ansys高级非线性分析四蠕变
ANSYS中材料非线性模型介绍与选择

1.强化应力达到屈服点后,继续加载(如果切线弹模大于0),有塑形变形,应力升高,然后卸载,这时是弹性的,再加载还是弹性的,直到应力得到卸载时的应力值才开始新的屈服。
这种屈服点升高的现象称为强化。
强化机理:塑性变形对应于微观上的位错运动。
在塑性变形过程中不断产生新的位错,位错的相互作用提高了位错运动的阻力。
这在宏观上表现为材料的强化,在塑性力学中则表现为屈服面的变化。
各种材料的强化规律须通过材料实验资料去认识。
利用强化规律得到的加载面(即强化后的屈服面)可用来导出具体材料的本构方程。
强化规律比较复杂,一般用简化的模型近似表示。
目前广泛采用的强化模型是等向强化模型和随动强化模型。
2.等向强化如果材料在一个方向屈服强度提高(强化)在其它方向的屈服强度也同时提高,这样的材料叫等向强化材料。
等向强化模型假设,在塑性变形过程中,加载面作均匀扩大,即加载面仅决定于一个强化参量q。
如果初始屈服面是f*(σij)=0,则等向强化的加载面可表为:f(σij)=f*(σij)-C(q)=0,式中σij为应力分量;C(q)是强化参量q的函数。
通常q可取为塑性功或等效塑性应变式中dε为塑性应变ε的增量;式中重复下标表示约定求和。
3.随动强化如果材料在应该方向的屈服点提高,其它方向的屈服应力相应下降,比如拉伸的屈服强度提高多少,反向的压缩屈服强度就减少多少,这样的材料叫随动强化材料。
随动强化模型假设,在塑性变形过程中,加载面的大小和形状不变,仅整体地在应力空间中作平动。
以αij代表加载面移动矢量的分量,则加载面可表为:f(σij)=f*(σij-αij)=0,式中可取αij=Aε,A为常数。
4.材料模型选择对于多数实际材料,强化规律大多介于等向强化和随动强化之间。
在加载过程中,如果在应力空间中应力矢量的方向(或各应力分量的比值)变化不大,则等向强化模型与实际情况较接近。
由于这种模型便于数学处理,所以应用较为广泛。
随动强化模型考虑了包辛格效应,可应用于循环加载和可能反向屈服的问题中。
ANSYS与结构分析解析

第一章ANSYS与结构分析1.1 ANSYS功能与软件结构工程和制造业的生命力在于产品的创新,而计算机的发展和广泛应用大大提高了产品开发、设计、分析和制造的效率和产品性能,用计算机对设计产品实时或进行随后的分析称为计算机辅助工程。
即CAE(Computer Aided Engineering)。
该技术是由计算机技术和工程分析技术相结合形成的新兴技术,它涉及计算力学、计算数学、结构动力学、数字仿真技术、工程管理学与计算机技术等学科。
随着有限元理论和计算机硬件的发展,CAJ软件和技术越来越成熟,已逐渐成为工程师实现工程创新和产品创新的得力助手和有效工具。
大型通用CAE软件可对多种类型功能和产品物理力学性能进行分析,其应用范围及其广泛,如ANSYS、ADINA、NASTRAN、MARC、ABAQUS、ADAMS、I-DEAS、SAP 等。
ANSYS软件是融结构、流体、电磁场、声场和热场分析于一体的大型大型通用有限元分析软件,可广泛应用于土木、地质、矿业、材料、机械、仪器仪表、热工电子、水利、生物医学和原子能等工程的分析和科学研究。
它可在大多数计算机和操作系统(如Windows、UNIX、Linux、HP-UX等)中运行,可与大多数CAD软件接口。
1970年,Dr.John.Swanson成立了Swanson Analysis System,Inc,后来重组后改称AN-SYS公司,总部设在美国宾西法尼亚州的匹兹堡。
近几年来,ANSYS 软件发展迅速,功能不断增强,目前最高版本为11.0beta。
1.1.1 ANSYS软件的技术特点ANSYS的主要技术特点如下:(1)强大的建模能力:仅靠ANSYS本身就可建立各种复杂的几何模型,可采用自底向上、自顶向下或两者混合建模方法,通过各种布尔运算和操作建立所需几何实体。
(2)强大的求解能力:ANSYS提供了数种求解器,主要类型有迭代求解器(预条件共轭梯度、雅可比共轭梯度、不完全共轭梯度),直接求解器(波前、稀疏矩阵)、特征值求解法(分块Lanczos法、子空间法、凝聚发、QR阻尼法)、并行求解器(分布式并行、代数多重网格)等,用户可根据问题类型选择合适的求解器。
ANSYS-1-非线性分析概述

第一章钢筋混凝土结构非线性分析概述1.1 钢筋混凝土结构的特性1.钢筋混凝土结构由两种材料组成,两者的抗拉强度差异较大,在正常使用阶段,结构或构件就处在非线性工作阶段,用弹性分析方法分析的结构内力和变形无法反映结构的真实受力状况;2.混凝土的拉、压应力-应变关系具有较强的非线性特征;3.钢筋与混凝土间的黏结关系非常复杂,特别是在反复荷载作用下,钢筋与混凝土间会产生相对滑移,用弹性理论分析的结果不能反映实际情况;4.混凝土的变形与时间有关:徐变、收缩;5.应力-应变关系莸软化段:混凝土达到强度峰值后有应力下降段;6.产生裂缝以后成为各向异形体。
混凝土结构在荷载作用下的受力-变形过程十分复杂,是一个变化的非线性过程。
1.2 混凝土结构分析的目的和主要内容《混凝土结构设计规范》(GB50010-2002)中新增的主要内容:(1)混凝土的本构关系和多轴强度:给出了单轴受压、受拉非线性应力-应变(本构)关系,混凝土二轴强度包络图、三轴抗压强度图和三轴应力状态破坏准则;(2)结构分析:规范概括了用于混凝土结构分析的5类方法,列入了结构非线性分析方法。
一、结构分析的基本目的:计算在各类荷载作用下的结构效应——内力、位移、应力、应变根据设计的结构方案确定合理的计算简图,选择不利荷载组合,计算结构内力,以便进行截面配筋计算和采取构造措施。
二、结构分析的主要内容:(1)确定结构计算简图:考虑以下因素:(a)能代表实际结构的体形和尺寸;(b)边界条件和连接方式能反映结构的实际受力状态,并有可靠的构造措施;(c)材料性能符合结构的实际情况;(d)荷载的大小、位置及组合应与结构的实际受力吻合;(e)应考虑施工偏差、初始应力及变形位移状况对计算简图进行适当修正;(f)根据结构受力特点,可对计算简图作适当简化,但应有理论或试验依据,或有可靠的工程经验;(g)结构分析结果应满足工程设计的精度要求。
(2)结构作用效应分析:根据结构施工和使用阶段的多种工况,分别进行结构分析,确定最不利荷载效应组合。
ansys材料非线性

• 另外, 在称为屈服点 的应力水平以下, 应力-应变响应为弹性.
– 在屈服点以下, 卸载后, 发生的任何应变都是完全可恢复的.
σ
屈服点 比例极限
ε
May 11, 2007 © 2007 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary
DesignModeler
等向强化 指屈服面在塑性流动期间均匀扩张。‘等向’ 一词指屈服面的均匀
扩张,和‘各向同性’屈服准则 (即材料取向)不同。
σ3
后来的屈服面
σ
σ' σy 2σ'
最初的屈服面
ε σ2
弹性
ε σ2
σ1
主应力空间
单轴应力-应变
ANSYS, Inc. Proprietary
Inventory #002496 1-12
材料非线性专题
弹塑性-综述(续)
Training Manual
DesignModeler
屈服准则:Hill 屈服准则
–它是各向异性 (von Mises 是各向同性)。 Hill 准则可看作是 von Mises 屈服准 则的延伸
主应力空间
σ2
ANSYS, Inc. Proprietary
单轴 应力-应变
Inventory #002496 1-13
材料非线性专题
弹塑性-综述(续)
Training Manual
DesignModeler
屈服准则:广义Hill屈服准则(各向异性非均质材料) –广义 Hill 势理论的屈服面可看作是在主应力空间内移动了的变形圆柱体。 –由于各向异性(不同方向屈服不同),所以圆柱屈服面变形 (Hill 准则)。 –因为屈服在拉伸和压缩中可指定为不同, 所以圆柱屈服面被初始移动。
ANSYS命令流学习笔记10-利用APDL在WorkBench中进行非线性屈曲分析

!ANSYS命令流学习笔记10-利用APDL在WorkBench中进行非线性屈曲分析!学习重点:!1、强化非线性屈曲知识首先了解屈曲问题。
在理想化情况下,当F < Fcr时, 结构处于稳定平衡状态,若引入一个小的侧向扰动力,然后卸载, 结构将返回到它的初始位置。
当F > Fcr时, 结构处于不稳定平衡状态, 任何扰动力将引起坍塌。
当F = Fcr时,结构处于中性平衡状态,把这个力定义为临界载荷。
在实际结构中, 几何缺陷的存在或力的扰动将决定载荷路径的方向。
在实际结构中, 很难达到临界载荷,因为扰动和非线性行为, 低于临界载荷时结构通常变得不稳定。
要理解非线性屈曲分析,首先要了解特征值屈曲。
特征值屈曲分析预测一个理想线弹性结构的理论屈曲强度,缺陷和非线性行为阻止大多数实际结构达到理想的弹性屈曲强度,特征值屈曲一般产生非保守解, 使用时应谨慎。
!理论解,根据Euler公式。
其中μ取决于固定方式。
F cr=π2EI (μL)2!有限元方法,已知在特征值屈曲问题:det([K e]+λ[K e(σ0)])=0求解λ,即可得到临界载荷{F cr}=λ{P0}而非线性屈曲问题:([K e]+[K e(σ0)]){δ}={F}其中[K e]为结构初始刚度,[K e(σ0)]为有缺陷的结构刚度,{δ}为位移矩阵,{F}为载荷矩阵。
非线性屈曲分析时考虑结构平衡受扰动(初始缺陷、载荷扰动)的非线性静力分析,该分析时一直加载到结构极限承载状态的全过程分析,分析中可以综合考虑材料塑性、几何非线性、接触、大变形。
非线性屈曲比特征值屈曲更精确,因此推荐用于设计或结构的评价。
!2、熟悉WB中非线性屈曲分析流程(1) 前处理,施加单元载荷,进行预应力静力分析。
(2) 基于预应力静力分析,指定分析类型为特征值屈曲分析,完成特征值屈曲分析。
(3) 在APDL模块将一阶特征屈曲模态位移乘以适当系数,将此变形后的形状当做非线性分析的初始模型。
ansys非线性瞬态结构分析重要命令

Nonlinear Kinematic Hardening Material Model非线性随动硬化模型
Bilinear Isotropic Hardening Material Model双线性各向同性硬化模型
双线性各向同性硬化模型(TB,BISO)选项使用von Mises 屈服准则耦合各向同性硬化假设。该选项优先用于大形变(large strain)分析。BIOS选项可以结合Chaboche, creep, viscoplastic, and Hill anisotropy等选项来仿真复杂材料模型。
Multilinear Isotropic Hardening Material Model多线性各向同性硬化模型
Multilinear Kinematic Hardening
Nonlinear Kinematic Hardening
Bilinear Isotropic Hardening
Multilinear Isotropic Hardening
Nonlinear Isotropic Hardening
Anisotropic
其他:
Anisotropic Material Model 各向异性材料模型;Hill Anisotropy Material Model 希尔各向异性材料模型;Drucker-Prager Material Model德鲁克 - 普拉格材料模型,用于颗粒材料(土壤、岩石、水泥);Gurson Plasticity Material Model高森塑性材料模型,用于多孔金属材料;Gurson-Chaboche Material Model高森-沙博什材料模型,用于多孔金属材料;Cast Iron Material Model铸铁材料模型。
蠕变分析实例
图2
坐标轴设置对话框
ห้องสมุดไป่ตู้3
时间为 1000 小时的轴向应力结果显示
ANSYS 显示窗口将显示螺栓的有限元图,如图 1。
图1 五、施加载荷
螺栓有限元模型图
1) 施 加位 移 约束 。选 择 Preprocessor → Loads → Define Loads → Apply → Structural→Displacement→On Nodes 命令, 出现 Apply U, ROT on Nodes 拾取菜单,单击 Pick All 和 OK,在 Lab2 DOFs to be contrained 复选框 中选择 All DOF, 取 VALUE Displacement value 为 0。 2) 施加温度。选择 Preprocessor→Loads→Define Loads→Apply→Structural→Temperature→Uniform Temp 命令,取 Uniform Temperature 为 900。 六、求解计算 1) 定义分析类型。分析类型为 Static。 2)选择 Solution→Load Step Opts→Solution Ctrl 命令,出现 Nonlinear Solution Control 对话框,使 Solution Control 状态从 ON 变为 OFF,在 Pressure load stiffness 下拉菜单中选择 Program Chosen。 3) 定义求解时间步。选择 Solution→Load Step Opts→Time/Frequenc→Time and Substps 命令,取 Time at end of load step 为 3600000,取 Number of substeps 为 100,并选中 Stepped, 其余采用默认设置。 4) 求解输出控制。选择 Solution → Load Step Opts → Output Ctrls → Solu Printout 命令,在 Item for printout control 下拉菜单中选择 Basic quantities,并选中 Every Nth substp, 取 N 值为 36000,Component name 为 All entities。 5) 写入数据库和结果文件控制。选择 Solution → Load Step Opts → Output Ctrls→DB/Result Files 命令,在 Item to be controlled 下拉菜单中选 择 Element solution, 并选中 Every Nth substp, 取 N 值为 1,Component name 为 All entities。 6) 选择 Solution→Solve→Current LS 命令,单击 OK, ANSYS 将开始求解计 算,求解结束时,出现 Note 对话框。 七、查看求解结果 1) 轴向应力和时间变化关系曲线显示 ·定义时间-历程变量。选择 TimeHist Postpro→Define Variables 命令,单 击 Add 按钮,选中 by seq no.,单击 OK 按钮,出现单元拾取菜单,在输入栏
ansys解决非线性分析不收敛的技巧
解决非线性分析不收敛的技巧大家都提到了收敛困难的问题为加速收敛应该注意一下几个问题: 1收敛容差ANSYS缺省的收敛准则会根据单元的不同而检查不同的收敛力素和容差例如当采用solid65和link8时,缺省的要检查F和DISP两个力素其容差也是缺省的(Help中有)对于钢筋混凝土结构一般而言其位移比较小仅使用F力素收敛即可但其容差也同时放松一般采用5%即可(缺省是5)命令:cnvtol,f,,0.05,22 其它选项的设置自动时间步打开此选择可以让程序决定子步间荷载增量的大小及其是增加或是减小收敛速度较快(命令autots,1)打开后似乎定义的子步数不起控制作用了打开线性搜索可以帮助收敛的速度(命令:lnsrch,1)打开预测器可以帮助收敛的速度(命令red,on)平衡迭代次数在每一子步中的迭代次数缺省是25,将其增加例如改为50(命令: neqit,50)NSUBST此值不宜过小否则计算过程中老是调整影响计算速度当然对于比较简单的算例或是分布模型可能不需要如此多的选项但对于复杂的模型是需要的各位可以试试影响非线性收敛稳定性及其速度的因素很多:1、模型——主要是结构刚度的大小。
对于某些结构,从概念的角度看,可以认为它是几何不变的稳定体系。
但如果结构相近的几个主要构件刚度相差悬殊,在数值计算中就可能导致数值计算的较大误差,严重的可能会导致结构的几何可变性——忽略小刚度构件的刚度贡献。
如出现上述的结构,要分析它,就得降低刚度很大的构件单元的刚度,可以加细网格划分,或着改用高阶单元(BEAM->SHELL, SHELL->SOLID)。
构件的连接形式(刚接或铰接)等也可能影响到结构的刚度。
2、线性算法(求解器)。
ANSYS中的非线性算法主要有:稀疏矩阵法(SPARSE DIRECT SOLVER)、预共轭梯度法(PCG SOLVER)和波前法(FRONT DIRECT SLOVER)。
稀疏矩阵法是性能很强大的算法,一般默认即为稀疏矩阵法(除了子结构计算默认波前法外)。
ANSYS结构分析指南结构线性静力分析
ANSYS结构分析指南第二章结构线性静力分析2.1 静力分析的定义静力分析计算在固定不变载荷作用下结构的响应,它不考虑惯性和阻尼影响--如结构受随时间变化载荷作用的情况。
可是,静力分析可以计算那些固定不变的惯性载荷对结构的影响(如重力和离心力),以及那些可以近似为等价静力作用的随时间变化载荷(如通常在许多建筑规范中所定义的等价静力风载和地震载荷)的作用。
静力分析用于计算由那些不包括惯性和阻尼效应的载荷作用于结构或部件上引起的位移、应力、应变和力。
固定不变的载荷和响应是一种假定,即假定载荷和结构响应随时间的变化非常缓慢。
静力分析所施加的载荷包括:外部施加的作用力和压力稳态的惯性力(如重力和离心力)强迫位移温度载荷(对于温度应变)能流(对于核能膨胀)关于载荷,还可参见§2.3.4。
2.2 线性静力分析与非线性静力分析静力分析既可以是线性的也可以是非线性的。
非线性静力分析包括所有类型的非线性:大变形、塑性、蠕变、应力刚化、接触(间隙)单元、超弹性单元等。
本章主要讨论线性静力分析。
对非线性静力分析只作简单介绍,其详细论述见《ANSYS Structural Analysis Guide》§8。
2.3 静力分析的求解步骤2.3.1 建模首先用户应指定作业名和分析标题,然后通过PREP7 前处理程序定义单元类型、实常数、材料特性、模型的几何元素。
这些步骤是大多数分析类型共同的,并已在《ANSYS Basic Analysis Guide》§1.2 论述。
有关建模的进一步论述,见《ANSYS Modeling and Meshing Guide》。
2.3.1.1 注意事项在进行静力分析时,要注意如下内容:1、可以采用线性或非线性结构单元。
2、材料特性可以是线性或非线性,各向同性或正交各向异性,常数或与温度相关的:必须按某种形式定义刚度(如弹性模量EX,超弹性系数等)。
对于惯性载荷(如重力等),必须定义质量计算所需的数据,如密度DENS。
杜__ANSYS非线性分析教程1非线性结构汇总
1.非线性结构分析1.1非线性结构的定义在日常生活中,经常会遇到结构非线性。
例如,无论何时用钉书针钉书,金属钉书钉将永久地弯曲成一个不同的形状(图1-1(a))。
如果你在一个木架上放置重物,随着时间的迁移它将越来越下垂(图1-1(b))。
当在汽车或卡车上装货时,它的轮胎和下面路面间接触将随货物重量的增加而变化(图1-1(c))。
如果将上面例子的载荷变形曲线画出来,你将发现它们都显示了非线性结构的基本特征-变化的结构刚性。
图1-1 非线性结构行为的普通例子1.2非线性行为的原因:引起结构非线性的原因很多,它可以被分成三种主要类型:1.2.1状态变化(包括接触)许多普通结构表现出一种与状态相关的非线性行为,例如,一根只能拉伸的电缆可能是松散的,也可能是绷紧的;轴承套可能是接触的,也可能是不接触的;冻土可能是冻结的,也可能是融化的。
这些系统的刚度由于系统状态的改变在不同的值之间发生变化。
状态改变也许和载荷直接有关(如在电缆情况中),也可能由某种外部原因引起(如在冻土中的紊乱热力学条件)。
ANSYS程序中单元的激活与杀死选项用来给这种状态的变化建模。
接触是一种很普遍的非线性行为,接触是状态变化非线性类型中一个特殊而重要的子集。
1.2.2几何非线性如果结构经受大变形,它变化的几何形状可能会引起结构的非线性响应。
如下显示一个垂向刚性变化的例子。
随着垂向载荷的增加,杆不断弯曲以至于动力臂明显地减少,导致杆端显示出在较高载荷下不断增长的刚性。
图1─2 钓鱼杆示范几何非线性1.2.3材料非线性非线性的应力--应变关系是结构非线性问题的常见原因。
许多因素可以影响材料的应力--应变性质,包括加载历史(如在弹--塑性响应状况下),环境状况(如温度),加载的时间总量(如在蠕变响应状况下)等。
1.3牛顿--拉普森方法ANSYS程序的方程求解器计算一系列的联立线性方程来预测工程系统的响应。
然而,非线性结构的行为不能直接用这样一系列的线性方程表示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ANSYS高级非线性分析四蠕变
简介
蠕变是物质受力作用下的长时间形变现象。
在工程领域中,蠕变是一个重要的现象,因为它可能导致结构疲劳、失效以及安全问题。
在工程设计中,了解和预测材料蠕变行为是非常重要的,特别是在高温环境下。
在这方面,ANSYS提供了强大
的高级非线性分析工具,可以模拟和预测材料的蠕变行为。
ANSYS高级非线性分析
ANSYS是一款流行的有限元分析软件,广泛应用于工程领域。
在高级非线性分析中,ANSYS可以模拟材料的非线性行为,包括蠕变。
蠕变分析是一种长时间的形变分析,可以用来评估材料和结构在高温条件下的稳定性。
ANSYS的高级非线性分析功能可以通过几个步骤来实现。
首先,需要定义材料的力学性质,包括弹性模量、屈服强度和蠕变参数等。
其次,需要定义结构的几何形状和边界条件。
然后,可以设置加载条件,包括时间和温度的变化。
最后,可以进行蠕变分析,并输出结果。
四蠕变
四蠕变是一种特殊的蠕变现象,出现在某些金属材料中。
四蠕变是指材料在连续加载下显示出四个明显的蠕变阶段,其形变速率逐渐增加,并最终稳定在一个较高的速率上。
这种蠕变现象对于结构设计和材料选择具有重要意义。
ANSYS可以模拟和分析四蠕变现象。
在进行四蠕变分析时,需要输入材料的蠕变参数。
这些参数可以通过试验或经验获得。
通过分析材料的力学性质和加载条件,可以获得材料的蠕变行为,并预测材料在长时间形变下的稳定性。
ANSYS高级非线性分析四蠕变的应用
ANSYS高级非线性分析四蠕变在工程设计中具有广泛的应用。
以下列举了几个常见的应用领域:
1. 高温结构设计
在高温条件下,材料的蠕变行为是一个重要的考虑因素。
使用ANSYS高级非线性分析四蠕变,可以模拟和预测高温结
构的蠕变行为,从而在结构设计中选择合适的材料和几何形状。
2. 轴承和齿轮设计
轴承和齿轮是机械系统中常见的零件,需要承受高强度和
高载荷。
使用ANSYS高级非线性分析四蠕变,可以评估轴承
和齿轮材料的蠕变行为,从而选择合适的材料和结构参数。
3. 焊接和制造过程
在焊接和制造过程中,材料的蠕变行为是一个重要的考虑
因素。
使用ANSYS高级非线性分析四蠕变,可以模拟和预测
焊接接头的蠕变行为,从而优化焊接过程和提高焊接接头的强度。
结论
ANSYS高级非线性分析四蠕变是一种强大的工程工具,可
以模拟和预测材料在高温条件下的蠕变行为。
通过分析材料的力学性质和加载条件,可以预测材料的蠕变行为,并在工程设计中选择合适的材料和几何形状。
应用领域包括高温结构设计、轴承和齿轮设计以及焊接和制造过程优化等。
在实际工程中,使用ANSYS高级非线性分析四蠕变可以提高结构的稳定性和
可靠性,减少潜在的安全问题。