理论力学课件(上)
理论力学课件 物体受力分析及受力图

理论力学CAI
常见分布载荷
2012年3月6日 Tuesday
理论力学CAI
§3.2 工程常见约束与约束力
自由物体——空间运动不受任何限制的物体,如飞机、导弹、航天器 受约束物体——空间运动受到限制的物体,如汽轮机、车轮。 工程中大部分研究对象都是非自由体, 约束(constraint )—— 物体运动过程中所受到的限制。 约束的作用表现为约束力。 约束力——约束对物体的作用力。约束力是一种被动力,其大小 不能预先确定,方向总是与约束力所能阻止的运动方向相反。 主动力-----那些主动地作用于物体,改变其运动状态的力称为主动力。 主动力的大小和方向通常是预先给定的,其变化规律是空间和时间的确 定数。如重力,
注意各种铰约束判断二力杆tuesday理论力学cai画出下列各构件的受力图例题杆ab圆柱otuesday理论力学cai画出下列各构件的受力图例题4整体受力图tuesday理论力学cai杆ac受力图tuesday理论力学cai受力分析注意固定端约束tuesday理论力学cai画出下列各构件的受力图例题5方法1方法2注意二力杆tuesday理论力学cai一般情况下物体之间通过接触产生相互作用力要分清研究对象都与周围哪些物体相接触接触处必有力力的方向由约束类型而定
2012年3月6日 Tuesday
理论力学CAI
作用在物体上的力有: 主动力:各种已知力,如重力,风力,气体压力等。 被动力: 各种约束反力,按约束的性质定。 受力分析:去之以物,代之以力
2012年3月6日 Tuesday 理论力学CAI
画物体受力图步骤:
1 确定研究对象,取分离体; 整体或局部 2 先画上主动力; 一切照画,不要改变。 3 再画出约束反力。 按约束的性质确定约束力。
《理论力学》精品课件_TM.7-5以矢量表示角速度和角加速度.以矢积表示点的..

7-5 以矢量表示角速度和角加速度·以矢积表示点的速度和加速度一、角速度矢绕定轴转动刚体的角速度可以用矢量表示。
1.角速度矢的大小角速度矢ω的大小等于角速度的绝对值,即td d ϕω==ω (7-16) 2.角速度矢的指向角速度矢ω沿轴线,它的指向表示刚体转动的方向;如果从角速度矢的末端向始端看,则所观察到的刚体作逆时针向转动,如图7-10a 所示;或按照右手螺旋规则确定:右手的四指代表转动的方向,姆指代表角速度矢ω的指向,如图7-10b 所示。
(a ) (b )图7-10至于角速度矢的起点,可在轴线上任意选取,也就是说,角速度矢是滑动矢。
如取转轴为z 轴,它的正方向用单位矢k 的方向表示(图7-11)。
于是刚体绕定轴转动的角速度矢可写成k ω=ω (7-17)式中ω是角速度的代数值,它等于ϕ。
(a ) (b )图7-11二、角加速度矢同样,刚体绕定轴转动的角加速度可以用一个沿坐标轴线的滑动矢量表示:k ε=ε (7-18)式中ε是角加速度的代数值,它等于ω或ϕ 。
于是 )(d dd d k k ωωtt ==ε (7-19)即角加速度ε是角速度矢ω对时间的一阶导数。
根据上述角速度和角加速度的矢量表示法,刚体内任一点的速度可以用矢积 表示。
三、速度的矢量积表示如在轴线上任选一点O 为原点,点M 的矢径以r 表示,如图7-12所示。
图7-12那么,点M 的速度可以用角速度矢与它的矢径的矢量积来表示,即r v ⨯=ω (7-20)为了证明这一点,需证明矢积r ⨯ω确实表示点M 的大小和方向。
根据矢积的定义知,r ⨯ω仍是一个矢量,它的大小是v r r =⋅=⋅=⨯R ωωωθsin式中θ是角速度矢ω与矢径r 的夹角。
于是证明了矢积r ⨯ω的大小等于速度的大小。
矢积r ⨯ω的方向垂直于ω和r 所组成的平面(即图7-12中三角形OMO 1平面),从矢量v 的末端向始端看,则见ω按逆时针转向转过角θ与r 重合,由图容易看出,矢积r ⨯ω的方向正好与点M 的方向相同。
理论力学课件

理论力学Theoretical Mechanics综合实验楼504 yliu5@要求•上课认真听讲,作笔记,积极思考•及时完成作业考核平时+研究性学习报告+期末绪论1.关于力学2.力学的发展简史3.力学的学科性质4.力学的研究方法5.力学的学科分类6.关于理论力学第1章静力学基本概念§1-1 刚体和力的概念§1-2 静力学公理§1-3 力的解析表示吊车梁的弯曲变形一般不超过跨度(A、B间距离)的1/500,水平方向变形更小。
因此,研究吊车梁的平衡规律时,变形是次要因素,可略去不计。
实际物体受力时,其内部各点间的相对距离都要发生改变,其结果是使物体的形状和尺寸改变,这种改变称为变形(deformation)。
物体变形很小时,变形对物体的运动和平衡的影响甚微,因而在研究力的作用效应时,可以忽略不计,这时的物体便可抽象为刚体(rigid body)。
如果变形体在某一力系作用下已处于平衡,则将此变形体刚化为刚体时,其平衡不变,这一论断称为刚化原理(rigidity principle)。
当研究航天器轨道问题时——质点当研究航天器姿态问题时——刚体、质点系、刚体系2.力的概念力(Force)是物体间相互的机械作用力对物体产生的效应一般可分为两个方面:一是物体运动状态的改变,另一个是物体形状的改变。
通常把前者称为力的运动效应(effect of motion),后者称为力的变形效应(effect of deformation)。
理论力学中把物体都视为刚体,因而只研究力的运动效应,即研究力使刚体的移动或转动状态发生改变这两方面的效应。
来表示,如图。
物体受力一般是通过物体间直接或间接接触进行的。
接触处多数情况下不是一个点,而是具有一定尺寸的面积。
因此无论是施力体还是受力体,其接触处所受的力都是作用在接触面积上的分布力(distributed force)。
当分布力作用面积很小时,为了分析计算方便起见,可以将分布力简化为作用于一点的合力,称为集中力(concentrated force)。
经典理论力学课件ppt课件

理论力学CAI 静力学
4
0
MO Mi Fb
i 1
2Fb
12
力系的简化/空间一般力系的简化
• 小结
• 力系对点O的简化
–计算力系的主矢 –计算力系对点O的主矩 –简化力等于主矢 –简化力偶矩矢量等于主矩
n
Mi
F2
b
M Ob(
0 Fi0)
0 F
0r~i F0i
0 0
0 b 0 0 Fb
M4
~r4 F4
b
0
b F Fb
0
b
0
一般力系可简化为一以简化中心为汇交
Friday, January 17, 2020 理论力学CAI 静力学
点的汇交力系与一力偶系的共同作用
5
力系的简化/空间一般力系的简化/一般力系的简化
F1
P1
F3
P3
F1
M1
F3
M FO
O P2
=
M2
M3 =
O
O
F2
理论力学CAI 静力学
力系的简化/空间一般力系的简化/力作用线平移
• 力作用线的平移
– 力偶是自由矢量
• 力偶矩矢量在刚体上移动不改变对刚体的作用效果
– 力是滑移矢量
• 力矢量在刚体上沿作用线移动不改变对刚体的作用效果
•
力的作用线作平行移动,会改变它对刚体的作用效果
理论力学教程周衍柏第三版课件_图文

9
§0.4 力学单位制
• 物理理论组成:概念、概念的数学表示假定、方程组(物理 量的关系) 单位制通过以
[P]
X X a1 a2 12
X
am m
上式取对数
ln[P] a1lnX1 a 2lnX2 amlnXm
把lnX1, lnX2, …,lnXm看做m维空间的“正交基矢”,则 (a1,a2,…,am)相当于“矢量”ln[P]在基矢上的投影.
22
定理
设某物理问题内涉及n个物理量(包括物理常量) P1, P2 ,, Pn, 而我们所选的单位制中有m个基本量(n>m),则由此可以组成n-m
• 在力学中CGS和MKS单位制的基本量是长度、质量和 来自间, 它们的量纲分别为L、M和T.
• 任何力学量Q的量纲为[Q]=LαMβTγ,式中, ,
为量纲指数.
21
量纲分析—— 定理
设我们在选定单位制中的基本量数目为m,它们的量纲 为X1,X2,…,Xm. 用[P]代表导出量P的量纲,则
由A=A1+A2得
c2Φ() a2Φ() b2Φ()
消去(),即得 c2 a2 b2
a
c
b
这样我们就利用量纲分析定量的得到了勾股定理.
27
§0.6 微积分预备知识
1 常见函数的导数
y xn
y' dy dxn nx n1 dx dx
y sin x
《理论力学绪论》课件

深入学习拉格朗日力学和哈密顿力学,探索更复杂的物体运动和力学问题。
《理论力学绪论》PPT课 件
理论力学绪论PPT课件 - 简介 - 理论力学的定义 - 为什么需要学习理论力学
大物基础回顾
牛顿运动定律
物体在外力作用下的运动规律,包括惯性、 加速度和相等作用力,为理论力学的基础。
能量守恒定理
系统的总能量在没有外力和外力矩的情况下 保持不变。
动量定理
物体的动量在没有外力和外力矩的情况下保 持不变。
2 牛顿第二定律
物体在没有外力作用时,保持静止或匀速 直线运动。
物体的加速度与作用在物体上的力成正比, 与物体质量成反比。
3 牛顿第三定律
4 惯性系和非惯性系
任何两个物体之间的相互作用力大小相等、 方向相反。
惯性系是观察物体运动的参考系,非惯性 系是观察物体在惯性系外的运动的参考系。
拓展:拉格朗日力学和哈密顿力学
万有引力定律
描述任意两个物体之间的引力作用,并解释 了天体运动的规律。
矢量分析
矢量和标量
矢量具有大小和方向,而间可以相加和相减, 遵循平行四边形法则。
矢量的数量积和向 量积
数量积可以得到两个矢量之 间的夹角,向量积可以得到 垂直于两个矢量的矢量。
牛顿力学
1 牛顿第一定律
拉格朗日方程
一种描述物体运动的微分方 程,基于能量和动量的原理。
哈密顿量
描述系统在广义坐标和动量 空间中的能量。
哈密顿方程
通过哈密顿量得到系统的运 动方程。
总结
理论力学的意义与应用
理论力学是研究物体运动的基础学科,为科学研究和工程应用提供重要支持。
理论力学的发展历程
从牛顿力学到拉格朗日力学和哈密顿力学,理论力学经历了不断的发展和完善。
理论力学教学教案课件
理论力学教学教案课件第一章:引言1.1 课程介绍理论力学的定义和研究对象课程目标和意义1.2 基本概念力学的基本定律和原理矢量和标量的概念1.3 坐标系和变换直角坐标系和正交坐标系坐标变换和速度、加速度的变换公式第二章:牛顿运动定律2.1 第一定律:惯性定律惯性的概念和定义定律的表达式和解释2.2 第二定律:动力定律力、质量和加速度的关系定律的表达式和应用2.3 第三定律:作用与反作用定律作用力和反作用力的概念定律的表达式和解释第三章:动能和势能3.1 动能动能的定义和表达式动能定理和动能的计算3.2 势能势能的概念和分类重力势能和弹性势能的计算3.3 机械能守恒定律机械能守恒的条件和判断守恒定律的应用和实例第四章:牛顿定律的拓展应用4.1 非惯性参考系非惯性参考系的定义和特点转动惯量和转动定律4.2 动力学方程牛顿第二定律的微分形式动力学方程的建立和解题方法4.3 外力作用下的运动外力作用下的运动规律变加速运动和抛体运动第五章:碰撞和刚体运动5.1 碰撞碰撞的基本概念和类型碰撞定律和碰撞能量的计算5.2 刚体运动刚体的定义和特点刚体转动的规律和计算5.3 刚体碰撞刚体碰撞的基本原理刚体碰撞问题的解决方法第六章:摩擦力6.1 摩擦力的概念摩擦力的定义和作用静摩擦力和动摩擦力的区别6.2 摩擦力的计算摩擦系数的含义和测定摩擦力的大小和方向的计算6.3 摩擦力的应用摩擦力在实际问题中的应用减小和增大摩擦力的方法第七章:转动定律7.1 转动和角动量转动的定义和描述角动量的概念和计算7.2 转动定律转动定律的表达式和解释转动惯量和转动动能的计算7.3 转动动能和角动量守恒转动动能和角动量守恒的条件守恒定律在实际问题中的应用第八章:振动和波动8.1 振动振动的定义和分类简谐振动的特点和方程8.2 波动波动的定义和分类波的速度和波的传播8.3 振动和波动的应用振动在工程和物理中的应用波动在声学和光学中的应用第九章:流体力学基础9.1 流体的性质流体的定义和分类流体的密度和粘度9.2 流体静力学流体静压力的概念和计算浮力和压力分布的计算9.3 流体动力学流体动压力的概念和计算流速和流体动能的计算第十章:结束语10.1 课程回顾理论力学的主要内容和知识点学习过程中的难点和重点10.2 理论力学在工程中的应用理论力学在机械工程中的应用理论力学在其他工程领域的应用10.3 学习建议和参考资料学习理论力学的方法和建议推荐的学习资料和参考书目重点和难点解析重点环节1:第一定律:惯性定律惯性的概念和定义:惯性是物体保持静止或匀速直线运动状态的性质,与物体的质量有关。
理论力学课件:动能定理
动能定理
【例12-8】 C618车床的主轴转速n=42r/min时,其切削力
P=14.3kN,若工件直径d=115mm,电动机到主轴的机械效率
η=0.76。求此时电动机的功率为多少?
解 由式(12-12)得切削力P 的功率:
动能定理
12.5 势力场 势能及机械能守恒定理
动能定理
动能定理
12.4 功率 功率方程
1.功率
在单位时间内力所做的功称为功率。它是衡量机器工作
能力的一个重要指标。
δW 是dt时间内力的元功,则功率为
动能定理
由于元功为δW =Ft·ds,因此
即,力的功率等于切向力与力作用点速度的乘积
力矩的元功为δW =M·dφ,则
即,力矩的功率等于力矩与物体转动角速度的乘积。
动能定理
动能定理
12.1 力的功
12.2 质点 质点系的动能
12.3 质点与质点系的动能定理
12.4 功率 功率方程
12.5 势力场 势能及机械能守恒定理
12.6 动力学普遍定理及综合应用
思考题
动能定理
12.1 力 的 功
工程实际中,一物体受力的作用所引起运动状态的变化,
不仅取决于力的大小和方向,而且与物体在力的作用下经过
的功。
动能定理
图12-15
动能定理பைடு நூலகம்
【例12-4】 在图12-16中,为测定摩擦系数f,把矿车置于
斜坡上的A 点处,让其无初速下滑。当它达到B 点时,靠惯性
又往前滑行一段路程,在C 点处停止。求摩擦系数f0,已知S1、
S2 和h。
图12-16
动能定理
优质课件精选哈工大第八版理论力学课件
4 直线平移和曲线平移
44
45
平移的其他例子
46
பைடு நூலகம்
46
观察平行四连杆机构中土黄色杆的运动
47
图示铅直平面内的平行四连杆机构。曲柄O1A以匀角速 度 2 rad/s 绕 O1轴转动
O1A=O2B =r=20cm , AB=O1O2=40cm AC=CB
12
13
14
第二篇 运动学
一 什么是运动学 1 是研究物体运动的几何性质的科学 2 运动的几何性质 运动方程、轨迹、速度和
加速度
二 意义 1 动力学的基础 2 后继课程 (机械原理)的基础
15
第二篇运动学
三 如何学习?
1 不考虑致动的原因
2 点 刚体(系统) 必须有一个以上的自由度
3 有关概念 1) 参考体 由于物体运动的描述是相对的。将观察者所在的物体称 为参考体
2)参考坐标系 固结于参考体上的坐标系称为参考坐标系----
基础内容: 第五章 第六章 可以无限制扩大
重点内容: 第七章 第八章
16
第五章 点的运动
17
§ 5-1 矢量法
矢量法应用于什么场合? 一 运动方程
r r(t)
轨迹就是矢径端点的曲线
M
r r’
O
18
§ 5-1 矢量法
二 速度
M
v
A r(t)
成反比。
i12
1 2
z2 z1
相互啮合的两齿轮的角速度之比及角加速度之比与它
们的齿数成反比。
62
§6–4 轮系的传动比(自学)
2 带轮传动
i12
1 2
理论力学课件 动点动系选择,速度合成定理
1、一点动点:研究对象。
刚体上的点或一个单独的点。
2、二系定系:研究动点运动规律的参考系。
一般取地面。
动系:相对定系运动的参考系。
∞平面。
3、三运动绝对运动(absolute motion):动点相对定系的运动。
即在地面看动点的运动。
相对运动(relative motion):动点相对动系的运动。
即在动系上看动点的运动。
牵连运动(convected motion):动系相对定系的运动。
即在地面上看动系的运动。
动点:P;动系:汽车;定系:地面动点:P;动系:卡盘;定系:地面绝对运动:站在地面看P点直线运动相对运动:站在卡盘上看P点螺旋线牵连运动:站在地面看卡盘的运动定轴转动毛泽东《送瘟神》七律二首一绿水青山枉自多,华佗无奈小虫何!千村薜荔人遗矢,万户萧疏鬼唱歌。
坐地日行八万里,巡天遥看一千河。
牛郎欲问瘟神事,一样悲欢逐逝波。
二春风杨柳万千条,六亿神州尽舜尧。
红雨随心翻作浪,青山着意化为桥。
天连五岭银锄落,地动三河铁臂摇。
借问瘟君欲何在,纸船明烛照天烧。
思考:坐地日行八万里的定系是在那里建立的?地球绕太阳公转的轨迹近似的看作圆,轨道半径万公里4105.1×=R万公里250365/2=Rπ地球的赤道半径公里6400=r万公里01.42=rπ参考系为地心或地轴y 金星如果上帝在创世时与我商量一下,我会给他更好的建议。
选取适当的参考系,可使描述运动的结论:A的常接触点为动点,B为动系。
动点:AB上点A动系:凸轮相对运动轨迹清楚绝对运动:地面上看A 点直线相对运动:凸轮上看A点圆周运动牵连运动:在地面看凸轮的运动定轴转动动点:凸轮上A点动系:顶杆AB相对运动轨迹不清楚1绝对运动:圆周运动牵连运动平移相对运动???动点:OA上的A点动系:BC绝对运动:圆周运动相对运动:直线运动牵连运动:平移相对轨迹清楚动点:O1B上的A点动系:OC绝对运动圆周运动相对运动直线运动牵连运动定轴转动相对轨迹清楚动点:OC上的A点动系:O1B相对轨迹不清楚动点:CD上的B点动系是OA绝对运动相对运动牵连运动直线运动直线运动定轴转动相对轨迹清楚2)无常接触点(线线接触)条件:当两个刚体运动过程中,没有常接触点,只是轮廓线接触.结论:圆心为动点(定系),另一刚体为动系。