概率论与数理统计习题集及答案

《概率论与数理统计》作业集及答案

第1章 概率论的基本概念

§1 .1 随机试验及随机事件

1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间

是:S= ;

(2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ;

2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B:数点大于2,则B= .

(2) 一枚硬币连丢2次, A :第一次出现正面,则A = ;

B:两次出现同一面,则= ; C :至少有一次出现正面,则C= .

§1 .2 随机事件的运算

1. 设A 、B、C 为三事件,用A 、B 、C 的运算关系表示下列各事件: (1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: . (3)A 与B都不发生,而C 发生表示为: .(4)A、B 、C 中最多二个发生表示为: .

(5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: .

2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则

(1)=⋃B A ,(2)=AB ,(3)=B A ,

(4)B A ⋃= ,(5)B A = 。

§1 .3 概率的定义和性质

1. 已知6.0)(,5.0)(,8.0)(===⋃B P A P B A P ,则

(1) =)(AB P , (2)()(B A P )= , (3))(B A P ⋃= .

2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = .

§1 .4 古典概型

1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率,

(2)最多有2个女同学的概率,(3) 至少有2个女同学的概率.

2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率.

§1 .5 条件概率与乘法公式

1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。

2. 已知,2/1)|(,3/1)|(,4/1)(===B A P A B P A P 则=⋃)(B A P 。

§1 .6 全概率公式

1. 有10个签,其中2个“中”,第一人随机地抽一个签,不放回,第二人再随机地抽一个

签,说明两人抽“中‘的概率相同。

2. 第一盒中有4个红球6个白球,第二盒中有5个红球5个白球,随机地取一盒,从中随

机地取一个球,求取到红球的概率。

§1 .7 贝叶斯公式

1. 某厂产品有70%不需要调试即可出厂,另30%需经过调试,调试后有80%能出厂,求(1)

该厂产品能出厂的概率,(2)任取一出厂产品, 求未经调试的概率。

2. 将两信息分别编码为A和B 传递出去,接收站收到时,A 被误收作B 的概率为0.02,

B 被误收作A的概率为0.01,信息A 与信息B 传递的频繁程度为3 : 2,若接收站收到的信息是A,问原发信息是A 的概率是多少?

§1 .8 随机事件的独立性

1. 电路如图,其中A,B,C ,D 为开关。设各开关闭合与否相互独立,且每一开关闭合的概率均为p,求L 与R为通路(用T表示)的概率。

A B

L R C D

3. 甲,乙,丙三人向同一目标各射击一次,命中率分别为0.4,0.5和0.6,是否命中,相

互独立, 求下列概率: (1) 恰好命中一次,(2) 至少命中一次。

第1章作业答案

§1 .1 1:(1)},,,,,,,{TTT TTH THT HTT THH HTH HHT HHH S =; (2)}3,2,

1,0{=S

2:(1)}6,5,4,3{}5,3,

1{==B A ;

(2){=A 正正,正反{},=B 正正,反反{},=C 正正,正反,反正}。

§1 .2 1: (1) ABC ;(2) C AB ;(3) C B A ;(4)C B A ⋃⋃;(5)

BC AC AB ⋃⋃;

(6) C B C A B A ⋃⋃ 或 C B A C B A C B A C B A +++; 2

:

(1)

}

41:{<<=⋃x x B A ;(2)

}

32:{≤≤=x x AB ;

(3)}43:{<<=x x B A ;

(4)10:{≤≤=⋃x x B A 或}52≤≤x ;(5)}41:{<<=x x B A 。

§1 .3 1: (1) )(AB P =0.3, (2))(B A P = 0.2, (3) )(B A P ⋃ = 0.7. 2:

)(B A P )=0.4.

§1 .4 1:(1)103082228/C C C ,(2)(10

3082228922181022/C C C C C C )(++,(3)1-(10

30922181022/C C C C )+.

2: 3

344/P .

§1 .5 1:. 2/6; 2: 1/4。

§1 .6 1: 设A 表示第一人“中”,则 P (A ) = 2/10

设B 表示第二人“中”,则 P(B) = P(A )P(B|A) + P(A )P(B|A ) =

10

29210891102=⋅+⋅ 两人抽“中‘的概率相同, 与先后次序无关。

2: 随机地取一盒,则每一盒取到的概率都是0.5,所求概率为:

p = 0.5 × 0.4 + 0.5 × 0.5 = 0.45

§1 .7 1:(1)94% (2)70/94; 2: 0.993;

§1 .8. 1: 用A,B,C,D表示开关闭合,于是 T = AB ∪CD, 从而,由概率的性质及A,B,C,D 的相互独立性

P (T) = P(A B) + P(CD) - P(AB CD )

= P (A)P(B) + P(C)P(D ) – P(A)P(B)P(C )P (D)

424222p p p p p -=-+=

2: (1) 0.4(1-0.5)(1-0.6)+(1-0.4)0.5(1-0.6)+(1-0.4)(1-0.5)0.6=0.38;

(2) 1-(1-0.4)(1-0.5)(1-0.6)=0.88.

第2章 随机变量及其分布

§2.1 随机变量的概念,离散型随机变量

1 一盒中有编号为1,2,3,4,5的五个球,从中随机地取3个,用X 表示取出的3个球 中的最大号码., 试写出X 的分布律.

2 某射手有5发子弹,每次命中率是0.4,一次接一次地射击,直到命中为止或子弹用尽为

止,用X 表示射击的次数, 试写出X 的分布律。

§2.2 10-分布和泊松分布

1 某程控交换机在一分钟内接到用户的呼叫次数X 是服从λ=4的泊松分布,求

(1)每分钟恰有1次呼叫的概率;(2)每分钟只少有1次呼叫的概率; (3)每分钟最多有1次呼叫的概率;

2 设随机变量X 有分布律: X 2 3 , Y ~π(X ), 试求: p 0.4 0.6

(1)P(X =2,Y ≤2); (2)P(Y≤2); (3) 已知 Y ≤2, 求X=2 的概率。

§2.3 贝努里分布

1 一办公室内有5台计算机,调查表明在任一时刻每台计算机被使用的概率为0.6,计算机

是否被使用相互独立,问在同一时刻

(1) 恰有2台计算机被使用的概率是多少?

(2) 至少有3台计算机被使用的概率是多少? (3) 至多有3台计算机被使用的概率是多少? (4) 至少有1台计算机被使用的概率是多少?

2 设每次射击命中率为0.2,问至少必须进行多少次独立射击,才能使至少击中一次的概率不小于0.9 ?

§2.4 随机变量的分布函数

1设随机变量X 的分布函数是: F (x) = ⎪⎩

⎨⎧≥<≤--<11115.010

x x x

(1)求 P(X ≤0 ); P ()10≤

2 设随机变量X 的分布函数是:F(x ) = ⎪⎩⎪

⎨⎧≤>+0

01x x x

Ax , 求(1)常数A, (2) P ()21≤

§2.5 连续型随机变量

1 设连续型随机变量X 的密度函数为:⎩

⎨⎧<<=他其01

0)(x kx x f

(1)求常数k 的值;(2)求X 的分布函数F(x),画出F (x) 的图形,

(3)用二种方法计算 P(- 0.5<X<0.5).

2 设连续型随机变量0≥x 的分布函数为:F(x) = ⎪⎩

⎨⎧≥<≤

(1)求X 的密度函数)(x f ,画出)(x f 的图形,(2)并用二种方法计算 P(X >0.5).

§2.6 均匀分布和指数分布

1设随机变量K 在区间 (0, 5) 上服从均匀分布, 求方程 42

x + 4Kx + K + 2 = 0 有实根的概率。

2 假设打一次电话所用时间(单位:分)X 服从2.0=α的指数分布,如某人正好在你前面走进电话亭,试求你等待:(1)超过10分钟的概率;(2)10分钟 到20分钟的概率。

§2.7 正态分布

1 随机变量X ~N (3, 4), (1) 求 P(22), P(X>3);

(2)确定c ,使得 P(X>c ) = P (X <c)。

2 某产品的质量指标X 服从正态分布,μ=160,若要求P(120<X<200)≥0.80,试问σ最多取多大?

§2.8

1设随机变量X 的分布律为; 0.3

Y = 2X – 1, 求随机变量的分布律。

2设随机变量X 的密度函数为:⎩⎨

⎧<<-=他其0

1

0)1(2)(x x x f ,

2X Y =;求随机变量Y 的密度函数。

3. 设随机变量X 服从(0, 1)上的均匀分布,X Y ln 2-= ,求随机变量Y的密度函数。

第2章作业答案

§2.1 1:

p 2: X 1 2 3 4 5 p 0.4 0.6×0.4 0.6×0.6×0.4 0.6×0.6×0.6×0.4 0.6×0.6×0.6×0.6×1

§2.2 1: (1) P(X = 1) = P(X ≥1) – P (X ≥2) = 0.981684 – 0.908422 = 0.073262,

(2) P(X≥1) = 0.981684,

(3) P(X ≤1) = 1 - P(X ≥2) = 1 – 0.908422 = 0.091578。

2:(1) 由乘法公式:

P(X=2,Y ≤2) = P(X=2) P(Y ≤2 | X=2)= 0.4× (222

22---++e e e

)=

22

-e

(2)由全概率公式:P(Y ≤2) = P(X=2) P(Y ≤2 | X =2) + P(X=3) P(Y ≤

2 | X=3)

= 0.4×52

-e + 0.6×

3

2

17-e = 0.27067 + 0.25391 = 0.52458

(3)由贝叶斯公式:P(X=2|Y ≤2)=

516.052458

.027067

.0)2()2,2(==≤≤=Y P Y X P

§2.3 1: 设X 表示在同一时刻被使用的台数,则 X ~B(5, 0.6),

(1) P( X = 2 ) = 3

2254.06.0C (2) P(X ≥3 ) =

544523356.04.06.04.06.0++C C

(3) P(X ≤3 ) = 1 - 54456.04.06.0-C (4)P(X ≥1 ) = 1 - 54.0

2: 至少必须进行11次独立射击.

§2.4 1:(1)P(X ≤0 )=0.5; P ()10≤

(2) X的分布律为: 0.5

2: (1) A = 1, (2) P ()21≤

§2.5 1:(1)2=k ,(2)⎪⎩

⎪⎨⎧≥<≤<=1

11000)(2

x x x

x x F ; (3)P(- 0.5

4120)(5

.000

5.05

.05.0=

+=⎰⎰⎰--xdx dx dx x f ; 或= F(0,5) – F(-0.5) = 4

1

041=-。

2: (1)⎩⎨⎧<<=他其01/1)(e

x x x f (2)2ln 1)2(-=>X P

§2.6 1: 3/5 2: 422

)2()1(----e e e

§2.7 1

6977, 0.5;(2) c = 3, 2:σ≤31.25。

§2.8 1: 0.3

2: ⎪⎩

⎨⎧<<-=他其010)1(1)(y y y y f Y , 3: ⎪⎩⎪⎨⎧≤>=-0

002

1)(2

/y y e y f y Y ;

第3章 多维随机变量

§3.1 二维离散型随机变量

1. 设盒子中有2个红球,2个白球,1个黑球,从中随机地取3个,用X 表示取到的红球个数,

用Y表示取到的白球个数,写出 (X, Y) 的联合分布律及边缘分布律。

2. 设二维随机变量),(Y X

试根椐下列条件分别求a和b 的值; (1)6.0)1(==X P ; 0.2 (2)5.0)2|1(===Y X P ; (3)设)(x F 是Y 的分布函数,5.0)5.1(=F 。

§3.2 二维连续型随机变量

1. )(Y X 、的联合密度函数为:⎩⎨

⎧<<<<+=他其0

1

0,10)(),(y x y x k y x f

求(1)常数k;(2)P(X<1/2,Y<1/2);(3) P(X+Y<1);(4) P(X<1/2)。

2.)(Y X 、的联合密度函数为:⎩⎨

⎧<<<<=他其0

0,10),(x

y x kxy y x f

求(1)常数k;(2)P(X+Y<1);(3) P(X<1/2)。

§3.3 边缘密度函数

1. 设(X, Y ) 的联合密度函数如下,分别求X 与Y 的边缘密度函数。

+∞<<∞-+∞<<∞-++=

y x y x y x f ,)

1)(1(1

),(222π

2. 设(X, Y) 的联合密度函数如下,分别求X 与Y 的边缘密度函数。

⎩⎨

⎧<<=-他

其00),(x

y e y x f x

§3.4 随机变量的独立性

1. (X, Y) 的联合分布律如下, 试根椐下列条件分别求a 和b的值; (1) 3/1)1(==Y P ; (2) 5.0)2|1(==>Y X P ; (3)已知X 与Y 相互独立。

2. (X ,Y) 的联合密度函数如下,求常数c,并讨论X 与Y 是否相互独立?

⎩⎨⎧<<<<=他其0

1

0,10),(2y x cxy y x f

第3

§3.1 1 2: (1) a=0.1 b=0.3

(2) a=0.2 b=0.2

(3) a=0.3 b=0.1

§3.2 1:(1) k = 1;(2) P(X<1/2, Y<1/2) = 1/8;(3) P (X+Y <1) = 1/3;(4)

P(X<1/2) = 3/8。

2:(1) k = 8;(2) P(X+Y<1) = 1/6;(3) P(X <1/2) = 1/16。 §3.3 1: +∞<<∞-+=++=

⎰∞

+∞-x x dy y x x f X )

1(2

)1)(1(1)(2222ππ;

+∞<<∞-+=

++=⎰

∞+∞

-y y dx y x y f Y )

1(2)

1)(1(1

)(22

22

ππ;

2: ⎩⎨

⎧≤>=-000

)(x x xe x f x

X ; ⎩⎨⎧≤>=-0

0)(y y e y f y

Y ;

§3.4 1: (1)a=1/6 b=7/18; (2) a=4/9 b=1/9;(3)a = 1/3, b = 2/9。

2: c = 6, X 与Y相互独立。

第4章 随机变量的数字特征

§4.1 数学期望

1.盒中有5个球,其中2个红球,随机地取3个,用X 表示取到的红球的个数,则EX 是: (A )1; (B)1.2; (C )1.5; (D)2.

2. 设X 有密度函数:⎪⎩

⎨⎧=0

83)(2

x x f 他其42≤≤x , 求)1(),12(),(2X E X E X E -,并求

X 大于数学期望)(X E 的概率。

3. 设二维随机变量),(Y X 的联合分布律为

已知65.0)(=XY E , 则a和b 的值是: (A)a=0.1, b=0.3; (B)a=0.3, b =0.1; (C)a=0.2, b=0.2; (D )a=0.15, b=0.25。

4.设随机变量 (X, Y) 的联合密度函数如下:求)1(,,+XY E EY EX 。

⎨⎧<<<<=他其02

0,10),(y x xy y x f

§4.2 数学期望的性质

1.设X 有分布律: X 0 1 2 3 则)32(2

+-X X E 是: p 0.1 0.2 0.3 0.4

(A )1; (B)2; (C)3; (D )4.

2. 设),(Y X 有⎪⎩⎪⎨⎧<<=他其0

1

45

),(2y x y y x f ,试验证 )()()(Y E X E XY E =,但X 与Y 不

相互独立。

§4.3 方差

1.丢一颗均匀的骰子,用X表示点数,求DX EX ,.

2.X 有密度函数:⎩

⎨⎧+=04

/)1()(x x f 他其20≤≤x ,求 D(X).

§4.4 常见的几种随机变量的期望与方差

1. 设)2(~πX ,)6.0,3(~B Y ,相互独立,则)2(),2(Y X D Y X E --的值分别是:

(A )-1.6和4.88; (B)-1和4; (C)1.6和4.88; (D )1.6和-4.88.

2. 设)3,4(~),

,(~N Y b a U X ,X 与Y 有相同的期望和方差,求b a ,的值。

(A) 0和8; (B) 1和7; (C) 2和6; (D ) 3和5.

§4.6 独立性与不相关性 矩

1.下列结论不正确的是( )

(A )X 与Y 相互独立,则X 与Y 不相关;

(B )X 与Y 相关,则X 与Y 不相互独立;

(C ))()()(Y E X E XY E =,则X 与Y 相互独立; (D))()(),(y f x f y x f Y X =,则X 与Y 不相关; 2.若 0),(=Y X COV ,则不正确的是( )

(A))()()(Y E X E XY E =;(B))()()(Y E X E Y X E +=+; (C))()()(Y D X D XY D =;(D ))()()(Y D X D Y X D +=+; 3.(Y X ,)有联合分布律如下,试分析X 与Y 的相关性和独立性。

4.)()()(Y E X E XY E =是X 与Y 不相关的( )

(A)必要条件;(B)充分条件:(C)充要条件;(D)既不必要,也不充分。 5. )()()(Y E X E XY E =是X 与Y 相互独立的( )

(A ) 必要条件;(B)充分条件:(C)充要条件;(D)既不必要,也不充分。

6. 设随机变量 (X, Y) 有联合密度函数如下:试验证X 与Y 不相关,但不独立。

⎩⎨⎧<<=他其01

4/21),(22y x y x y x f

第4章作业答案

§4.1 1: B; 2:3/2, 2, 3/4, 37/64; 3: D; 4: 2/3,4/3,17/9;

§4.2 1: D;

§4.3 1:7/2, 35/12; 2:11/36; §4.4 1:A ; 2: B;

§4.5 1:0.2, 0.355; 2:-1/144, -1/11;

§4.6 1:C; 2:C; 3:X 与Y 不相关,但X 与Y 不相互独立;4:C ;5:A;

第5章 极限定理

*§5.1 大数定理 §5.2 中心极限定理

1. 一批元件的寿命(以小时计)服从参数为0.004的指数分布,现有元件30只,一只在用,其

余29只备用,当使用的一只损坏时,立即换上备用件,利用中心极限定理求30只元件至少能使用一年(8760小时)的近似概率。

2. 某一随机试验,“成功”的概率为0.04,独立重复100次,由泊松定理和中心极限定理分

别求最多“成功”6次的概率的近似值。

第5章作业答案

§5.2 2:0.1788; 3:0.889, 0.841;

第6章 数理统计基础

§6.1 数理统计中的几个概念

1. 有n=10的样本;1.2, 1.4, 1.9, 2.0, 1.5, 1.5, 1.6, 1.4, 1.8, 1.4,

则样本均值X = ,样本均方差=S ,样本方差

=2S 。

2.设总体方差为2

b 有样本n X X X ,,,21 ,样本均值为X ,则=),(1X X Cov 。

§6.2 数理统计中常用的三个分布

1. 查有关的附表,下列分位点的值:9.0Z = ,)5(21.0χ= ,)

10(9.0t = 。

2.设n X X X ,,,21 是总体)(2

m χ的样本,求)(),

(X D X E 。

§6.3 一个正态总体的三个统计量的分布

1.设总体),(~2

σμN X ,样本n X X X ,,,21 ,样本均值X ,样本方差2

S ,则

~/n

X σμ

- ,

~/n

S X μ

- ,

∑=-n

i i

X X

1

2

2

)(1

σ

~ ,

∑=-n

i i

X

1

22

)(1

μσ

~ ,

第6章作业答案

§6.1 1.0646.0,254.0,

57.12===s s x ; 2. n b X X Cov /),(21=;

§6.2 1.-1.29, 9.236, -1.3722; 2.n m X D m X E /2)(,)(==;

§6.3 1.)(),1(),

1(),

1,0(22n n n t N χχ--;

第7章 参数估计

§7.1 矩估计法和顺序统计量法

1.设总体X 的密度函数为:⎪⎩⎪⎨

⎧≤≤=-他

10)(1

x x

x f θθ,有样本n X X X ,,,21 ,求未知

参数θ 的矩估计。

2.每分钟通过某桥量的汽车辆数)(~λπX ,为估计λ的值,在实地随机地调查了20次,每次1分钟,结果如下:次数: 2 3 4 5 6

量数: 9 5 3 7 4 试求λ的一阶矩估计和二阶矩估计。

§7.2 极大似然估计

1.设总体X 的密度函数为:⎪⎩⎪⎨

⎧≤≤+=他

10)1()(x x

x f θ

θ,有样本n X X X ,,,21 ,求未

知参数θ 的极大似然估计。

§7.3 估计量的评价标准

1.设总体X 服从区间)1,(a 上的均匀分布,有样本n X X X ,,,21 ,证明=a

ˆ12-X 是a 的无偏估计。

2.设总体X ~)(λπ,有样本n X X X ,,,21 ,证明2

)1(S a X a -+是参数λ的无偏估计

(10<

§7.4 参数的区间估计

1. 纤度是衡量纤维粗细程度的一个量,某厂化纤纤度),(~2σμN X ,抽取9根纤维,测

量其纤度为:1.36,1.49,1.43,1.41,1.27,1.40,1.32,1.42,1.47,试求μ的置信度为95.0的置信区间,(1)若22

048.0=σ

,(2)若2

σ未知

2. 2. 为分析某自动设备加工的另件的精度,抽查16个另件,测量其长度,得075

.12=x ㎜,s = 0.0494㎜, 设另件长度),(~2

σμN X ,取置信度为95.0,(1)求2

σ的置

信区间,(2)求σ的置信区间。

第7章作业答案

§7.1 1:2

)1(

X

X -; 2: 5, 4.97; §7.2 1:21

)1ln (

+∑=n

i i

X

n

§7.3

§7.4 1:(1.377,1.439),(1.346,1.454); 2:(0.0013,0.0058);(0.036, 0.076)

第8章 假设检验

§8.1 假设检验的基本概念

1. 某种电子元件的阻值(欧姆))400,

1000(~N X ,随机抽取25个元件,

测得平均电阻值992=x ,试在1.0=α下检验电阻值的期望μ是否符合要求?

2. 在上题中若2

σ未知,而25个元件的均方差25=s ,则需如何检验,结论是什么?

§8.2 假设检验的说明

1. 设第一道工序后,半成品的某一质量指标)64,(~μN X ,品质管理部规定在进入下一工序前必需对该质量指标作假设检验00:μμ=H ,01:μμ≠H ;16=n ,当X 与0μ的绝对偏差不超过3.29时,许进入下一工序,试推算该检验的显著性水平。

§8.3 一个正态总体下参数的假设检验

1. 成年男子肺活量为3750=μ毫升的正态分布,选取20名成年男子参加某项体育锻练一

定时期后,测定他们的肺活量,得平均值为3808=x 毫升,设方差为2

2120=σ,试检

验肺活量均值的提高是否显著(取02.0=α)?

第8章作业答案

§8.1 1:拒绝1000:0=μH ; 2: 接受1000:0=μH ; §8.2 1:0.1; §8.3 1:拒绝0H ;

概率论与数理统计练习题集及答案

概率论与数理统计练习题集及答案 一、选择题: 1.某人射击三次,以i A 表示事件“第i 次击中目标”,则事件“三次中至多击中目标一次”的正确表示为 A 321A A A ++ B 323121A A A A A A ++ C 321321321A A A A A A A A A ++ D 321A A A 2.掷两颗均匀的骰子,它们出现的点数之和等于8的概率为 A 365 B 364 C 363 D 36 2 3.设随机事件A 与B 互不相容,且0)(,0)(>>B P A P ,则 A )(1)( B P A P -= B )()()(B P A P AB P = C 1)(=+B A P D 1)(=AB P 4.随机变量X 的概率密度为⎩ ⎨⎧<≥=-000)(2x x ce x f x ,则=EX A 21 B1 C2 D 4 1 5.下列各函数中可以作为某随机变量的分布函数的是 A +∞<<∞-+=x x x F ,11)(2 1 B ⎪⎩⎪⎨⎧≤>+=0 01)(2 x x x x x F C +∞<<∞-=-x e x F x ,)(3 D +∞<<∞-+ =x x x F ,arctan 21 43)(4π 6.已知随机变量X 的概率密度为)(x f X ,令X Y 2-=,则Y 的概率密度 )(y f Y 为

A )2(2y f X - B )2(y f X - C )2 (21y f X -- D )2 (2 1y f X - 7.已知二维随机向量),(Y X 的分布及边缘分布如表 h g p f e d x c b a x p y y y X Y Y j X i 6 1818121321,且X 与Y 相互独立,则=h A 81 B 8 3 C 4 1 D 3 1 8.设随机变量]5,1[~U X ,随机变量)4,2(~N Y ,且X 与Y 相互独立,则 =-)2(Y XY E A3 B6 C10 D12 9.设X 与Y 为任意二个随机变量,方差均存在且为正,若EY EX EXY ⋅=,则下列结论不正确的是 A X 与Y 相互独立 B X 与Y 不相关 C 0),cov(=Y X D DY DX Y X D +=+)( 答案: 1. B 2. A 6. D 7. D 8. C 9. A 1.某人射击三次,以i A 表示事件“第i 次击中目标”,则事件“三次中恰好击中目标一次”的正确表示为 C A 321A A A ++ B 323121A A A A A A ++

《概率论与数理统计》习题及答案

概率论与数理统计 第一部份 习题 第一章 概率论基本概念 一、填空题 1、设A ,B ,C 为3事件,则这3事件中恰有2个事件发生可表示为 。 2、设3.0)(,1.0)(=⋃=B A P A P ,且A 与B 互不相容,则=)(B P 。 3、口袋中有4只白球,2只红球,从中随机抽取3只,则取得2只白球,1只红球的概率 为 。 4、某人射击的命中率为0.7,现独立地重复射击5次,则恰有2次命中的概率为 。 5、某市有50%的住户订晚报,有60%的住户订日报,有80%的住户订这两种报纸中的一种,则同时订这两种报纸的百分比为 。 6、设A ,B 为两事件,3.0)(,7.0)(==B A P A P ,则=)(B A P 。 7、同时抛掷3枚均匀硬币,恰有1个正面的概率为 。 8、设A ,B 为两事件,2.0)(,5.0)(=-=B A P A P ,则=)(AB P 。 9、10个球中只有1个为红球,不放回地取球,每次1个,则第5次才取得红球的概率 为 。 10、将一骰子独立地抛掷2次,以X 和Y 分别表示先后掷出的点数,{}10=+=Y X A {}Y X B >=,则=)|(A B P 。 11、设B A ,是两事件,则B A ,的差事件为 。 12、设C B A ,,构成一完备事件组,且,7.0)(,5.0)(==B P A P 则=)(C P ,=)(AB P 。 13、设A 与B 为互不相容的两事件,,0)(>B P 则=)|(B A P 。 14、设A 与B 为相互独立的两事件,且4.0)(,7.0)(==B P A P ,则=)(AB P 。 15、设B A ,是两事件,,36.0)(,9.0)(==AB P A P 则=)(B A P 。 16、设B A ,是两个相互独立的事件,,4.0)(,2.0)(==B P A P 则=)(B A P 。 17、设B A ,是两事件,如果B A ⊃,且2.0)(,7.0)(==B P A P ,则=)|(B A P 。

《概率论与数理统计》习题及答案

概率论与数理统计 第一部份 习题 第一章 概率论基本概念 一、填空题 1、设A ,B ,C 为3事件,则这3事件中恰有2个事件发生可表示为 。 2、设3.0)(,1.0)(=?=B A P A P ,且A 与B 互不相容,则=)(B P 。 3、口袋中有4只白球,2只红球,从中随机抽取3只,则取得2只白球,1只红球的概率 为 。 4、某人射击的命中率为0.7,现独立地重复射击5次,则恰有2次命中的概率为 。 5、某市有50%的住户订晚报,有60%的住户订日报,有80%的住户订这两种报纸中的一种,则同时订这两种报纸的百分比为 。 6、设A ,B 为两事件,3.0)(,7.0)(==B A P A P ,则=)(B A P 。 7、同时抛掷3枚均匀硬币,恰有1个正面的概率为 。 8、设A ,B 为两事件,2.0)(,5.0)(=-=B A P A P ,则=)(AB P 。 9、10个球中只有1个为红球,不放回地取球,每次1个,则第5次才取得红球的概率 为 。 10、将一骰子独立地抛掷2次,以X 和Y 分别表示先后掷出的点数,{}10=+=Y X A {}Y X B >=,则=)|(A B P 。 11、设B A ,是两事件,则B A ,的差事件为 。 12、设C B A ,,构成一完备事件组,且,7.0)(,5.0)(==B P A P 则=)(C P ,=)(AB P 。 13、设A 与B 为互不相容的两事件,,0)(>B P 则=)|(B A P 。 14、设A 与B 为相互独立的两事件,且4.0)(,7.0)(==B P A P ,则=)(AB P 。 15、设B A ,是两事件,,36.0)(,9.0)(==AB P A P 则=)(B A P 。

概率论与数理统计练习题集及答案

概率论与数理统计练习题集及答案 一、选择题: 1.某人射击三次,以i A 表示事件“第i 次击中目标”,则事件“三次中至多击中目标一次”的正确表示为( ) (A )321A A A ++ (B )323121A A A A A A ++ (C )321321321A A A A A A A A A ++ (D )321A A A 2.掷两颗均匀的骰子,它们出现的点数之和等于8的概率为( ) (A ) 365 (B )364 (C )363 (D )36 2 3.设随机事件A 与B 互不相容,且0)(,0)(>>B P A P ,则( ) (A ))(1)(B P A P -= (B ))()()(B P A P AB P = (C )1)(=+B A P (D )1)(=AB P 4.随机变量X 的概率密度为???<≥=-00 )(2x x ce x f x ,则=EX ( ) (A )21 (B )1 (C )2 (D )4 1 5.下列各函数中可以作为某随机变量的分布函数的是( ) (A )+∞<<∞-+=x x x F ,11)(2 1 (B )?????≤>+=0 001)(2 x x x x x F (C )+∞<<∞-=-x e x F x ,)(3 (D ) +∞<<∞-+=x x x F ,arctan 21 43)(4π 6.已知随机变量X 的概率密度为)(x f X ,令X Y 2-=,则Y 的概率密度 )(y f Y 为( )

(A ))2(2y f X - (B ))2(y f X - (C ))2 (21y f X -- (D ))2 (2 1y f X - 7.已知二维随机向量),(Y X 的分布及边缘分布如表 h g p f e d x c b a x p y y y X Y Y j X i 61818121321,且X 与Y 相互独立,则=h ( ) (A )81 (B )8 3 (C )4 1 (D )3 1 8.设随机变量]5,1[~U X ,随机变量)4,2(~N Y ,且X 与Y 相互独立,则=-)2(Y XY E ( ) (A )3 (B )6 (C )10 (D )12 9.设X 与Y 为任意二个随机变量,方差均存在且为正,若 EY EX EXY ?=,则下列结论不正确的是( ) (A )X 与Y 相互独立 (B )X 与Y 不相关 (C )0),cov(=Y X (D )DY DX Y X D +=+)( 答案: 1. B 2. A 3.D 4.A 5.B 6. D 7. D 8. C 9. A 1.某人射击三次,以i A 表示事件“第i 次击中目标”,则事件“三次中恰好击中目标一次”的正确表示为( C ) (A )321A A A ++ (B )323121A A A A A A ++

(完整版)《概率论与数理统计》习题及答案选择题

·151· 《概率论与数理统计》习题及答案 选 择 题 单项选择题 1.以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为( ). (A )“甲种产品滞销,乙种产品畅销”; (B )“甲、乙两种产品均畅销”; (C )“甲种产品滞销或乙种产品畅销”; (D )“甲种产品滞销”. 解:设B =‘甲种产品畅销’,C =‘乙种产品滞销’,A BC = A BC B C ===U ‘甲种产品滞销或乙种产品畅销’. 选C. 2.设,,A B C 是三个事件,在下列各式中,不成立的是( ). (A )()A B B A B -=U U ; (B )()A B B A -=U ; (C )()A B AB AB AB -=U U ; (D )()()()A B C A C B C -=--U U . 解:()()()A B B AB B A B B B A B -===U U U I U U ∴A 对. ()()A B B A B B AB BB AB A B A -====-≠U U U B 不对 ()()().A B AB A B B A AB AB -=--=U U U C 对 ∴选B. 同理D 也对. 3.若当事件,A B 同时发生时,事件C 必发生,则( ). (A )()()()1P C P A P B ≤+-; (B )()()()1P C P A P B ≥+-; (C )()()P C P AB =; (D )()().P C P A B =U 解:()()()()()()()1AB C P C P AB P A P B P A B P A P B ??≥=+-≥+-U ∴ 选B. 4.设(),(),()P A a P B b P A B c ===U ,则()P AB 等于( ). (A )a b -; (B )c b -; (C )(1)a b -; (D )b a -. 解:()()()()()()()P AB P A B P A P AB a P A P B P A B c b =-=-=--+=-U

(完整版)概率论与数理统计习题集及答案

《概率论与数理统计》作业集及答案 第1章 概率论的基本概念 §1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ; (2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= . (2) 一枚硬币连丢2次, A :第一次出现正面,则A= ; B :两次出现同一面,则= ; C :至少有一次出现正面,则C= . §1 .2 随机事件的运算 1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件: (1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: . (3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: . (5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则 (1)=⋃B A ,(2)=AB ,(3)=B A , (4)B A ⋃= ,(5)B A = 。 §1 .3 概率的定义和性质 1. 已知6.0)(,5.0)(,8.0)(===⋃B P A P B A P ,则 (1) =)(AB P , (2)()(B A P )= , (3))(B A P ⋃= . 2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = . §1 .4 古典概型 1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率, (2)最多有2个女同学的概率,(3) 至少有2个女同学的概率. 2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率. §1 .5 条件概率与乘法公式 1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。 2. 已知,2/1)|(,3/1)|(,4/1)(===B A P A B P A P 则=⋃)(B A P 。 §1 .6 全概率公式 1. 有10个签,其中2个“中”,第一人随机地抽一个签,不放回,第二人再随机地抽一个 签,说明两人抽“中‘的概率相同。 2. 第一盒中有4个红球6个白球,第二盒中有5个红球5个白球,随机地取一盒,从中 随机地取一个球,求取到红球的概率。

概率论与数理统计题库与答案

概率论与数理统计题库及答案 一、单选题 1. 在下列数组中,( )中的数组可以作为离散型随机变量的概率分布. (A) 51,41,31,21 (B) 81 ,81,41,21 (C) 21,21,21,21- (D) 16 1,81,41,21 2. 下列数组中,( )中的数组可以作为离散型随机变量的概率分布. (A) 41414121 (B) 161 8141 21 (C) 163161412 1 (D) 8 1 834121 - 3. 设连续型随机变量X 的密度函数 ???<<=, ,0,10,2)(其他x x x f 则下列等式成立的是( ). (A) X P (≥1)1=- (B) 2 1 )21(== X P (C) 21)21(=X P 4. 若)(x f 与)(x F 分别为连续型随机变量X 的密度函数与分布函数,则等式( )成 立. (A) X a P <(≤?∞ +∞-=x x F b d )() (B) X a P <(≤?=b a x x F b d )() (C) X a P <(≤? = b a x x f b d )() (D) X a P <(≤? ∞ +∞ -= x x f b d )() 5. 设)(x f 和)(x F 分别是随机变量X 的分布密度函数和分布函数,则对任意b a <,有 X a P <(≤=)b ( ). (A) ? b a x x F d )( (B) ?b a x x f d )( (C) )()(a f b f - (D) )()(b F a F - 6. 下列函数中能够作为连续型随机变量的密度函数的是( ).

[理学]概率论与数理统计练习题含答案

第一章 随机事件及其概率 练习: 1. 判断正误 (1)必然事件在一次试验中一定发生,小概率事件在一次试验中一定不发生。(B ) (2)事件的发生与否取决于它所包含的全部样本点是否同时出现。(B ) (3)事件的对立与互不相容是等价的。(B ) (4)若()0,P A = 则A =?。(B ) (5)()0.4,()0.5,()0.2P A P B P AB ===若则。 (B ) (6)A,B,C 三个事件至少发生两个可表示为AB BC AC ??(A ) (7)考察有两个孩子的家庭孩子的性别, {()Ω=两个男孩(,两个女孩),(一个男孩,}一个女孩),则P {}1 =3 两个女孩。 (B ) (8)若P(A)P(B)≤,则?A B 。(B ) (9)n 个事件若满足,,()()() i j i j i j P A A P A P A ?=,则n 个事件相互 独立。(B ) (10)只有当A B ?时,有P(B-A)=P(B)-P(A)。(A ) 2. 选择题 (1)设A, B 两事件满足P(AB)=0,则?

A. A 与B 互斥 B. AB 是不可能事件 C. AB 未必是不可能事件 D. P(A)=0 或 P(B)=0 (2)设A, B 为两事件,则P(A-B)等于(C) A. P(A)-P(B) B. P(A)-P(B)+P(AB) C. P(A)-P(AB) D. P(A)+P(B)-P(AB) (3)以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为(D) A. “甲种产品滞销,乙种产品畅销” B. “甲乙两种产品均畅销” C. “甲种产品滞销” D. “甲种产品滞销或乙种产品畅销” (4)若A, B 为两随机事件,且B A ?,则下列式子正确的是(A) A. P(A ∪B)=P(A) B. P(AB)=P(A) C. P(B|A)=P(B) D. P(B-A)=P(B)-P(A) (5)设(),(),()P A B a P A b P B c ?===,则()P AB 等于(B) A. ()a c c + B . 1a c +- C. a b c +- D. (1)b c - (6)假设事件A 和B 满足P(B|A)=1, 则(B) A. A 是必然事件 B . (|)0P B A = C. A B ? D. A B ? (7)设0

概率论与数理统计练习题(附答案)

练习题 1、设随机变量)6.0,10(b ~X ,则2 2 [()][(X)] D X E = ; 2、假设随机变量*的分布未知,但2 ,EX DX μσ==,则*落在区间(2,2) μσμσ-+的概率必不小于_________ 3、设ˆˆ(,......)12 X X X n θ θ=是未知参数θ的一个估计量,满足条件_________ 则称ˆθ θ是的无偏估计。 4. 设*,Y 为随机变量,且D (*+Y )=7, D(*)=4, D(Y)=1,则相关系数XY ρ= 5. 设随机变量12,,,n X X X 相互独立,且(1,2, ,)=i X i n 都服从区间[0,1]上的均匀分布, 则当n 充分大时,∑== n i i n n X Y 1 1 近似服从〔写出具体分布与参数〕 6.设(,)X Y 服从区域2 2 2 :G x y R +≤上的均匀分布,其概率密度为: 222 (,)0 C x y R f x y ⎧+≤=⎨ ⎩其它 ,则C=〔 〕; (A) 2 R π ; (B) 2 1R π; (C) R π2; (D) R π21 。 7.设 ,......12X X X n 为相互独立的随机变量,且2 (,())E X D X i i μσ ==〔1,2......i n =〕,11 n X X i i n ∑= =,则DX =〔 〕 (A) 2 n σ (B) 2 n σ (C) n σ (D) 22n σ 8.设一次试验中事件A 不发生的概率为p,独立重复n 次试验,A 发生了*次则正确的选项是:〔 〕 (A) ()()2 1p p X E -= ; (B) ()E X np = ; (C) (1)DX np p =- ; (D) 2 DX p p =-。 9.设随机变量X 和Y 不相关,则以下结论中正确的选项是〔 〕 A . X 与Y 独立; B. ()D X Y DX DY -=+;

《概率论与数理统计》习题及答案

概率论与数理统计 第一部份 习题 第一章 概率论基本概念 一、填空题 1、设A ,B ,C 为3事件,则这3事件中恰有2个事件发生可表示为 。 2、设3.0)(,1.0)(=⋃=B A P A P ,且A 与B 互不相容,则=)(B P 。 3、口袋中有4只白球,2只红球,从中随机抽取3只,则取得2只白球,1只红球的概率 为 。 4、某人射击的命中率为0.7,现独立地重复射击5次,则恰有2次命中的概率为 。 5、某市有50%的住户订晚报,有60%的住户订日报,有80%的住户订这两种报纸中的一种,则同时订这两种报纸的百分比为 。 6、设A ,B 为两事件,3.0)(,7.0)(==B A P A P ,则=)(B A P Y 。 7、同时抛掷3枚均匀硬币,恰有1个正面的概率为 。 8、设A ,B 为两事件,2.0)(,5.0)(=-=B A P A P ,则=)(AB P 。 9、10个球中只有1个为红球,不放回地取球,每次1个,则第5次才取得红球的概率 为 。 10、将一骰子独立地抛掷2次,以X 和Y 分别表示先后掷出的点数,{}10=+=Y X A {}Y X B >=,则=)|(A B P 。 11、设B A ,是两事件,则B A ,的差事件为 。

12、设C B A ,,构成一完备事件组,且,7.0)(,5.0)(==B P A P 则=)(C P ,=)(AB P 。 13、设A 与B 为互不相容的两事件,,0)(>B P 则=)|(B A P 。 14、设A 与B 为相互独立的两事件,且4.0)(,7.0)(==B P A P ,则=)(AB P 。 15、设B A ,是两事件,,36.0)(,9.0)(==AB P A P 则=)(B A P 。 16、设B A ,是两个相互独立的事件,,4.0)(,2.0)(==B P A P 则=)(B A P Y 。 17、设B A ,是两事件,如果B A ⊃,且2.0)(,7.0)(==B P A P ,则=)|(B A P 。 18、设2 1)(,41)(,31 )(===B A P B P A P Y ,则=)(B A P Y 。 19、假设一批产品中一、二、三等品各占60%,30%,10%。从中随机取一件,结果不是三等品,则为一等品的概率为 20、将n 个球随机地放入n 个盒子中,则至少有一个盒子空的概率为 。 二、选择题 1、设0)(=AB P ,则下列成立的是( ) ① A 和B 不相容 ② A 和B 独立 ③ 0)(0)(==B orP A P ④ )()(A P B A P =- 2、设C B A ,,是三个两两不相容的事件,且a C P B P A P ===)()()(,则 a 的最大值 为 ( )

(完整版)《概率与数理统计》练习册及答案

第一章 概率论的基本概念 一、选择题 1.将一枚硬币连抛两次,则此随机试验的样本空间为( ) A .{(正,正),(反,反),(一正一反)} B 。{(反,正),(正,反),(正,正),(反,反)} C .{一次正面,两次正面,没有正面} D.{先得正面,先得反面} 2。设A,B 为任意两个事件,则事件(AUB)(Ω-AB)表示( ) A .必然事件 B .A 与B 恰有一个发生 C .不可能事件 D .A 与B 不同时发生 3.设A ,B 为随机事件,则下列各式中正确的是( ). A 。P (AB )=P (A)P (B) B 。P(A —B)=P (A )-P (B) C.)()(B A P B A P -= D.P(A+B)=P(A )+P(B ) 4。设A ,B 为随机事件,则下列各式中不能恒成立的是( )。 A 。P(A -B)=P(A)-P (A B ) B 。P (AB )=P(B )P (A|B ),其中P (B)〉0 C 。P(A+B)=P(A)+P (B) D.P(A )+P(A )=1 5。若φ≠AB ,则下列各式中错误的是( ). A .0)(≥A B P B 。1)(≤AB P C 。P(A+B)=P(A)+P (B ) D 。P (A-B)≤P(A) 6.若φ≠AB ,则( ). A. A ,B 为对立事件 B.B A = C.φ=B A D 。P(A-B )≤P (A ) 7。若,B A ⊂则下面答案错误的是( )。 A. ()B P A P ≤)( B 。 ()0A -B P ≥

C.B 未发生A 可能发生 D 。B 发生A 可能不发生 8。下列关于概率的不等式,不正确的是( ). A. )}(),(min{)(B P A P AB P ≤ B 。.1)(,<Ω≠A P A 则若 C 。1212(){}n n P A A A P A A A ≤++ + D.∑==≤n i i n i i A P A P 1 1 )(}{ 9.(1,2, ,)i A i n =为一列随机事件,且12 ()0n P A A A >,则下列叙述中错误的是( )。 A.若诸i A 两两互斥,则∑∑===n i i n i i A P A P 1 1 )()( B 。若诸i A 相互独立,则1 1 ()1(1())n n i i i i P A P A ===--∑∏ C.若诸i A 相互独立,则1 1 ( )()n n i i i i P A P A ===∏ D 。)|()|()|()()(1231211 -=Λ=n n n i i A A P A A P A A P A P A P 10。袋中有a 个白球,b 个黑球,从中任取一个,则取得白球的概率是( )。 A.2 1 B. b a +1 C. b a a + D. b a b + 11.今有十张电影票,其中只有两张座号在第一排,现采取抽签方式发放给10名同学,则( ) A 。先抽者有更大可能抽到第一排座票 B 。后抽者更可能获得第一排座票 C.各人抽签结果与抽签顺序无关 D 。抽签结果受以抽签顺序的严重制约 12。将n 个小球随机放到)(N n N ≤个盒子中去,不限定盒子的容量,则每个盒子中至多有1个球的概率是( ). A.! !N n B. n N n ! C. n n N N n C !⋅ D. N n

概率论与数理统计练习题及答案

概率论与数理统计习题 一、选择题(在每个小题四个备选答案中选出一个正确答案,填在题末的括号中) 1.设)4,5.1(~N X ,且8944.0)25.1(=Φ,9599.0)75.1(=Φ,则P{-2=⎨ ≤⎩,则q=_____ (A)1/2 (B)1 (C)-1 (D)3/2 4.事件A ,B 为对立事件,则_____不成立。 (A) ()0P AB = (B) ()P B A φ= (C) ()1P A B = (D) ()1P A B += 5.掷一枚质地均匀的骰子,则在出现奇数点的条件下出现3点的概率为____ (A)1/3 (B)2/3 (C)1/6 (D)3/6 6.设(|)1P B A = ,则下列命题成立的是_____ A . B A ⊂ B . A B ⊂ C.A B -=Φ D.0)(=-B A P 7.设连续型随机变量的分布函数和密度函数分别为()F x 、()f x ,则下列选项中正确的 是_____ A . 0()1F x ≤≤ B .0()1f x ≤≤ C.{}()P X x F x == D.{}()P X x f x == 8.设 ()2~,X N μσ,其中μ已知,2σ未知,1234,,,X X X X 为其样本, 下列各项不是 统计量的是____ A.4114i i X X ==∑ B.142X X μ+- C.4 22 1 1 ()i i K X X σ==-∑ D.4 2 1 1()3i i S X X ==-∑ 9.设,A B 为两随机事件,且B A ⊂,则下列式子正确的是_____ A . ()()P A B P A += B .()()P AB P A =

概率论与数理统计课后习题集及答案详解

概率论与数理统计课后习题集及解答 第一章 随机事件和概率 一. 填空题 1. 设A, B, C 为三个事件, 且=-=⋃⋃=⋃)(,97.0)(,9.0)(C AB P C B A P B A P 则____. 解. )(1)(1)()()()(ABC P AB P ABC P AB P ABC AB P C AB P +--=-=-=- =)(C B A P ⋃⋃-)(B A P ⋃= 0.97-0.9 = 0.07 2. 设10件产品中有4件不合格品, 从中任取两件, 已知所取两件产品中有一件是不合格品, 另一件也是不合格品的概率为_______. 解. }{合格品二件产品中有一件是不=A , }{二件都是不合格品=B 51 1)()()()()|(2 10 2 621024=-===c c c c A P B P A P AB P A B P 注意: }{合格品二件产品中有一件是不=}{不合格品二件产品中恰有一件是 +}{二件都是不合格品 所以B AB B A =⊃,; }{二件都是合格品=A 3. 随机地向半圆a x ax y (202-< <为正常数)内掷一点, 点落在半圆内任何区域的概率 与区域的面积成正比, 则原点和该点的连线与x 轴的夹角小于4 π 的概率为______. 解. 假设落点(X, Y)为二维随机变量, D 为半圆. 则 121)),((2==∈a k D Y X P π, k 为比例系数. 所以22a k π= 假设D 1 = {D 中落点和原点连线与x 轴夹角小于4 π 的区域} π ππ121)2141(2)),((222 11+=+=⨯=∈a a a D k D Y X P 的面积. 4. 设随机事件A, B 及其和事件A ⋃B 的概率分别是0.4, 0.3, 0.6, 若B 表示B 的对立事件, 则积事件B A 的概率)(B A P = ______. 解. =+-+=)()()()(B A P B P A P AB P 0.4 + 0.3-0.6 = 0.1

相关主题
相关文档
最新文档