2=0.45,则射箭成绩最稳定的是()A.甲B.乙C.丙D.丁7.已知直线l1:y=﹣3x+b与直线l2:y=﹣kx+m在同一坐标系中的图象交于点(1,﹣2),那么方程组的解是()A.B.C.D.8.已知数据:2,1,4,6,9,8,6,1,则这组数据的中位数是()A.4 B.6 C.5 D.4和69.对于一次函数y=x+6,下列说法错误的是()A.y的值随着x值的增大而增大B.函数图象与x轴正方向成45°角C.函数图象不经过第四象限D.函数图象与x轴交点坐标是(0,6)10.“鸡兔同笼”是我国民间流传的诗歌形式的数学题:“鸡兔同笼不知数,三十六头笼中露,看来脚有100只,几多鸡儿几多兔”解决此问题,设鸡为x只,兔为y只,则所列方程组正确的是()A.B.C.D.二、填空题(每题4分,共16分)11.若x m+2﹣2y=5是关于x,y的二元一次方程,则m=.12.若正比例函数y=kx的图象与一次函数y=2x﹣5的图象互相平行,则该正比例函数的表达式为.13.如果三条线段的长分别为8cm,xcm,15cm,这三条线段恰好能组成一个直角三角形,那么以xcm为边长的正方形面积是cm2.14.如图,在平面直角坐标系中,点A的坐标为(﹣2,0),点B的坐标为(0,﹣7),以点B为直角顶点,BA为腰作等腰Rt△ABC,则点C的坐标为.三.解答题(共54分)15.(15分)(1)计算:;(2)计算:(3)解方程组:.16.(6分)已知+()2=2000,y=++,求y﹣x的平方根.17.(6分)小兰在玩具厂劳动,做4个小狗7个小汽车用去3小时42分,做5个小狗6个小汽车用去3小时37分.平均做1个小狗与1个小汽车各用多少时间?18.(9分)如图,在平面直角坐标系中,直线l1:y=x与直线l2:y=kx+b相交于点A,点A的横坐标为4,直线l2交y轴负半轴于点B,且OA=OB.(1)求点B的坐标及直线l2的函数表达式;(2)现将直线l1沿y轴向上平移5个单位长度,交y轴于点C,交直线l2于点D,试求△BCD的面积.19.(8分)武侯区某校开展了“我阅读我快乐”活动,王华调查了本校40名学生本学期购买课外书的费用情况,数据如下表:20 30 50 80 100费用(单位:元)人数 6 10 12 8 4(1)这40名学生本学期购买课外书的费用的众数是,中位数是,(2)求这40名学生本学期购买课外书的平均费用;(3)若该校共有学生1000名,试估计该校本学期购买课外书费用在50元以上(含50元)的学生有多少名?20.(10分)在等腰Rt△ABC中,∠ABC=90°,AB=BC,(1)如图1,D为线段BC的延长线上一点,连接AD,过点B作BE⊥AD,已知AB=6,AD=10,则CD=,BE=;(2)如图2,点F是线段AC上一点,连接BF,过点C作CG⊥BF于点G,过点B作BH⊥AC于点H,连接GH,①若=,S△BCG=5,求AC的长;②求证:CG﹣BG=GH.B卷(50分)一、填空题(每小题4分,共20分)21.方程组的解是.22.某二元一次方程的解是(m为常数),若把x看做平面直角坐标系中一个点P的横坐标,y看作点P的纵坐标,下列5种说法:①点P(x,y)一定不在第三象限;②点P(x,y)可能是坐标原点;③点P(x,y)的纵坐标y随横坐标x增大而增大;④点P(x,y)的纵坐标y随横坐标x增大而减小:⑤横坐标x的值每增加1,纵坐标y的值就会减少3.其中正确的是(写出序号).23.已知点P(a,b)在直线y=﹣x﹣8上,且=3,则点P到原点O的距离等于.24.对于每个非零自然数n,x轴上有A n(x,0),B n(y,0),以A n B n表示这两点间的距离,其中A n,B n的横坐标分别是的解,则A1B1+A2B2+…+A2016B2016的值等于.25.如图,平面直角坐标系中,已知直线y=x上一点P(2,2),C为y轴上一点,连接PC,线段PC绕点P顺时针旋转90°至线段PD,过点D作直线AB⊥x轴,垂足为B,直线AB与直线y=x交于点A,连接CD,直线CD与直线y=x交于点Q,当△OPC≌△ADP时,则C点的坐标是,Q点的坐标是.二、解答题(共30分)26.(8分)A,B两地相距60km,甲乙两人从两地出发相向而行,甲先出发,图中l1,l2表示两人离A地的距离S(km)与时间t(h)的关系,请结合图象解答下列问题:(1)表示乙离A地的距离与时间关系的图象是(填l1或l2);(2)请分别求出直线l1与l2的解析式;(3)甲出发多少小时两人恰好相距10km?27.(10分)如图所示,AB∥CD,直线EF与AB交于点E,与CD交于点F,FH是∠EFD的角平分线,且与AB交于点H,GF⊥FH交AB于点G(GF>HF).(1)如图①,求证:点E是GH的中点;(2)如图②,过点E作EP⊥AB交GF于点P,试猜想线段GP、PF、HF有怎样的数量关系,并证明自己的猜想;(3)如图③,过点E作EP⊥EF交GF于点P,试猜想线段GP、PF、HF又有怎样的数量关系,并证明自己的猜想.28.(12分)如图1,已知直线y=2x+2与y轴、x轴分别交于A、B两点,以B为直角顶点在第二象限作等腰Rt△ABC.(1)求点C的坐标,并求出直线AC的关系式.(2)如图2,直线CB交y轴于E,在直线CB上取一点D,连接AD,若AD=AC,求证:BE=DE.(3)如图3,在(1)的条件下,直线AC交x轴于M,P(,k)是线段BC上一点,在线段BM上是否存在一点N,使直线PN平分△BCM的面积?若存在,请求出点N的坐标;若不存在,请说明理由.参考答案与试题解析1.【解答】解:∵x+2≥0,∴m≥﹣2.故选:B.2.【解答】解:,0.212121,﹣是有理数,3π是无理数,故选:C.3.【解答】解:∵点P(x,y)在第四象限,∴x>0,y<0,又∵|x|=5,|y|=3,∴点P(x,y)坐标中,x=5,y=﹣3,∴P点的坐标是(5,﹣3).故选:A.4.【解答】解:由勾股定理得:b===40,故选:D.5.【解答】解:A、满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故A是函数;B、满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故B是函数;C、满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故C是函数;D、不满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故D不是函数,故选:D.6.【解答】解:∵=0.65,=0.55,=0.50,=0.45,丁的方差最小,∴射箭成绩最稳定的是:丁.故选:D.7.【解答】解:∵直线l1:y=﹣3x+b与直线l2:y=﹣kx+m在同一坐标系中的图象交于点(1,﹣2),∴方程组的解为,故选:A.8.【解答】解:从小到大排列此数据为:1、1、2、4、6、6、8、9,第4位和第5位分别是4和6,平均数是5,则这组数据的中位数是5.故选:C.9.【解答】解:∵y=x+6中k=1>0,∴y随x的增大而增大,故A正确;令x=0可得y=6,令y=0可求得x=﹣6,∴直线与x轴交于点(﹣6,0),与y轴交于点(0,6),∴函数图象与x轴的正方向成45°角,故B、C正确;D错误;故选:D.10.【解答】解:如果设鸡为x只,兔为y只.根据“三十六头笼中露”,得方程x+y=36;根据“看来脚有100只”,得方程2x+4y=100.即可列出方程组.故选:C.11.【解答】解:由题意,得m+2=1,解得m=﹣1,故答案为:﹣1.12.【解答】解:由题意得:k=2则该正比例函数的表达式为:y=2x;故答案为:y=2x.13.【解答】解:当x为直角边时,15为斜边,根据勾股定理得,x2+82=152,解得:x2=161;当x为斜边时,根据勾股定理得,82+152=x2,解得:x2=289.即以xcm为边长的正方形面积是161或289cm2.故答案为161或289.14.【解答】解:分两种情况:①如图1,当C在第四象限时,过C作CP⊥OB于点P,∴∠BPC=90°,∵点A的坐标为(﹣2,0),点B的坐标为(0,﹣7),∴OA=2,OB=7,∵△ABC等腰直角三角形,∴AB=BC,∠ABC=∠ABO+∠OBC=90°,∴∠ABO=∠BCP,∴△AOB≌△BPC,∴AO=BP=2,CP=OB=7,∴C(7,2﹣7);②如图2,当C在第三象限时,过C作CP⊥OB于点P,同理得:△AOB≌△BPC,∴AO=PB=2,OB=CP=7,∴C(﹣7,﹣7﹣2),综上所述,点C的坐标为(7,2﹣7)或(﹣7,﹣7﹣2).故答案为:(7,2﹣7)或(﹣7,﹣7﹣2).15.【解答】解:(1)=+6=;(2)计算:=+3+12﹣5=(3)解:原方程可化为:,①+②得:4y=28,∴y=7,把y=7代入①得x=5,∴方程组的解为:.16.【解答】解:由题意得,998﹣x≥0,解得x≤998,所以,1000﹣x+998﹣x=2000,解得x=﹣1,由题意得,m﹣1≥0且1﹣m≥0,解得m≥1且m≤1,所以,m=1,y==3,所以,y﹣x=3﹣(﹣1)=3+1=4,∵(±2)2=4,∴4的平方根是±2,即y﹣x的平方根是±2.17.【解答】解:设平均做一个小狗需要x分钟,做一个小汽车需要y分钟,根据题意得:,解得:.答:平均做一个小狗需要17分钟,做一个小汽车需要22分钟.18.【解答】解:(1)∵点A的横坐标为4,∴y=×4=3,∴点A的坐标是(4,3),∴OA==5,∵OA=OB,∴OB=2OA=10,∴点B的坐标是(0,﹣10),设直线l2的表达式是y=kx+b,则,解得,∴直线l2的函数表达式是y=x﹣10;(2)将直线l1沿y轴向上平移5个单位长度得y=x+5,解得交点的横坐标为6,∴S△BCD=×BC•x D=×(10+5)×6=45.19.【解答】解:(1)这次调查获取的样本数据的众数是50元,这次调查获取的样本数据的中位数是50元,故答案是:50,50;(2)平均数为:×(6×20+10×30+12×50+8×80+4×100)=51.5(元);(3)调查的总人数是40人,其中购买课外书花费50元以上(含50元)的学生有24人,∴该校本学期购买课外书费用在50元以上(含50元)的学生有:1000×=600(人).20.【解答】(1)解:如图1中,∵∠ABC=90°,AB=BC=6,AD=10,∴BD===8,∴CD=BD﹣BC=8﹣6=2,∵BE⊥AD∴S△ABD=•AB•BD=•AD•BE,∴BE===,故答案为2,.(2)①解:如图2,∵,∴设BG=x,CG=2x,则BC=x,∵S△BCG=5,∴•x•2x=5,x=±,∴BC=x=5,∴AB=BC=5,∵△ABC是等腰直角三角形,∴AC==5;②如图3,∵CG⊥BF,BH⊥AC,∴∠BGC=∠BHC=90°,∴B、G、H、C四点共圆,∴∠HGC=∠HBC=45°,过H作HD⊥GH,交CG于D,∴△GHD是等腰直角三角形,∴DG=GH,GH=DH,∵AB=BC,∠ABC=90°,BH⊥AC,∴BH=AC=HC,∵∠GHD=∠BHC=90°,∴∠BHG=∠CHD,∵∠BGH=90°+45°=135°,∠HDC=180°﹣∠GDH=180°﹣45°=135°,∴∠BGH=∠HDC,∴△BHG≌△CHD,∴BG=CD,∴DG=CG﹣CD=CG﹣BG=GH.21.【解答】解:在方程组中,①+③可得:3x+2y=43④,由②、④组成二元一次方程组,由②可得x=y+1,代入④可得:3(y+1)+2y=43,解得y=8,∴x=y+1=9,把x、y的值代入①可得:9+8+z=23,解得z=6,∴原方程组的解为.故答案为:.22.【解答】解:由x=m,得m=x,将m=x代入y=﹣3m+1,得y=﹣3x+1.y=﹣3x+1是一次函数,且经过第一、二、四象限,不经过第三象限,故①正确;一次函数y=﹣3x+1不经过原点,故②错误;由k=﹣3<0,可知y随x的增大而减小,故③错误,④正确.当x增加1时,y=﹣3(x+1)+1=﹣3x﹣3+1=﹣3x+1﹣3,即y的值减少3,故⑤正确;故答案为:①④⑤.23.【解答】解:∵点P(a,b)在直线y=﹣x﹣8上,=3,∴a+b=﹣8,ab=15,∴OP===.故答案为:.24.【解答】解:解方程组得,则A n(,0),B n(,0),所以A1B1=1﹣,A2B2=﹣,…A2016B2016=﹣,所以A1B1+A2B2+…+A2016B2016=1﹣+﹣+…+﹣=1﹣=.故答案为.25.【解答】解:过P点作x轴的平行线交y轴于M,交AB于N,如图,设C(0,t),∴P(2,2),∴OP=2,OM=BN=PM=2,CM=t﹣2,∵线段PC绕点P顺时针旋转90°至线段PD,∴PC=PD,∠CPD=90°,∴∠CPM+∠DPN=90°,而∠CPM+∠PCM=90°,∴∠PCM=∠DPN,在△PCM和△DPN中,∴△PCM≌△DPN,∴PN=CM=t﹣2,DN=PM=2,∴MN=t﹣2+2=t,DB=2+2=4,∴D(t,4),∵△OPC≌△ADP,∴AD=OP=2,∴A(t,4+2),把A(t,4+2)代入y=x得t=4+2,∴C(0,4+2),D(4+2,4),设直线CD的解析式为y=kx+b,把C(0,4+2),D(4+2,4)代入得,解得,∴直线CD的解析式为y=(1﹣)x+4+2,解方程组得,∴Q(2+2,2+2).故答案为(0,4+2),(2+2,2+2).26.【解答】解:(1)由题意可知,乙的函数图象是l2,故填:l2;(2)设直线l1的解析式为y1=kx+b,可得:,解得:,所以直线l1的解析式为y1=﹣30x+60;设直线l2的解析式为y2=mx+n,可得:,解得:,所以直线l2的解析式为y2=20x﹣10;(3)设甲出发x小时两人恰好相距10km.由题意30x+20(x﹣0.5)+10=60或30x+20(x﹣0.5)﹣10=60 解得x=1.2或1.6,答:甲出发1.2小时或1.6小时两人恰好相距10km.27.【解答】(1)证明:∵AB∥CD,∴∠EHF=∠HFD,∵FH平分∠EFD,∴∠EFH=∠HFD,∴∠EHF=∠EFH,∴EF=EH,∵∠GFH=90°,∴∠EFG+∠EFH=90°,∠EGF+∠EHF=90°,∴∠EFG=∠EGF,∴EG=EF,∴EH=EG,∴E为HG的中点;(2)解:结论:GP2=PF2+HF2.理由:连接PH,如图②:∵EP⊥AB,又∵E是GH中点,∴PE垂直平分GH,∴PG=PH,在Rt△PFH中,∠PFH=90°,由勾股定理得:PH2=PF2+HF2,∴GP2=PF2+HF2;(3)解:结论:PF2=GP2+FH2.理由:如图③,延长PE,使PE=EM,连接MH,MF,在△GPE和△HME中,,∴△GPE≌△HME(SAS),∴GP=MH,∠1=∠2,∵GF⊥FH,∴∠1+∠3=90°,∴∠2+∠3=90°,∵EF⊥PM,PE=EM,∴PF=MF,在RT△MHF中,MF2=MH2+FH2,∴PF2=GP2+FH2.28.【解答】解:(1)如图1,作CQ⊥x轴,垂足为Q,∵∠OBA+∠OAB=90°,∠OBA+∠QBC=90°,∴∠OAB=∠QBC,又∵AB=BC,∠AOB=∠Q=90°,∴△ABO≌△BCQ,∴BQ=AO=2,OQ=BQ+BO=3,CQ=OB=1,∴C(﹣3,1),由A(0,2),C(﹣3,1)可知,直线AC:y=x+2;(2)如图2,作CH⊥x轴于H,DF⊥x轴于F,DG⊥y轴于G,∵AC=AD,AB⊥CB,∴BC=BD,∴△BCH≌△BDF,∴BF=BH=2,∴OF=OB=1,∴DG=OB,∴△BOE≌△DGE,∴BE=DE;(3)如图3,直线BC:y=﹣x﹣,P(,k)是线段BC上一点,∴P(﹣,),由y=x+2知M(﹣6,0),∴BM=5,则S△BCM=.假设存在点N使直线PN平分△BCM的面积,则BN•=×,∴BN=,ON=,∵BN<BM,∴点N在线段BM上,∴N(﹣,0).。
八年级数学上学期期中试题新人教版(2)
四川省成都市高新区2017-2018学年八年级数学上学期期中试题注意事项:1、本试卷分A卷(100分)和B卷(50分)两部分;2、本堂考试120分钟,满分150分;3、答题前,考生务必先将自己的姓名、考号填写在答卷上,并用2B铅笔填涂考号和选择题;4、考试结束后,将答题卷交回。
A卷(100分)一.选择题(每小题3分,共30分)1.在实数,,,,3.14中,无理数有()A.1个B.2个C.3个D.4个2.下列各组数中,能构成直角三角形的是()A.4,5,6 B.1,1,C.6,8,11 D.5,12,233.下列说法中,不正确的有()①任何数都有算术平方根;②一个数的算术平方根一定是正数;③a2的算术平方根是a;④(π﹣4)2的算术平方根是π﹣4;⑤算术平方根不可能是负数,A.2个B.3个C.4个D.5个4.下列说法正确的是()A.若,则a<0 B.,则a>0C.D.5的平方根是5.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,这一过程中汽车的行驶速度v和行驶时间t之间的关系用图象表示,其图象可能是()A.B.C.D6.下列说法不正确的是()A.若x+y=0,则P(x,y)在第二、四象限角平分线上;B.在x轴上的点纵坐标为0 C.点P(﹣1,3)到y轴的距离是1;D.点A(﹣a2﹣1,|b|)一定在第二象限7.如图,一根树在离地面9米处断裂,树的顶部落在离底部12米处.树折断之前()米.A.15 B.20 C.3 D.247题图 9题图 10题图 14题图8.已知:4+和4﹣的小数部分分别是a和b,则ab﹣3a+4b﹣7等于()A.﹣3 B.﹣4 C.﹣5 D.﹣69.如9题图,放置的△OAB1,△B1A1B2,△B2A2B3,…都是边长为2的等边三角形,边AO在y轴上,点B1,B2,B3,…都在直线上,则A2016的坐标是()A.(2014,2016)B.(2015,2016)C.(2016,2016)D.(2016,2018)10.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,设AC=b,BC=a,AB=c,CD=h,有下列说法:①a•b=c•h;②a+b<c+h;③以a+b、h、c+h为边的三角形是直角三角形;④+=.正确的有()A.1个B.2个C.3个D.4个二.填空题(每小题4分,共16分)11.直角三角形两直角边长分别为3和4,则它斜边上的高为.12.若最简二次根式与是同类二次根式,则m的值是.13.已知点(5a﹣7,﹣6a﹣2)在第二、四象限的角平分线上,则a=.14.如14题图,直线y=﹣x+4与x轴、y轴分别交于A、B两点,把△AOB绕A顺时针旋转90°后得到△AO′B′,则点B′的坐标是.三.解答题(共54分)15.计算:(每小题6分,共12分)(1)×+(2)+(+1)(﹣1)16.已知y=y1+y2,而y1与x+1成正比例,y2与x2成正比例,并且x=1时,y=2;x=0时,y=2,求y与x的函数关系式.(8分)17.已知某开发区有一块四边形的空地ABCD,如图所示,现计划在空地上种植草皮,经测量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,问要多少投入?(8分)18.已知x、y、a满足:,求长度分别为x、y、a的三条线段组成的三角形的面积.(8分)19.如图,经过原点的直线l1与经过点A(0,24)的直线l2相交于点B(18,6).在x轴上有一点P(a,0)(a>0),过点P作x轴的垂线分别交直线l1、l2于点C、D.(1)求直线l2的表达式;(2)若线段CD长为12,求此时a的值;(8分)20.在学完勾股定理的证明后发现运用“不同方式表示同一图形的面积”可以证明一类含有线段的等式,这种方法称之为面积法.学有所用:在等腰△ABC中,AB=AC,其一腰上的高为h,M是底边BC上的任意一点,M到腰AB、AC的距离分别为h1、h2.(1)结合图1,(1)结合图1,写出h1、h2、h之间有什么样的结论.(不证明)(2)如图2,当点M在BC延长线上时,直接写出h1、h2、h之间又有什么样的结论;(3)利用以上结论解答,如图3在平面直角坐标系中有两条直线l1:y=x+3,l2:y=﹣3x+3,若l2上的一点M到l1的距离是.求点M的坐标.(10分)B卷(50分)一、填空题(每小题4分,共20分)21.若分式有意义,则x的取值范围是.22.已知一个正数的两个平方根分别是3x﹣2和5x+6,则这个正数是.23.如图,有一个圆柱,它的高为13cm ,底面周长为10cm ,在圆柱的下底面上A 点处有一个蚂蚁想吃到离上底面1cm 处的B 点的食物,需爬行的最短距离为.23题图 24题图 25题图24.如图,正方形ABDE 、CDFI 、EFGH 的面积分别为25、9、16,△AEH 、△BDC 、△GFI 的面积分别为S 1、S 2、S 3,则S 1+S 2+S 3=.25.如图,在平面直角坐标系中,点P (1,2),将线段OP 沿y 轴正方向移动m (m >0)个单位长度至O ′P ′,以O ′P ′为直角边在第一象限内作等腰直角△O ′P ′Q ,若点Q 在直线y=x 上,则m 的值为.二、解答题(30分) 26、(8分)(1)已知:321,321-=+=y x .求xy y x -+2222的值;(2)已知x=215+,求331xx x ++的值.27.(10分)如图,在平面直角坐标系中,已知A (a ,0),B (b ,0),且a 、b 满足|a+1|+(b ﹣3)2=0.(1)填空:a=,b=;(2)如果在第三象限内有一点M (﹣2,m ),请用含m 的式子表示△ABM 的面积; (3)在(2)条件下,当m=﹣时,在y 轴上有一点P ,使得△BMP 的面积与△ABM 的面积相等,请求出点P 的坐标.28、(12分)刘同学在一次课外活动中,用硬纸片做了两个直角三角形,见图①、②.图①中,∠B=90°,∠A=30°,BC=6cm ;图②中,∠D=90°,∠E=45°,DE=4cm .图③是刘同学所做的一个实验:他将△DEF 的直角边DE 与△ABC 的斜边AC 重合在一起,并将△DEF 沿AC 方向移动.在移动过程中,D 、E 两点始终在AC 边上(移动开始时点D 与点A 重合).刘同学经过进一步地研究,编制了如下问题:问题①:当△DEF移动至什么位置,即AD的长为多少时,F、C的连线与AB平行?问题②:在△DEF的移动过程中,S△ADB+S△CEB的值是否为一定值?如果是,求出此定值;如果不是,请说明.问题③:当△DEF移动至什么位置,即AD的长为多少时,以线段AD、FC、BC的长度为三边长的三角形是直角三角形?请你分别完成上述三个问题的解答过程.初二数学试卷参考答案与试题解析一.选择题(每小题3分,共30分)二.填空题(每小题4分,共16分)11.12.±2 13.﹣9 14.(7,3)三.解答题(共54分)15.计算:(每小题6分,共12分)(1)×+(2)+(+1)(﹣1)【解答】(1)原式=+2=3+2=5;(2)原式=﹣+3﹣1=3﹣+3﹣1=5﹣;16.(8分)已知y=y1+y2,而y1与x+1成正比例,y2与x2成正比例,并且x=1时,y=2;x=0时,y=2,求y与x的函数关系式.【解答】∵y1与x+1成正比例,y2与x2成正比例, 设y1=a(x+1),y2=bx2,(ab≠0)∴y=a(x+1)+bx2,,解得,∴y=﹣2x2+2x+2.17.(8分)已知某开发区有一块四边形的空地ABCD,如图,现计划在空地上种植草皮,经测量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,问要多少投入?【解答】连接BD,在Rt△ABD中,BD2=AB2+AD2=32+42=52,在△CBD中,CD2=132BC2=122,而122+52=132,即BC2+BD2=CD2,∴∠DBC=90°,S四边形ABCD=S△BAD+S△DBC===36.所以需费用36×200=7200(元).18.已知x、y、a满足:,求长度分别为x、y、a的三条线段组成的三角形的面积.(8分)【解答】根据二次根式的意义,得,解得x+y=8,∴+=0,根据非负数得解得x=3,y=5,a=4,∴可以组成直角三角形,面积为6.19.(8分)如图,经过原点的直线l1与经过点A(0,24)的直线l2相交于点B(18,6).在x轴上有一点P(a,0)(a>0),过点P作x轴的垂线分别交直线l1、l2于点C、D.(1)求直线l2的表达式;(2)若线段CD长为12,求此时a的值;【解答】解:(1)设l1:y=k1x,∵过点B(18,6),∴18k1=6,解得:k1=,∴l1的表达式为y=x;设l2:y=k2x+b,∵过点A (0,24),B(18,6)∴,解得:k2=﹣1,b=24,∴直线l2的表达式y=﹣x+24;(2)∵在x轴上有一点P(a,0),过点P作x轴的垂线分别交直线l1、l2于点C、D,∴C(a,a),D(a,﹣a+24),∴a﹣(﹣a+24)=12或﹣a+24﹣a=12,解得:a=27或a=9;21.(10分)在学完勾股定理的证明后发现运用“不同方式表示同一图形的面积”可以证明一类含有线段的等式,这种方法称之为面积法.学有所用:在等腰△ABC中,AB=AC,其一腰上的高为h,M是底边BC上的任意一点,M到腰AB、AC的距离分别为h1、h2.(1)结合图1,写出h 1、h 2、h 之间有什么样的结论.(不证明)(2)如图2,当点M 在BC 延长线上时,直接写出h 1、h 2、h 之间又有什么样的结论; (3)利用以上结论解答,如图3在平面直角坐标系中有两条直线l 1:y=x+3,l 2:y=﹣3x+3,若l 2上的一点M 到l 1的距离是.求点M 的坐标.【解答】(1)解:h 1+h 2=h ;(2)h 1﹣h 2=h .(3)解:在y=x+3中,令x=0得y=3;令y=0得x=﹣4,所以A (﹣4,0),B (0,3)同理求得C (1,0).AB==5,AC=5,所以AB=AC ,即△ABC 为等腰三角形.(ⅰ)当点M 在BC 边上时,由h 1+h 2=h 得:+M y =OB ,M y =3﹣=, 把它代入y=﹣3x+3中求得:M x =,所以此时M (,).(ⅱ)当点M 在CB 延长线上时,由h 1﹣h 2=h 得:M y ﹣=OB ,M y =3+=, 把它代入y=﹣3x+3中求得:M x =﹣,所以此时M (﹣,). 综合(ⅰ)、(ⅱ)知:点M 的坐标为M (,)或(﹣,). B 卷(50分) 一、填空题(每小题4分,共20分) 21. x <3且x ≠﹣3 22.23.13cm24. 18 25. 2或3 .二、解答题(30分) 26、(8分)(1)已知:321,321-=+=y x .求xy y x -+2222的值;(2)已知x=215+,求331xx x ++的值. 【解答】解:(1)x=321+=2-; y=2+;所以原式=2(2-)2+2(2+)2-(2-)(2+)=14-8+14+8-1=27;(2)因为x=215+,所以2x=15+,所以2x-1=,平方的:4x 2-4x=4,x 2-x=1.所以x+1=x 2所以原式=323x x x +=x x x ==+3432xx )1(x =215+ 27.(10分)如图,在平面直角坐标系中,已知A (a ,0),B (b ,0),其中a ,b 满足|a+1|+(b ﹣3)2=0.(1)填空:a=﹣1 ,b= 3 ;(2)如果在第三象限内有一点M (﹣2,m ),请用含m 的式子表示△ABM 的面积;(3)在(2)条件下,当m=﹣时,在y轴上有一点P,使得△BMP的面积与△ABM的面积相等,请求出点P的坐标.【解答】解:(1)∵|a+1|+(b﹣3)2=0,解得:a=﹣1,b=3,(2)过点M作MN⊥x轴于点N,∵A(﹣1,0)B(3,0)∴AB=1+3=4,又∵点M(﹣2,m)在第三象限∴MN=|m|=﹣m∴S△ABM=AB•MN=×4×(﹣m)=﹣2m;(3)当m=﹣时,M(﹣2,﹣)∴S△ABM=﹣2×(﹣)=3,点P有两种情况:①当点P在y轴正半轴上时,设点p(0,k)S△BMP=5×(+k)﹣×2×(+k)﹣×5×﹣×3×k=k+,∵S△BMP=S△ABM,∴k+=3,解得:k=0.3,∴点P坐标为(0,0.3);②当点P在y轴负半轴上时,设点p(0,n),S△BMP=﹣5n﹣×2×(﹣n﹣)﹣×5×﹣×3×(﹣n)=﹣n﹣,∵S△BMP=S△ABM,∴﹣n﹣=3,解得:n=﹣2.1∴点P坐标为(0,﹣2.1),综上:点P的坐标为(0,0.3)或(0,﹣2.1).28、(12分)刘同学在一次课外活动中,用硬纸片做了两个直角三角形,见图①、②.图①中,∠B=90°,∠A=30°,BC=6cm;图②中,∠D=90°,∠E=45°,DE=4cm.图③是刘卫同学所做的一个实验:他将△DEF的直角边DE与△ABC的斜边AC重合在一起,并将△DEF 沿AC方向移动.在移动过程中,D、E两点始终在AC边上(移动开始时点D与点A重合).刘同学经过进一步地研究,编制了如下问题:问题①:当△DEF移动至什么位置,即AD的长为多少时,F、C的连线与AB平行?问题②:在△DEF的移动过程中,S△ADB+S△CEB的值是否为一定值?如果是,求出此定值;如果不是,请说明.问题③:当△DEF移动至什么位置,即AD的长为多少时,以线段AD、FC、BC的长度为三边长的三角形是直角三角形?请你分别完成上述三个问题的解答过程.【解答】问题①:∵∠B=90°,∠A=30°,BC=6,∴AC=2BC=12,∵∠FDE=90°,∠DEF=45°,DE=4,∴DF=4,如图1,连接FC,当FC∥AB时,∠FCD=∠A=30°∴在Rt△FDC中,DC=4,∴AD=AC﹣DC=12﹣4,∴AD=(12﹣4)cm时,FC∥AB;问题②:S△ADB+S△CEB=12cm2.理由如下:如图2,连接BD、BE,作BH⊥AC于H,∵∠B=90°,∠A=30°,BC=6cm,∴BH=3cm,∴△BDE的面积为:×DE×BH=×4×3=6,∴S△ADB+S△CEB=×6×6﹣6=12cm2.问题③:设AD=x,在Rt△FDC中,FC2=DC2+FD2=(12﹣x)2+16,(I)当FC为斜边时,由AD2+BC2=FC2得,x2+62=(12﹣x)2+16,x=;(II)当AD为斜边时,由FC2+BC2=AD2得,(12﹣x)2+16+62=x2,x=;∵DE=4,∴AD=AC﹣DE=12﹣4=8,∴x=>8(不合题意舍去),(III)当BC为斜边时,由AD2+FC2=BC2得,x2+(12﹣x)2+16=36,整理得:x2﹣12x+62=0,∴方程无解,∴由(I)、(II)、(III)得,当x=cm时,以线段AD、FC、BC的长度为三边长的三角形是直角三角形;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四川省成都市高新南区2017-2018学年八年级数学上学期期中试题(时间:120分钟,总分:150分)A 卷(共100分)一.选择题(共10小题,共30分)1.下列各数①﹣3.14 ② π ③④227 ) A .2 B .3 C .4 D .5 2.在平面直角坐标系中,点P (﹣1,1)位于( )A .第一象限B .第二象限C .第三象限D .第四象限3.下列语句中正确的是( )A .9的算术平方根是±3B .9的平方根是3C .﹣9的平方根是﹣3D .9的算术平方根是34.满足下列条件的△ABC ,不是直角三角形的是( )A .b 2=a 2﹣c 2B .∠C =∠A ﹣∠BC .∠A :∠B :∠C =3:4:5D .a :b :c =12:13:55.有一长、宽、高分别为5cm 、4cm 、3cm 的木箱,在它里面放入一根细木条(木条的粗细、形变忽略不计)要求木条不能露出木箱.请你算一算,能放入的细木条的最大长度是( )A C . D .6.若点P (a ,b )在第三象限,则M (-ab ,-a )应在 ( )A .第一象限B .第二象限C .第三象限D .第四象限7.要使二次根式x 2有意义,字母x 必须满足的条件是( )A .x ≤2B .x <2C .x ≤﹣2D .x <﹣28.若函数y =(m ﹣1)x |m|﹣5是一次函数,则m 的值为( )A .±1B .﹣1C .1D .2 9.某一次函数的图象经过点(1,2),且y 随x 的增大而减小,则这个函数的表达式可能是( )A .y =2x +4B .y=3x ﹣1C .y =﹣3x +1D .y =﹣2x +410.一块直角三角形的纸片,两直角边AC =6cm,BC =8cm ,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( )A. 5cmB.4cmC. 3cmD.2cm二.填空题(共4小题,共16分)11.若三角形的边长分别为6、8、10,则它的最长边上的高为 . (10题图)12.一个正数的平方根是2x 和x -6,则这个正数是 .13.若点M (a ﹣3,a +4)在x 轴上,则点M 的坐标是 .14.已知函数y =kx +b (k ≠0)的图象与y 轴交点的纵坐标为﹣2,且当x =2时,y =1.那么此函数的解析式为 .三.计算题(共5个小题,20分)15.计算①65027÷⨯ ②123148+-③13)2()13)(13(81---+-+-16.求下列各式中的x :①x 2+5=7 ②(x ﹣1)3+64=0.四、解答题(共5个小题,34分)17.如图,每个小方格都是边长为1的小正方形,△ABC 的位置如图所示,你能判断△ABC 是什么三角形吗?请说明理由.(6分)(17题图)18. 对于长方形OABC ,O 为平面直角坐标系的原点,A 点在x轴的负半轴上,C 点在y 轴的正半轴上,点B (m ,n )在第二象限.且m ,n 满足0)3(52=-++n m(1)求点B 的坐标;并在图上画出长方形OABC ;(2)在画出的图形中,若过点B 的直线BP 与长方形OABC 的边交于点P ,且将长方形OABC 的面积分为1:4两部分,求点P 的坐标.(8分) (第18题图)五、(每小题10分,共20分)19.已知一次函数y =kx +b 的图象经过点(1,4)和(2,2).(1)求这个一次函数;(2)画出这个函数的图象,与x 轴的交点A 、与y 轴的交点B ;并求出△AOB 的面积;(3)在第四象限内,直线AB 上有一点C 使△AOC 的面积等于△AOB 的面积,请求出点C 的坐标.20.矩形ABCD 中,AB =10,BC =6,点E 在线段AB 上.点F 在线段AD 上(1)沿EF 折叠,使A 落在CD 边上的G 处(如图),若DG =3,求AF 的长; 求AE 的长;(2)若按EF 折叠后,点A 落在矩形ABCD 的CD 边上,请直接写出AF 的范围.B 卷(共50分)一、填空题.(每题4分,共20分)21.已知x 是10的整数部分,y 是10的小数部分,则()110--x y的平方根为_______.22. .如图,圆柱底面周长为4cm ,高为9cm ,点A 、B 分别是圆柱两底面圆周上的点,且A 、B 在同一母线上,用一棉线从A 顺着圆柱侧面绕3圈到B ,(第22题图)求棉线最短为 cm .23.如图,数轴上表示2C 、B ,点C 是AB 的中点,则点A 表示的数是______.(第23图题)24.直线434+-=x y 与x 轴、y 轴分别交于点A 、B ,M 是y 轴上一点,若将△ABM 沿AM 折叠,点B 恰好落在x 轴上,则点M 的坐标为 。
25.如图,△OB 1A 2、△OB 2A 3、△OB 3A 4、…△OB n A n+1都是等边三角形,其中B 1A 1、B 2A 2、…B n A n 都与x 轴垂直,点A 1、A 2、…A n 都在x 轴上,点B 1、B 2、…B n 都在直线y上,已知OA 1=1,则点B 3的坐标为 ,点B n 的坐标为 .(第25题图)二.(8分)26.已知实数y x ,满足322+-+-=x x y ,(1)求xy 6的平方根;(2)求y x y x --+22的值.三.(10分)27.如图,在平面直角坐标系中,直线L 是第一、三象限的角平分线.(1)由图观察易知A (0,2)关于直线l 的对称点A ′的坐标为(2,0),请在图中分别标明B (5,3)、C (﹣2,5)关于直线l 的对称点B ′、C ′的位置,并写出他们的坐标:B ′ 、C ′ ;(2)结合图形观察以上三组点的坐标,直接写出坐标面内任一点P(a ,b )关于第一、三象限的角平分线l 的对称点P′的坐标为 ;(3)已知两点D (1,﹣3)、E (﹣1,﹣4),试在直线L 上画出点Q ,使QDE ∆的周长最小,并求QDE ∆周长的最小值.四.(12分) (第27题图)28.定义:如图①,点M 、N 把线段AB 分割成AM 、MN 和BN ,若以AM 、MN 、BN 为边的三角形是一个直角三角形,则称点M ,N 是线段AB的勾股分割点.(1)已知点M 、N 是线段AB 的勾股分割点,若AM =2,MN =3,求BN 的长;(2)如图②,在等腰直角△ABC 中,AC =BC , (第28题图)∠ACB =90°,点M 、N 为边AB 上两点,满足∠MCN =45°,求证:点M 、N 是线段AB 的勾股分割点;阳阳同学在解决第(2)小题时遇到了困难,陈老师对阳阳说:要证明勾股分割点,则需设法构造直角三角形,你可以把△CBN 绕点C 逆时针旋转90°试一试.请根据陈老师的提示完成第(2)小题的证明过程;(3)在(2)的问题中,若13,1,15+==︒=∠CM AM ACM .求BM 的长.(提示:在直角三角形中,︒30角所对的直角边等于斜边的一半.)2017-2018上期半期八年级数学试题答案 A卷一.选择题(共10小题)1.A.2:B.3.D 4.C.5.C.6.B 7.A.8.B.9.D.10.C二.填空题(共4小题,16分)11. 4.8 .12. 16 .13.(﹣7,0).14. y=x﹣2 .三.解答题15.(1)计算:.解:原式=3×5×=15..........(4分)(2)..解:原式=4﹣+2=..........(4分)(3).........(4分)解;原式= =216.(1) .........(4分)(2)x=-3.........(4分)四、解答题17.(6分)解:△ABC是直角三角形.在直角△ABF、直角△BCD、直角△ACE中,根据勾股定理即可得到:AB==;BC==;AC==5;则AC2=BC2+AB2∴△ABC是直角三角形.18. (1)B(﹣5,3)........(2分)画出图形........(4分)(2)当点P在OA上时,设P(x,0)(x<0),∵S△ABP:S四边形BCOP=1:4,∴S△ABP=S矩形OABC,∴P(﹣3,0);........(6分)当点P在OC上时,设P(0,y)(y>0),∵S△CBP:S四边形BPOA=1:4,∴S△CBP=S矩形OABC,∴P(0,),........(8分)19.解:(1)∵一次函数y=kx+b的图象经过点(1,4)和(2,2).∴,解得:,∴这个一次函数的解析式为y=﹣2x+6..........(3分)(2)令y=0可得﹣2x+6=0,解得x=3,∴A点坐标为(3,0),令x=0可得y=6,∴B点坐标为(0,6),函数图象如图:△AOB的面积为:×3×6=9;.........(6分)(3).设C(t,﹣2t+6),∵△AOC的面积等于△AOB的面积,∴•3•|﹣2t+6|=9,解得t1=6,t2=0(舍去),∴C点坐标为(6,﹣6)..........(10分)20.解:(1)解:(1)①设AF=x,则FG=x,在Rt△DFG中,x2=(6﹣x)2+32解得x=,所以AF=..........(3分)②过G作GH⊥AB于H,设AE=y,则GE=y﹣3.在Rt△EHG中,∴y2=62+(y﹣3)2,解得y=,AE=..........(4分)(2).........(3分)B 卷一、填空题:(20分)21. 22. 15 23. 4- 24.(0,)(0,-6). 25. (4,4);()二、26.(8分)解:由,得x=2,y=3........(2分)(1)=6,的平方根;.......(4分)(2)==.......(8分)(1)如图,由点关于直线y=x轴对称可知:B'(3,5),C'(5,﹣2)..........(2三、27.(10分)解:分)(2)由(1)的结果可知,坐标平面内任一点P(a,b)关于第一、三象限的角平分线l的对称点P′的坐标为(b,a)..........(4分)(3)由(2)得,D(1,﹣3)关于直线l的对称点D'的坐标为(﹣3,1),连接D'E交直线l于点Q,此时点Q到D、E两点的距离之和最小,D'E===,.........(8分)∴周长的最小值.+........(10分)四.28.(12分)(1)解:①当MN为最大线段时,∵点 M、N是线段AB的勾股分割点,∴BN===;.........(2分)②当BN为最大线段时,∵点M、N是线段AB的勾股分割点,∴BN===,综上所述:BN=或;.........(4分)(2)①证明:连接MN′,∵∠ACB=90°,∠MCN=45°,∴∠BCN+∠ACM=45°,∵∠ACN'=∠BCN,∴∠MCN'=∠ACN′+∠ACM=∠BCN+∠ACM=45°=∠MCN,在△MCN和△MCN′中,,∴△MCN≌△MCN',∴MN'=MN,∵∠CAN′=∠CAB=45°,∴∠MAN′=90,AN′2+AM2=MN′2,即BN2+AM2=MN2,∴点M、N是线段AB的勾股分割点..........(8分)(3)过N作于于H。