小学奥数教程:幻方(一)全国通用(含答案)

合集下载

三年级下册数学试题-奥数:巧填幻方(无答案)全国通用 (1)

三年级下册数学试题-奥数:巧填幻方(无答案)全国通用 (1)

巧填幻方幻方洛书、 、。

具有这一性质的3×3的数阵称作三阶幻方,4×4的数阵称作四阶幻方, 5×5的称作五阶幻方……这个数阵有什么特点呢 杨辉法九子斜排上下对易左右相更四维挺出这些数不论横着加竖着加还是斜着加结果都等于十五你能用1~9填出几种不同的幻方呢?【例1】(★★)把1、3、5、7、9、11、13、15、17这9个数填入下面的九宫格中,不能重复,使得每一行,每一列,每条对角线上的3个数的和相等。

幻方的填法罗伯法首居上中央,依次右上连 上出向下看,右出往左填 顶角和填重,回来写下边填好再检查,等差在中间九 宫 者 ,二 四 为 肩 ,六 八 为 足 ,左 三 右 七 ,戴 九 履 一 ,五居中央 。

适用于等差数列填入奇数阶幻方8 1 6 35749249 2 3 5 7 8161427538694 9 2 35 7 816【例2】(★★★)把2、4、6、8…50这25个偶数填入下面的九宫格中,不能重复,使得 三阶幻方的性质每一行,每一列,每条对角线上的5个数的和相等。

①总和=幻和×3 ②幻和=中心数×3①总和=幻和×3 ②幻和=中心数×3【例3】(★★)在下图中的A 、B 、C 、D 处填上适当的数,使下图成为一个三阶幻方。

三阶幻方的性质①总和=幻和×3 ②幻和=中心数×3 ③T 台性质:a +b =2c【例4】(★★★)在下图空格中填入7个自然数,使每行、每列、每一对角线三数之和为90。

【大海招牌菜】你能用1~9填出几种不同的幻方呢?三阶幻方只有1种基本形式! 四阶幻方有880种基本形式! 五阶幻方有275305224种基本形式!4 9 2 35 7 8162357b acA 14DB 17 22 18C13a b c d e f ghi4 9 2 35 7 8 1 6【例5】(★★★★)在下图的九个方格中填入不大于12且互不相同的九个自然数(其中已填好一个数),使得任一行、任一列及两条对角线上的三个数之和都等于 【例6】(★★★)已知如图是一个四阶幻方,那么标有“*”的方格中所填的数是多少?21. 四阶幻方的填法 1、按顺序写数 2、对角互换(注意大对角和小对角)【超常挑战】(★★★★★)数学解题能力复试试题麦斯将9个不同的自然数填入右图的9个空格内,使每行、每列、每条对角线上3个数的和都相等。

20181213小学奥数练习卷(知识点:幻方)含答案解析

20181213小学奥数练习卷(知识点:幻方)含答案解析

小学奥数练习卷(知识点:幻方)注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)一.选择题(共2小题)1.在右图的6×6方格内,每个方格中只能填A,B,C,D,E,F中的某个字母,要求每行、每列、每个标有粗线的2×3长方形的六个字母均不能重复.那么,第四行除了首尾两个方格外,中间四个方格填入的字母从左到右的顺序是()A.E,C,D,F B.E,D,C,F C.D,F,C,E D.D,C,F,E 2.如图,请将0、1、2、…、14、15 填入一个的表格中,使得每行每列的四个数除以4的余数都恰为0、1、2、3各一个,而除以4的商也恰为0、1、2、3各一个.表格中已经填好了几个数,那么,这个表格中最下方一行的四个数的乘积是()A.784B.560C.1232D.528第Ⅱ卷(非选择题)二.填空题(共42小题)3.将1、2、3、4、5、6、7、8这八个数填入图中的八个圆圈中,使外面大正方形上的四个数之和是里面小正方形上的四个数之和的两倍,且大正方形两条对角线上的四个数之和相等.4.将A、B、C、D填入下面表格的空格处,使每行每列A、B、C、D都有且只有一个(也就是说有些空格可以空着不填字母).表格外的字母表示从这个方向看进去所看到的第一个字母.等表格填好后,将两条对角线上的字母按照箭头顺序写着横线上,如果碰到空着的格子,用“×”表示(先写箭头1所指的字母串,再写箭头2所指的字母串,中间用逗号分开):.5.从1,3,5,7,9,11,13,15,17这九个数中,任取3个不同的数(不分先后)组成一组,使该组的平均数为9,共有种取法.6.如图,在一个4×4方格表内填有1~16这16个自然数,现在从填有“1”的方格出发,每一步可以走到“相邻”的方格中(有一条公共边的方格称为“相邻”的方格),并且每个方格至多经过一次,最后走到填有“2”的方格,那么所到过的方格中所填之和最大可能是.7.在方格中分别填入1~5的数字,使得每一行、每一列的五个方格中都恰好有1、2、3、4、5这五个数字各一个,并且在每个黑色粗框中所填的数据按照左上角的运算符号进行计算后,所得的结果等于左上角的数字,则图中的三个数字A、B、C组成的三位数等于.8.如图,在图中的方格中各填入一个数字,使每行、每列以及每个由粗框所围成区域中的4个数字都恰好是2、0、1、6各一个,那么,图中“”处代表的数字是.9.图中的4×4方格被粗线分成了四个部分,请在每个小格内填入数字1、2、3或4,使得方格中的每行、每列及每个部分的四个小格中每个数字各出现1次,那么图中的A、B、C、D所代表的四个数字之和为.10.如图,在小方格内各填一个字,使每行、每列及每条对角线上的四个小方格中均含有“光明磊落”这四个字,则“?”处应填的字是.11.如图,在3×3的九个方框中,填入九个整数,使得每一横行,每一数列,每条对角线上的三个整数之和都相等(和记为A).如果三个整数2015,1,10已填入三个方框内,那么A=.12.在如图的方格中填入9个数字,使得每行、每列及每条对角线上三个数之和都是12,则图中四个角上的数字之和为.13.图中每一行和每一列都是一个独立的等差数列,那么m×n的值是14.将1﹣9填入表中,每个数字使用一次,每个小方格填入一个数,其中1,2,3,4已经填好了.如果两个小方格有一条公共边,我们就称这两个小方格相邻.如果与填9的小方格相邻的小方格内的数之和为15,那么与填8的小方格相邻的小方格内的数之和为.15.将数字1~6填入空格中,使每行、每列及每个粗线宫内数字不能重复.灰色粗线两侧格内数字之差为1,没有灰色粗线的相邻两格内数字之差不为1.16.如图是国际象棋棋盘,将每一行的棋子数写在了棋盘左边,将每一列的棋子数写在了棋盘的上边.已知每格至多放一枚棋子,且同一行或同一列的棋子全部相连,那么,白格中共有枚棋子.17.数独游戏要求每个小九宫格型只能填上1到9的数字,且不能重复,最后填写要保证整个大九宫格的每一列,每一行的数字不重复复.根据九宫格中已经给出的数字,请你写出字母“C”所在的方格内的数字应为.18.把1~5这五个数字分别填入如图的方格中,使得横行三数之和与竖行三数之和都等于9.19.在4×4方格网的每个小方格中都填有一个非零自然数,每行、每列及每条对角线上的4个数之积都相等,如图给出了几个所填的数,那么五角星所在的小方格中所填的数是.20.在图中,在每个圆圈中填入一个数,使每条直线上所有圆圈中数的和都是234,那么标有★的圆圈中所填的数是.21.在如图的9个方格中,每行、每列及每条对角线上三个数的和都相等,则x+y+a+b+c+d=.22.格里只能填上1到9的数字,且不能重复.最后填写要保证整个大九宫格的每一列,每一行的数字都不能重复,根据九宫格中已给出的数字.请你写出字母“B”所在方格内的数字应为.23.将自然数1到16排成4×4的方阵,每行每列以及对角线上数的和相等,这样的方阵称为4阶幻方,下面的幻方是在印度耆那种庙中发现的,请将其补充完整.24.在每个空格中填入数字1﹣4,使得每行和每列的数字都不重复.表格外的数字表示该方向所在行或列里第一个奇数或者第一个偶数,那么,第三行的四个格从左到右所填的数字组成的四位数是.25.如图,请给出一种填法,使每行、每列以及每个由粗线所围成的4个数字都恰好是2、0、1、6各一个.26.在的圆圈中填入从1到14的自然数(每一个数用而且只能用一次),使连接在同一直线上的4个圆圈中的数字之和都相等,这称为一个7阶幻星图,这个相等的数称为7阶幻星图的幻和,那么,7阶幻星图的幻和为,并继续完成以下7阶幻星图.27.在空格里填入数字2、0、1、5,或者空着不填,使得每行和每列都各有一个2、0、1、5,要求相同的数字不能对角相邻,那么第五行前五个位置依次是(空格用9表示).28.在的圆圈中填入从1到12的自然数(每一个数用而且只能用一次),使连接在同一直线上的4个圆圈中的数字之和都相等,这称为一个6阶幻星图,这个相等的数称为6阶幻星图的幻和,那么,6阶幻星图的幻和为,并继续完成以下6阶幻星图:29.格里只能填上1到9的数字,且不能重复.最后填写完成要保证整个大九宫格的每一列、每一行的数字都不能重复.根据九宫格中已给出的数字.请你填写字母“A”所在方格内的数字应为.30.老师将一些数填入如图的圆圈内(每个圆圈内能且只能填一个数),左右两个闭合回路的三个数之和均为30,上下两个闭合回路的四个数之和均为40,若圆圈X内填的数为9,则圆圈Y内填的数为.31.在如图的七个圆圈内各填一个数,要求每一条直线上的三个数中,中间的数是两边两个数的平均数,现已填好两个数,那么D=.32.如图中,我们称粗实线围城的2×3的长方形为一个“宫”.请在途中所有空格里,分别填入1﹣6中的某个数字,使得每行、每列和每个“宫”内,数字1﹣6都不重复出现.其中某两个空格之间的数表示该相邻两格内数字的和或者乘积.33.如图,将3个3,4个4,5个5,6个6,7个7,填入5×5的表格中,使得相同的数字所在的方格连在一起(相连的两个方格必须有公共边),且已知A,B,C,D,E五个数字各不相同,那么五位数是.34.请将1个1,2个2,3个3,4个4,5个5,6个6,7个7,8个8填入如图所示的方格中,使得相同的数字均相连(相连的两个方格必须有公共边),且已知其中A,B,C,D,E,F六个位置上的数字互不相同,那么六位数=.35.将如图4×4方格内的两个数字进行交换,使得交换后每行、每列、每条对角线之和都相等,那么需要交换的两个数字之和为.36.在每个方格里填入数字1~6中的一个,使得每行和每列的数字都不重复.右边的数表示由粗线隔开的前面三个数字组成的三位数、中间两个数字组成的两位数以及最后的一位数这三个数之和.那么五位数=.37.在每个方格里填入数字1~6中的一个,使得每行和每列的数字都不重复.右边的数表示由粗线隔开的前面三个数字组成的三位数、中间两个数字组成的两位数以及最后的一位数这三个数之和.那么五位数=.38.在下面的6个圆圈中分别填入1,2,3,4,5,6,每个数字只能用一次,使各边上的三个数字和相等,称这个和为三角形边幻和,这样的三角形边幻和可以取到的值分别为.39.在幻方中,每行、每列和每条对角线上的数的和都相同,那么在如图所示的未完成的幻方中x应是.40.在每个格子中填入1﹣6中的一个,使得每行、每列及每个2×3长方形内(粗线框围成)数字不重复;如果小圆圈两边格子中所填数的和是合数,其它相邻两格所填数的和是质数,那么四位数“相约华杯”是.41.如图,在4×4的方格中分别填入1﹣4的数字,使这四个数在每行、每列都恰出现一次,且方格中左上角的数及“+、﹣、×、÷、”符号分别表示粗框内所填数字之和、差、积和商.当左上角只有1个数字(无运算符号)时,就将该数字填入此方格中,则★×▲=.42.如图所示的方格中每行、每列及每条对角线上的5个数字之和都等于20,而图中未填数的空格中只能填3个不同的数字(这3个数字可以被多次使用),那这三个数字之和是.43.将1到16的自然数排成4+4的方阵,每行每列以及对角线上数的和都等于34,这样的方阵称为4阶幻方,34称为4阶幻方的幻和.10阶幻方的幻和等于.44.将1到16的自然数排成4×4的方阵,每行每列以及对角线上数的和都等于34,这样的方阵称为4阶幻方,34称为4阶幻方的幻和.南宋数学家杨辉是最早系统研究幻方的数学家.他将幻方命名为纵横图,不仅给出了以下两个两漂亮的4阶幻方,还研究了10阶幻方.10阶幻方的幻和等于.三.解答题(共6小题)45.将九个不同的自然数填入下面方格中,使每行、每列、每条对角线上三个数的和都相等.46.将自然数1到16排成4×4的方阵,每行每列以及对角线上数的和相等,这样的方阵称为4阶幻方.幻方起源于中国,在世界上很多地方也都有发现.下面的4阶幻方是在印度耆那神庙中发现的,请将其补充完整:47.如图是一个标准的九宫数格,那么A、B、C组成的三位数是:.48.将自然数1到16排成4×4的方阵,每行每列以及对角线上数的均相等,这样的方阵称为4阶幻方.南宋数学家杨辉是最早系统研究幻方的中国古代数学家,请根据下面已经给出的数字,填出两个不同的4阶幻方.49.在的圆圈中填入1到16的自然数,(每一个只能用一次),连接在同一直线上的4个圆圈中的数字之和都相等,这称为一个8阶幻星图,这个相等的数称为8阶幻星图的和.那么,8阶幻形图的幻和为,并继续完成以下8阶幻星图.50.在空格内填入数字1~6,使得每行、每列和每个粗线围成的区域里数字都是1~6恰好各一个.表外面的数字表示该行或该列的最近两个数的和.那么,第二列前四个数字按从上到下的顺序依次组成的四位数是.参考答案与试题解析一.选择题(共2小题)1.在右图的6×6方格内,每个方格中只能填A,B,C,D,E,F中的某个字母,要求每行、每列、每个标有粗线的2×3长方形的六个字母均不能重复.那么,第四行除了首尾两个方格外,中间四个方格填入的字母从左到右的顺序是()A.E,C,D,F B.E,D,C,F C.D,F,C,E D.D,C,F,E 【分析】首先根据排除法和唯一法进行分析,首先根据幻方规律排除法确定第一行第二列的数字是A,跟着这个思路全部填写出来即可.【解答】解:依题意可知:首先根据排除法看第一宫格,第一列不能有A,第二行不能有A.那么A只能在第一行第二列.幻方规律排除法确定第三行第四列也是A;第四行第四列的数字是C;接着第五行第四列就是F;那么第二行的第四列是B;继续推理得:故选:C.【点评】本题是考查对幻方的理解和运用,关键的是运用排除法找到可以确定的位置,然后空填写越多越容易填写.问题解决.2.如图,请将0、1、2、…、14、15 填入一个的表格中,使得每行每列的四个数除以4的余数都恰为0、1、2、3各一个,而除以4的商也恰为0、1、2、3各一个.表格中已经填好了几个数,那么,这个表格中最下方一行的四个数的乘积是()A.784B.560C.1232D.528【分析】首先分析数字的余数就是满足数独的规律,商也是满足数独的规律.两个格子如果余数是相同的,那么商必然不同,如果商是相同的,那么余数必然不同,枚举法即可解题.【解答】解:依题意可知:可将数独拆分成余数数独和商的数独.商的数独注意某两个格子如果余数是相同的,那么商必然不同,如果商是相同的,那么余数必然不同,利用这个条件可以填完这两个数独,再合并成原表格.所以7×8×14=784.故选:A.【点评】本题考查对幻方的理解和运用,关键问题是找到余数和商满足一个相同则另一个不相同的性质.问题解决.二.填空题(共42小题)3.将1、2、3、4、5、6、7、8这八个数填入图中的八个圆圈中,使外面大正方形上的四个数之和是里面小正方形上的四个数之和的两倍,且大正方形两条对角线上的四个数之和相等.【分析】1+2+3+4+5+6+7+8=36,里面小正方形上的四个数之和是:36÷(1+2)=12,外面大正方形上的四个数之和是:36﹣12=24,然后把1、2、3、4、5、6、7、8分成得数是12和24的两组,且保证大正方形两条对角线上的四个数之和相等即可.【解答】解:1+2+3+4+5+6+7+8=36里面小正方形上的四个数之和是:36÷(1+2)=12外面大正方形上的四个数之和是:36﹣12=241+2+3+6=124+5+7+8=244+1+6+7=5+2+3+8填图如下:(答案不唯一)【点评】本题关键是根据和倍公式求出内外两个正方形上的四个数之和.4.将A、B、C、D填入下面表格的空格处,使每行每列A、B、C、D都有且只有一个(也就是说有些空格可以空着不填字母).表格外的字母表示从这个方向看进去所看到的第一个字母.等表格填好后,将两条对角线上的字母按照箭头顺序写着横线上,如果碰到空着的格子,用“×”表示(先写箭头1所指的字母串,再写箭头2所指的字母串,中间用逗号分开):×DC×××D,CAD ×A×C.【分析】对每行每列进行逻辑分析,把确定的字母逐个填入表格中,将空白不能填入任何字母的位置填入“×”,逐步完成整个表格.【解答】解:如下图,第一步可以确定黑色字符部分,第二步可以确定红色字符部分,最后确定绿色字符部分,完成全表.所以:1表示的字符顺序为:×DC×××D,2表示的字符顺序为:CAD×A×C.故答案为:×DC×××D,CAD×A×C.【点评】逐步通过顺推和反向反证推理,逐步可以确定全表,本题难度较大.5.从1,3,5,7,9,11,13,15,17这九个数中,任取3个不同的数(不分先后)组成一组,使该组的平均数为9,共有8种取法.【分析】首先分析数字和的平均数是9,那么可以理解为数字和为27,考虑幻和为27的幻方填写规律即可.【解答】解:依题意可知:满足幻和为9×3=27即可.中间数的3倍就是幻和,那么中间数字就是9.因为数字是等差数列可根据1﹣9的填写规律填写即可.共三行三列再加上两条对角线共8种.故答案为:8【点评】本题考查对幻方的理解和运用,关键问题是找到幻和,根据数字规律填写即可.问题解决.6.如图,在一个4×4方格表内填有1~16这16个自然数,现在从填有“1”的方格出发,每一步可以走到“相邻”的方格中(有一条公共边的方格称为“相邻”的方格),并且每个方格至多经过一次,最后走到填有“2”的方格,那么所到过的方格中所填之和最大可能是129.【分析】首先分析走竖条线那么数字9走不到,再继续分析有没有比数字9小的数字可以不走.继续尝试即可求解.【解答】解:依题意可知:如果走数列走那么9走不到.但是发现当走路顺序为1﹣14﹣6﹣12﹣3﹣8﹣13﹣4﹣15﹣11﹣5﹣10﹣16﹣9﹣2.只有数字7没有走到.1+2+3+4+5+6+8+9+10+11+12+13+14+15+16=129.故答案为:129.【点评】本题考查对幻方的理解和运用,关键问题是找到数字9再进行对比.问题解决.7.在方格中分别填入1~5的数字,使得每一行、每一列的五个方格中都恰好有1、2、3、4、5这五个数字各一个,并且在每个黑色粗框中所填的数据按照左上角的运算符号进行计算后,所得的结果等于左上角的数字,则图中的三个数字A、B、C组成的三位数等于455.【分析】首先分析特殊数字的填写方式再根据第三行15×可知只能是3×5.那么2﹣只能是4﹣2.第三行第五列只能是1.推理出9+只能是1+3+5.然后8=3+5.等情况,继续推理可知.【解答】解:依题意可知:①.再根据第三行15×可知只能是3×5.那么2﹣只能是4﹣2.第三行第五列只能是1.推理出9+只能是1+3+5.②如果B是3,那么7+只能是3+4,第一列的3﹣没有数字可以填写,所以B是5,第三行第一列数字是3.③再根据8+只能是3+5,所以第五行的第二列是3,第三列是5.④80×就只能是2×4×2×5,左上角填写5,右下角填写4即可.继续推理可知如图所示:故答案为:455【点评】本题考查对幻方的理解和运用,关键是找到题中的特殊情况15作为突破口.问题解决.8.如图,在图中的方格中各填入一个数字,使每行、每列以及每个由粗框所围成区域中的4个数字都恰好是2、0、1、6各一个,那么,图中“”处代表的数字是1.【分析】首先填写唯一确定的数字,第三行第三列数字唯一确定是2.即可推理第三行第1列数字是1.继续推理即可求解.【解答】解:依题意可知:首先填写唯一确定的数字,第三行第三列数字唯一确定是2.即可推理第三行第一列数字是1.第二行第二列唯一确定是6.即可推理第二行第四列数字是0.继续推理如图所示:故答案为:1【点评】本题考查对幻方的理解和运用,关键是找到唯一确定的数字为突破口.问题解决.9.图中的4×4方格被粗线分成了四个部分,请在每个小格内填入数字1、2、3或4,使得方格中的每行、每列及每个部分的四个小格中每个数字各出现1次,那么图中的A、B、C、D所代表的四个数字之和为12.【分析】首先分析能唯一确定的是第二行第二列唯一确定只能填写1,第四行第四列唯一确定只能填写1,第一行第三列唯一确定只能填写1.继续推理即可求解.【解答】解:依题意可知:①第二行第二列唯一确定只能填写1,第四行第四列唯一确定只能填写1,第一行第三列唯一确定只能填写1.继续推理填写可得如图所示:A+B+C+D=2+4+4+2=12.故答案为:12【点评】本题考查对幻方的理解和运用,关键问是找到唯一确定的数字.问题解决.10.如图,在小方格内各填一个字,使每行、每列及每条对角线上的四个小方格中均含有“光明磊落”这四个字,则“?”处应填的字是明.【分析】首先找到唯一确定的填写:第三行第三列唯一确定只能是光.第三行第一列唯一确定只能是落.继续推理即可.【解答】解:依题意可知:①第三行第三列唯一确定只能是光.②第三行第一列唯一确定只能是落.③第一行第四列唯一确定只能是落.④第四行第四列唯一确定只能是明.继续推理可知:故答案为:明【点评】本题考查对幻方的理解和运用,关键问题是找到唯一确定的填写即可.11.如图,在3×3的九个方框中,填入九个整数,使得每一横行,每一数列,每条对角线上的三个整数之和都相等(和记为A).如果三个整数2015,1,10已填入三个方框内,那么A=6018.【分析】首先分析能填写出来的数字,根据比较法可得中间数和右下角数字即可求解.【解答】解:依题意可知:根据比较法可知:a+10=2015+1.所以中间数字a是2006.再根据2006+1=10+b.右下角b就是1997.如图所示:所以和为2015+a+b=2015+2006+1997=6018故答案为:6018【点评】本题考查对幻方的理解和运用,关键是使用比较法问题解决.12.在如图的方格中填入9个数字,使得每行、每列及每条对角线上三个数之和都是12,则图中四个角上的数字之和为16.【分析】对角线上三个数之和都是12,所以左下角的数是:12﹣4﹣4=4;那么右下角的数是:12﹣4﹣3=5;左上角的数是:12﹣4﹣5=3;由此求和即可.【解答】解:根据分析可得,左下角的数是:12﹣4﹣4=4;右下角的数是:12﹣4﹣3=5;左上角的数是:12﹣4﹣5=3;则图中四个角上的数字之和为:4+5+4+3=16.故答案为:16.【点评】本题关键是利用幻和12与已知的数,求出图中四个角上的数字.13.图中每一行和每一列都是一个独立的等差数列,那么m×n的值是300【分析】因为每一行和每一列都是一个独立的等差数列,所以可得第一行分别为4、6、8、10,再推出左边第二列为6、9、12、15,可得m=15,然后推最后一列,公差为(25﹣10)÷3=5,n=25﹣5=20,然后求出m×n的值即可.【解答】解:第一行分别为4、6、8、10,左边第二列为6、9、12、15,可得m=15,最后一列,公差为(25﹣10)÷3=5,则n=25﹣5=20,m×n=15×20=300.故答案为:300.【点评】本题考查了等差数列的特征和有关的计算,关键是求出m和n的值.14.将1﹣9填入表中,每个数字使用一次,每个小方格填入一个数,其中1,2,3,4已经填好了.如果两个小方格有一条公共边,我们就称这两个小方格相邻.如果与填9的小方格相邻的小方格内的数之和为15,那么与填8的小方格相邻的小方格内的数之和为18.【分析】考虑9的填法,与填9的小方格相邻的小方格内的数之和为15,故9填右边,8填中间,即可求出填8的小方格相邻的小方格内的数之和.【解答】解:考虑9的填法,与填9的小方格相邻的小方格内的数之和为15,故9填右边,8填中间,所以与填8的小方格相邻的小方格内的数之和为5+6+7=18,故答案为18.【点评】本题考查幻方问题,考查学生分析解决问题的能力,确定9,8的填法是关键.15.将数字1~6填入空格中,使每行、每列及每个粗线宫内数字不能重复.灰色粗线两侧格内数字之差为1,没有灰色粗线的相邻两格内数字之差不为1.【分析】根据灰色粗线两侧格内数字之差为1,先填灰色粗线另一侧的数字,再根据没有灰色粗线的相邻两格内数字之差不为1,逐步填入数字,可得结论.【解答】解:根据数独规则就是要求在每个区域内出现的数字都为1~6,从左列第二个3×2入手,6右边是5,4右边是3,3右边只能是1,可得填右列第二个3×2,5的左边是6,6的上边是3,可得其它两格的数,可得根据灰色粗线两侧格内数字之差为1,可得填右上方3×2,根据灰色粗线两侧格内数字之差为1,可得填右下方3×2,可得填左上方3×2,可得填左下方3×2,可得【点评】本题考查六宫连续数独,考查学生动手动脑能力,属于中档题.16.如图是国际象棋棋盘,将每一行的棋子数写在了棋盘左边,将每一列的棋子数写在了棋盘的上边.已知每格至多放一枚棋子,且同一行或同一列的棋子全部相连,那么,白格中共有18枚棋子.【分析】突破口是第4行以及第6列,都是“8”,故知此列全满,以此为起点,填出所有其他行列(先找最大数或最小数比较好填.【解答】解:突破口是第4行以及第6列,都是“8”,故知此列全满,以此为起点,填出所有其他行列(先找最大数或最小数比较好填,即8→1→7→2→…的顺序:其中灰色的步骤是用到了“同一行或同一列的棋子全部相连”这一条件推导而来的,计数后最后一个途中的白色格的棋子数量,为18枚.故答案为18.【点评】本题考查数独思想,突破口是第4行以及第6列,都是“8”.17.数独游戏要求每个小九宫格型只能填上1到9的数字,且不能重复,最后填写要保证整个大九宫格的每一列,每一行的数字不重复复.根据九宫格中已经给出的数字,请你写出字母“C”所在的方格内的数字应为6.。

四年级奥数 幻方

四年级奥数 幻方

第9讲第一天1.高高养了一只小乌龟,有一天突然发现乌龟壳上的纹路与下图的九宫格相似,每个格子里有一些符号分别代表2~10这9个数字,请把这些数字填在下面的方格中,要求每行、每列及每条对角线上的三个数的和都相等。

那么,幻和是( )。

A.12B.15C.18D.21【答案】C【解析】总和=幻和×3,总和为2+3+4+5+6+7+8+9+10=54,所以幻和=18。

2.在3×3的方阵的每个格子不重复的填上2、4、6、8、10、12、14、16、18这九个数,使得每行、每列、每条对角线的和都相等。

那么,幻和是( )。

A.26B.30C.34D.38【答案】B【解析】总和=幻和×3,总和为2+4+6+8+10+12+14+16+18=90,所以幻和=90÷3=30。

第二天1.已知三阶幻方如图所示,A 处为( )。

A.6B.7C.8D.10【答案】C【解析】根据幻方的特点,第一行和第三列去掉公共格,剩下的两个数的和相等,即2+9=A +3,所以A =8。

2.高高问途途的身高是多少,途途说他的身高是由A 、B 、C 三个字母所代表的数字依次排列组成,已知A 、B 、C 在下图的三阶幻方中。

所以途途的身高为()厘米。

A.121B.122C.123D.124【答案】D【解析】通过比较法可得,6+4=9+A ,5+3=B +6,2+8=6+C ,所以,A =1,B =2,C =4,所以途途的身高是124厘米。

第三天1.猪八戒偷吃桃被孙悟空发现了,孙悟空说:“如果你能把这个图中的‘吃’字求出来,我就不告诉师父。

”猪八戒花了九牛二虎之力终于求出来是( )。

A.6B.7C.8D.9【答案】A【解析】中心数=5,幻和=中心数×3=15,所以‘吃’=15-5-4=6。

2.刘备去诸葛亮的茅庐拜访,离开时诸葛亮给了刘备一个三阶幻方。

那么幻方中的“出”和“山”分别为( )。

A.4和8B.4和6C.6和8D.8和10【答案】C【解析】中心数=5,幻和=中心数×3=15,所以“出”=15-5-4=6,“山”=15-5―2=8。

四年级下册数学试题-奥数专题讲练:7 数表与幻方 精英篇(解析版)全国通用

四年级下册数学试题-奥数专题讲练:7 数表与幻方 精英篇(解析版)全国通用

第七讲 数表与幻方幻方问题千变万化,幻方的填法虽然单一,但组合起来却也是千变万化.1.三阶、四阶幻方与奇数阶幻方的填法;2.三阶幻方的主要性质;3.利用幻方的主要性质补填幻方图;数表一类的问题与幻方问题往往有结合和相近的内容,但数表问题更考验学生对数字规律的发现和运用能力.分析:幻方是指横行、竖列、对角线上数的和都相等的数的方阵,具有这一性质的3×3的数阵称作三阶幻方,4×4的数阵称作四阶幻方,5×5的称作五阶幻方…… 如图为三阶幻方、四阶幻方的标准式样,三阶幻方的中心位置上的数等于所有所填数的平均数,也等于横行、竖列、对角线上数和的三分之一.解决数表类问题中,首先要找出数填写的规律,再从规律中找到数表的数量关系,从而找出解决问题的关键.专题精讲教学目标98765432114115106213169711548312 想 挑 战 吗?将1到9这9个数字填入3×3的正方形表格内,使表格中横、竖、对角线上三个数的和相等,你能有多少种填法?(一)幻方[小故事](教师导入)同学们是否知道我国古代有关“洛书”的神话传说?传说在大禹治水的年代,陕西的洛水经常大肆泛滥,无论怎样祭祀河神都无济于事,每年人们摆好祭品之后,河中都会爬出一只大乌龟,乌龟壳有九大块,横着数是3行,竖着数是3列,每块乌龟壳上都有几个点点,正好凑成1至9的数字,可是谁也弄不清这些小点点是什么意思.一次,大乌龟又从河里爬上来,一个看热闹的小孩惊叫起来:“瞧多有趣啊,这些点点不论横着加、竖着加还是斜着加,结果都等于十五!”于是人们赶紧把十五份祭品献给河神,说来也怪,河水果然从此不再泛滥了.这个神奇的图案叫做“幻方”,由于它有3行3列,所以叫做“三阶幻方”,这个相等的和叫做“幻和”.“洛书”就是幻和为15的三阶幻方.如下图:987653421【例1】请你将2~10这九个自然数填入图中的空格内每行、每列、每条对角线上的三数之和相等.分析:第一步:求幻和:2+3+4+…+9+10=54第二步:求中心数:我们把幻方中对角线交点的数叫“中心数”,仔细观察可以发现:除了对角线外,第二行、第二列也分别经过中心数,那么,经过中心数的四条线段上的数字总和是幻和的4倍,即18×4=72,显然,在这个总和中,中心数用了四次,其余各数正好各用一次,所以中心数应是:(72-54)÷3=6第三步:确定四个角上的数:用尝试法,不难推知,四个角只能是奇数.第四步:用尝试法填一个基本解,以基本解为基础,可绕中心旋转与对调得到其它各解,共八解,如图:[巩固]3×3的正方形中,在每个格子里分别填入1~9的9个数字,要求每行每列对角线上的三个数的和相等,请给出至少一种填法分析:除了运用例题中的方法,还有两种方法:(方法一)罗伯法:把1(或最小的数)放在第一行正中,按以下规律排列剩下的数:(1)每一个数放在前一个数的右上一格(2)如果这个数所要放的格已经超出了最顶行,那么就把它放在最底行,仍然要放在右一列(3)如果这个数所要放的格已经超出了最右列,那么就把它放在最左列,仍然要放在上一行(4)如果这个数所要放的格已经填好了其它的数,或者同时超出了最顶行和最右列,那么就把它放在前一个数的下面,具体如下图:1213213421563421563742156387421563987421(方法二)对易法:先把1到9九个数字按顺序斜着排列,再把上下的数字1和9对调,左右的数字7和3对调,最后把4个不在边上也不在最中心的数字拉到角上,一个三阶幻方就形成了.563987421563987421563987421[说明]南宋数学家杨辉曾概括幻方为:“九子斜排,上下对易,左右相更,四维挺出.”这就是我们现在所学的对易法.[小知识] 我国北周时期的数学家甄鸾在《算数记遗》里有一段注解:“九宫者,二四为肩,六八为足,左三右七,戴九履一,五居中央.”这段文字说明了九个数字的排列情况,可见幻方在我国历史悠久,三阶幻方又叫做九宫图,九宫图的幻方民间歌谣是这样的:“四海三山八仙洞,九龙五子一枝连;二七六郎赏月半,周围十五月团圆.”【例2】请你将1~25这二十五个自然数填入图中的空格内每行、每列、每条对角线上的五数之和相等.[亮点设计](1)提问:三阶幻方的我们可以通过算的方法填出,五阶的呢?算算看,累死.七阶呢?更累死.同学们想不想在一分钟之内写出五阶幻方呢?看老师的:(2)示范:边写边说口诀:“一居上行正中央,后数依次右上连.上出框时往下填,右出框时往左填.排重便在下格填,右上排重一个样”.见第二个图.这是法国人罗伯特总结出的“罗伯法”,它对于构造连续自然数幻方是最简单易行的.(3)练习:写个七阶的看看(大家一起来练)注意强调细节.上出框与右出框的处理有时不容易把握,老师隆重推荐大家一种方法——“卷纸筒”,即把上下边重合在一线,则上出框后往右上填的位置正好在下边的对应点上.强调这种方法适用于任意奇数阶幻方.(4)亮化:大家现在感到是不是很好玩?美国的有个小孩子写出了105阶的幻方,被记在一本数学课本上.我们现在知道,这里的方法其实不算难吧?其实我们也不妨跟美国小朋友PK一下,来构造一个比较大的幻方,也可以是或者就是做一份数学作品,跟书法作品一样装裱得非常漂亮地挂在你家客厅的墙上,客人到你家作客时,一看是一头雾水,你就简单地问一问他,横行的所有数之和是多少?所有横行的每个和怎么样呢?都相等吧?竖列所有数之和是多少?跟横行的和相等吧!还有,看看两条对角线上,每条对角线上所有数之和呢?轻轻而清晰地告诉他,这就是57阶幻方或者**阶幻方!厉害吧,这就是奥数研究生的作品.(研究奥数的学生简称奥数研究生嘛)当然,别忘了,十几阶的奇数幻方奖一个章,二十几阶的奖励三个章,三十几阶的奖励五个章,四十几阶的奖励七个章,如果六十几阶应该奖励几个章呢?【例3】将九个数填入左下图的九个空格中,使得任一行、任一列以及两条对角线上的三个数之和都等于定数k,则中心方格中的数必为k÷3证明:因为每行的三数之和都等于k,共有三行,所以九个数之和等于3k.如右上图所示,经过中心方格的有四条虚线,每条虚线上的三个数之和都等于k,四条虚线上的所有数之和等于4k,其中只有中心方格中的数是“重叠数”,九个数各被计算一次后,它又被重复计算了三次.所以有:九数之和+中心方格中的数×3=4k,3k+中心方格中的数×3=4k,中心方格的数=k÷3注意:例题中对九个数及定数k都没有特殊要求.这个结论对求解3×3方格中的数阵问题很实用. [拓展]如图是一个三阶幻方,那么标有*的方格中所填的数是多少?110 8*分析:首先确定左下角的数为17,这样才能保证第一行和第一列的和相等,如此可以得出,这个三阶幻方中围绕中心的相对位置上的两个数和为17+10=27,接着确定底边和右边上的数,通过设左上角标有*的方格中所填的数未知数为X,列式为(18+x)÷3+27=18+x,最后求出标有*的方格中所填的数为22.5.【例4】在下图的九个方格中填入不大于12且互不相同的九个自然数(其中已填好一个数),使得任一行、任一列及两条对角线上的三个数之和都等于21.分析:中间方格中的数为7.再设右下角的数为x,然后根据任一行、任一列及每条对角线上的三个数之和都等于21,如下图所示填上各数(含x).因为九个数都不大于12,由16-x≤12知4≤x,由x+2≤12知x≤10,即4≤x≤10.考虑到5,7,9已填好,所以x只能取4,6,8或10.经验证,当x=6或8时,九个数中均有两个数相同,不合题意;当x=4或10时可得两个解(见下图).这两个解实际上一样,只是方向不同而已.[巩固]如图所示,在3×3方格表内已填好了两个数19和95,在其余的空格中填上适当的数,可以使得每行、每列以及两条对角线上的三个数之和都相等.(1)求x;(2)如果中间的空格内填入100,试在上一小题的基础上,完成填图.x19 95100951918124171291761051009519分析:(1)设中间的数为Y,则各行各列的和为3Y,求出各个方格中每个数的代数式,左上角为Y-X+95,右上角为2Y-95,右下角为:Y+X-95,最下面一行中间的数为:2Y-X,根据每行每列的和相等,最左面的一列等于最右面的一列,可列出方程:X+3Y-190+19=3Y-X+190-19,解得X=171.(由此引出三阶幻方性质:角上的数等于不相邻边上数的平均数)(2)根据(1)所得的每个方格中的代数式可得右上图.【例5】将前9个自然数填入右图的9个方格中,使得任一行、任一列以及两条对角线上的三个数之和互不相同,并且相邻的两个自然数在图中的位置也相邻.分析:题目要求相邻的两个自然数在图中的位置也相邻,所以这9个自然数按照大小顺序在图中应能连成一条不相交的折线.经试验有下图所示的三种情况:按照从1到9和从9到1逐一对这三种情况进行验算,只有第二种情况得到下图的两个解.因为第二种情况是螺旋形,故本题的解称为螺旋反幻方.[前铺]用11,13,15,17,19,21,23,25,27编制成一个三阶幻方.分析:给出的九个数形成一个等差数列,1~9也是一个等差数列.不难发现:中间方格里的数字应填等差数列的第五个数,即应填19;填在四个角上方格中的数是位于偶数项的数,即13,17,21,25,而且对角两数的和相等,即13+25=17+21;余下各数就不难填写了(见下图).与幻方相反的问题是反幻方.将九个数填入3×3(三行三列)的九个方格中,使得任一行、任一列以及两条对角线上的三个数之和互不相同,这样填好后的图称为三阶反幻方.【例6】将1、2、3、4、5、6、7、8、9这九个数字,分别填入3×3阵列中的九个方格,使第二行组成的三位数是第一行组成的三位数的2倍,第三行组成的三位数是第一行组成的三位数的3倍.分析:这一例题较复杂些,但如果我们充分利用题目的要求和1至9这九个数的特性(五奇四偶),那么也能缩小每格中所应填的数的范围,直至完全确定每格中应填的数.为了方便起见,把九个格中的数字用A至I这九个英文字母代替.这样,例如C=2,则F=4,I=6.因而其余六格应包含全部奇数(1、3、5、7、9)和偶数8,由于DEF=2×ABC,GHI=3×ABC,所以GHI=ABC+DEF,因此又可把3×3方格中的数看作一个加式:前两行之和等于第三行.这对于我们用奇偶性去分析加式成立的可能性是有用的.由于个位上的加法没有进位,因此十位上的三个数字不能都为奇数(否则将出现奇数+奇数=奇数的矛盾等式),即8一定是其中的一个十位数字,显然B≠8(否则E=6,与I=6矛盾).又H≠8(否则,B≤8/3,只有B=1.而当B=1时,H至多为5).因此E=8,这样,B=9,H=7.最后,由于A<D<G必有A=1,D=3,G=5.由于192×2=384,192×3=576,所以所填的数满足题目要求.又如,C=4,则F=8,I=2.个位上的加式向十位进1,因此十位上的三个数字都是奇数,因此6是一个百位数字.显然A≠6.如果D=6,则必有A=3,G=9.而B、E、H是1、5、7这三个数,要满足B+E+1=H,只能B=1,E=5,H=7或B=5,E=1,H=7.由于314×2≠658,354×2≠618,所以此时不满足题目要求.如果G=6,显然A<3,此时只有A=1,但当A=1时,G<(1+1)×3=6.因而当C=4时,不可能有满足题目要求的填法.其他的情形可以类似地加以讨论,分别给出肯定的或否定的结论.由分析,下左图是一种符合要求的填法.由于作为一个加法算式(上两行的和等于第三行),上图只是在十位上的加式向百位进了1,其他两个数位上都没有进位,因此把它的个位移到百位的位置上加式仍然成立,所以上右图也是一种符合要求的填法.还有两种符合要求的填法,希望同学们利用分析中的方法把它们找出来.【例7】 在一个3×3的网格中填入9个数使得每一横行、竖行、对角线上三个数的乘积相等.分析:先填出一个普通幻方,任意取一个自然数n ,然后将幻方中的数改成以n 为底,原来的数为指数的形式即可,取n=2,如果取2,则九个数字为:2、4、8、16、64、128、256、512,如图.563987421512256128641684232[拓展]把1,2,3,4,6,9,12,18,36这9个数分别填入3×3方格表的各方格内,使每一行、每一列及两条对角线上的3个数的乘积都是216.求位于正中间的方格中所填的数.分析:1=2030,2=2130,3=2031,4=2230,6=2131,9=2032,12=2231,18=2132,36=2232,只要将这些数填入空格保证每行每列以及对角线上的2和3上的指数和相等.943122183616【例8】已知如图是一个四阶幻方,那么标有*的方格中所填的数是多少?分析:对角线上的和为34,由此可以确定第四行第三列的数为2,右下角的数为13,于是便可以确定标有*的方格中所填的数为6.3811165*49712(二)数表【例9】如下图,在方格中填入一些数以后使得无论横行、竖行相邻三个数的和都为20,那么“*”所代表的数是多少?分析:设左上角方格中的数为x,由相邻三个数的和为20,可知横行、竖行都以3为循环,那么左上角的数为14-x,左下角方格中的数为12-x,由此还能求到右下角的数为6+x,“*”所代表的数为20-(14-x)-(6+x)=0.[巩固]如图,横、竖各有12个方格,每个方格内都有一个数.已知横行上任意3个相邻数之和为20,竖列上任意3个相邻数之和为2l,并且其中4个方格内的数分别是3,5,8和x.那么x所代表的数是多少?分析:先分析竖直方向的数字出现规律,都是以3为周期循环出现相同数字,求得交叉点上数字为10,同理可求得x=5.【例10】请在4×8方格表的每个方格内填入数1,2或3,使得任何排列如图所示形状的4个方格中所填数的和都是7.11121132113211321133232132113211分析:这个图形如中间图所示打上斜线,那么这四个格子都在不同的斜线上,将4×8的方格网也打上斜线,填数的时候,只要保证同一条斜线上的数相同,并且从最上边的斜线向下,线上对应的数以4为周期依次出现两个1,一个2,一个3.[拓展] 请在4×8方格表的每个方格内填入数1、2、3、4,使得任何排列如例10图所示形状的4个方格中所填数的和都是10.分析:只需将图中的部分斜线上的1替换成4.[前铺]请在4×8方格表的每个方格内填人数1,2或3,使得任何排列如图所示形状的4个方格中所填数的和都是7.*26883x511121132113211321133232132113211分析,首先考虑一个横排,要使横排任意四个数包含3、2、1、1,那么每个横排上的数都应该以4为一个周期,将这样的一个横排向左错位一格作为它的下一排,向左错位两格作为它的下边第二排,……,那么在竖直方向,数表也将符合题目条件的性质.[巩固]在如左图6×6的方格网中填入1、2、3这三个数,使得用右图任意一种图形覆盖方格网,盖住的数和为12.分析:12=1+1+2+2+3+3,由例10得到灵感:将1、2、3如图排列后能保证符合条件211333222211111333333222221111333221[拓展]用一个九宫格盖住下边表中9个数,已知这个九宫格中间一个数是86,你能否用这被盖住的9个数构成一个幻方,使得每一横行,每一竖行还有对角线上三个数的相等.1 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17 1819 20 21 22 23 24 25 26 2728 29 30 31 32 33 34 35 3637 38 39 40 41 42 43 44 45…………………………………………………………分析:表中对于任何一个数,它的左邻比它小1,右邻比它大1,上邻比它小9,下邻比他大9,由此可知,九宫格盖住的9个数分别为76、77、78、85、86、87、94、95、96,将它们填成幻方如图,86当然放在最中间.969594878685787776【例11】 如图表中所示的顺序,将正整数1、2、3、4、5……按顺序依次填入,求2007在第几行第几列?第一列 第二列 第三列 第四列……第一行 1 2 5 10 17 第二行 4 3 6 11 第三行 9 8 7 12 第四行 16 15 14 13 ……分析:按照填写顺序,所有的完全平方数都出现在数表的第一列,所有小于等于2n 的正整数数都能够组成一个边长为n 的正方形,442<2007<452,所以2007处在边长为45的正方形的边缘,边长为四十五的正方形边缘第一个数是442+1=1937,位于第一行、第四十五列,最后一个数是452=2025,位于第四十五行,第一列,所以第四十五行,第四十五列的数是(2025+1937)÷2=1981,2007>1981,所以2007在第四十五行上,2025-2007=18,所以2007在第十九列上.[拓展]如图表中所示的顺序,将正整数1、2、3、4、5……按顺序依次填入,求2007在第几行第几列?第1列 第2列 第3列 第4列 第5列 第6列……第1行 1 2 6 7 15 16 第2行 3 5 8 14 17 第3行 4 9 13 18 第4行 10 12 19 第5行 11 20 第6行 21 ……分析:每当所填的数能表示成n n+12()时(n 为正整数),所有已经填的数就构成一个直角边长为n 个数的直角三角形,n 为奇数时,2n (n+1)在第一行,n 为偶数时,n n+12()在第一列,因为6262+12⨯()<2007<6363+12⨯(),所以2007在边长为63个数的直角三角形的斜边上,6363+12⨯()=2016位于第1行第63列,2016-2007=9,所以2007在第10行,第54列.【例12】在有大小六个正方形的方框下左图中的圆圈内,填入1~9这九个自然数,使每一个正方形角上四个数字之和相等.a1+a2+b1+b2=S,a2+b2+a3+b3=S,b1+b2+c1+b2=S,a2+b3+b2+b1=S,b2+b2+b3+c3=S,a1+a3+c3+c1=S.将上面的六个等式相加可得到:2(a1+a3+c3+c1)+3(a2+b3+b2+b1)+4b2=6S.则4b2=S4(a1+a3+c3+c1)+4(a2+b3+b2+b1)+4b2=9S.于是有:4(a1+a2+a3+b1+b2+b3+c1+b2+c3)=4×45=9S. 9S=4×45 S=20.这就说明每个正方形角上四个数字之和为20. 所以:b2=5. 从而得到:a1+a2+b1=a2+a3+b3=15,b1+c1+b2=b2+c3+b3=15.由上面两式可得:a1+b1=a3+b3,b1+c1=b3+c3.如果a2为奇数,则a1+b1和a3+b3均为偶数.①若a1为奇数,a3为偶数,则b1为奇数,b3为偶数.因为a2+b3+b2+b1=20,所以b2为偶数,则c1为偶数,c3为奇数.但是a1+a2+5+b1=20,而奇数1、3、5、7、9中含有5的任意四个奇数的和不等于20,有矛盾.②若a1为偶数,a3为偶数,则b1也为偶数,b3也为偶数.因为a2+b3+b2+b1=20,所以b2为奇数,则c1为偶数,c3为偶数,但1~9中只有4个偶数,有矛盾.③若a1为奇数,a3为奇数,则b1、b3也为奇数,这样1~9中有六个奇数,有矛盾.④若a1为偶数,a3为奇数,情况与①相同.综合上述,a2必为偶数.由对称性易知:b2、b2、b1也为偶数.因此a1、a3、c3、c1全为奇数..这样,就比较容易找到此解专题展望幻方、数表类题目虽然变化不多,但这一类题目与数学很多分支包括:组合数学、数论等都有结合,今后同学们接触到更多的数学知识后会对幻方有更深入的了解.1. (例4)在图中的每个空格内填入一个数,使得每行、每列及两条对角线上的3个方格中的各数之和都等于19.95.那么,标有*的格内所填的数是多少?分析:设中间的数为X ,可以此确定上边、右上角、右下角、左下角、左边、右边所填数的代数式,由于3X=19.95,X=6.65,最后得到,标有*的格内所填的数是11.12.*8.804.332. (例6)将自然数1至9分别填在如图所示的3×3方格表内,使得每行、每列及两条对角线上的数满足:两端的两个数之和减去中间的数,结果都等于5.分析:中间的数只能为5,这样才能保证有4组数对分别填写于方格四周,相对位置两数和相等并且比中心所填的数大5.9876432153. (例9)如图,有一个11位数,它的每3个相邻数字之和都是20.问标有*的那个数位上的数字应是几?分析:这个数的各个数位上的数字以3为周期循环出现,这个数为97497497497,标有*的那个数位上的数字应是7.7*9练习七4.(例11)如图表中数的排列顺序,2007在第几行第几列?2007的下边是哪个数?第一列第二列第三列第四列第五行第一行 1 2 3 4第二行8 7 6 5第三行9 10 11 12第四行16 15 14 13……分析:各个自然数的列号以8为循环,行号每4个数加一行,2007=8×250+7,所以2007在第3列,第502行,它下边的数比2007大4,所以2007下边是2011.5.(例12)将1~8填入下图中的○内,要求按照自然数顺序相邻的两个数不能填入有直线段连接的相邻的两个○内.分析:因为中间两个○分别只与一个○不相邻,只能填1和8,其余数的填法见右上图.许多名人喜欢用数学比喻,往往出语幽默、诙谐,好比深山闻钟,使人记忆久远.古希腊哲学家芝诺号称"悖论之父",他有四个数学悖论一直传到今天.他曾讲过一句名言:"大圆圈比小圆圈掌握的知识要多一点,但因为大圆圈的圆周比小圆圈的长,所以它与外界空白的接触面也就比小圆圈大,因此更感到知识的不足,需要努力去学习".人民教育家陶行知先生曾经说,他有八位好朋友做帮手,使他少犯错误,甚至可以不犯错误.他编了一首歌,读起来非常动听:我有八位好朋友,肯把万事指嘉摇?你若想问真姓名,名字不同都姓何. 何事、何故、何人、何如、何时、何来、何去,好像弟弟与哥哥.还有一个西洋派,姓名颠倒叫几何.若向八贤常请教,虽是笨人少错误. 美国作家杰克·伦敦成名后,曾收到过一位女士的求爱信;"你有一个出众的名声,我有一个高贵的地位.这两者加起来,再乘上万能的黄金,足以使我们建立起一个天堂都不能比拟的美满家庭."杰克·伦敦连忙回信,他答得很妙:"根据你列出的那道爱情公式,我看还要开平方!不过这个平方根却是负数".古希腊哲学家芝诺对他的学生说:“如果用小圆代表你们学到的知识,用大圆代表我学到的知识,那么大圆的面积大一点;但两圆之外的空白,都是我们的无知面,圆越大其圆周接触的无知面就越多.”毛泽东曾经批评个人主义严重的人说:“有的人总是以‘我'为‘圆心'、‘个人主义'为‘半径',在这个圆圈里转来转去,总是不能跳出这个圆圈.”数学知识。

四年级高思奥数之幻方与数阵图扩展含答案

四年级高思奥数之幻方与数阵图扩展含答案

第20 讲幻方与数阵图扩展内容概述掌握幻方的概念,了解三、四阶幻方的构造方法;解决具有与幻方类似性质的数阵图问题;进一步学习重数分析的方法;通过计算重数来处理数阵图中的最大最小问题.典型问题兴趣篇1. 把1,2,⋯,9填人图20-1 中9个空白圆圈内,使得三个圆周及三条线段上3个数之和都相等.2. (1)如图20-2,在3×3 的方格表的每个方格中填入恰当的数,使得每行、每列、每条对角线上所填数之和都相等.(2)如图20-3,在4×4 的方格表的每个方格中填人恰当的数,使得每行、每列、每条对角线上所填数之和都相等.3.在图20-4所示的3×4 方格表的每个方格中填人恰当的数后,可以使各行所填的数之和相等,各列所填的数之和也相等.现在一些数已经填出,标有符号是多少?4.如图20-5,请在空格中填人适当的数,组成一个三阶幻方.5.请将图20-6 所示的5×5 方格表补充完整,使得每个方格内都有一个数字,并且具有如下的性质:方格表中每行,每列和每条对角线的5个方格内所填的5 个数中,l、2、3、4、5 恰好各出现一次.请问:标有符号“△”,“▽”和“○”的方格中所填的数分别是6.请将 1 至 9 这 9 个数填入图 20-7 中的方框内,使得所有不等号都成立.所有满足要求的 填法共有多少种 ?7.请在图 20-8 所示的 8 个小圆圈内,分别填入 1 至 8这 8 个数字,使得图中用线段连接的两个小圆圈内所填的数的差 (大减小 )恰好是 1、2、3、4、5、 6、7.8.将 1至 5这 5个数字填入图 20-9中的小圆圈内,使得横线、竖线、大圆周上所填数之和 都相等.9.请在图 20-10 中的六块区域内填人 相邻的区域内的数之和都相等.10.将 0至9填入图 20-11的10块区域中 (阴影区域除外 ),使得每个圆内的三个数之和都是1、2、3、4、5、6,使得对每一个小圆圈来说,与它相等的.请问:这个和最小是多少 ?最大是多少 ?拓展篇1.将1,2,3,⋯,24,25 分别填入图20-12 的各个方格中,使得每行、每列及两的数是多少2.请在图 20-13 的每个空格内填人一个合适的数,使得每行、每列及两条对角线上的3. (1)在图 20-14 的每个空格内填入一个数,使得每行、每列及两条对角线上的 的各数之和都等于 19. 95.那么,标有“ t ”的方格内所填的数是多少 ?4. 如图 20-16 ,大正方形的 4 个角上已填人 4 个数, 4 个数之和是 264.奇妙的是 , 把这个 图倒过来看,大正方形 4 个角上的数之和仍然是 264.请你在中间的小正方形的 4 个角的圆 圈里,填人另外 4个数,使得每条对角线上的 4 个数正看和倒看时,其和都是 正方形角上的 4 个数正看和倒看时,其和也都是 264.6.请将 1至 10填入图 20-18 中的 10个圆圈中 (9已经填好 ) 的数都等于与它相连的上方两个圆圈内的两数之差.7.在图 20-19 的 7 个圆圈内各填一个数,要求对于每一条直线上的 边两个数的平均数.现在已经填好了两个数,请把剩下的圆圈填好.(2)请在图 20-15 的每个空格内填人一个合适的数,使得每行、每列及两条对角线上的 个方格中的各数之和都相等。

人教版四年级下册数学奥数——魔力幻方(课件)

人教版四年级下册数学奥数——魔力幻方(课件)
1居上行正中央(如图1),依次斜填切莫忘(如图1); 上出框时往下填(如图2),右出框时左边放(如图3); 排重便在下格填(如图4),右上排重一个样(如图6)。
实践与应用
【练习1】 P98 用1,3,5,7,9,11,13,15,17这九个奇数构成一个三阶幻方。
【例2】把3,4,5,6,7,8,9,10,11九个数填入图中的方格内,使每一行、 每一列和每条对角线上的数的和都相等。
填“幻方”是同学们比较熟悉的一种数学游戏,由幻方演变出来的数阵问题, 也是一类比较常见的填数问题。这里,和同学们讨论一些数阵的填法。
解答数阵问题通常用两种方法:一是待定数法,二是试验法。 待定数法就是先用字母(或符号)表示满足条件的数,通过分析、计算来确定这
些字母(或符号)应具备的条件,为解答数阵问题提供方向。 试验法就是根据题中所给条件选准突破口,确定填数的可能范围。把分析推理和
【分析与解答】 三阶幻方九个数中存在4个未知数,看似无从下手,那么能否从题干中找到 突破口呢?从第一行和第三列可以轻松推断出A的值,从而可以依次求出B, C,D的值。 我来解答:从第一行和第三列可知A+12+D=D+20+11, 那么A+12=20+11,4=19。对角线上三个数的和为19+15+11=45。 那么B=45-19-16=10,C=45-12-15=18,D=45-19-12=14。
小结与提示 解答三阶幻方问题,要充分抓往题干中隐藏的已知条件,作为解题的突破口。
实践与应用
【练习4】 P102 在下图中的A、B、C、D处填上活当的数,使下图成为一个三阶幻方。
【例5】将1,2,3,5,6,7这六个数填入下图中,使每行中三个数的和相等,同时使每列中两个数

小学奥数全国推荐三年级奥数通用学案附带练习题解析答案10

小学奥数全国推荐三年级奥数通用学案附带练习题解析答案10

年级三年级学科奥数版本通用版课程标题数阵图问题(二)上一讲我们主要学习了简单的辐射型和封闭型数阵图,这一讲我们一起来研究幻方。

有关幻方问题的研究在我国已流传了两千多年,它是具有独特形式的填数字问题。

宋朝的杨辉将幻方命名为“纵横图。

”并探索出一些解答幻方问题的方法。

随着历史的进展,许多人对幻方做了进一步的研究,创造了许多绚丽多彩的幻方。

据传在夏禹时代,洛水中出现过一只神龟,背上有图有文,后人称它为“洛书”。

洛书所表示的幻方是在3×3的方格子里(即三行三列),按一定的要求填上1~9这九个数,使每行、每列及两条对角线上各自三数之和均相等,这样的3×3的数阵阵列称为三阶幻方。

幻方口诀:“一居上行正中央,后数依次右上连。

上出框时往下填,右出框时往左填。

排重便在下格填,右上排重一个样”。

见下图,这是法国人罗伯特总结出的“罗伯法”,它对于构造连续自然数的幻方是最简单易行的。

例1请你将2~10这九个自然数填入图中的空格内使每行、每列、每条对角线上的三数之和相等。

分析与解:第一步:求幻和:2+3+4+…+9+10=54;第二步:求中心数:我们把幻方中对角线交点的数叫“中心数”,仔细观察可以发现:除了对角线外,第二行、第二列也分别经过中心数,那么,经过中心数的四条线段上的数字总和是幻和的4倍,即18×4=72,显然,在这个总和中,中心数用了四次,其余各数正好各用一次,所以中心数应是:(72-54)÷3=6;第三步:确定四个角上的数:用尝试法,不难推知,四个角只能填奇数。

第四步:用尝试法填一个基本解,以基本解为基础,可绕中心旋转与对调得到其他各解,共八解,如图(只写三个,剩下的请自己补充):例2请你将1~49这四十九个自然数填入图中的空格内,使每行、每列、每条对角线上的七个数之和相等。

分析与解:三阶幻方我们可以通过计算的方法填出,七阶幻方可根据口诀算出:例3如下图的3×3的阵列中填入了1~9的自然数,构成大家熟知的三阶幻方。

奥数-13三阶幻方+答案

奥数-13三阶幻方+答案

三阶幻方一、幻方的由来幻方起源于中国,传说在大禹治水时,有只神龟在洛水中浮起,龟背上有奇特的图案,如左图。

人们称之为洛书。

如果将龟背上的数字翻译出来,就是九个有规律排列的数字。

观察发现,上图的每行、每列,斜线上的三个数之和都是15。

像这样,将九个不同的自然数填在三行三列的正方形内,使每行、每列以及每条对角线上的三个数之和都相等,这样的图形就叫三阶幻方。

三阶幻方是一种特殊的数阵图。

上面的三阶幻方中,每条线上的三数之和15是这个幻方幻和,5是幻方最中心的数字,简称中心数。

二、三阶幻方的规律1、幻和=总和÷3;2、中间数=幻和÷3=总和÷93、三阶幻方性质:角块等于对角两棱块之和的一半。

c +(2d -b)=a +(2d -c) c -b =a -c c =(a +b)÷2三、填幻方的方法 1、凑一凑用九张纸片,分别写上九个数字(或者用九张扑克牌)在桌(地)面上摆出来,通过移动卡片使数字的排列符合题目的要求,此法是“凑”出来的。

2、排转换第一步把九个数字摆成图一,第二步让周围的八个数字绕着中心的数字依次转动一个位置,成图二,第三步将对角的数字进行对换,成图三。

这个方法归结为“一排,二转,三对换”。

3、杨辉法:4、阶梯法:(适用奇数幻方)①、构造阶梯②、按顺序斜排③、相互交换5、罗伯特法:(适用奇数幻方)1居上行正中央,依次斜填切莫忘,上出框界往下写,右出框是左边放,重复便在下格填,右上重复一个样。

6、中心开花法:①排列:1,2,3,4,5,6,7,8,9;②确定中心数,九个数之和÷9=5;③定四角数,位于这个数列偶数项的数,即2,4,6,8;④填余下的4个数(见右图)。

7、对角线法:1、按顺序写数。

2、对角互换(区分大对角和小对角)与幻方相反的问题是反幻方。

将九个数填入三行三列的九个方格中,使得任一行、任一列以及两条对角线上的三个数之和互不相同,这样填好后的图称为三阶反幻方。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 会用罗伯法填奇数阶幻方2. 了解偶数阶幻方相关知识点3. 深入学习三阶幻方一、幻方起源也叫纵横图,也就是把数字纵横排列成正方形,因此纵横图又叫幻方.幻方起源于我国,古人还为它编撰了一些神话.传说在大禹治水的年代,陕西的洛水经常大肆泛滥,无论怎样祭祀河神都无济于事,每年人们摆好祭品之后,河中都会爬出一只大乌龟,乌龟壳有九大块,横着数是3行,竖着数是3列,每块乌龟壳上都有几个点点,正好凑成1至9的数字,可是谁也弄不清这些小点点是什么意思.一次,大乌龟又从河里爬上来,一个看热闹的小孩惊叫起来:“瞧多有趣啊,这些点点不论横着加、竖着加还是斜着加,结果都等于十五!”于是人们赶紧把十五份祭品献给河神,说来也怪,河水果然从此不再泛滥了.这个神奇的图案叫做“幻方”,由于它有3行3列,所以叫做“三阶幻方”,这个相等的和叫做“幻和”.“洛书”就是幻和为15的三阶幻方.如下图:987654321我国北周时期的数学家甄鸾在《算数记遗》里有一段注解:“九宫者,二四为肩,六八为足,左三右七,戴九履一,五居中央.”这段文字说明了九个数字的排列情况,可见幻方在我国历史悠久.三阶幻方又叫做九宫图,九宫图的幻方民间歌谣是这样的:“四海三山八仙洞,九龙五子一枝连;二七六郎赏月半,周围十五月团圆.”幻方的种类还很多,这节课我们将学习认识了解它们.二、幻方定义幻方是指横行、竖列、对角线上数的和都相等的数的方阵,具有这一性质的33⨯的数阵称作三阶幻方,44⨯的数阵称作四阶幻方,55⨯的称作五阶幻方……如图为三阶幻方、四阶幻方的标准式样,98765432113414151612978105113216三、解决这幻方常用的方法⑴适用于所有奇数阶幻方的填法有罗伯法.口诀是:一居上行正中央,后数依次右上连.上出框时往下填,右出框时往左填.排重便在下格填,右上排重一个样.⑵适用于三阶幻方的三大法则有: ①求幻和: 所有数的和÷行数(或列数)②求中心数:我们把幻方中对角线交点的数叫“中心数”,中心数=幻和÷3. ③角上的数=与它不同行、不同列、不同对角线的两数和÷2.知识点拨教学目标5-1-4-1.幻方(一)四、数独数独简介:(日语:数独すうどく)是一种源自18世纪末的瑞士,后在美国发展、并在日本得以发扬光大的数学智力拼图游戏。

如今数独的雏型首先于1970年代由美国的一家数学逻辑游戏杂志发表,当时名为Number Place。

现今流行的数独于1984年由日本游戏杂志《パズル通信ニコリ》发表并得了现时的名称。

数独本是“独立的数字”的省略,因为每一个方格都填上一个个位数。

数独可以简单的数为:让行与列及单元格的数字成规律性变换的一类数字谜问题解题技巧:数独游戏中最常规的办法就是利用每一个空格所在的三个单元中已经出现的数字(大小数独一个空格只位于两个单元之内,但是同时多了一个大小关系作为限制条件)来缩小可选数字的范围。

总结4个小技巧:1、巧选突破口:数独中未知的空格数目很多,如何寻找突破口呢?首先我们要通过规则的限制来分析每一个空格的可选数字的个数,然后选择可选数字最少的方格开始,一般来说,我们会选择所在行、所在列和所在九宫格中已知数字比较多的方格开始,尽可能确定方格中的数字;而大小数独中已知的数字往往非常少,这个时候大小关系更加重要,我们除了利用已知数字之外更加需要考虑大小关系的限制。

2、相对不确定法:有的时候我们不能确定2个方格中的数字,却可以确定同一单元其他方格中肯定不会出现什么数字,这个就是我们说的相对不确定法。

举例说明,A1可以填入1或者2,A2也可以填入1或者2,那么我们可以确定,1和2必定出现在A1和A2两者之中,A行其他位置不可能出现1或者2.3、相对排除法:某一单元中出现好几个空格无法确定,但是我们可以通过比较这几个空格的可选数字进行对比分析来确定它们中的某一个或者几个空格。

举例说明,A行中已经确定5个数字,还有4个数字(我们假设是1、2、3、4)没有填入,通过这4个空格所在的其他单元我们知道A1可以填入1、2、3、4,A2可以填入1、3,A3可以填入1、2、3,A4可以填入1、3,这个时候我们可以分析,数字4只能填入A1中,所以A1可以确定填入4,我们就可以不用考虑A1,这样就可以发现2只能填入A3中,所以A3也能确定,A2和A4可以通过其他办法进行确定。

4、假设法:如果找不到能够确定的空格,我们不妨进行假设,当然,假设也是原则的,我们不能进行无意义的假设,假设的原则是:如果通过假设一个空格的数字,可以确定和这个空格处在同一个单元内的其它某一个或者某几个空格的数字,那么我们就以选择这样的空格来假设为佳。

举例说明,B3可以填入1或者2,A3可以填入2或者3,B4可以填入1或者2,这个时候我们就应该假设B3填入2,这样就可以确定A3填入3,B4填入1,然后以这个为基础进行推理,如果推出违反规则的情况出现,那么这个假设就是错误的,我们回到假设点重新开始。

例题精讲模块一、构造幻方【例1】33⨯的正方形中,在每个格子里分别填入1~9的9个数字,要求每行每列及对角线上的三个数的和相等(请给出至少一种填法).【考点】构造幻方【难度】1星【题型】填空【解析】方法一:第一步:求幻和:1239315++++÷=()第二步:求中心数:我们把幻方中对角线交点的数叫“中心数”,仔细观察可以发现:除了对角线外,第二行、第二列也分别经过中心数,那么,经过中心数的四条线段上的数字总和是幻和的4倍,即15460⨯=,显然,在这个总和中,中心数用了四次,其余各数正好各用一次,所以中心数应是:604535-÷=()第三步:确定四个角上的数.由于在同一条直线上的三个数的和是15,所以如果某格中的数是奇数,那么与这个数在同一条直线上的另两个数的奇偶性相同,所以四个角上的数必为偶数.第四步:用尝试法填一个基本解,以基本解为基础,可绕中心旋转与对调得到其它各解,共8解,下图为其中一解,其余解均可由其翻转或旋转得到:987654321方法二(对易法):南宋数学家杨辉概括为:“九子斜排,上下对易,左右相更,四维挺出”.即:先把1到9九个数字按顺序斜着排列,再把上下的数字1和9对调,左右的数字7和3对调,最后把4个不在边上也不在最中心的数字拉到角上,一个三阶幻方就形成了.789456123729654183381456927方法三(阶梯法):阶梯法也叫楼梯法,是法国数学家巴赫特创造的.这个方法看起来有点像对易法,但又完全不一样,十分简单而巧妙,适用于所有奇数阶幻方.这个方法把n 阶方阵从四周向外扩展成阶梯状,然后把2n 个自然数顺阶梯方向先码放好,再把方阵以外部分平移到方阵以内其对边部分去,即构成幻方.下图表示了如何用阶梯法构成3阶幻方.276951438方法二和方法三中将1~9按8个不同的方位排列就可以得到本题8个不同的解. 方法四(罗伯法):把1(或最小的数)放在第一行正中,按以下规律排列剩下的数: ⑴ 每一个数放在前一个数的右上一格;⑵ 如果这个数所要放的格已经超出了最顶行,那么就把它放在最底行,仍然要放在右一列. ⑶ 如果这个数所要放的格已经超出了最右列,那么就把它放在最左列,仍然要放在上一行. ⑷ 如果这个数所要放的格已经填好了其它的数,或者同时超出了最顶行和最右列,那么就把它放在前一个数的下面,具体如下图:1121231234123456123456712345678123456789这是法国人罗伯特总结出的方法,所以叫“罗伯法”.罗伯法的口诀:一居上行正中央,后数依次右上连.上出框时往下填,右出框时往左填.排重便在下格填,右上排重一个样.它对于构造连续自然数(以及能构成等差数列的数)幻方是最简单易行的,适用于所有奇数阶幻方.【答案】123456789【例 2】 33⨯的正方形格子中,在每个格子里分别填入2~10的9个数字,要求每行每列及对角线上的三个数的和相等(请给出至少一种填法).【考点】构造幻方 【难度】2星 【题型】填空 【解析】 第一步:求幻和:234910318+++++÷=().第二步:求中心数:我们把幻方中对角线交点的数叫“中心数”,仔细观察可以发现:除了对角线外,第二行、第二列也分别经过中心数,那么,经过中心数的四条线段上的数字总和是幻和的4倍,即18472⨯=,显然,在这个总和中,中心数用了四次,其余各数正好各用一次,所以中心数应是:725436-÷=().第三步:确定四个角上的数:用尝试法,不难推知,四个角只能是奇数.第四步:用尝试法填一个基本解,以基本解为基础,可绕中心旋转与对调得到其它各解,共8解.下图为其中一解,其余解均可由其翻转或旋转得到:8910567234其他方法这里不再做介绍,同学们可以自己尝试练习.【答案】8910567234【例 3】 用11,13,15,17,19,21,23,25,27编制成一个三阶幻方。

【考点】构造幻方 【难度】2星 【题型】填空 【解析】 方法一:给出的九个数形成一个等差数列,1~9也是一个等差数列.不难发现:中间方格里的数字应填等差数列的中间数,也就是第五个数,即应填19;填在四个角上方格中的数是位 于偶数项的数,即13,17,21,25,而且对角两数的和相等,即13251721+=+;余下 各数就不难填写了(见下图).111723131925152127与幻方相反的问题是反幻方.将九个数填入33⨯(三行三列)的九个方格中,使得任一行、任一列以及两条对角线上的三个数之和互不相同,这样填好后的图称为三阶反幻方.方法二:用阶梯法,在三阶幻方的上下左右的中间添加一格,先将数字按从小到大的顺序,以斜行方向从左下向右上依次填写,再把添加格内的数填到本行(或本列)中相隔两行(或两列)的方格中.212313111927251517方法三:对易法:九子斜排,上下对易,左右相更,四维挺出.112727172713171317131713151923231915231915151923251121252125212521271111→→→ 方法四:用罗伯法的口诀:一居上行正中央,后数依次右上连.上出框时往下填,右出框时往左填.排重便在下格填,右上排重一个样.【答案】111723131925152127【例 4】 如下图的33⨯的阵列中填入了1~9的自然数,构成大家熟知的3阶幻方.现在另有一个33⨯ 的阵列,请选择9个不同自然数填入9个方格中,使得其中最大者为20,最小者大于5,且要求横加、竖加、对角线方式相加的3个数之和都相等.987654321【考点】构造幻方 【难度】3星 【题型】填空 【解析】 观察原表中的各数是从1~9不同的九个自然数,其中最大的数是9,最小的数是1,且横加、竖加、对角线方式相加结果相等.根据题意,要求新制的幻方最大数为20,而91120+=,因此,如果原表中的各数都增加11,就能符合新表中的条件了.如下图.201918171615141312【答案】201918171615141312【例 5】 从1、2、3…20这20个数中选出9个不同的数放入3×3的方格表中,使得每行、每列、每条对角线上的三个数的和都相等。

相关文档
最新文档