2020七年级数学上册 第二章 整式的加减 2.2 整式的加减(第2课时)教案 (新版)新人教版

合集下载

人教版七年级数学上册2.2整式的加减《合并同类项》课件

人教版七年级数学上册2.2整式的加减《合并同类项》课件
思考:这组单项式能分成几组?
思考:归为同类的项有什么特征?
按符号分:
★100t,3x2 y,3a b2, 4a 2b ,2x2y
★–252t ,–4ab2 , -7a2b.
按所含的字母 ★100t, –252t ★3x2 y, 2x2y
★ –4ab2 ,-7a2b. 3a b2 ,4a 2b,
按字母和字母的指数 ★ 100t , –252t ★ 3x2 y , 2x2y
(2) 4a2 +3b2 –3+2ab–4 a2–4b2+5
要求: 同桌两人每人各做一个,然后相互批改, 以便及时查缺补漏,共同进步。如果两人都有疑问, 我们师生共同解决。
求代数式 -4x2+7 x+3 x2-6 x+ x2+8的值,任意给X取一个正整数的值, 比一比,我们谁最快得到答案.
求多项式的值,常常先合并同 类项,再求值,这样比较方便。
则下列说法正确的是(D )
ቤተ መጻሕፍቲ ባይዱ
A. a+b=0
B. a=0
C. b=3
D. a=-2
赛一赛
5、若关于x,y的多项式 4x2+3xy+2y2-mx2+6nxy+y-1的值与x的值 无关,求m,n的值.
6、若把(x+y)、(x-y)分别看作一个整体, 指出下面式子中的同类项。
2(x+y)+3(x-y)2-5(x+y)-8(x-y)2+(x+y)
义务教育人教版七年级数学上第二章《整式的加减》
我是计算小能手
求多项式-4x2+7x+3x2-6x+x2+8的值, 任意给X取一个正整数值,比一比,看 谁最快得到答案.

人教版数学七年级上册 课程讲义第二章:2.2 整式的加减-解析版

人教版数学七年级上册 课程讲义第二章:2.2 整式的加减-解析版

整式的加减知识定位讲解用时:3分钟A 、适用范围:人教版初一,基础一般;B 、知识点概述:本讲义主要用于人教版初一新课,主要对同类项的概念和整式加减运算进行讲解,掌握去括号,添括号的法则,重点是能判断同类项,且能熟练的合并同类项,能准确的进行去括号,添括号,难点是能根据题目的要求,正确熟练地进行整式的加减运算.知识梳理讲解用时:20分钟并且相同字母的指数也分别相等的项叫做同类项.几个常数项也是同类项.要点诠释:(1)判断是否同类项的两个条件:①所含字母相同;②相同字母的指数分别相等,同时具备这两个条件的项是同类项,缺一不可.(2)同类项与系数无关,与字母的排列顺序无关.(3)一个项的同类项有无数个,其本身也是它的同类项.法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变.要点诠释:合并同类项的根据是乘法分配律的逆运用,运用时应注意:(1)不是同类项的不能合并,无同类项的项不能遗漏,在每步运算中都含有.(2) 合并同类项,只把系数相加减,字母、指数不作运算.(1)如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;(2)如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.要点诠释:①去括号法则实际上是根据乘法分配律推出的:当括号前为“+”号时,可以看作+1与括号内的各项相乘;当括号前为“-”号时,可以看作-1与括号内的各项相乘.②去括号时,首先要弄清括号前面是“+”号,还是“-”号,然后再根据法则去掉括号及前面的符号.③对于多重括号,去括号时可以先去小括号,再去中括号,也可以先去中括号.再去小括号.但是一定要注意括号前的符号.④去括号只是改变式子形式,但不改变式子的值,它属于多项式的恒等变形.2.添括号法则(1)添括号后,括号前面是“+”号,括到括号里的各项都不变符号;(2)添括号后,括号前面是“-”号,括到括号里的各项都要改变符号.要点诠释:①添括号是添上括号和括号前面的符号,也就是说,添括号时,括号前面的“+”号或“-”号也是新添的,不是原多项式某一项的符号“移”出来得到的.②去括号和添括号是两种相反的变形,因此可以相互检验正误.一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项.要点诠释:(1)整式加减的一般步骤是:①先去括号;②再合并同类项.(2)两个整式相加减时,减数一定先要用括号括起来.(3)整式加减的最后结果中:①不能含有同类项,即要合并到不能再合并为止;②一般按照某一字母的降幂或升幂排列;③不能出现带分数,带分数要化成假分数.课堂精讲精练【例题1】若﹣2xy m 和x n y 3是同类项,则 m+n 的值是 .【答案】4【解析】解:由题意可知:1=n ,m=3∴m+n=4,故答案为:4讲解用时:3分钟解题思路:根据同类项的定义即可求出答案.教学建议:让学生正确理解同类项的定义难度: 3 适应场景:当堂例题 例题来源:无年份:2019 【练习1.1】若b a b a y x -+-5.0与3132y x a -是同类项,则a+b= .【答案】1【解析】解:∵代数式b a b a y x -+-5.0与3132y x a -是同类项,∴a+b=a ﹣1,a ﹣b=3,a=2,b=﹣1,∴a+b=1,故答案为:1.讲解用时:3分钟解题思路:根据同类项是字母相同,相同字母的指数相等,可得a 、b 的值,再根据a 、b 的值,可得a+b 的值.教学建议:和学生强调同类项的核心是相同字母的指数相等.难度: 3 适应场景:当堂练习 例题来源:无 年份:2019【练习1.2】若232(1)x x b x bx -++--+中不存在含x 的项,则______b =. 【答案】-3【解析】解: 去括号得:1232+--+-bx x b x x合并同类项得:)1()3(32+++-b x b x∵不存在含x 的项解得:3-=b讲解用时:5分钟解题思路:把所有含有x 的项合在一起,系数为0,即可求出b 的值. 教学建议:强调不存在某一项即该项的系数为0难度: 3 适应场景:当堂练习 例题来源:无 年份:2019【例题2】已知单项式2a m b 2与1421--n b a 的差是单项式,那么m 2﹣n= .【答案】13.【解析】解:∵单项式2a m b 2与1421--n b a 的差是单项式, ∴m=4,n ﹣1=2,则n=3,故m 2﹣n=42﹣3=13.故答案为:13.讲解用时:3分钟解题思路:直接利用合并同类项法则得出m ,n 的值,进而得出答案. 教学建议:讲解合并同类项的概念及方法.难度: 3 适应场景:当堂例题 例题来源:无 年份:2019【练习2.1】若3x m+5y 2与x 2y n 的和仍为单项式,则m n = .【答案】9.【解析】解:∵3x m+5y 2与x 2y n 的和仍为单项式,∴m+5=2,n=2,则m=3,故m n =32=9.故答案为:9.讲解用时:3分钟解题思路:直接利用合并同类项法则得出m ,n 的值,进而得出答案. 教学建议:考查了合并同类项,正确得出m ,n 的值是解题关键. 难度: 3 适应场景:当堂练习 例题来源:无 年份:2019【练习2.2】如果0a <,0ab <,那么13b a a b -++--的值等于__________.【答案】-2【解析】解:由0a <,0ab <得:0>b讲解用时:5分钟解题思路:利用有理数的乘法,确定字母b的符号,同时确定字母a的符号,再进行取绝对值,合并同类项运算即可.教学建议:确定a、b的符号是本题的易错点,需要特别注意.难度:3 适应场景:当堂练习例题来源:无年份:2019【例题3】化简:﹣5m2n+4mn2﹣2mn+6m2n+3mn.【答案】m2n+4mn2+mn【解析】解:原式=m2n+4mn2+mn.讲解用时:3分钟解题思路:根据合并同类项的法则把系数相加即可.教学建议:强调再合并同类项时,把同类项的系数相加作为结果的系数,字母和字母的指数不变.难度:3 适应场景:当堂练习例题来源:无年份:2019【练习3.1】合并同类项:(1)3223--++-;8673x xy y xy y x(2)233221146553423a a a a a -+-+--; (3)115286n n n n n a a a a a ++--+-(n 为正整数).【答案】(1)23y xy --;(2)4353223-+--a x x ;(3)nn a a 991+-+【解析】解: (1)原式=23)36()78()11(y xy x +-++-+-(2)原式=)2141(5)3432()56(23--++-++-a x x (3)原式=n n a a )625()18(1+-+--+讲解用时:10分钟 解题思路:根据合并同类项法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变进行计算即可.教学建议:解题关键是掌握合并同类项计算法则难度: 3 适应场景:当堂例题 例题来源:无 年份:2019【例题4】去括号,并合并同类项:3(5m﹣6n)+2(3m﹣4n).【答案】21m﹣26n【解析】解:3(5m﹣6n)+2(3m﹣4n)=15m﹣18n+6m﹣8n=21m﹣26n讲解用时:5分钟解题思路:利用去括号法则,如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反,进而合并同类项即可.教学建议:引导学生准确掌握去括号法则的应用难度:3 适应场景:当堂例题例题来源:无年份:2019【练习4.1】先去括号,再合并同类项(1)2(2b﹣3a)+3(2a﹣3b)(2)4a2+2(3ab﹣2a2)﹣(7ab﹣1)【答案】(1)﹣5b;(2)﹣ab+1.【解析】解:(1)2(2b ﹣3a )+3(2a ﹣3b )=4b ﹣6a+6a ﹣9b=﹣5b ;(2)4a 2+2(3ab ﹣2a 2)﹣(7ab ﹣1)=4a 2+6ab ﹣4a 2﹣7ab+1=﹣ab+1. 讲解用时:6分钟解题思路:根据括号前是正号去括号不变号,括号前是负号去掉括号要变号,可去掉括号,根据合并同类项,可得答案;教学建议:强调去括号法则与合并同类项的运算法则难度: 3 适应场景:当堂练习 例题来源:无 年份:2019【练习4.2】合并同类项:()(){}6328a c a c b c a b c ----++-+-⎡⎤⎣⎦. 【答案】b c a 1755+-【解析】解:原式=)]216236([c b a c b c a c a -+-++---讲解用时:6分钟解题思路:根据括号前是正号去括号不变号,括号前是负号去掉括号要变号,可去掉括号,根据合并同类项,可得答案;教学建议:强调去括号时应按照小中大括号的顺序去【例题5】有一道题目是一个多项式减去x2+14x﹣6,小强误当成了加法计算,结果得到2x2﹣x+3.正确的结果应该是多少?【答案】﹣29x+15【解析】解:设该多项式为A,由题意可知:A+(x2+14x﹣6)=2x2﹣x+3,∴A=2x2﹣x+3﹣(x2+14x﹣6)=2x2﹣x+3﹣x2﹣14x+6=x2﹣15x+9∴正确结果为:x2﹣15x+9﹣(x2+14x﹣6)=x2﹣15x+9﹣x2﹣14x+6=﹣29x+15讲解用时:8分钟解题思路:根据整式的运算法则即可求出答案.教学建议:熟练运用整式的运算法则【练习5.1】已知代数式A=2x2+5xy﹣7y﹣3,B=x2﹣xy+2.(1)求3A﹣(2A+3B)的值;(2)若A﹣2B的值与x的取值无关,求y的值.【答案】(1)﹣x2+8xy﹣7y﹣9;(2)y=0.【解析】解:(1)3A﹣(2A+3B)=3A﹣2A﹣3B=A﹣3B∵A=2x2+5xy﹣7y﹣3,B=x2﹣xy+2∴A﹣3B=(2x2+5xy﹣7y﹣3)﹣3(x2﹣xy+2)=2x2+5xy﹣7y﹣3﹣3x2+3xy﹣6=﹣x2+8xy﹣7y﹣9(2)A﹣2B=(2x2+5xy﹣7y﹣3)﹣2(x2﹣xy+2)=7xy﹣7y﹣7∵A﹣2B的值与x的取值无关∴7y=0,∴y=0讲解用时:10分钟解题思路:(1)根据整式的运算法则即可求出答案.(2)根据题意将A﹣2B化简,然后令含x的项的系数为0即可求出y的值.教学建议:回顾整式的运算法则难度:3 适应场景:当堂练习例题来源:无年份:2019【例题6】规定一种新运算:a*b=a﹣b,当a=5,b=3时,求(a2b)*(3ab+5a2b﹣4ab)的值.【答案】﹣285.【解析】解:(a2b)*(3ab+5a2b﹣4ab)=(a2b)﹣(3ab+5a2b﹣4ab)=a2b﹣3ab﹣5a2b+4ab=﹣4a2b+ab当a=5,b=3时,原式=﹣4×52×3+5×3=﹣285.讲解用时:5分钟解题思路:首先利用整式加减运算法则化简进而把已知代入求出答案. 教学建议:提醒学生注意化简求值问题的解题格式,注意计算的正确性. 难度: 3 适应场景:当堂例题 例题来源:无 年份:2019【练习6.1】先化简,再求值:2x 2﹣3(﹣31x 2+32xy ﹣y 3)﹣3x 2,其中x=2,y=﹣1. 【答案】3y 3﹣2xy ;1.【解析】解:原式=2x 2+x 2﹣2xy+3y 3﹣3x 2=3y 3﹣2xy ;当x=2,y=﹣1时,3y 3﹣2xy=3×(﹣1)3﹣2×2×(﹣1)=﹣3+4=1. 讲解用时:5分钟解题思路:原式去括号合并得到最简结果,把x 与y 的值代入计算即可求出值. 教学建议:整式的加减﹣化简求值问题核心就是整式的加减运算,学生必须熟练掌握整式的加减运算.难度: 3 适应场景:当堂练习 例题来源:无 年份:2019【练习6.2】若多项式()2222231(543)mx x x x y x -++--+与x 无关,求322[345)m m m -+-( ]m +的值.【答案】17【解析】解:化简多项式:∵多项式的值与x 无关解得:3=m∴原式=)543(223m m m m +-+-当3=m 时,原式=1753593272=+⨯-⨯-⨯讲解用时:10分钟解题思路:先化简,利用多项式与x 无关这个条件,求出m 的值,然后再对后面的多项式求值教学建议:多项式求值时,注意先化简,再求值.难度: 3 适应场景:当堂练习 例题来源:无 年份:2019【例题7】求证:某三位数的百位数字是a ,十位数字是b ,个位数字是c ,如果把这个三位数的十位数字与个位数字交换位置,得到一个新的三位数,则这两个三位数的差一定能被9整除.【答案】证明:∵(100a+10b+c)﹣(100a+10c+b)=100a+10b+c﹣100a﹣10c﹣b=9b﹣9c=9(b﹣c)∵b与c都是整数,∴b﹣c是整数,∴这两个三位数的差一定能被9整除.【解析】证明:∵(100a+10b+c)﹣(100a+10c+b)=100a+10b+c﹣100a﹣10c﹣b=9b﹣9c=9(b﹣c),∵b与c都是整数,∴b﹣c是整数,∴这两个三位数的差一定能被9整除.讲解用时:6分钟解题思路:根据题意表示出新三位数与原三位数,求出两个三位数之差,再进行适当的变形,即可得出结论.教学建议:掌握整式的加减运算难度:3 适应场景:当堂例题例题来源:无年份:2019【练习7.1】一个三位正整数M,其各位数字均不为零且互不相等.若将M的十位数字与百位数字交换位置,得到一个新的三位数,我们称这个三位数为M的“友谊数”,如:168的“友谊数”为“618”;若从M的百位数字、十位数字、个位数字中任选两个组成一个新的两位数,并将得到的所有两位数求和,我们称这个和为M的“团结数”,如:123的“团结数”为12+13+21+23+31+32=132.求证:M与其“友谊数”的差能被15整除;【答案】证明:由题意可得,设M为100a+10b+c,则它的友谊数为:100b+10a+c,(100a+10b+c)﹣(100b+10a+c)=100a+10b+c﹣100b﹣10a﹣c=100(a﹣b)+10(b﹣a)=90(a﹣b),∴M与其“友谊数”的差能被15整除;【解析】证明:由题意可得,设M 为100a+10b+c ,则它的友谊数为:100b+10a+c ,(100a+10b+c )﹣(100b+10a+c )=100a+10b+c ﹣100b ﹣10a ﹣c=100(a ﹣b )+10(b ﹣a )=90(a ﹣b ),∴M 与其“友谊数”的差能被15整除;讲解用时:6分钟解题思路:根据题意可以表示出M 的友谊数,然后作差再除以15即可解答本题. 教学建议:帮助学生掌握整式的加减运算难度: 3 适应场景:当堂练习 例题来源:无 年份:2019课后作业【作业1】 已知123a b x y +-与225x 是同类项,求2221232a b a b a b +-的值.【答案】9【解析】由已知得:⎩⎨⎧=-=+0221b a 解得:⎩⎨⎧=-=21b a 原式=b a 2)2123(-+=b a 229 当21=-=b a ,时,原式=92)1(292=⨯-⨯ 讲解用时:5分钟难度: 2 适应场景:练习题 例题来源:无 年份:2019【作业2】先化简,再求值:()()2237547a ab ab a -+--+,其中2a =,13b =【答案】24.【解析】解:原式7457322-+-+-a ab ab a =31,2==b a 当时, 原式312647⨯⨯-⨯= 428- ==24讲解用时:5分钟难度: 3 适应场景:练习题 例题来源:无 年份:2019【作业3】第- 21 -页/共21页 已知2325A a a =-+,2868B a a =--,1A B C ++=,求C 的值.【答案】48112++-a a【解析】解:由已知得:1)868()523(22=+--++-C a a a a讲解用时:5分钟难度: 3 适应场景:练习题 例题来源:无 年份:2019【作业4】有一道题目是一个多项式减去2146x x +-,小红误当成了加法算式,结果得到223x x -+,正确的结果应该是___________.【答案】1529+-x【解析】解:设这个多项式是A 32)614(22+-=-++x x x x A ,则: )614()915(22-+-+-x x x x 则正确结果为:讲解用时:8分钟难度: 3 适应场景:练习题 例题来源:无 年份:2019。

人教版 七年级数学上册课件:2.2整式的加减--化简求值

人教版 七年级数学上册课件:2.2整式的加减--化简求值
义务教育教科书
数学
七年级
上册
2.2 整式的加减 (第2课时--化简求值)
学习目标: (1)会利用合并同类项将整式化简求值; (2)会运用整式的加减解决简单的实际问题; (3)初步尝试利用整体代入的思想解决问题.
学习重点: 利用合并同类项将整式化简求值.
例1 下列各题计算的结果对不对?如果不对 请指出错在哪里? (1) 3a 2b 5ab ( 2) 5 y 2 2 y 2 3
例3 (1)水库中水位第一天连续下降了a 小时,每小时平均 下降2cm;第二天连续上升了a 小时,每小时平均上升 0.5cm,这两天水位总的变化情况如何?
例3 (2)某商店原有5袋大米,每袋大米为x千克. 上午卖出3袋,下午又购进同样包装的大米4袋. 进货后这个商店有大米多少千克?
例4 用式子表示十位上的数是a,个位上的数是b 的两位数,再把这个两位数的十位上的数与个位 上的数交换位置,计算所得数与原数的和,所得 数与原数的和能被11整除吗?
(3) 2ab 2ba 0 ( 4) 3 x 2 y 5 xy 2 2 x 2 y
例2 2 2 2 2 x - 5 x + x + 4 x - 3 x -2 的值, (1)求多项式
1 其中 x = 2

1 2 1 2 (2)求多项式 3a+abc- c -3a+ c 的值, 3 3 1 c -3 其中 a - , b 2 , 6
作业布置
• P70页第4 .5 .6题
例5 已知m是绝对值最小的有理数,且a 与 3a x b3 是同类项,
m 1
b y 1
求: 2 x 2 3 xy 6 x 2 3mx 2 mxy 9my 2 的值
例6 若 a

最新人教版七年级数学上册《第3课时 整式的加减》优质教案

最新人教版七年级数学上册《第3课时 整式的加减》优质教案

2.2 整式的加减第3课时整式的加减一、新课导入1.课题导入:前面我们学习了合并同类项,去括号等知识,它们是进行整式加减运算的基础,这节课我们来学习整式的加减运算.(板书课题).2.三维目标:(1)知识与技能让学生从实际背景中去体会进行整式的加减的必要性,并能灵活运用整式的加减的步骤进行运算.(2)过程与方法培养学生的观察、分析、归纳、总结以及概括能力.(3)情感态度认识到数学是解决实际问题和进行交流的重要工具.3.学习重难点:重点:熟练进行整式加减运算.难点:能运用整式加减运算解决简单的实际问题.二、分层学习1.自学指导:(1)自学内容:教材第67页例6的内容.(2)自学时间:6分钟.(3)自学要求:认真阅读课文,理解例6中两个算式的意义,尝试归纳出整式加减运算的解题步骤.(4)自学参考提纲:①第(1)题是计算多项式2x-3y和5x+4y的和;第(2)题是计算多项式8a-7b和4a-5b的差.这说明求几个多项式的和或差的运算时,每个多项式都要用括号括起来.②由例题可归纳出整式加减运算的一般步骤是怎样的?小组同学相互交流一下自己的见解.先去括号,再移项,合并同类项.③尝试解答下列问题,并相互展示自己的计算过程和结果.a.计算:5(3a2b-ab2)-3(ab2+2a2b)原式=15a2b-5ab2-3ab2-6a2b=9a2b-8ab2.b.求12x-2(x-13y2)+(-32x+13y2)的值,其中x=-2,y=23.原式化简为y2-3x.当x=-2,y=23,原式=(23)2-3×(-2)=589.2.自学:同学们可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:教师巡视课堂,了解学生是否掌握了去括号法则及自学参考提纲完成情况.②差异指导: 对个别学生在法则认知上存在的问题或提出的疑点进行点拨和引导.(2)生助生:学生相互交流探讨来解决自学中的疑难问题.4.强化:(1)整式加减的一般步骤:先去括号,再合并同类项.(2)应注意的问题:①去括号时,不能漏乘括号前的系数,并注意符号的变化.②求值时,要先化简,并注意求值的书写格式.(3)练习:教材第69页“练习”的第1、2、3题.1.自学指导:(1)自学内容:教材第68页例7和例8.(2)自学时间:8分钟.(3)自学要求:认清例题中反映的条件,思考问题中要利用的数量关系,正确列出相关的代数式.(4)自学参考提纲:①例7有两种考虑问题的角度.第一种先求出小红和小明买这两种物品分别花费多少钱,再得出花费多少钱,这样可列出式子:(3x+2y)+(4x+3y).第二种先求出买笔记本和买圆珠笔分别花费多少钱,再得共花费多少钱,于是可列出式子:(3x+4x)+(2y+3y).②长方体共有几个面?都是什么形式?相对的两个面大小有什么关系?因此,在例8中,a.小纸盒的表面积是(2ab+2bc+2ca)cm2,大纸盒的表面积是(6ab+8bc+6ca)cm2.b.做两个纸盒共用料多少平方厘米?可列出式子:(2ab+2bc+2ca)+(6ab+8bc+6ca).计算得8ab+10bc+8ca.c.做大纸盒比做小纸盒多用料多少平方厘米,可列出式子(6ab+8bc+6ca)-(2ab+2bc+2ca).计算得4ab+6bc+4ca.2.自学:同学们可结合自学参考提纲进行自学.3.助学:(1)师助生:①明了学情:教师巡视课堂了解学生的自学情况以及存在的问题.注意在求多项式的和或差时,相应的多项式是不是没加括号.②差异指导: 对个别学生在法则认知上存在的问题或提出的疑点进行点拨和引导.(2)生助生:学生相互交流探讨来解决自学中的疑难问题.4.强化:(1)集中讲解学生自学过程中存在的共性问题.(2)练习:甲村种植小麦a亩,种植水稻面积是小麦面积的2倍,乙村种植小麦b亩,种植水稻的面积比小麦面积的3倍少200亩,求甲、乙两村两种作物的总面积是多少亩?解:甲村种植作物总面积为(a+2a)亩,乙村种植总面积为(b+2b-200)亩.所以甲、乙两村两种作物的总面积为(a+2a)+(b+3b-200)=(3a+4b-200)亩.三、评价1.学生的自我评价(围绕学习目标):自我评价在本节课学习的收获和不足.2.教师对学生的评价:(1)表现性评价:对学生在本节课学习中相关方面情况进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本课时是在学生掌握了合并同类项、去括号法则的基础上学习的,主要任务是通过探索性练习,引导学生总结归纳出整式加减的一般步骤,并应用其进行整式加减的准确运算,所以可采用以旧带新的方式,让学生在练习中熟悉法则,纠正错误,弥补不足.鼓励学生间互相交流,互相改正问题,充分体现学生自行解决问题的主体作用.一、基础巩固(第1、2、3题每题10分,第4题20分,共50分)1.(40分)计算:(1)(5a+4c+7b )+(5c-3b-6a)解:原式=5a+4c+7b+5c-3b-6a=-a+4b+9c(2)(8xy-x 2+y 2)-(x 2-y 2+8xy)解:原式=8xy-x 2+y 2-x 2+y 2-8xy=-2x 2+2y 2(3)(2x 2-12+3x)-4(x-x 2+12) 解:原式=2x 2-12+3x-4x+4x 2-2=6x 2-x-52 (4)3x 2-[7x-(4x-3)-2x 2]解:原式=3x 2-(7x-4x+3-2x 2)=3x 2-7x+4x-3+2x 2=5x 2-3x-32.(10分)求(-x 2+5+4x )+(5x-4+2x 2)的值,其中x=-2.解:(-x 2+5+4x)+(5x-4+2x 2)=-x 2+5+4x+5x-4+2x 2=x 2+9x+1当x=-2时,原式=(-2)2+9×(-2)+1=4-18+1=-13.3.(10分)已知一个多项式与3x 2+9x 的和等于3x 2+4x-1,求这个多项式.解:这个多项式为(3x 2+4x-1)-(3x 2+9x)=3x 2+4x-1-3x 2-9x=-5x-1.二、综合应用(每题15分,共30分)4.(10分)窗户的形状如图所示(图中长度单位:cm),其上部是半圆形,下部是边长相同的四个小正方形.已知下部小正方形的边长是a cm ,计算:(1)窗户的面积;(2)窗户外框的总长.解:(1)窗户的面积为:22a π+4a 2=π+282a π+ (cm 2) (2)窗户的外框总长是:πa+2a ×3=πa+6a=(π+6)a(cm)5.(10分)观察下列图形并填表(单位:cm).三、拓展延伸(20分)6.(20分)(1)一个两位数的个位上的数是a,十位上的数是b,列式表示这个两位数.(2)列式表示上面的两位数与10的乘积.(3)列式表示(1)中的两位数与它的10倍的和,这个和是11的倍数吗?为什么?解:(1)10b+a;(2)10(10b+a);(3)10b+a+10(10b+a)=11(10b+a),这个和是11的倍数,因为它含有11这个因数.学习小提示同学们,通过这节课的学习,你们学到了哪些知识?明白什么道理?时间就像日历一样,撕掉一张就不会再回来。

新人教版七年级数学上册《整式的加减》优秀教案

新人教版七年级数学上册《整式的加减》优秀教案

新人教版七年级数学上册《整式的加减》优秀教案2.1 整式(第1课时)教学目标:1.理解字母表示数的意义,能够用含有字母的式子表示实际问题中的数量关系。

2.通过具体问题的抽象过程,发展符号意识。

教学重点:1.理解字母表示数的意义,正确分析实际问题中的数量关系并用含有字母的式子表示数量关系。

2.感受其中“抽象”的数学思想。

教学难点:将实际问题中与数量有关的语句,用含有数、字母和运算符号的式子表示出来。

教法与学法:教法:互动探究法。

学法:小组研讨法。

教学过程:一、情境引入问题1:在青藏铁路线上,有一段很长的冻土地段,列车在冻土地段的行驶速度是100km/h。

列车在冻土地段行驶时,根据已知数据求出列车行驶的路程。

1.2 h行驶多少千米?3 h呢?8 h呢?th呢?2.字母t表示时间有什么意义?3.如果用v表示速度,列车行驶的路程是多少?4.回顾以前所学的知识,你还能举出用字母表示数或数量关系的例子吗?学生合作探究:找出题目中的已知量和未知量,并分析两者之间的关系。

学生:2 h行驶200 km,3h行驶300 km,8h行驶800 km,th行驶100tkm。

教师:上面这种用含有字母的式子来表示数量,就是我们今天要研究的新知识——用字母表示数。

二、范例研究例11.XXX原价是每千克p元,按8折优惠出售,用式子表示现价。

2.某产品前年的产量是n件,去年的产量是前年产量的m 倍,用式子表示去年的产量。

3.一个长方体包装盒的长和宽都是acm,高是hcm,用式子表示它的体积。

4.用式子表示数n的相反数。

学生活动:小组合作探究,得出答案。

师生合作探究:我们可以将题目中的字母看成数字,然后分析问题中的数量关系,列出含有字母的式子表示这些数量关系。

教师总结:1.上面各个问题的结果分别是:0.8p,mn,a²h,-n。

2.数与字母、字母与字母相乘省略乘号;数与字母相乘时数字在前;带分数与字母相乘时,把带分数化成假分数。

人教版数学七年级上册2 第2课时课件

人教版数学七年级上册2 第2课时课件

能力提升
11.【易错题】下列说法中,正确的是
(D )
A.-34x2 的系数是34
B.32πa2 的系数是32
C.3ab2 的系数是 3a
D.25xy2 的系数是25
12.下列语句中错误的是
(B )
A.数字 0 也是单项式
B.单项式-a 的系数与次数都是 1
C.12xy 是二次单项式
D.-2a3b的系数是-23
B.3 个
(C )
C.4 个
D.5 个
2.【湖南怀化中考】单项式-5ab 的系数是
(B )
A.5
B.-5
C.2
D.-2
6
3.单项式-3πxy2z3 的系数和次数分别是
A.-π,5
B.-1,6
C.-3π,6
D.-3,7
4.若-33amb2 是七次单项式,则 m 的值是
A.6
B.5
C.4
D.3
(C ) (B )
最后价格变为(1-25%)(1+25%)P=0.9375P(元).故这两种方案调价结 果一样,都没有恢复原价.
13
思维训练
• 20.观察下列单项式:-x,3x2,-5x3,7x4,…,-37x19,39x20……
• (1)这组单项式的系数依次为多少,绝对值规律是什么? • (2)这组单项式的次数的规律是什么? • (3)根据上面的归纳,你可以猜想出第n个单项式是什么? • (4)请你根据猜想,写出第2020个,第2021个单项式. • 解:(1)这组单项式的系数依次为-1,3,-5,7,…,系数为奇数且
10
13.单项式-103π3ax2的次数是___3__ . 14.若单项式-2x2y 的系数和次数分别是 a,b,则 ab-ab=__-__2___ . 15.若单项式-8x3m+ny 的次数为 5,若 m,n 均为正整数,则 m-n 的值为__0___ . 16.已知单项式 5x4y2 与-12x2zm+1 的次数相同,求-5m+10 的值. 解:5x4y2 的次数为 4+2=6,-12x2zm+1 的次数为 2+m+1=m+3.因为 5x4y2 与 -12x2zm+1 的次数相同,所以 m+3=6,解得 m=3.当 m=3 时,-5m+10=-5×3 +10=-5.

七年级数学《整式的加减》教案范文

七年级数学《整式的加减》教案范文

七年级数学《整式的加减》教案范⽂ 整式的加减就是单项式和多项式的加减,可利⽤去括号法则和合并同类项来完成。

接下来是⼩编为⼤家整理的七年级数学《整式的加减》教案范⽂,希望⼤家喜欢! 七年级数学《整式的加减》教案范⽂⼀ 数学活动 ⼀、内容和内容解析 1.内容 活动1 ⽤⽕柴棍摆放图形,探究⽕柴棍的根数与图形的个数之间的对应关系; 活动2 探究⽉历中数之间所蕴含的关系和变化规律. 2.内容解析 本节课的数学活动将第⼆章“整式的加减”所学知识应⽤于实际,进⼀步⽤整式表⽰数量关系,⽤整式的加减运算进⾏化简,是整式与整式加减的应⽤. 两个数学活动综合运⽤整式和整式的加减运算,表⽰具体情境中的数量关系和变化规律.活动1中的核⼼问题是寻求三⾓形的个数与⽕柴棍根数之间的对应关系,问题的本质是变化与对应.由于观察图形时⼊视的⾓度不同,规律的显现⽅式不同,得到的表达形式不同,但经过整式的加减运算后得到的结论是唯⼀确定的.活动1先从图形的特殊情况⼊⼿,体现由特殊到⼀般地观察、分析、判断、归纳的思维活动过程.在探究的过程中体现借助于图形的变化规律进⾏思考和推理的过程,体现借助于图形的变化规律来解决实际问题的优越性.活动2应⽤整式的加减探究⽉历中数之间的规律:(1)⽉历中数的排列规律;(2)由数的排列规律引出运算规律,应⽤整式的加减进⾏化简,表⽰出⼀般规律;(3)如何设字母可以简化表⽰⽅法和运算. 基于以上分析,可以确定本节课的教学重点:⽤整式表⽰实际问题中的数量关系,掌握数学活动中由特殊到⼀般的探究⽅法. ⼆、教材解析 本套教科书专门设计了“数学活动”专栏,旨在为学⽣提供探索的空间,发展学⽣的思维能⼒.本节课安排了两个有趣的数学活动.其中活动1从⼀个开放性的问题⼊⼿“如图1所⽰,⽤⽕柴棍拼成⼀排由三⾓形组成的图形.如果图形中含有n个三⾓形,需要多少根⽕柴棍?”引发学⽣的思索和探究.问题中并没有先问“图形中含有2,3,4个三⾓形,分别需要多少根⽕柴棍?”⽽是直接问“如果图形中含有n个三⾓形,需要多少根⽕柴棍?”⽬的在于让学⽣⾃⼰发现要解决⼀般性问题应先从特殊值⼊⼿,给学⽣充分的时间思考和探究,让学⽣⾃⼰寻求解决问题的策略,最终掌握从特殊到⼀般,从个体到整体地观察、分析问题的⽅法.之后⼜设计了⼀个问题“当图形中含有2012个三⾓形时,需要多少根⽕柴棍?”⽬的在于让学⽣体会由特殊⼀般特殊的分析问题的⽅法,体会⼀般性规律的实际意义.活动2设计了⼀个问题串,6个问题循序渐进地引导学⽣发现⽉历中数的排列规律,引导学⽣应⽤本章所学的整式的加减探究⽅框⾥数之间的关系.这两个活动有⼀定的趣味性,也有较强的探索性.两个活动的侧重点不同,活动1的重点是让学⽣能够⽤整式准确地表⽰数量关系;活动2的重点是让学⽣能够应⽤整式的加减探究⽉历中的数量关系.通过这两个数学活动检验学⽣对于第⼆章内容的掌握情况. 本节数学活动课教师要注意改进教学⽅式,充分相信学⽣,尽可能为学⽣留出探索的空间,发挥学⽣的主动性和积极性,⼒求使得数学结论的获得是通过学⽣思考、探究活动⽽得出的. 三、教学⽬标和⽬标解析 1.教学⽬标 (1)⽤整式和整式的加减运算表⽰实际问题中的数量关系; (2)掌握从特殊到⼀般,从个体到整体地观察、分析问题的⽅法.尝试从不同⾓度探究问题,培养应⽤意识和创新意识; (3)积极参与数学活动,在数学活动过程中,合作交流、反思质疑,体验获得成功的乐趣,锻炼克服困难的意志,建⽴学好数学的⾃信⼼. 2.⽬标解析 达成⽬标(1)的标志:学⽣⽤整式表⽰出⽕柴棍的根数与三⾓形的个数之间的对应关系,⽤整式表⽰出⽉历中不同位置上的数字的⼀般表达式并探寻规律; ⽬标(2)是内容所蕴含的思想⽅法,学⽣需要体会在较为复杂的图形中寻找⼀般规律的⽅法,先把复杂图形分解,从其中的特殊图形⼊⼿,先就个体观察特征,再扩展到⼀般,最后由整体总结规律,感受由特殊到⼀般的探究模式.在活动2中,分析⽉历中数字之间的数量关系时,经常先将⽉历分解,分别从横、纵、对⾓线等不同的⽅向⼊⼿观察特征,再推⼴到⼀般,⽤整式表⽰出数的⼀般规律;学⽣体验解决问题策略的多样性;让学⽣尝试评价不同⽅法之间的差异,从⽽得出最优⽅案.学⽣体会进⾏数学活动的基本⽅法:提出问题动⼿实践寻求规律归纳总结.学⽣经历发现问题、独⽴思考、猜想验证,归纳总结这些数学活动,提⾼应⽤意识和创新意识; 达成⽬标(3)的标志:学⽣对数学有好奇⼼和求知欲,在⼩组合作活动中积极思考,勇于质疑,敢于发表⾃⼰的想法.在⾃主探究两个数学活动的过程中,⼩组成员合作克服困难,解决数学问题,感受成功的快乐,建⽴学好数学的信⼼. 四、教学问题诊断分析 本章学⽣已经学习⽤整式表⽰实际问题中的数量关系及整式的加减运算.但是正确理解字母的真正含义,熟悉⽤符号表⽰具体情境中的数量关系,对学⽣⽽⾔有⼀定难度.在拼图的过程中,学⽣⽐较容易发现⽕柴棍根数的变化情况,但要借助观察图形的变化寻找⽕柴棍的根数与三⾓形的个数n之间的对应关系,还是有⼀定困难,在总结变化量与n的对应关系时学⽣也容易出错.所以⽤整式准确地表⽰出这种对应关系是本节课的⼀个难点.在活动2中,探索⽉历中数字的排列规律⽐较容易,但要从不同⾓度,运⽤不同⽅法探究⽉历中隐含的数量关系及其规律,对学⽣来说具有⼀定的挑战性. 本节课的教学难点:利⽤整式和整式的加减运算准确表⽰出具体情境中的数量关系. 五、教学⽀持条件分析 根据活动课的特点,学⽣准备⼀盒⽕柴棍、若⼲张⼤⼩相等的正⽅形纸⽚、⼀张⽉历.教师准备⼏何画板软件供学⽣使⽤,同时采⽤多媒体课件辅助教学. 六、教学过程设计 1.数学活动1 问题1 如图1所⽰,⽤⽕柴棍拼成⼀排由三⾓形组成的图形. 图1 (1)如果图形中含有n个三⾓形,需要多少根⽕柴棍? (2)当图形中含有2012个三⾓形时,需要多少根⽕柴棍? 师⽣活动:学⽣分成⼩组,利⽤已准备好的⽕柴棍动⼿摆放图形进⾏⾃主探究.学⽣代表(利⽤⼏何画板软件)展⽰⼩组讨论的过程与结果.教师重点关注学⽣⾃主探究的步骤和⽅法. 学⽣在探究的过程中会从不同⾓度观察图形,会⽤不同的表达形式呈现规律,会从数和形两个⽅⾯进⾏探究.教师引导学⽣借助于“形”进⾏思考和推理,加强对图形变化的感受. 在活动的过程中,整理数据,观察⽕柴棍的根数与n之间的对应关系,有助于突破难点.问题1的解决⽅法很多,下⾯列出⼏种常见⽅法仅供参考. ①从第⼆个图形起,与前⼀图形⽐,每增加⼀个三⾓形,增加两根⽕柴棍,可得 三⾓形个数 1 2 3 4 … n ⽕柴棍根数 3 3+2 3+2+2 3+2+2+2 … 表达式:3+2(n-1)=2n+1. ②每个三⾓形由三根⽕柴棍组成,从第⼀个图形起,⽕柴棍根数等于所含三⾓形个数乘3,再减去重复的⽕柴棍根数,可得 三⾓形个数 1 2 3 4 … ⽕柴棍根数 1×3 2×3-1 3×3-2 4×3-3 … 3×n-(n-1) 表达式:3n-(n-1)=2n+1. ③从第⼀个图形起,以⼀根⽕柴棍为基础,每增加⼀个三⾓形,增加两根⽕柴棍,可得 三⾓形个数 1 2 3 4 … n ⽕柴棍根数 1+2 1+2+2 1+2+2+2 1+2+2+2+2 … 表达式:1+2n. ④从⽕柴棍的根数与三⾓形的个数的对应关系观察可得 三⾓形个数 1 2 3 4 … n ⽕柴棍根数 3=1×2+1 5=2×2+1 7=3×2+1 9=4×2+1 … n×2+1 表达式:2n+1. ⑤将组成图形的⽕柴棍分为“横”放和“斜”放两类统计计数,可得 三⾓形个数 1 2 3 4 … n ⽕柴棍根数 1+2 2+3 3+4 4+5 … n+(n+1) 表达式:n+(n+1)=2n+1. 七年级数学《整式的加减》教案范⽂⼆ 教学⽬标 【知识与技能】 理解同类项的概念,在具体情景中,认识同类项. 【过程与⽅法】 通过⼩组讨论、合作学习等⽅式,经历概念的形成过程,培养学⽣⾃主探索知识和合作交流的能⼒. 【情感、态度与价值观】 初步体会数学与实际⽣活的密切联系,从⽽激发学⽣学好数学的信⼼. 教学重难点 【重点】理解同类项的概念. 【难点】根据同类项的概念在多项式中找同类项. 教学过程 ⼀、复习引⼊ 师:同学们,在上新课之前,我们先来做⼏个题⽬. 1.教师读题,指名回答. (1)5个⼈+8个⼈= ;? (2)5只⽺+8只⽺= .? 2.师:观察下列各单项式,把你认为相同类型的式⼦归为⼀类:8x2y,-mn2,5a,-x2y,7mn2,,9a,-,0,0.4mn2,,2xy2. 由学⽣⼩组讨论后,按不同标准进⾏多种分类,教师巡视后把不同的分类⽅法投影显⽰. 要求学⽣观察归为⼀类的式⼦,思考它们有什么共同的特征. 请学⽣说出各⾃的分类标准,并且对学⽣按不同标准进⾏的分类给予肯定. ⼆、讲授新课 1.同类项的定义: 师:在⽣活中我们常常把具有相同特征的事物归为⼀类.8x2y与-x2y可以归为⼀类,2xy2与-可以归为⼀类,-mn2、7mn2与0.4mn2可以归为⼀类,5a与9a可以归为⼀类,还有、0与也可以归为⼀类.8x2y与-x2y只有系数不同,各⾃所含的字母都是x、y,并且x的指数都是2,y的指数都是1;同样地,2xy2与-也只有系数不同,各⾃所含的字母都是x、y,并且x的指数都是1,y的指数都是2. 像这样,所含字母相同,并且相同字母的指数也分别相等的项叫做同类项.另外,所有的常数项都是同类项.⽐如,前⾯提到的、0与也是同类项. 通过特征的讲述,选择所含字母相同,并且相同字母的指数也分别相等的项作为研究对象,并称它们为同类项.(板书课题:同类项) (教师为了让学⽣理解同类项概念,可设问同类项必须满⾜什么条件,让学⽣归纳总结) 板书由学⽣归纳总结得出的同类项概念以及所有的常数项都是同类项. 三、例题讲解 教师读题,指名回答. 【例1】 判断下列说法是否正确,正确的在括号内打“√”,错误的打“×”. (1)3x与3mx是同类项.( ) (2)2ab与-5ab是同类项.( ) (3)3x2y与-yx2是同类项.( ) (4)5ab2与-2ab2c是同类项.( ) (5)23与32是同类项.( ) (这组判断题能使学⽣清楚地理解同类项的概念,其中第(3)题满⾜同类项的条件,只要运⽤乘法交换律即可;第(5)题两个都是常数项属于同类项.⼀部分学⽣可能会单看指数不同,误认为不是同类项) 【例2】 游戏. 规则:⼀学⽣说出⼀个单项式后,指定⼀位同学回答它的两个同类项. 要求出题同学尽可能使⾃⼰的题⽬与众不同. 可请回答正确的同学向⼤家介绍写⼀个单项式同类项的经验,从⽽揭⽰同类项的本质特征,透彻理解同类项的概念. 【例3】 指出下列多项式中的同类项: (1)3x-2y+1+3y-2x-5; (2)3x2y-2xy2+xy2-yx2. 【答案】 (1)3x与-2x是同类项,-2y与3y是同类项,1与-5是同类项. (2)3x2y与-yx2是同类项,-2xy2与xy2是同类项. 【例4】 k取何值时,3xky与-x2y是同类项? 【答案】 要使3xky与-x2y是同类项,这两项中x的次数必须相等,即k=2.所以当k=2时,3xky与-x2y是同类项. 【例5】 若把(s+t)、(s-t)分别看作⼀个整体,指出下⾯式⼦中的同类项. (1)(s+t)-(s-t)-(s+t)+(s-t); (2)2(s-t)+3(s-t)2-5(s-t)-8(s-t)2+s-t. (组织学⽣⼝头回答上⾯三个例题,例3多项式中的同类项可由教师标出不同的下划线,并运⽤投影仪给出书⾯解答,为合并同类项做准备.例4让学⽣明确同类项中相同字母的指数也相同.例5必须把(s-t)、(s+t)分别看作⼀个整体) 通过变式训练,可进⼀步明晰“同类项”的意义,在⾃主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、提⾼识别能⼒. 四、课堂练习 请写出2ab2c3的⼀个同类项.你能写出多少个?它本⾝是⾃⼰的同类项吗? (学⽣先在课本上解答,再回答,若有错误请其他同学及时纠正) 【答案】 改变2ab2c3的系数即可,与其本⾝也是同类项. 五、课堂⼩结 理解同类项的概念,会在多项式中找出同类项,会写出⼀个单项式的同类项,会判断同类项. 第2课时 合并同类项 教学⽬标 【知识与技能】 理解合并同类项的概念,掌握合并同类项的法则. 【过程与⽅法】 经历概念的形成过程和法则的探究过程,渗透分类和类⽐的思想⽅法.培养观察、归纳、概括能⼒,发展应⽤意识. 【情感、态度与价值观】 在独⽴思考的基础上,积极参与讨论,敢于发表⾃⼰的观点,从交流中获益. 教学重难点 【重点】正确合并同类项. 【难点】找出同类项并正确的合并. 教学过程 ⼀、情境引⼊ 师:为了搞好班会活动,李明和张强去购买⼀些⽔笔和软⾯抄作为奖品.他们⾸先购买了15本软⾯抄和20⽀⽔笔,经过预算,发现这么多奖品不够⽤,然后他们⼜去购买了6本软⾯抄和5⽀⽔笔.问: (1)他们两次共买了多少本软⾯抄和多少⽀⽔笔? (2)若设软⾯抄的单价为每本x元,⽔笔的单价为每⽀y元,则这次活动他们⽀出的总⾦额是多少元? 学⽣完成,教师点评. ⼆、讲授新课 合并同类项的定义. 学⽣讨论问题(2)可根据购买的时间次序列出代数式,也可根据购买物品的种类列出代数式,再运⽤加法的交换律与结合律将同类项结合在⼀起,将它们合并起来,化简整个多项式,所得结果都为(21x+25y)元. 由此可得:把多项式中的同类项合并成⼀项,叫做合并同类项. 三、例题讲解 【例1】 找出多项式3x2y-4xy2-3+5x2y+2xy2+5中的同类项,并合并同类项. 【答案】 原式=3x2y+5x2y-4xy2+2xy2+5-3=(3+5)x2y+(-4+2)xy2+(5-3)=8x2y-2xy2+2. 根据以上合并同类项的实例,让学⽣讨论归纳,得出合并同类项的法则: 把同类项的系数相加,所得的结果作为系数,字母和字母指数保持不变. 【例2】 下列各题合并同类项的结果对不对?若不对,请改正. (1)2x2+3x2=5x4; (2)3x+2y=5xy; (3)7x2-3x2=4; (4)9a2b-9ba2=0. (通过这⼀组题的训练,进⼀步熟悉法则) 【例3】 求多项式3x2+4x-2x2-x+x2-3x-1的值,其中x=-3. 【答案】 3x2+4x-2x2-x+x2-3x-1=(3-2+1)x2+(4-1-3)x-1=2x2-1,当x=-3时,原式=2×(-3)2-1=17. 试⼀试:把x=-3直接代⼊例4这个多项式,可以求出它的值吗?与上⾯的解法⽐较⼀下,哪个解法更简便? (通过⽐较两种⽅法,使学⽣认识到在求多项式的值时,常常先合并同类项,再求值,这样⽐较简便) 课堂练习. 课本P71练习第1~4题. 【答案】 略 四、课堂⼩结 1.要牢记法则,熟练正确的合并同类项,以防⽌2x2+3x2=5x4的错误. 2.从实际问题中类⽐概括得出合并同类项法则并能运⽤法则正确地合并同类项. 第3课时 去括号、添括号 教学⽬标 【知识与技能】 去括号与添括号法则及其应⽤. 【过程与⽅法】 在具体情境中体会去括号和添括号的必要性,能运⽤运算律去括号和添括号. 【情感、态度与价值观】 让学⽣接受“⽭盾的对⽴双⽅能在⼀定条件下互相转化”的辩证思想和概念. 教学重难点 【重点】去括号和添括号法则. 【难点】当括号前是“-”号时的去括号和添括号. 教学过程 ⼀、创设情境,引⼊新课 还记得我们前⾯⽤⽕柴棒摆的正⽅形吗?记录正⽅形的个数与所⽤⽕柴棒的根数. 1.若第⼀个正⽅形摆4根,以后每个摆3根,则n个正⽅形所⽤的⽕柴棒的根数为 4+3(n-1) .? 2.若每个正⽅形上⽅摆1根,下⽅摆1根,中间摆1根,还需加1根,则n个正⽅形所⽤的⽕柴棒的根数为 n+n+(n+1) .? 3.若每个正⽅形都摆4根,除第1个外,其余的都多1根,则n个正⽅形所⽤的⽕柴棒的根数为 4n-(n-1) .? 4.若先摆1根,再每个正⽅形摆3根,则n个正⽅形所⽤的⽕柴棒的根数为 1+3n .? 搭n个正⽅形所需要的⽕柴棒的根数,⽤的计算⽅法不⼀样,所⽤⽕柴棒的根数相等吗? ⽣:相等. 师:那么我们怎样说明它们相等呢? 学⽣讨论、回答. 师评:4+3(n-1)⽤乘法的分配律把3乘到括号⾥,再合并得3n+1;4n-(n-1)可看成4n与-(n-1)的和,⽽-(n-1)可看成n-1的相反数,即为1-n,所以4n-(n-1)等于4n+1-n=3n+1. 活动⼀ 去括号 师:在代数式⾥,如果遇到括号,那么该如何去括号呢? 我们再看看以前做过的习题. 七年级数学《整式的加减》教案范⽂三 ⼀、教学内容解析:1.本节课选⾃:新⼈教版数学七年级上册§2.2.1节,是学⽣进⼊初中阶段后,在学习了⽤字母表⽰数,单项式、多项式以及有理数运算的基础上,对同类项进⾏合并、探索、研究的⼀个课题。

(名师整理)数学七年级上册第2章第1节《整式》优秀教案

(名师整理)数学七年级上册第2章第1节《整式》优秀教案

第2章《整式的加减》教案一、课标要求1、知识与技能(1)理解并掌握单项式、多项式和整式的概念,弄清它们之间的区别于联系;(2)理解同类项的概念,掌握合并同类项的方法,掌握去括号时的符号变化的规律,能正确掌握多项式的概念,进而理解整式的概念。

(3)掌握多项式的项数,次数的概念,并能熟练地说出多项式的项数和次数。

(4)会用多项式表示简单的数量关系,并根据多项式中字母的值求多项式的值。

(5)会利用合并同类项将整式化简求值。

会运用整式的加减解决简单的实际问题(6)应用整式和整式的加减运算表示实际问题中的数量关系。

2、过程与方法(1)掌握从特殊到一般,从个体到整体地观察、分析问题的方法。

尝试从不同角度探究问题,培养应用意识和创新意识。

(2)经过探索有理数运算法则和运算律的过程,体会“类比”、“转化”、“数形结合”等数学方法。

3.情感、态度与价值观使学生感受数学知识与现实世界的联系,鼓励学生探索规律,并在合作交流中完善规范语言。

二、本章教材分析1.主要内容:1.本单元结合学生的生活经验,列举了学生熟悉的从数到式表示的实例,•从扩充运算的角度引入单项式与多项式的概念,然后再指出可以用单项式与多项式表示现实生活中具有意义的关系,使学生感受到整式的引入是来自实际生活的需要,体会数学知识与现实世界的联系。

引入整式概念之后,接着给出单项式与多项式的概念。

2.通过怎样用单项式与多项式关系引入整式。

整式的运算是非常重要的数学工具,在揭示了数形之间的内在联系,从而体现出以下4个方面的作用:(1)单项式与多项式之间的内在关系;(2)单项式与多项式的有关概念;(3)单项式与多项式的运算;(4)在实际问题中,单项式与多项式的表现形式;3.应用整式和整式的加减运算表示实际问题中的数量关系。

掌握从特殊到一般,从个体到整体地观察、分析问题的方法。

尝试从不同角度探究问题,培养应用意识和创新意识。

2.本单元在教材中的地位与作用:1、梳理整式的相关概念,归纳概念之间的区别与联系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020
2.2 整式的加减

课题: 2.2 整式的加减——合并同类项(2) 课时 第2课时
教学设计
课 标
要 求
掌握合并同类项的法则,能进行简单的整式的加法和减法的运算。

教 材 及 学 情 分 析 本节课选自人教版数学七年级上册第二章第二节第一课时的内容,是学生进入初中阶段后,在学习了用字母表示数,单项式、多项式、有理数运算以及合并同类项的基础上,对合并同类项法则的灵活运用。教材当中有三个例题,由易到难,如果作为一课时的内容,
内容较多,而且合并同类项是本章的一个重点,其法则的应用是整式加减的基础,也是
后面学习解方程、解不等式的基础,因此单独作为一个课时的内容。本节课的重点与难点
即为熟练的合并多项式中的同类项。
在前面的学习中,学生已经掌握有理数的运算,具备一定的运算能力,也知道了合并
同类项的法则,这些知识对本节课的学习有着铺垫作用。并且七年级学生刚步入初中,表
现欲望较强,因此在课堂中教师尽可能多给学生展示的机会,增强他们学习数学的自信心。
但七年级的认知水平,抽象概括能力和迁移能力都有待提高,因此在学习过程中需要老师
引导才能理解相关知识。

时 教 学 目 标 在学习了合并同类项法则的基础上,结合具体的例题,熟练运用法则合并多项式中的
同类项,将整式化简,理解多项式的升(降)幂排列的概念,会进行多项式的升(降)幂
排列。培养观察、分析、以及解决问题的能力。逐步形成主动探究、合作交流的意识和严
谨治学的学习态度。

重点 熟练的合并多项式中的同类项
难点 熟练的合并多项式中的同类项,并解决相关问题
提炼课

进一步巩固合并同类项的方法。

教法学
法 指导 独立思考、讲练结合、自主探究
2020
教具
准备
ppt课件

教学过程提要
环节 学生要解决的问 题或完成的任务 师生活动 设计意图

引 入 新 课 完成口算题,并回顾同类项的概念和合并同类项的法则 昨天的课上我们学习了什么是同类项以及合并同类项的方法,你还记得吗?尝试口算: (1)3x+5x=_______. (2)-4a2+2a2=______. (3)x2y-2x2y=_____. (4)2x+5x-3x=_____. 你还记得什么是同类项么?合并同类项的法则呢? 借助口算题回顾
同类项的概念和
合并同类项的法
则,为后面利用
合并同类项解决
问题做铺垫
2020



分析多项式的特点,观察老师的解题过程,尝试独立完成第三题 分析题意,观察老师的解题过程,尝试独立完成第三题 例题讲解: 本节课是对
合并同类项法则
的运用,故以例
题居多。引导学
生观察多项式的
特点,分析题意,
达到能熟练运用
法则合并多项式
中的同类项,将
整式化简的目
的。
强调书写格
式,提醒学生书
写的规范性。
2020



分析题意,尝试自己列式解决问题 观察多项式的每一项字母的排列顺序有什么特点,发现规律 结合所学,完成练习题,学以致用 例3:(1)水库中水位第一天连续下降了a小时,每小时平均下降2cm;第二天连续上升了a 小时,每小时平均上0.5cm,这两天水位总的变化情况如何? (2)某商店原有5袋大米,每袋大米为x 千克.上午卖出3袋,下午又购进同样包装的大米4袋.进货后这个商店有大米多少千克? 自主探究: 观察下列多项式的每一项字母的排列顺序,你有什么发现? (1)10x-4x2-3x3+x4 (升幂) (2)x4-3x3-4x2+10x (降幂) 练习: (1)a3-4a2-3a+10a4 按字母a的升幂排列 . 按字母a的降幂排列 . (2)5x3y-y4-3xy3+2x2y2 -7 按字母y的升幂排列 . 按字母y的降幂排列 . (3)课本P65页练习题第2题和第4题 拓展提升: 把(a+b)看成是一个整体,对下列各式进行化简: (1) 4(a+b)+ 2(a+b)- (a+b) (2) 2(a+b)+ 3(a+b)2- 5(a+b)- 3(a+b)2 引导学生分析题意,运用所
学的知识解决实
际问题,做到学
以致用。

课标对该部
分的内容未作说
明,教材上也没
有出现相关的例
题或是练习题,
但既有学案上出
现了相关的练
习,所以只是要
求学生能按照题
目要求会进行多
项式的升(降)
幂排列,并未做
过多的讲解
2020
小 结 (1)合并同类项在实际问题中的应用……
(先化简,再代值)
(2)多项式升(降)幂的排列问题……

板 书 设 计
2.2合并同类项(2)
例题1:
例题2:
例题3:



设 计 必做:绩优学案63-64页8---10 选做:绩优学案64页 11--12




相关文档
最新文档